1
|
Yang X, Mao Z, Huang J, Wang R, Dong H, Zhang Y, Ma H. Improving pathway prediction accuracy of constraints-based metabolic network models by treating enzymes as microcompartments. Synth Syst Biotechnol 2023; 8:597-605. [PMID: 37743907 PMCID: PMC10514394 DOI: 10.1016/j.synbio.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/12/2023] [Accepted: 09/06/2023] [Indexed: 09/26/2023] Open
Abstract
Metabolic network models have become increasingly precise and accurate as the most widespread and practical digital representations of living cells. The prediction functions were significantly expanded by integrating cellular resources and abiotic constraints in recent years. However, if unreasonable modeling methods were adopted due to a lack of consideration of biological knowledge, the conflicts between stoichiometric and other constraints, such as thermodynamic feasibility and enzyme resource availability, would lead to distorted predictions. In this work, we investigated a prediction anomaly of EcoETM, a constraints-based metabolic network model, and introduced the idea of enzyme compartmentalization into the analysis process. Through rational combination of reactions, we avoid the false prediction of pathway feasibility caused by the unrealistic assumption of free intermediate metabolites. This allowed us to correct the pathway structures of l-serine and l-tryptophan. A specific analysis explains the application method of the EcoETM-like model and demonstrates its potential and value in correcting the prediction results in pathway structure by resolving the conflict between different constraints and incorporating the evolved roles of enzymes as reaction compartments. Notably, this work also reveals the trade-off between product yield and thermodynamic feasibility. Our work is of great value for the structural improvement of constraints-based models.
Collapse
Affiliation(s)
- Xue Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Zhitao Mao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Jianfeng Huang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Ruoyu Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Huaming Dong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yanfei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Hongwu Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| |
Collapse
|
2
|
Islam Z, Kumar P. Inhibitors of riboflavin biosynthetic pathway enzymes as potential antibacterial drugs. Front Mol Biosci 2023; 10:1228763. [PMID: 37496776 PMCID: PMC10366380 DOI: 10.3389/fmolb.2023.1228763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023] Open
Abstract
Multiple drug resistance is the main obstacle in the treatment of bacterial diseases. Resistance against antibiotics demands the exploration of new antimicrobial drug targets. A variety of in silico and genetic approaches show that the enzymes of the riboflavin biosynthetic pathway are crucial for the survival of bacteria. This pathway is absent in humans thus enzymes of the riboflavin biosynthetic pathway are emerging drug targets for resistant pathogenic bacterial strains. Exploring the structural details, their mechanism of action, intermediate elucidation, and interaction analysis would help in designing suitable inhibitors of these enzymes. The riboflavin biosynthetic pathway consists of seven distinct enzymes, namely, 3,4-dihydroxy-2-butanone 4-phosphate synthase, GTP cyclohydrolase II, pyrimidine deaminase/reductase, phosphatase, lumazine synthase, and riboflavin synthase. The present review summarizes the research work that has been carried out on these enzymes in terms of their structures, active site architectures, and molecular mechanism of catalysis. This review also walks through small molecule inhibitors that have been developed against several of these enzymes.
Collapse
Affiliation(s)
- Zeyaul Islam
- Qatar Biomedical Research Institute (QBRI), Qatar Foundation, Hamad Bin Khalifa University, Doha, Qatar
| | - Pankaj Kumar
- Department of Biochemistry, Jamia Hamdard, New Delhi, India
| |
Collapse
|
3
|
de Moraes MH, Hsu F, Huang D, Bosch DE, Zeng J, Radey MC, Simon N, Ledvina HE, Frick JP, Wiggins PA, Peterson SB, Mougous JD. An interbacterial DNA deaminase toxin directly mutagenizes surviving target populations. eLife 2021; 10:62967. [PMID: 33448264 PMCID: PMC7901873 DOI: 10.7554/elife.62967] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
When bacterial cells come in contact, antagonism mediated by the delivery of toxins frequently ensues. The potential for such encounters to have long-term beneficial consequences in recipient cells has not been investigated. Here, we examined the effects of intoxication by DddA, a cytosine deaminase delivered via the type VI secretion system (T6SS) of Burkholderia cenocepacia. Despite its killing potential, we observed that several bacterial species resist DddA and instead accumulate mutations. These mutations can lead to the acquisition of antibiotic resistance, indicating that even in the absence of killing, interbacterial antagonism can have profound consequences on target populations. Investigation of additional toxins from the deaminase superfamily revealed that mutagenic activity is a common feature of these proteins, including a representative we show targets single-stranded DNA and displays a markedly divergent structure. Our findings suggest that a surprising consequence of antagonistic interactions between bacteria could be the promotion of adaptation via the action of directly mutagenic toxins.
Collapse
Affiliation(s)
- Marcos H de Moraes
- Department of Microbiology, University of Washington School of Medicine, Seattle, United States
| | - FoSheng Hsu
- Department of Microbiology, University of Washington School of Medicine, Seattle, United States
| | - Dean Huang
- Department of Physics, University of Washington, Seattle, United States
| | - Dustin E Bosch
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, United States
| | - Jun Zeng
- Department of Microbiology, University of Washington School of Medicine, Seattle, United States
| | - Matthew C Radey
- Department of Microbiology, University of Washington School of Medicine, Seattle, United States
| | - Noah Simon
- Department of Biostatistics, University of Washington School of Public Health, Seattle, United States
| | - Hannah E Ledvina
- Department of Microbiology, University of Washington School of Medicine, Seattle, United States
| | - Jacob P Frick
- Department of Microbiology, University of Washington School of Medicine, Seattle, United States
| | - Paul A Wiggins
- Department of Physics, University of Washington, Seattle, United States
| | - S Brook Peterson
- Department of Microbiology, University of Washington School of Medicine, Seattle, United States
| | - Joseph D Mougous
- Department of Microbiology, University of Washington School of Medicine, Seattle, United States.,Department of Biochemistry, University of Washington School of Medicine, Seattle, United States.,Howard Hughes Medical Institute, University of Washington, Seattle, United States
| |
Collapse
|
4
|
Dai D, Tong H, Cheng L, Peng F, Zhang T, Qi W, Song R. Maize Dek33 encodes a pyrimidine reductase in riboflavin biosynthesis that is essential for oil-body formation and ABA biosynthesis during seed development. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5173-5187. [PMID: 31173102 PMCID: PMC6793443 DOI: 10.1093/jxb/erz268] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/28/2019] [Indexed: 05/05/2023]
Abstract
The maize (Zea mays) defective kernel 33 (dek33) mutant produces defective and occasionally viviparous kernel phenotypes. In this study, we cloned Dek33 by positional cloning and found that it encodes a pyrimidine reductase in riboflavin biosynthesis. In dek33, a single-base mutation (G to A) in the C-terminal COG3236 domain caused a premature stop codon (TGA), producing a weak mutant allele with only a truncated form of the DEK33 protein that occurred at much lower levels that the completed WT form, and with a reduced riboflavin content. The dek33 mutation significantly affected oil-body formation and suppressed endoreduplication. It also disrupted ABA biosynthesis, resulting in lower ABA content that might be responsible for the viviparous embryo. In addition, our results indicated that the COG3236 domain is important for the protein stability of DEK33. Yeast two-hybrid experiments identified several proteins that interacted with DEK33, including RGLG2 and SnRK1, suggesting possible post-translational regulation of DEK33 stability. The interaction between DEK33 and these proteins was further confirmed by luciferase complementation image assays. This study provides a weak mutant allele that can be utilized to explore cellular responses to impaired riboflavin biosynthesis during seed development. Our findings indicate that the COG3236 domain might be an essential regulatory structure for DEK33 stability in maize.
Collapse
Affiliation(s)
- Dawei Dai
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Hongyang Tong
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Lijun Cheng
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Fei Peng
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Tingting Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Rentao Song
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Correspondence:
| |
Collapse
|
5
|
Sa N, Rawat R, Thornburg C, Walker KD, Roje S. Identification and characterization of the missing phosphatase on the riboflavin biosynthesis pathway in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:705-716. [PMID: 27490826 DOI: 10.1111/tpj.13291] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
Despite the importance of riboflavin as the direct precursor of the cofactors flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), the physiologically relevant catalyst dephosphorylating the riboflavin biosynthesis pathway intermediate 5-amino-6-ribitylamino-2,4(1H,3H) pyrimidinedione 5'-phosphate (ARPP) has not been characterized from any organism. By using as the query sequence a previously identified plastidial FMN hydrolase AtcpFHy1 (At1g79790), belonging to the haloacid dehalogenase (HAD) superfamily, seven candidates for the missing ARPP phosphatase were found, cloned, recombinantly expressed, and purified. Activity screening showed that the enzymes encoded by AtcpFHy1, At4g11570, and At4g25840 catalyze dephosphorylation of ARPP. AtcpFHy1 was renamed AtcpFHy/PyrP1, At4g11570 and At4g25840 were named AtPyrP2 and AtGpp1/PyrP3, respectively. Subcellular localization in planta indicated that AtPyrP2 was localized in plastids and AtGpp1/PyrP3 in mitochondria. Biochemical characterization of AtcpFHy/PyrP1 and AtPyrP2 showed that they have similar Km values for the substrate ARPP, with AtcpFHy/PyrP1 having higher catalytic efficiency. Screening of 21 phosphorylated substrates showed that AtPyrP2 is specific for ARPP. Molecular weights of AtcpFHy/PyrP1 and AtPyrP2 were estimated at 46 and 72 kDa, suggesting dimers. pH and temperature optima for AtcpFHy/PyrP1 and AtPyrP2 were ~7.0-8.5 and 40-50°C. T-DNA knockout of AtcpFHy/PyrP1 did not affect the flavin profile of the transgenic plants, whereas silencing of AtPyrP2 decreased accumulation of riboflavin, FMN, and FAD. Our results strongly support AtPyrP2 as the missing phosphatase on the riboflavin biosynthesis pathway in Arabidopsis thaliana. The identification of this enzyme closes a long-standing gap in understanding of the riboflavin biosynthesis in plants.
Collapse
Affiliation(s)
- Na Sa
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Renu Rawat
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Chelsea Thornburg
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Kevin D Walker
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Sanja Roje
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
6
|
‘Nothing of chemistry disappears in biology’: the Top 30 damage-prone endogenous metabolites. Biochem Soc Trans 2016; 44:961-71. [DOI: 10.1042/bst20160073] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Indexed: 11/17/2022]
Abstract
Many common metabolites are intrinsically unstable and reactive, and hence prone to chemical (i.e. non-enzymatic) damage in vivo. Although this fact is widely recognized, the purely chemical side-reactions of metabolic intermediates can be surprisingly hard to track down in the literature and are often treated in an unprioritized case-by-case way. Moreover, spontaneous chemical side-reactions tend to be overshadowed today by side-reactions mediated by promiscuous (‘sloppy’) enzymes even though chemical damage to metabolites may be even more prevalent than damage from enzyme sloppiness, has similar outcomes, and is held in check by similar biochemical repair or pre-emption mechanisms. To address these limitations and imbalances, here we draw together and systematically integrate information from the (bio)chemical literature, from cheminformatics, and from genome-scale metabolic models to objectively define a ‘Top 30’ list of damage-prone metabolites. A foundational part of this process was to derive general reaction rules for the damage chemistries involved. The criteria for a ‘Top 30’ metabolite included predicted chemical reactivity, essentiality, and occurrence in diverse organisms. We also explain how the damage chemistry reaction rules (‘operators’) are implemented in the Chemical-Damage-MINE (CD-MINE) database (minedatabase.mcs.anl.gov/#/top30) to provide a predictive tool for many additional potential metabolite damage products. Lastly, we illustrate how defining a ‘Top 30’ list can drive genomics-enabled discovery of the enzymes of previously unrecognized damage-control systems, and how applying chemical damage reaction rules can help identify previously unknown peaks in metabolomics profiles.
Collapse
|
7
|
Hanson AD, Henry CS, Fiehn O, de Crécy-Lagard V. Metabolite Damage and Metabolite Damage Control in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:131-52. [PMID: 26667673 DOI: 10.1146/annurev-arplant-043015-111648] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
It is increasingly clear that (a) many metabolites undergo spontaneous or enzyme-catalyzed side reactions in vivo, (b) the damaged metabolites formed by these reactions can be harmful, and (c) organisms have biochemical systems that limit the buildup of damaged metabolites. These damage-control systems either return a damaged molecule to its pristine state (metabolite repair) or convert harmful molecules to harmless ones (damage preemption). Because all organisms share a core set of metabolites that suffer the same chemical and enzymatic damage reactions, certain damage-control systems are widely conserved across the kingdoms of life. Relatively few damage reactions and damage-control systems are well known. Uncovering new damage reactions and identifying the corresponding damaged metabolites, damage-control genes, and enzymes demands a coordinated mix of chemistry, metabolomics, cheminformatics, biochemistry, and comparative genomics. This review illustrates the above points using examples from plants, which are at least as prone to metabolite damage as other organisms.
Collapse
Affiliation(s)
| | - Christopher S Henry
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439;
- Computation Institute, University of Chicago, Chicago, Illinois 60637
| | - Oliver Fiehn
- Genome Center, University of California, Davis, California 95616;
| | - Valérie de Crécy-Lagard
- Microbiology and Cell Science Department, University of Florida, Gainesville, Florida 32611; ,
| |
Collapse
|
8
|
Cheng YS, Sacchettini JC. Structural Insights into Mycobacterium tuberculosis Rv2671 Protein as a Dihydrofolate Reductase Functional Analogue Contributing to para-Aminosalicylic Acid Resistance. Biochemistry 2016; 55:1107-19. [PMID: 26848874 PMCID: PMC6201685 DOI: 10.1021/acs.biochem.5b00993] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mycobacterium tuberculosis (Mtb) Rv2671 is annotated as a 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione 5'-phosphate (AROPP) reductase (RibD) in the riboflavin biosynthetic pathway. Recently, a strain of Mtb with a mutation in the 5' untranslated region of Rv2671, which resulted in its overexpression, was found to be resistant to dihydrofolate reductase (DHFR) inhibitors including the anti-Mtb drug para-aminosalicylic acid (PAS). In this study, a biochemical analysis of Rv2671 showed that it was able to catalyze the reduction of dihydrofolate (DHF) to tetrahydrofolate (THF), which explained why the overexpression of Rv2671 was sufficient to confer PAS resistance. We solved the structure of Rv2671 in complex with the NADP(+) and tetrahydrofolate (THF), which revealed the structural basis for the DHFR activity. The structures of Rv2671 complexed with two DHFR inhibitors, trimethoprim and trimetrexate, provided additional details of the substrate binding pocket and elucidated the differences between their inhibitory activities. Finally, Rv2671 was unable to catalyze the reduction of AROPP, which indicated that Rv2671 and its closely related orthologues are not involved in riboflavin biosynthesis.
Collapse
Affiliation(s)
- Yu-Shan Cheng
- Department of Chemistry, Texas A&M University,
College Station, Texas 77842, United States
| | - James C. Sacchettini
- Department of Chemistry, Texas A&M University,
College Station, Texas 77842, United States
- Department of Biochemistry and Biophysics, Texas
A&M University, College Station, Texas 77843, United States
| |
Collapse
|
9
|
Joo M, Yoo HG, Kim HJ, Kwon HJ. ToxB encodes a canonical GTP cyclohydrolase II in toxoflavin biosynthesis and ribA expression restored toxoflavin production in a ΔtoxB mutant. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13765-015-0116-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Abstract
Plants and bacteria synthesize the essential human micronutrient riboflavin (vitamin B2) via the same multi-step pathway. The early intermediates of this pathway are notoriously reactive and may be overproduced in vivo because riboflavin biosynthesis enzymes lack feedback controls. In the present paper, we demonstrate disposal of riboflavin intermediates by COG3236 (DUF1768), a protein of previously unknown function that is fused to two different riboflavin pathway enzymes in plants and bacteria (RIBR and RibA respectively). We present cheminformatic, biochemical, genetic and genomic evidence to show that: (i) plant and bacterial COG3236 proteins cleave the N-glycosidic bond of the first two intermediates of riboflavin biosynthesis, yielding relatively innocuous products; (ii) certain COG3236 proteins are in a multi-enzyme riboflavin biosynthesis complex that gives them privileged access to riboflavin intermediates; and (iii) COG3236 action in Arabidopsis thaliana and Escherichia coli helps maintain flavin levels. COG3236 proteins thus illustrate two emerging principles in chemical biology: directed overflow metabolism, in which excess flux is diverted out of a pathway, and the pre-emption of damage from reactive metabolites.
Collapse
|
11
|
London N, Farelli JD, Brown SD, Liu C, Huang H, Korczynska M, Al-Obaidi NF, Babbitt PC, Almo SC, Allen KN, Shoichet BK. Covalent docking predicts substrates for haloalkanoate dehalogenase superfamily phosphatases. Biochemistry 2015; 54:528-37. [PMID: 25513739 PMCID: PMC4303301 DOI: 10.1021/bi501140k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
![]()
Enzyme function prediction remains
an important open problem. Though
structure-based modeling, such as metabolite docking, can identify
substrates of some enzymes, it is ill-suited to reactions that progress
through a covalent intermediate. Here we investigated the ability
of covalent docking to identify substrates that pass through such
a covalent intermediate, focusing particularly on the haloalkanoate
dehalogenase superfamily. In retrospective assessments, covalent docking
recapitulated substrate binding modes of known cocrystal structures
and identified experimental substrates from a set of putative phosphorylated
metabolites. In comparison, noncovalent docking of high-energy intermediates
yielded nonproductive poses. In prospective predictions against seven
enzymes, a substrate was identified for five. For one of those cases,
a covalent docking prediction, confirmed by empirical screening, and
combined with genomic context analysis, suggested the identity of
the enzyme that catalyzes the orphan phosphatase reaction in the riboflavin
biosynthetic pathway of Bacteroides.
Collapse
Affiliation(s)
- Nir London
- Department of Pharmaceutical Chemistry, and §Department of Bioengineering and Therapeutic Sciences, University of California San Francisco , San Francisco, California 94158, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Birkenmeier M, Neumann S, Röder T. Kinetic modeling of riboflavin biosynthesis in Bacillus subtilis under production conditions. Biotechnol Lett 2014; 36:919-28. [PMID: 24442413 DOI: 10.1007/s10529-013-1435-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 12/12/2013] [Indexed: 11/29/2022]
Abstract
To study the network dynamics of the riboflavin biosynthesis pathway and to identify potential bottlenecks in the system, an ordinary differential equation-based model was constructed using available literature data for production strains. The results confirmed that the RibA protein is rate limiting in the pathway. Under the conditions investigated, we determined a potential limiting order of the remaining enzymes under increased RibA concentration (>0.102 mM) and therefore higher riboflavin production (>0.045 mmol g(CDW)(-1) h(-1) and 0.0035 mM s(-1), respectively). The reductase activity of RibG and lumazine synthase (RibH) might be the next most limiting steps. The computational minimization of the enzyme concentrations of the pathway suggested the need for a greater RibH concentration (0.251 mM) compared with the other enzymes (RibG: 0.188 mM, RibB: 0.023 mM).
Collapse
Affiliation(s)
- Markus Birkenmeier
- Institute of Chemical Process Engineering, Mannheim University of Applied Sciences, Paul-Wittsack-Straße 10, 68163, Mannheim, Germany,
| | | | | |
Collapse
|
13
|
Haase I, Sarge S, Illarionov B, Laudert D, Hohmann HP, Bacher A, Fischer M. Enzymes from the Haloacid Dehalogenase (HAD) Superfamily Catalyse the Elusive Dephosphorylation Step of Riboflavin Biosynthesis. Chembiochem 2013; 14:2272-5. [DOI: 10.1002/cbic.201300544] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Indexed: 11/09/2022]
|
14
|
Dawson A, Trumper P, Chrysostomou G, Hunter WN. Structure of diaminohydroxyphosphoribosylaminopyrimidine deaminase/5-amino-6-(5-phosphoribosylamino)uracil reductase from Acinetobacter baumannii. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:611-7. [PMID: 23722836 PMCID: PMC3668577 DOI: 10.1107/s174430911301292x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/11/2013] [Indexed: 11/11/2022]
Abstract
The bifunctional diaminohydroxyphosphoribosylaminopyrimidine deaminase/5-amino-6-(5-phosphoribosylamino)uracil reductase (RibD) represents a potential antibacterial drug target. The structure of recombinant Acinetobacter baumannii RibD is reported in orthorhombic and tetragonal crystal forms at 2.2 and 2.0 Å resolution, respectively. Comparisons with orthologous structures in the Protein Data Bank indicated close similarities. The tetragonal crystal form was obtained in the presence of guanosine monophosphate, which surprisingly was observed to occupy the adenine-binding site of the reductase domain.
Collapse
Affiliation(s)
- Alice Dawson
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Paul Trumper
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Georgios Chrysostomou
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - William N. Hunter
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| |
Collapse
|
15
|
Lv Z, Sun J, Liu Y. Structural and functional insights into Saccharomyces cerevisiae riboflavin biosynthesis reductase RIB7. PLoS One 2013; 8:e61249. [PMID: 23620735 PMCID: PMC3631187 DOI: 10.1371/journal.pone.0061249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/06/2013] [Indexed: 11/19/2022] Open
Abstract
Saccharomyces cerevisiae RIB7 (ScRIB7) is a potent target for anti-fungal agents because of its involvement in the riboflavin biosynthesis pathway as a NADPH-dependent reductase. However, the catalytic mechanism of riboflavin biosynthesis reductase (RBSRs) is controversial, and enzyme structure information is still lacking in eukaryotes. Here we report the crystal structure of Saccharomyces cerevisiae RIB7 at 2.10 Å resolution and its complex with NADPH at 2.35 Å resolution. ScRIB7 exists as a stable homodimer, and each subunit consists of nine central β-sheets flanked by five helices, resembling the structure of RIB7 homologues. A conserved G(76)-X-G(78)-Xn-G(181)-G(182) motif is present at the NADPH pyrophosphate group binding site. Activity assays confirmed the necessity of Thr79, Asp83, Glu180 and Gly182 for the activity of ScRIB7. Substrate preference of ScRIB7 was altered by mutating one residue (Thr35) to a Lysine, implying that ScRIB7 Thr35 and its corresponding residue, a lysine in bacteria, are important in substrate-specific recognition.
Collapse
Affiliation(s)
- Zongyang Lv
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Jian Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yingfang Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Chen SC, Shen CY, Yen TM, Yu HC, Chang TH, Lai WL, Liaw SH. Evolution of vitamin B2biosynthesis: eubacterial RibG and fungal Rib2 deaminases. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:227-36. [DOI: 10.1107/s0907444912044903] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 10/30/2012] [Indexed: 12/27/2022]
|
17
|
Hasnain G, Frelin O, Roje S, Ellens KW, Ali K, Guan JC, Garrett TJ, de Crécy-Lagard V, Gregory JF, McCarty DR, Hanson AD. Identification and characterization of the missing pyrimidine reductase in the plant riboflavin biosynthesis pathway. PLANT PHYSIOLOGY 2013; 161:48-56. [PMID: 23150645 PMCID: PMC3532277 DOI: 10.1104/pp.112.208488] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 11/08/2012] [Indexed: 05/21/2023]
Abstract
Riboflavin (vitamin B₂) is the precursor of the flavin coenzymes flavin mononucleotide and flavin adenine dinucleotide. In Escherichia coli and other bacteria, sequential deamination and reduction steps in riboflavin biosynthesis are catalyzed by RibD, a bifunctional protein with distinct pyrimidine deaminase and reductase domains. Plants have two diverged RibD homologs, PyrD and PyrR; PyrR proteins have an extra carboxyl-terminal domain (COG3236) of unknown function. Arabidopsis (Arabidopsis thaliana) PyrD (encoded by At4g20960) is known to be a monofunctional pyrimidine deaminase, but no pyrimidine reductase has been identified. Bioinformatic analyses indicated that plant PyrR proteins have a catalytically competent reductase domain but lack essential zinc-binding residues in the deaminase domain, and that the Arabidopsis PyrR gene (At3g47390) is coexpressed with riboflavin synthesis genes. These observations imply that PyrR is a pyrimidine reductase without deaminase activity. Consistent with this inference, Arabidopsis or maize (Zea mays) PyrR (At3g47390 or GRMZM2G090068) restored riboflavin prototrophy to an E. coli ribD deletant strain when coexpressed with the corresponding PyrD protein (At4g20960 or GRMZM2G320099) but not when expressed alone; the COG3236 domain was unnecessary for complementing activity. Furthermore, recombinant maize PyrR mediated NAD(P)H-dependent pyrimidine reduction in vitro. Import assays with pea (Pisum sativum) chloroplasts showed that PyrR and PyrD are taken up and proteolytically processed. Ablation of the maize PyrR gene caused early seed lethality. These data argue that PyrR is the missing plant pyrimidine reductase, that it is plastid localized, and that it is essential. The role of the COG3236 domain remains mysterious; no evidence was obtained for the possibility that it catalyzes the dephosphorylation that follows pyrimidine reduction.
Collapse
Affiliation(s)
- Ghulam Hasnain
- Department of Horticultural Sciences (G.H., O.F., K.W.E., J.-C.G., D.R.M., A.D.H.), Department of Food Science and Human Nutrition (K.A., J.F.G.), and Department of Microbiology and Cell Science (V.d.C.-L.), University of Florida, Gainesville, Florida 32611; Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (S.R.); and Department of Pathology, University of Florida, Gainesville, Florida 32610 (T.J.G.)
| | - Océane Frelin
- Department of Horticultural Sciences (G.H., O.F., K.W.E., J.-C.G., D.R.M., A.D.H.), Department of Food Science and Human Nutrition (K.A., J.F.G.), and Department of Microbiology and Cell Science (V.d.C.-L.), University of Florida, Gainesville, Florida 32611; Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (S.R.); and Department of Pathology, University of Florida, Gainesville, Florida 32610 (T.J.G.)
| | - Sanja Roje
- Department of Horticultural Sciences (G.H., O.F., K.W.E., J.-C.G., D.R.M., A.D.H.), Department of Food Science and Human Nutrition (K.A., J.F.G.), and Department of Microbiology and Cell Science (V.d.C.-L.), University of Florida, Gainesville, Florida 32611; Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (S.R.); and Department of Pathology, University of Florida, Gainesville, Florida 32610 (T.J.G.)
| | - Kenneth W. Ellens
- Department of Horticultural Sciences (G.H., O.F., K.W.E., J.-C.G., D.R.M., A.D.H.), Department of Food Science and Human Nutrition (K.A., J.F.G.), and Department of Microbiology and Cell Science (V.d.C.-L.), University of Florida, Gainesville, Florida 32611; Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (S.R.); and Department of Pathology, University of Florida, Gainesville, Florida 32610 (T.J.G.)
| | - Kashif Ali
- Department of Horticultural Sciences (G.H., O.F., K.W.E., J.-C.G., D.R.M., A.D.H.), Department of Food Science and Human Nutrition (K.A., J.F.G.), and Department of Microbiology and Cell Science (V.d.C.-L.), University of Florida, Gainesville, Florida 32611; Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (S.R.); and Department of Pathology, University of Florida, Gainesville, Florida 32610 (T.J.G.)
| | - Jiahn-Chou Guan
- Department of Horticultural Sciences (G.H., O.F., K.W.E., J.-C.G., D.R.M., A.D.H.), Department of Food Science and Human Nutrition (K.A., J.F.G.), and Department of Microbiology and Cell Science (V.d.C.-L.), University of Florida, Gainesville, Florida 32611; Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (S.R.); and Department of Pathology, University of Florida, Gainesville, Florida 32610 (T.J.G.)
| | - Timothy J. Garrett
- Department of Horticultural Sciences (G.H., O.F., K.W.E., J.-C.G., D.R.M., A.D.H.), Department of Food Science and Human Nutrition (K.A., J.F.G.), and Department of Microbiology and Cell Science (V.d.C.-L.), University of Florida, Gainesville, Florida 32611; Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (S.R.); and Department of Pathology, University of Florida, Gainesville, Florida 32610 (T.J.G.)
| | - Valérie de Crécy-Lagard
- Department of Horticultural Sciences (G.H., O.F., K.W.E., J.-C.G., D.R.M., A.D.H.), Department of Food Science and Human Nutrition (K.A., J.F.G.), and Department of Microbiology and Cell Science (V.d.C.-L.), University of Florida, Gainesville, Florida 32611; Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (S.R.); and Department of Pathology, University of Florida, Gainesville, Florida 32610 (T.J.G.)
| | - Jesse F. Gregory
- Department of Horticultural Sciences (G.H., O.F., K.W.E., J.-C.G., D.R.M., A.D.H.), Department of Food Science and Human Nutrition (K.A., J.F.G.), and Department of Microbiology and Cell Science (V.d.C.-L.), University of Florida, Gainesville, Florida 32611; Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (S.R.); and Department of Pathology, University of Florida, Gainesville, Florida 32610 (T.J.G.)
| | - Donald R. McCarty
- Department of Horticultural Sciences (G.H., O.F., K.W.E., J.-C.G., D.R.M., A.D.H.), Department of Food Science and Human Nutrition (K.A., J.F.G.), and Department of Microbiology and Cell Science (V.d.C.-L.), University of Florida, Gainesville, Florida 32611; Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (S.R.); and Department of Pathology, University of Florida, Gainesville, Florida 32610 (T.J.G.)
| | - Andrew D. Hanson
- Department of Horticultural Sciences (G.H., O.F., K.W.E., J.-C.G., D.R.M., A.D.H.), Department of Food Science and Human Nutrition (K.A., J.F.G.), and Department of Microbiology and Cell Science (V.d.C.-L.), University of Florida, Gainesville, Florida 32611; Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164 (S.R.); and Department of Pathology, University of Florida, Gainesville, Florida 32610 (T.J.G.)
| |
Collapse
|
18
|
Abbas CA, Sibirny AA. Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Microbiol Mol Biol Rev 2011; 75:321-60. [PMID: 21646432 PMCID: PMC3122625 DOI: 10.1128/mmbr.00030-10] [Citation(s) in RCA: 243] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Riboflavin [7,8-dimethyl-10-(1'-d-ribityl)isoalloxazine, vitamin B₂] is an obligatory component of human and animal diets, as it serves as the precursor of flavin coenzymes, flavin mononucleotide, and flavin adenine dinucleotide, which are involved in oxidative metabolism and other processes. Commercially produced riboflavin is used in agriculture, medicine, and the food industry. Riboflavin synthesis starts from GTP and ribulose-5-phosphate and proceeds through pyrimidine and pteridine intermediates. Flavin nucleotides are synthesized in two consecutive reactions from riboflavin. Some microorganisms and all animal cells are capable of riboflavin uptake, whereas many microorganisms have distinct systems for riboflavin excretion to the medium. Regulation of riboflavin synthesis in bacteria occurs by repression at the transcriptional level by flavin mononucleotide, which binds to nascent noncoding mRNA and blocks further transcription (named the riboswitch). In flavinogenic molds, riboflavin overproduction starts at the stationary phase and is accompanied by derepression of enzymes involved in riboflavin synthesis, sporulation, and mycelial lysis. In flavinogenic yeasts, transcriptional repression of riboflavin synthesis is exerted by iron ions and not by flavins. The putative transcription factor encoded by SEF1 is somehow involved in this regulation. Most commercial riboflavin is currently produced or was produced earlier by microbial synthesis using special selected strains of Bacillus subtilis, Ashbya gossypii, and Candida famata. Whereas earlier RF overproducers were isolated by classical selection, current producers of riboflavin and flavin nucleotides have been developed using modern approaches of metabolic engineering that involve overexpression of structural and regulatory genes of the RF biosynthetic pathway as well as genes involved in the overproduction of the purine precursor of riboflavin, GTP.
Collapse
Affiliation(s)
| | - Andriy A. Sibirny
- Institute of Cell Biology, NAS of Ukraine, Lviv 79005, Ukraine
- University of Rzeszow, Rzeszow 35-601, Poland
| |
Collapse
|
19
|
Chen SC, Lin YH, Yu HC, Liaw SH. Complex Structure of Bacillus subtilis RibG. J Biol Chem 2009; 284:1725-31. [DOI: 10.1074/jbc.m805820200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|