1
|
Aazad AA, Choudhury A, Hussain A, AlAjmi MF, Mohammad T, Prabha S, Sharma MK, Shamsi A, Hassan MI. Exploring phytochemical inhibitors of protein kinase C alpha for therapeutic targeting of Alzheimer's disease. J Alzheimers Dis 2024; 102:703-719. [PMID: 39523500 DOI: 10.1177/13872877241289620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by neurodegeneration linked to amyloid-β (Aβ) plaques and tau protein tangles. Protein kinase C alpha (PKCα) plays a crucial role in modulating amyloid-β protein precursor (AβPP) processing, potentially mitigating AD progression. Consequently, PKCα stands out as a promising target for AD therapy. OBJECTIVE Despite the identification of numerous inhibitors, the pursuit of more effective and precisely targeted PKCα inhibitors remains crucial. METHODS In this study, we employed an integrated virtual screening approach of molecular docking and molecular dynamics (MD) simulations to identify phytochemical inhibitors of PKCα from the IMPPAT database. RESULTS Molecular docking screening via InstaDock identified compounds with strong binding affinities to PKCα. Subsequent ADMET and PASS analyses filtered out compounds with favorable pharmacokinetic profiles. Interaction analysis using Discovery Studio Visualizer and PyMOL further elucidated binding conformations of selected compounds with PKCα. Top hits underwent 200 ns MD simulations using GROMACS to validate stability of the interactions. Finally, we propose two phytochemicals, Kammogenin and Imperialine, with appreciable drug-likeliness and binding potential with PKCα. CONCLUSIONS Taken together, the findings suggest Kammogenin and Imperialine as potential PKCα inhibitors, highlighting their therapeutic promise for AD after further validation.
Collapse
Affiliation(s)
- A A Aazad
- Department of Bioinformatics, JV College, Baraut, Baghpat, Uttar Pradesh, India
| | - Arunabh Choudhury
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Sneh Prabha
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Manoj Kumar Sharma
- Department of Bioinformatics, JV College, Baraut, Baghpat, Uttar Pradesh, India
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, United Arab Emirates
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
2
|
Kerr D, Suwatthee T, Maltseva S, Lee KYC. Binding equations for the lipid composition dependence of peripheral membrane-binding proteins. Biophys J 2024; 123:885-900. [PMID: 38433448 PMCID: PMC10995427 DOI: 10.1016/j.bpj.2024.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/09/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024] Open
Abstract
The specific recognition of peripheral membrane-binding proteins for their target membranes is mediated by a complex constellation of various lipid contacts. Despite the inherent complexities of the heterogeneous protein-membrane interface, the binding dependence of such proteins is, surprisingly, often reliably described by simple models such as the Langmuir Adsorption Isotherm or the Hill equation. However, these models were not developed to describe associations with two-dimensional, highly concentrated heterogeneous ligands such as lipid membranes. In particular, these models fail to capture the dependence on the lipid composition, a significant determinant of binding that distinguishes target from non-target membranes. In this work, we present a model that describes the dependence of peripheral proteins on lipid composition through an analytic expression for their association. The resulting membrane-binding equation retains the features of these simple models but completely describes the binding dependence on multiple relevant variables in addition to the lipid composition, such as protein and vesicle concentration. Implicit in this lipid composition dependence is a new form of membrane-based cooperativity that significantly differs from traditional solution-based cooperativity. We introduce the Membrane-Hill number as a measure of this cooperativity and describe its unique properties. We illustrate the utility and interpretational power of our model by analyzing previously published data on two peripheral proteins that associate with phosphatidylserine-containing membranes: The transmembrane immunoglobulin and mucin domain-containing protein 3 (TIM3) that employs calcium in its association, and milk fat globulin epidermal growth factor VIII (MFG-E8) which is completely insensitive to calcium. We also provide binding equations for systems that exhibit more complexity in their membrane-binding.
Collapse
Affiliation(s)
- Daniel Kerr
- Department of Chemistry, The University of Chicago, Chicago, Illinois
| | - Tiffany Suwatthee
- Department of Chemistry, The University of Chicago, Chicago, Illinois
| | - Sofiya Maltseva
- Department of Chemistry, The University of Chicago, Chicago, Illinois
| | - Ka Yee C Lee
- Department of Chemistry, The University of Chicago, Chicago, Illinois; James Franck Institute, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
3
|
Chon NL, Tran S, Miller CS, Lin H, Knight JD. A conserved electrostatic membrane-binding surface in synaptotagmin-like proteins revealed using molecular phylogenetic analysis and homology modeling. Protein Sci 2024; 33:e4850. [PMID: 38038838 PMCID: PMC10731544 DOI: 10.1002/pro.4850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/29/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
Protein structure prediction has emerged as a core technology for understanding biomolecules and their interactions. Here, we combine homology-based structure prediction with molecular phylogenetic analysis to study the evolution of electrostatic membrane binding among the vertebrate synaptotagmin-like protein (Slp) family. Slp family proteins play key roles in the membrane trafficking of large dense-core secretory vesicles. Our previous experimental and computational study found that the C2A domain of Slp-4 (also called granuphilin) binds with high affinity to anionic phospholipids in the cytoplasmic leaflet of the plasma membrane through a large positively charged protein surface centered on a cluster of phosphoinositide-binding lysine residues. Because this surface contributes greatly to Slp-4 C2A domain membrane binding, we hypothesized that the net charge on the surface might be evolutionarily conserved. To test this hypothesis, the known C2A sequences of Slp-4 among vertebrates were organized by class (from mammalia to pisces) using molecular phylogenetic analysis. Consensus sequences for each class were then identified and used to generate homology structures, from which Poisson-Boltzmann electrostatic potentials were calculated. For comparison, homology structures and electrostatic potentials were also calculated for the five human Slp protein family members. The results demonstrate that the charge on the membrane-binding surface is highly conserved throughout the evolution of Slp-4, and more highly conserved than many individual residues among the human Slp family paralogs. Such molecular phylogenetic-driven computational analysis can help to describe the evolution of electrostatic interactions between proteins and membranes which are crucial for their function.
Collapse
Affiliation(s)
- Nara L. Chon
- Department of ChemistryUniversity of Colorado DenverDenverColoradoUSA
| | - Sherleen Tran
- Department of ChemistryUniversity of Colorado DenverDenverColoradoUSA
| | | | - Hai Lin
- Department of ChemistryUniversity of Colorado DenverDenverColoradoUSA
| | | |
Collapse
|
4
|
Shen Z, Lengyel M, Niethammer P. The yellow brick road to nuclear membrane mechanotransduction. APL Bioeng 2022; 6:021501. [PMID: 35382443 PMCID: PMC8967412 DOI: 10.1063/5.0080371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
The nuclear membrane may function as a mechanosensory surface alongside the plasma membrane. In this Review, we discuss how this idea emerged, where it currently stands, and point out possible implications, without any claim of comprehensiveness.
Collapse
Affiliation(s)
| | - Miklós Lengyel
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Philipp Niethammer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
5
|
A synergy between mechanosensitive calcium- and membrane-binding mediates tension-sensing by C2-like domains. Proc Natl Acad Sci U S A 2022; 119:2112390119. [PMID: 34969839 PMCID: PMC8740744 DOI: 10.1073/pnas.2112390119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2021] [Indexed: 11/23/2022] Open
Abstract
A cell must be able to measure whether the lipid membranes that surround its insides are stretched. Currently, mechanosensitive ion channels are the best-studied class of membrane tension sensors, but recent work suggests that peripheral membrane enzymes that gauge nuclear confinement or swelling during cell migration or upon tissue injury constitute a second class. The mechanosensitivity of these enzymes derives from their calcium-dependent (“C2-like”) membrane-interaction domains. Although these can be found in many important signaling proteins, they have remained virtually unstudied as mechanotransducers. How membrane tension controls these domains and what features render them mechanosensitive is unclear. Here, we show that membrane tension-sensing by C2-like domains is mediated by a synergy between mechanosensitive calcium-binding and membrane insertion. When nuclear membranes are stretched, the peripheral membrane enzyme cytosolic phospholipase A2 (cPLA2) binds via its calcium-dependent C2 domain (cPLA2-C2) and initiates bioactive lipid signaling and tissue inflammation. More than 150 C2-like domains are encoded in vertebrate genomes. How many of them are mechanosensors and quantitative relationships between tension and membrane recruitment remain unexplored, leaving a knowledge gap in the mechanotransduction field. In this study, we imaged the mechanosensitive adsorption of cPLA2 and its C2 domain to nuclear membranes and artificial lipid bilayers, comparing it to related C2-like motifs. Stretch increased the Ca2+ sensitivity of all tested domains, promoting half-maximal binding of cPLA2 at cytoplasmic resting-Ca2+ concentrations. cPLA2-C2 bound up to 50 times tighter to stretched than to unstretched membranes. Our data suggest that a synergy of mechanosensitive Ca2+ interactions and deep, hydrophobic membrane insertion enables cPLA2-C2 to detect stretched membranes with antibody-like affinity, providing a quantitative basis for understanding mechanotransduction by C2-like domains.
Collapse
|
6
|
Analytical Platforms for the Determination of Phospholipid Turnover in Breast Cancer Tissue: Role of Phospholipase Activity in Breast Cancer Development. Metabolites 2021; 11:metabo11010032. [PMID: 33406793 PMCID: PMC7824782 DOI: 10.3390/metabo11010032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/26/2020] [Accepted: 12/31/2020] [Indexed: 12/31/2022] Open
Abstract
Altered lipid metabolism has been associated with the progression of various cancers, and aberrant expression of enzymes involved in the lipid metabolism has been detected in different stages of cancer. Breast cancer (BC) is one of the cancer types known to be associated with alterations in the lipid metabolism and overexpression of enzymes involved in this metabolism. It has been demonstrated that inhibition of the activity of certain enzymes, such as that of phospholipase A2 in BC cell lines sensitizes these cells and decreases the IC50 values for forthcoming therapy with traditional drugs, such as doxorubicin and tamoxifen. Moreover, other phospholipases, such as phospholipase C and D, are involved in intracellular signal transduction, which emphasizes their importance in cancer development. Finally, BC is assumed to be dependent on the diet and the composition of lipids in nutrients. Despite their importance, analytical approaches that can associate the activity of phospholipases with changes in the lipid composition and distribution in cancer tissues are not yet standardized. In this review, an overview of various analytical platforms that are applied on the study of lipids and phospholipase activity in BC tissues will be given, as well as their association with cancer diagnosis and tumor progression. The methods that are applied to tissues obtained from the BC patients will be emphasized and critically evaluated, regarding their applicability in oncology.
Collapse
|
7
|
Pant S, Tajkhorshid E. Microscopic Characterization of GRP1 PH Domain Interaction with Anionic Membranes. J Comput Chem 2020; 41:489-499. [PMID: 31762060 PMCID: PMC7000246 DOI: 10.1002/jcc.26109] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/03/2019] [Accepted: 10/15/2019] [Indexed: 01/17/2023]
Abstract
The pleckstrin homology (PH) domain of general receptor for phosphoionositides 1 (GRP1-PHD) binds specifically to phosphatidylinositol (3,4,5)-triphosphate (PIP3 ), and acts as a second messenger. Using an extensive array of molecular dynamics (MD) simulations employing highly mobile membrane mimetic (HMMM) model as well as complementary full membrane simulations, we capture differentiable binding and dynamics of GRP1-PHD in the presence of membranes containing PC, PS, and PIP3 lipids in varying compositions. While GRP1-PHD forms only transient interactions with pure PC membranes, incorporation of anionic lipids resulted in stable membrane-bound configurations. We report the first observation of two distinct PIP3 binding modes on GRP1-PHD, involving PIP3 interactions at a "canonical" and at an "alternate" site, suggesting the possibility of simultaneous binding of multiple anionic lipids. The full membrane simulations confirmed the stability of the membrane bound pose of GRP1-PHD as captured from our HMMM membrane binding simulations. By performing additional steered membrane unbinding simulations and calculating nonequilibrium work associated with the process, as well as metadynamics simulations, on the protein bound to full membranes, allowing for more quantitative examination of the binding strength of the GRP1-PHD to the membrane, we demonstrate that along with the bound PIP3 , surrounding anionic PS lipids increase the energetic cost of unbinding of GRP1-PHD from the canonical mode, causing them to dissociate more slowly than the alternate mode. Our results demonstrate that concurrent binding of multiple anionic lipids by GRP1-PHD contributes to its membrane affinity, which in turn control its signaling activity. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shashank Pant
- Center for Biophysics and Quantitative Biology, Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Emad Tajkhorshid
- Center for Biophysics and Quantitative Biology, Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| |
Collapse
|
8
|
Muller MP, Jiang T, Sun C, Lihan M, Pant S, Mahinthichaichan P, Trifan A, Tajkhorshid E. Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. Chem Rev 2019; 119:6086-6161. [PMID: 30978005 PMCID: PMC6506392 DOI: 10.1021/acs.chemrev.8b00608] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cellular membrane constitutes one of the most fundamental compartments of a living cell, where key processes such as selective transport of material and exchange of information between the cell and its environment are mediated by proteins that are closely associated with the membrane. The heterogeneity of lipid composition of biological membranes and the effect of lipid molecules on the structure, dynamics, and function of membrane proteins are now widely recognized. Characterization of these functionally important lipid-protein interactions with experimental techniques is however still prohibitively challenging. Molecular dynamics (MD) simulations offer a powerful complementary approach with sufficient temporal and spatial resolutions to gain atomic-level structural information and energetics on lipid-protein interactions. In this review, we aim to provide a broad survey of MD simulations focusing on exploring lipid-protein interactions and characterizing lipid-modulated protein structure and dynamics that have been successful in providing novel insight into the mechanism of membrane protein function.
Collapse
Affiliation(s)
- Melanie P. Muller
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tao Jiang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chang Sun
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Muyun Lihan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shashank Pant
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paween Mahinthichaichan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anda Trifan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
9
|
Feix JB, Kohn S, Tessmer MH, Anderson DM, Frank DW. Conformational Changes and Membrane Interaction of the Bacterial Phospholipase, ExoU: Characterization by Site-Directed Spin Labeling. Cell Biochem Biophys 2018; 77:79-87. [PMID: 30047043 DOI: 10.1007/s12013-018-0851-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/12/2018] [Indexed: 12/20/2022]
Abstract
Numerous pathogenic bacteria produce proteins evolved to facilitate their survival and dissemination by modifying the host environment. These proteins, termed effectors, often play a significant role in determining the virulence of the infection. Consequently, bacterial effectors constitute an important class of targets for the development of novel antibiotics. ExoU is a potent phospholipase effector produced by the opportunistic pathogen Pseudomonas aeruginosa. Previous studies have established that the phospholipase activity of ExoU requires non-covalent interaction with ubiquitin, however the molecular details of the mechanism of activation and the manner in which ExoU associates with a target lipid bilayer are not understood. In this review we describe our recent studies using site-directed spin labeling (SDSL) and EPR spectroscopy to elucidate the conformational changes and membrane interactions that accompany activation of ExoU. We find that ubiquitin binding and membrane interaction act synergistically to produce structural transitions that occur upon ExoU activation, and that the C-terminal four-helix bundle of ExoU functions as a phospholipid-binding domain, facilitating the association of ExoU with the membrane surface.
Collapse
Affiliation(s)
- Jimmy B Feix
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Samantha Kohn
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Maxx H Tessmer
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - David M Anderson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Dara W Frank
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| |
Collapse
|
10
|
A PKC-MARCKS-PI3K regulatory module links Ca2+ and PIP3 signals at the leading edge of polarized macrophages. PLoS One 2018; 13:e0196678. [PMID: 29715315 PMCID: PMC5929533 DOI: 10.1371/journal.pone.0196678] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/17/2018] [Indexed: 12/21/2022] Open
Abstract
The leukocyte chemosensory pathway detects attractant gradients and directs cell migration to sites of inflammation, infection, tissue damage, and carcinogenesis. Previous studies have revealed that local Ca2+ and PIP3 signals at the leading edge of polarized leukocytes play central roles in positive feedback loop essential to cell polarization and chemotaxis. These prior studies showed that stimulation of the leading edge Ca2+ signal can strongly activate PI3K, thereby triggering a larger PIP3 signal, but did not elucidate the mechanistic link between Ca2+ and PIP3 signaling. A hypothesis explaining this link emerged, postulating that Ca2+-activated PKC displaces the MARCKS protein from plasma membrane PIP2, thereby releasing sequestered PIP2 to serve as the target and substrate lipid of PI3K in PIP3 production. In vitro single molecule studies of the reconstituted pathway on lipid bilayers demonstrated the feasibility of this PKC-MARCKS-PI3K regulatory module linking Ca2+ and PIP3 signals in the reconstituted system. The present study tests the model predictions in live macrophages by quantifying the effects of: (a) two pathway activators—PDGF and ATP that stimulate chemoreceptors and Ca2+ influx, respectively; and (b) three pathway inhibitors—wortmannin, EGTA, and Go6976 that inhibit PI3K, Ca2+ influx, and PKC, respectively; on (c) four leading edge activity sensors—AKT-PH-mRFP, CKAR, MARCKSp-mRFP, and leading edge area that report on PIP3 density, PKC activity, MARCKS membrane binding, and leading edge expansion/contraction, respectively. The results provide additional evidence that PKC and PI3K are both essential elements of the leading edge positive feedback loop, and strongly support the existence of a PKC-MARCKS-PI3K regulatory module linking the leading edge Ca2+ and PIP3 signals. As predicted, activators stimulate leading edge PKC activity, displacement of MARCKS from the leading edge membrane and increased leading edge PIP3 levels, while inhibitors trigger the opposite effects. Comparison of the findings for the ameboid chemotaxis of leukocytes with recently published findings for the mesenchymal chemotaxis of fibroblasts suggests that some features of the emerging leukocyte leading edge core pathway (PLC-DAG-Ca2+-PKC-MARCKS-PIP2-PI3K-PIP3) may well be shared by all chemotaxing eukaryotic cells, while other elements of the leukocyte pathway may be specialized features of these highly optimized, professional gradient-seeking cells. More broadly, the findings suggest a molecular mechanism for the strong links between phospho-MARCKS and many human cancers.
Collapse
|
11
|
Morales KA, Yang Y, Cole TR, Igumenova TI. Dynamic Response of the C2 Domain of Protein Kinase Cα to Ca 2+ Binding. Biophys J 2017; 111:1655-1667. [PMID: 27760353 DOI: 10.1016/j.bpj.2016.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/04/2016] [Accepted: 09/07/2016] [Indexed: 11/28/2022] Open
Abstract
Ca2+-dependent conserved-region 2 (C2) domains target their host signaling proteins to anionic membranes. The Ca2+-binding event is a prerequisite for membrane association. Here, we investigate multiscale metal-ion-dependent dynamics of the C2 domain of protein kinase Cα (C2α) using NMR spectroscopy. Interactions with metal ions attenuate microsecond-timescale motions of the loop regions, indicating that preorganization of the metal-binding loops occurs before membrane insertion. Binding of a full complement of Ca2+ ions has a profound effect on the millisecond-timescale dynamics of the N- and C-terminal regions of C2α. We propose that Ca2+ binding allosterically destabilizes the terminal regions of C2α and thereby facilitates the conformational rearrangement necessary for full membrane insertion and activation of protein kinase Cα.
Collapse
Affiliation(s)
- Krystal A Morales
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Yuan Yang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Taylor R Cole
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Tatyana I Igumenova
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas.
| |
Collapse
|
12
|
Regulation of PI3K by PKC and MARCKS: Single-Molecule Analysis of a Reconstituted Signaling Pathway. Biophys J 2017; 110:1811-1825. [PMID: 27119641 DOI: 10.1016/j.bpj.2016.03.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/09/2016] [Accepted: 03/07/2016] [Indexed: 12/19/2022] Open
Abstract
In chemotaxing ameboid cells, a complex leading-edge signaling circuit forms on the cytoplasmic leaflet of the plasma membrane and directs both actin and membrane remodeling to propel the leading edge up an attractant gradient. This leading-edge circuit includes a putative amplification module in which Ca(2+)-protein kinase C (Ca(2+)-PKC) is hypothesized to phosphorylate myristoylated alanine-rich C kinase substrate (MARCKS) and release phosphatidylinositol-4,5-bisphosphate (PIP2), thereby stimulating production of the signaling lipid phosphatidylinositol-3,4,5-trisphosphate (PIP3) by the lipid kinase phosphoinositide-3-kinase (PI3K). We investigated this hypothesized Ca(2+)-PKC-MARCKS-PIP2-PI3K-PIP3 amplification module and tested its key predictions using single-molecule fluorescence to measure the surface densities and activities of its protein components. Our findings demonstrate that together Ca(2+)-PKC and the PIP2-binding peptide of MARCKS modulate the level of free PIP2, which serves as both a docking target and substrate lipid for PI3K. In the off state of the amplification module, the MARCKS peptide sequesters PIP2 and thereby inhibits PI3K binding to the membrane. In the on state, Ca(2+)-PKC phosphorylation of the MARCKS peptide reverses the PIP2 sequestration, thereby releasing multiple PIP2 molecules that recruit multiple active PI3K molecules to the membrane surface. These findings 1) show that the Ca(2+)-PKC-MARCKS-PIP2-PI3K-PIP3 system functions as an activation module in vitro, 2) reveal the molecular mechanism of activation, 3) are consistent with available in vivo data, and 4) yield additional predictions that are testable in live cells. More broadly, the Ca(2+)-PKC-stimulated release of free PIP2 may well regulate the membrane association of other PIP2-binding proteins, and the findings illustrate the power of single-molecule analysis to elucidate key dynamic and mechanistic features of multiprotein signaling pathways on membrane surfaces.
Collapse
|
13
|
Alwarawrah M, Wereszczynski J. Investigation of the Effect of Bilayer Composition on PKCα-C2 Domain Docking Using Molecular Dynamics Simulations. J Phys Chem B 2016; 121:78-88. [PMID: 27997184 DOI: 10.1021/acs.jpcb.6b10188] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The protein kinase Cα (PKCα) enzyme is a member of a broad family of serine/threonine kinases, which are involved in varied cellular signaling pathways. The initial step of PKCα activation involves the C2 subunit docking with the cell membrane, which is followed by interactions of the C1 domains with diacylglycerol (DAG) in the membrane. Notably, the molecular mechanisms of these interactions remain poorly understood, especially what effects, if any, DAG may have on the initial C2 docking. To further understand this process, we have performed a series of conventional molecular dynamics simulations to systematically investigate the interaction between PKCα-C2 domains and lipid bilayers with different compositions to examine the effects of POPS, PIP2, and 1-palmitoyl-2-oleoyl-sn-glycerol (POG) on domain docking. Our results show that the PKCα-C2 domain does not interact with the bilayer surface in the absence of POPS and PIP2. In contrast, the inclusion of POPS and PIP2 to the bilayer resulted in strong domain docking in both perpendicular and parallel orientations, whereas the further inclusion of POG resulted in only parallel domain docking. In addition, lysine residues in the C2 domain formed hydrogen bonds with PIP2 molecule bilayers containing POG. These effects were further explored with umbrella sampling calculations to estimate the free energy of domain docking to the lipid bilayer in the presence of one or two PIP2 molecules. The results show that the binding of one or two PIP2 molecules is thermodynamically favorable, although stronger in bilayers lacking POG. However, in POG-containing bilayers, the binding mode of the C2 domain appears to be more flexible, which may have implications for activation of full-length PKCα. Together, our results shed new insights into the process of C2 bilayer binding and suggest new mechanisms for the roles of different phospholipids in the activation process of PKCα.
Collapse
Affiliation(s)
- Mohammad Alwarawrah
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology , Chicago 60616, Illinois, United States
| | - Jeff Wereszczynski
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology , Chicago 60616, Illinois, United States
| |
Collapse
|
14
|
Novel Features of DAG-Activated PKC Isozymes Reveal a Conserved 3-D Architecture. J Mol Biol 2016; 428:121-141. [DOI: 10.1016/j.jmb.2015.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/01/2015] [Indexed: 01/17/2023]
|
15
|
Chon NL, Osterberg JR, Henderson J, Khan HM, Reuter N, Knight JD, Lin H. Membrane Docking of the Synaptotagmin 7 C2A Domain: Computation Reveals Interplay between Electrostatic and Hydrophobic Contributions. Biochemistry 2015; 54:5696-711. [DOI: 10.1021/acs.biochem.5b00422] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Nara Lee Chon
- Department
of Chemistry, University of Colorado Denver, Denver, Colorado 80217-3364, United States
| | - J. Ryan Osterberg
- Department
of Chemistry, University of Colorado Denver, Denver, Colorado 80217-3364, United States
| | - Jack Henderson
- Department
of Chemistry, University of Colorado Denver, Denver, Colorado 80217-3364, United States
| | - Hanif M. Khan
- Department
of Molecular Biology, University of Bergen, 5008 Bergen, Norway
- Computational
Biology Unit, Department of Informatics, University of Bergen, 5008 Bergen, Norway
| | - Nathalie Reuter
- Department
of Molecular Biology, University of Bergen, 5008 Bergen, Norway
- Computational
Biology Unit, Department of Informatics, University of Bergen, 5008 Bergen, Norway
| | - Jefferson D. Knight
- Department
of Chemistry, University of Colorado Denver, Denver, Colorado 80217-3364, United States
| | - Hai Lin
- Department
of Chemistry, University of Colorado Denver, Denver, Colorado 80217-3364, United States
| |
Collapse
|
16
|
Osterberg JR, Chon NL, Boo A, Maynard FA, Lin H, Knight JD. Membrane Docking of the Synaptotagmin 7 C2A Domain: Electron Paramagnetic Resonance Measurements Show Contributions from Two Membrane Binding Loops. Biochemistry 2015; 54:5684-95. [PMID: 26322740 DOI: 10.1021/acs.biochem.5b00421] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The synaptotagmin (Syt) family of proteins plays an important role in vesicle docking and fusion during Ca(2+)-induced exocytosis in a wide variety of cell types. Its role as a Ca(2+) sensor derives primarily from its two C2 domains, C2A and C2B, which insert into anionic lipid membranes upon binding Ca(2+). Syt isoforms 1 and 7 differ significantly in their Ca(2+) sensitivity; the C2A domain from Syt7 binds Ca(2+) and membranes much more tightly than the C2A domain from Syt1, at least in part because of greater contributions from the hydrophobic effect. While the structure and membrane activity of Syt1 have been extensively studied, the structural origins of differences between Syt1 and Syt7 are unknown. This study used site-directed spin labeling and electron paramagnetic resonance spectroscopy to determine depth parameters for the Syt7 C2A domain, for comparison to analogous previous measurements with the Syt1 C2A domain. In a novel approach, the membrane docking geometry of both Syt1 and Syt7 C2A was modeled by mapping depth parameters onto multiple molecular dynamics-simulated structures of the Ca(2+)-bound protein. The models reveal membrane penetration of Ca(2+) binding loops 1 (CBL1) and 3 (CBL3), and membrane binding is more sensitive to mutations in CBL3. On average, Syt7 C2A inserts more deeply into the membrane than Syt1 C2A, although depths vary among the different structural models. This observation provides a partial structural explanation for the hydrophobically driven membrane docking of Syt7 C2A.
Collapse
Affiliation(s)
- J Ryan Osterberg
- Department of Chemistry, University of Colorado Denver , Denver, Colorado 80217, United States
| | - Nara Lee Chon
- Department of Chemistry, University of Colorado Denver , Denver, Colorado 80217, United States
| | - Arthur Boo
- Department of Chemistry, University of Colorado Denver , Denver, Colorado 80217, United States
| | - Favinn A Maynard
- Department of Chemistry, University of Colorado Denver , Denver, Colorado 80217, United States
| | - Hai Lin
- Department of Chemistry, University of Colorado Denver , Denver, Colorado 80217, United States
| | - Jefferson D Knight
- Department of Chemistry, University of Colorado Denver , Denver, Colorado 80217, United States
| |
Collapse
|
17
|
Abstract
Protein kinase C (PKC) is a family of Ser/Thr kinases that regulate a multitude of cellular processes through participation in the phosphoinositide signaling pathway. Significant research efforts have been directed at understanding the structure, function, and regulatory modes of the enzyme since its discovery and identification as the first receptor for tumor-promoting phorbol esters. The activation of PKC involves a transition from the cytosolic autoinhibited latent form to the membrane-associated active form. The membrane recruitment step is accompanied by the conformational rearrangement of the enzyme, which relieves autoinhibitory interactions and thereby allows PKC to phosphorylate its targets. The multidomain structure and intrinsic flexibility of PKC present remarkable challenges and opportunities for the biophysical and structural biology studies of this class of enzymes and their interactions with membranes, the major focus of this Current Topic. I will highlight the recent advances in the field, outline the current challenges, and identify areas where biophysics and structural biology approaches can provide insight into the isoenzyme-specific regulation of PKC activity.
Collapse
|
18
|
Paraboschi EM, Rimoldi V, Solda G, Tabaglio T, Dall'Osso C, Saba E, Vigliano M, Salviati A, Leone M, Benedetti MD, Fornasari D, Saarela J, De Jager PL, Patsopoulos NA, D'Alfonso S, Gemmati D, Duga S, Asselta R. Functional variations modulating PRKCA expression and alternative splicing predispose to multiple sclerosis. Hum Mol Genet 2014; 23:6746-61. [DOI: 10.1093/hmg/ddu392] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
Egea-Jiménez AL, Fernández-Martínez AM, Pérez-Lara Á, de Godos A, Corbalán-García S, Gómez-Fernández JC. Phosphatidylinositol-4,5-bisphosphate enhances anionic lipid demixing by the C2 domain of PKCα. PLoS One 2014; 9:e95973. [PMID: 24763383 PMCID: PMC3999146 DOI: 10.1371/journal.pone.0095973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 03/31/2014] [Indexed: 11/19/2022] Open
Abstract
The C2 domain of PKCα (C2α) induces fluorescence self-quenching of NBD-PS in the presence of Ca2+, which is interpreted as the demixing of phosphatidylserine from a mixture of this phospholipid with phosphatidylcholine. Self-quenching of NBD-PS was considerably increased when phosphatidylinositol-4,5-bisphosphate (PIP2) was present in the membrane. When PIP2 was the labeled phospholipid, in the form of TopFluor-PIP2, fluorescence self-quenching induced by the C2 domain was also observed, but this was dependent on the presence of phosphatidylserine. An independent indication of the phospholipid demixing effect given by the C2α domain was obtained by using 2H-NMR, since a shift of the transition temperature of deuterated phosphatidylcholine was observed as a consequence of the addition of the C2α domain, but only in the presence of PIP2. The demixing induced by the C2α domain may have a physiological significance since it means that the binding of PKCα to membranes is accompanied by the formation of domains enriched in activating lipids, like phosphatidylserine and PIP2. The formation of these domains may enhance the activation of the enzyme when it binds to membranes containing phosphatidylserine and PIP2.
Collapse
Affiliation(s)
- Antonio L. Egea-Jiménez
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, Murcia, Spain
| | - Ana M. Fernández-Martínez
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, Murcia, Spain
| | - Ángel Pérez-Lara
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, Murcia, Spain
| | - Ana de Godos
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, Murcia, Spain
| | - Senena Corbalán-García
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, Murcia, Spain
| | - Juan C. Gómez-Fernández
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, Murcia, Spain
- * E-mail:
| |
Collapse
|
20
|
Ziemba BP, Li J, Landgraf KE, Knight JD, Voth GA, Falke JJ. Single-molecule studies reveal a hidden key step in the activation mechanism of membrane-bound protein kinase C-α. Biochemistry 2014; 53:1697-713. [PMID: 24559055 PMCID: PMC3971957 DOI: 10.1021/bi4016082] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
![]()
Protein
kinase C-α (PKCα) is a member of the conventional
family of protein kinase C isoforms (cPKCs) that regulate diverse
cellular signaling pathways, share a common activation mechanism,
and are linked to multiple pathologies. The cPKC domain structure
is modular, consisting of an N-terminal pseudosubstrate peptide, two
inhibitory domains (C1A and C1B), a targeting domain (C2), and a kinase
domain. Mature, cytoplasmic cPKCs are inactive until they are switched
on by a multistep activation reaction that occurs largely on the plasma
membrane surface. Often, this activation begins with a cytoplasmic
Ca2+ signal that triggers C2 domain targeting to the plasma
membrane where it binds phosphatidylserine (PS) and phosphatidylinositol
4,5-bisphosphate (PIP2). Subsequently, the appearance of
the signaling lipid diacylglycerol (DAG) activates the membrane-bound
enzyme by recruiting the inhibitory pseudosubstrate and one or both
C1 domains away from the kinase domain. To further investigate this
mechanism, this study has utilized single-molecule total internal
reflection fluorescence microscopy (TIRFM) to quantitate the binding
and lateral diffusion of full-length PKCα and fragments missing
specific domain(s) on supported lipid bilayers. Lipid binding events,
and events during which additional protein is inserted into the bilayer,
were detected by their effects on the equilibrium bound particle density
and the two-dimensional diffusion rate. In addition to the previously
proposed activation steps, the findings reveal a major, undescribed,
kinase-inactive intermediate. On bilayers containing PS or PS and
PIP2, full-length PKCα first docks to the membrane
via its C2 domain, and then its C1A domain embeds itself in the bilayer
even before DAG appears. The resulting pre-DAG intermediate with membrane-bound
C1A and C2 domains is the predominant state of PKCα while it
awaits the DAG signal. The newly detected, membrane-embedded C1A domain
of this pre-DAG intermediate confers multiple useful features, including
enhanced membrane affinity and longer bound state lifetime. The findings
also identify the key molecular step in kinase activation: because
C1A is already membrane-embedded in the kinase off state, recruitment
of C1B to the bilayer by DAG or phorbol ester is the key regulatory
event that stabilizes the kinase on state. More broadly, this study
illustrates the power of single-molecule methods in elucidating the
activation mechanisms and hidden regulatory states of membrane-bound
signaling proteins.
Collapse
Affiliation(s)
- Brian P Ziemba
- Department of Chemistry and Biochemistry and Molecular Biophysics Program, University of Colorado , Boulder, Colorado 80309-0596, United States
| | | | | | | | | | | |
Collapse
|
21
|
Guillén J, Ferrer-Orta C, Buxaderas M, Pérez-Sánchez D, Guerrero-Valero M, Luengo-Gil G, Pous J, Guerra P, Gómez-Fernández JC, Verdaguer N, Corbalán-García S. Structural insights into the Ca2+ and PI(4,5)P2 binding modes of the C2 domains of rabphilin 3A and synaptotagmin 1. Proc Natl Acad Sci U S A 2013; 110:20503-8. [PMID: 24302762 PMCID: PMC3870689 DOI: 10.1073/pnas.1316179110] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proteins containing C2 domains are the sensors for Ca(2+) and PI(4,5)P2 in a myriad of secretory pathways. Here, the use of a free-mounting system has enabled us to capture an intermediate state of Ca(2+) binding to the C2A domain of rabphilin 3A that suggests a different mechanism of ion interaction. We have also determined the structure of this domain in complex with PI(4,5)P2 and IP3 at resolutions of 1.75 and 1.9 Å, respectively, unveiling that the polybasic cluster formed by strands β3-β4 is involved in the interaction with the phosphoinositides. A comparative study demonstrates that the C2A domain is highly specific for PI(4,5)P2/PI(3,4,5)P3, whereas the C2B domain cannot discriminate among any of the diphosphorylated forms. Structural comparisons between C2A domains of rabphilin 3A and synaptotagmin 1 indicated the presence of a key glutamic residue in the polybasic cluster of synaptotagmin 1 that abolishes the interaction with PI(4,5)P2. Together, these results provide a structural explanation for the ability of different C2 domains to pull plasma and vesicle membranes close together in a Ca(2+)-dependent manner and reveal how this family of proteins can use subtle structural changes to modulate their sensitivity and specificity to various cellular signals.
Collapse
Affiliation(s)
- Jaime Guillén
- Departamento de Bioquímica y Biología Molecular A, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum,” Universidad de Murcia, 30100 Murcia, Spain
| | - Cristina Ferrer-Orta
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Cientificas, 08028 Barcelona, Spain; and
| | - Mònica Buxaderas
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Cientificas, 08028 Barcelona, Spain; and
| | - Dolores Pérez-Sánchez
- Departamento de Bioquímica y Biología Molecular A, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum,” Universidad de Murcia, 30100 Murcia, Spain
| | - Marta Guerrero-Valero
- Departamento de Bioquímica y Biología Molecular A, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum,” Universidad de Murcia, 30100 Murcia, Spain
| | - Ginés Luengo-Gil
- Departamento de Bioquímica y Biología Molecular A, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum,” Universidad de Murcia, 30100 Murcia, Spain
| | - Joan Pous
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Cientificas, 08028 Barcelona, Spain; and
- Institute for Research in Biomedicine, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Pablo Guerra
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Cientificas, 08028 Barcelona, Spain; and
| | - Juan C. Gómez-Fernández
- Departamento de Bioquímica y Biología Molecular A, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum,” Universidad de Murcia, 30100 Murcia, Spain
| | - Nuria Verdaguer
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Cientificas, 08028 Barcelona, Spain; and
| | - Senena Corbalán-García
- Departamento de Bioquímica y Biología Molecular A, Facultad de Veterinaria, Regional Campus of International Excellence “Campus Mare Nostrum,” Universidad de Murcia, 30100 Murcia, Spain
| |
Collapse
|
22
|
Classical protein kinases C are regulated by concerted interaction with lipids: the importance of phosphatidylinositol-4,5-bisphosphate. Biophys Rev 2013; 6:3-14. [PMID: 28509956 DOI: 10.1007/s12551-013-0125-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/03/2013] [Indexed: 10/26/2022] Open
Abstract
Classical protein kinase C (PKC) enzymes are known to be important factors in cell physiology both in terms of health and disease. They are activated by triggering signals that induce their translocation to membranes. The consensus view is that several secondary messengers are involved in this activation, such as cytosolic Ca2+ and diacylglycerol. Cytosolic Ca2+ bridges the C2 domain to anionic phospholipids as phosphatidylserine in the membrane, and diacylglycerol binds to the C1 domain. Both diacylglycerol and the increase in Ca2+ concentration are assumed to arise from the extracellular signal that triggers the hydrolysis of phosphatidylinositol-4,5-bisphosphate. However, results obtained during the last decade indicate that this phosphoinositide itself is also responsible for modulating classical PKC activity and its localization in the plasma membrane.
Collapse
|
23
|
Cai J, Guo S, Lomasney JW, Roberts MF. Ca2+-independent binding of anionic phospholipids by phospholipase C δ1 EF-hand domain. J Biol Chem 2013; 288:37277-88. [PMID: 24235144 DOI: 10.1074/jbc.m113.512186] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recombinant EF-hand domain of phospholipase C δ1 has a moderate affinity for anionic phospholipids in the absence of Ca(2+) that is driven by interactions of cationic and hydrophobic residues in the first EF-hand sequence. This region of PLC δ1 is missing in the crystal structure. The relative orientation of recombinant EF with respect to the bilayer, established with NMR methods, shows that the N-terminal helix of EF-1 is close to the membrane interface. Specific mutations of EF-1 residues in full-length PLC δ1 reduce enzyme activity but not because of disturbing partitioning of the protein onto vesicles. The reduction in enzymatic activity coupled with vesicle binding studies are consistent with a role for this domain in aiding substrate binding in the active site once the protein is transiently anchored at its target membrane.
Collapse
Affiliation(s)
- Jingfei Cai
- From the Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467 and
| | | | | | | |
Collapse
|
24
|
Ziemba BP, Pilling C, Calleja V, Larijani B, Falke JJ. The PH domain of phosphoinositide-dependent kinase-1 exhibits a novel, phospho-regulated monomer-dimer equilibrium with important implications for kinase domain activation: single-molecule and ensemble studies. Biochemistry 2013; 52:4820-9. [PMID: 23745598 DOI: 10.1021/bi400488f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphoinositide-dependent kinase-1 (PDK1) is an essential master kinase recruited to the plasma membrane by the binding of its C-terminal PH domain to the signaling lipid phosphatidylinositol-3,4,5-trisphosphate (PIP3). Membrane binding leads to PDK1 phospho-activation, but despite the central role of PDK1 in signaling and cancer biology, this activation mechanism remains poorly understood. PDK1 has been shown to exist as a dimer in cells, and one crystal structure of its isolated PH domain exhibits a putative dimer interface. It has been proposed that phosphorylation of PH domain residue T513 (or the phospho-mimetic T513E mutation) may regulate a novel PH domain dimer-monomer equilibrium, thereby converting an inactive PDK1 dimer to an active monomer. However, the oligomeric states of the PH domain on the membrane have not yet been determined, nor whether a negative charge at position 513 is sufficient to regulate its oligomeric state. This study investigates the binding of purified wild-type (WT) and T513E PDK1 PH domains to lipid bilayers containing the PIP3 target lipid, using both single-molecule and ensemble measurements. Single-molecule analysis of the brightness of the fluorescent PH domain shows that the PIP3-bound WT PH domain on membranes is predominantly dimeric while the PIP3-bound T513E PH domain is monomeric, demonstrating that negative charge at the T513 position is sufficient to dissociate the PH domain dimer and is thus likely to play a central role in PDK1 monomerization and activation. Single-molecule analysis of two-dimensional (2D) diffusion of PH domain-PIP3 complexes reveals that the dimeric WT PH domain diffuses at the same rate as a single lipid molecule, indicating that only one of its two PIP3 binding sites is occupied and there is little penetration of the protein into the bilayer as observed for other PH domains. The 2D diffusion of T513E PH domain is slower, suggesting the negative charge disrupts local structure in a way that allows deeper insertion of the protein into the viscous bilayer, thereby increasing the diffusional friction. Ensemble measurements of PH domain affinity for PIP3 on plasma membrane-like bilayers reveal that the dimeric WT PH domain possesses a one order of magnitude higher target membrane affinity than the previously characterized monomeric PH domains, consistent with a dimerization-triggered, allosterically enhanced affinity for one PIP3 molecule (a much larger affinity enhancement would be expected for dimerization-triggered binding to two PIP3 molecules). The monomeric T513E PDK1 PH domain, like other monomeric PH domains, exhibits a PIP3 affinity and bound state lifetime that are each 1 order of magnitude lower than those of the dimeric WT PH domain, which is predicted to facilitate release of activated, monomeric PDK1 to the cytoplasm. Overall, the study yields the first molecular picture of PH domain regulation via electrostatic control of dimer-monomer conversion.
Collapse
Affiliation(s)
- Brian P Ziemba
- Department of Chemistry and Biochemistry and Molecular Biophysics Program, University of Colorado , Boulder, Colorado 80309-0596, United States
| | | | | | | | | |
Collapse
|
25
|
Ziemba BP, Falke JJ. Lateral diffusion of peripheral membrane proteins on supported lipid bilayers is controlled by the additive frictional drags of (1) bound lipids and (2) protein domains penetrating into the bilayer hydrocarbon core. Chem Phys Lipids 2013; 172-173:67-77. [DOI: 10.1016/j.chemphyslip.2013.04.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 04/20/2013] [Accepted: 04/22/2013] [Indexed: 11/15/2022]
|
26
|
Lai CL, Srivastava A, Pilling C, Chase AR, Falke JJ, Voth GA. Molecular mechanism of membrane binding of the GRP1 PH domain. J Mol Biol 2013; 425:3073-90. [PMID: 23747485 DOI: 10.1016/j.jmb.2013.05.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
Abstract
The pleckstrin homology (PH) domain of the general receptor of phosphoinositides 1 (GRP1) protein selectively binds to a rare signaling phospholipid, phosphatidylinositol (3,4,5)-trisphosphate (PIP3), in the membrane. The specific PIP3 lipid docking of GRP1 PH domain is essential to protein cellular function and is believed to occur in a stepwise process, electrostatic-driven membrane association followed by the specific PIP3 binding. By a combination of all-atom molecular dynamics (MD) simulations, coarse-grained analysis, electron paramagnetic resonance (EPR) membrane docking geometry, and fluorescence resonance energy transfer (FRET) kinetic studies, we have investigated the search and bind process in the GRP1 PH domain at the molecular scale. We simulated the two membrane binding states of the GRP1 PH domain in the PIP3 search process, before and after the GRP1 PH domain docks with the PIP3 lipid. Our results suggest that the background anionic phosphatidylserine lipids, which constitute around one-fifth of the membrane by composition, play a critical role in the initial stages of recruiting protein to the membrane surface through non-specific electrostatic interactions. Our data also reveal a previously unseen transient membrane association mechanism that is proposed to enable a two-dimensional "hopping" search of the membrane surface for the rare PIP3 target lipid. We further modeled the PIP3-bound membrane-protein system using the EPR membrane docking structure for the MD simulations, quantitatively validating the EPR membrane docking structure and augmenting our understanding of the binding interface with atomic-level detail. Several observations and hypotheses reached from our MD simulations are also supported by experimental kinetic studies.
Collapse
Affiliation(s)
- Chun-Liang Lai
- Department of Chemistry, Institute of Biophysical Dynamics, James Franck Institute, and Computation Institute, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
27
|
Duning K, Wennmann DO, Bokemeyer A, Reissner C, Wersching H, Thomas C, Buschert J, Guske K, Franzke V, Flöel A, Lohmann H, Knecht S, Brand SM, Pöter M, Rescher U, Missler M, Seelheim P, Pröpper C, Boeckers TM, Makuch L, Huganir R, Weide T, Brand E, Pavenstädt H, Kremerskothen J. Common exonic missense variants in the C2 domain of the human KIBRA protein modify lipid binding and cognitive performance. Transl Psychiatry 2013; 3:e272. [PMID: 23778582 PMCID: PMC3693407 DOI: 10.1038/tp.2013.49] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The human KIBRA gene has been linked to human cognition through a lead intronic single-nucleotide polymorphism (SNP; rs17070145) that is associated with episodic memory performance and the risk to develop Alzheimer's disease. However, it remains unknown how this relates to the function of the KIBRA protein. Here, we identified two common missense SNPs (rs3822660G/T [M734I], rs3822659T/G [S735A]) in exon 15 of the human KIBRA gene to affect cognitive performance, and to be in almost complete linkage disequilibrium with rs17070145. The identified SNPs encode variants of the KIBRA C2 domain with distinct Ca(2+) dependent binding preferences for monophosphorylated phosphatidylinositols likely due to differences in the dynamics and folding of the lipid-binding pocket. Our results further implicate the KIBRA protein in higher brain function and provide direction to the cellular pathways involved.
Collapse
Affiliation(s)
- K Duning
- Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology, University Hospital Münster, Münster, Germany
| | - D O Wennmann
- Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology, University Hospital Münster, Münster, Germany
| | - A Bokemeyer
- Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology, University Hospital Münster, Münster, Germany
| | - C Reissner
- Department of Anatomy and Molecular Neurobiology, University Münster, Münster, Germany
| | - H Wersching
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - C Thomas
- Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology, University Hospital Münster, Münster, Germany
| | - J Buschert
- Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology, University Hospital Münster, Münster, Germany
| | - K Guske
- Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology, University Hospital Münster, Münster, Germany
| | - V Franzke
- Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology, University Hospital Münster, Münster, Germany
| | - A Flöel
- Department of Neurology, University Hospital Münster, Münster, Germany
| | - H Lohmann
- Department of Neurology, University Hospital Münster, Münster, Germany
| | - S Knecht
- Department of Neurology, University Hospital Münster, Münster, Germany
| | - S-M Brand
- Institute of Sports Medicine, University of Münster, Münster, Germany
| | - M Pöter
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, Münster, Germany
| | - U Rescher
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, Münster, Germany
| | - M Missler
- Department of Anatomy and Molecular Neurobiology, University Münster, Münster, Germany
| | - P Seelheim
- Institute of Biochemistry, University of Münster, Münster, Germany
| | - C Pröpper
- Institute of Anatomy and Cell Biology, University Ulm, Ulm, Germany
| | - T M Boeckers
- Institute of Anatomy and Cell Biology, University Ulm, Ulm, Germany
| | - L Makuch
- Howard Hughes Medical Center, John Hopkins University, Baltimore, MD, USA
| | - R Huganir
- Howard Hughes Medical Center, John Hopkins University, Baltimore, MD, USA
| | - T Weide
- Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology, University Hospital Münster, Münster, Germany
| | - E Brand
- Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology, University Hospital Münster, Münster, Germany
| | - H Pavenstädt
- Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology, University Hospital Münster, Münster, Germany
| | - J Kremerskothen
- Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology, University Hospital Münster, Münster, Germany,Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany. E-mail:
| |
Collapse
|
28
|
Scott AM, Antal CE, Newton AC. Electrostatic and hydrophobic interactions differentially tune membrane binding kinetics of the C2 domain of protein kinase Cα. J Biol Chem 2013; 288:16905-16915. [PMID: 23589289 DOI: 10.1074/jbc.m113.467456] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cellular activation of conventional protein kinase C (PKC) isozymes is initiated by the binding of their C2 domains to membranes in response to elevations in intracellular Ca(2+). Following this C2 domain-mediated membrane recruitment, the C1 domain binds its membrane-embedded ligand diacylglycerol, resulting in activation of PKC. Here we explore the molecular mechanisms by which the C2 domain controls the initial step in the activation of PKC. Using stopped-flow fluorescence spectroscopy to measure association and dissociation rate constants, we show that hydrophobic interactions are the major driving force in the binding of the C2 domain to anionic membranes, whereas electrostatic interactions dominate in membrane retention. Specifically, mutation of select hydrophobic or select basic residues in the Ca(2+)-binding loops reduces membrane affinity by distinct mechanisms; mutation of hydrophobic residues primarily alters association rate constants, whereas mutation of charged residues affects dissociation rate constants. Live cell imaging reveals that introduction of these mutations into full-length PKCα not only reduces the Ca(2+)-dependent translocation to plasma membrane but, by impairing the plasma membrane-sensing role of the C2 domain, causes phorbol ester-triggered redistribution of PKCα to other membranes, such as the Golgi. These data underscore the key role of the C2 domain in driving conventional PKC isozymes to the plasma membrane and reveal that not only the amplitude but also the subcellular location of conventional PKC signaling can be tuned by altering the affinity of this module for membranes.
Collapse
Affiliation(s)
- Angela M Scott
- Department of Pharmacology, La Jolla, California 92093-0721; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California 92093-0721
| | - Corina E Antal
- Department of Pharmacology, La Jolla, California 92093-0721; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California 92093-0721
| | | |
Collapse
|
29
|
Chen HC, Ziemba BP, Landgraf KE, Corbin JA, Falke JJ. Membrane docking geometry of GRP1 PH domain bound to a target lipid bilayer: an EPR site-directed spin-labeling and relaxation study. PLoS One 2012; 7:e33640. [PMID: 22479423 PMCID: PMC3316598 DOI: 10.1371/journal.pone.0033640] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Accepted: 02/14/2012] [Indexed: 11/18/2022] Open
Abstract
The second messenger lipid PIP3 (phosphatidylinositol-3,4,5-trisphosphate) is generated by the lipid kinase PI3K (phosphoinositide-3-kinase) in the inner leaflet of the plasma membrane, where it regulates a broad array of cell processes by recruiting multiple signaling proteins containing PIP3-specific pleckstrin homology (PH) domains to the membrane surface. Despite the broad importance of PIP3-specific PH domains, the membrane docking geometry of a PH domain bound to its target PIP3 lipid on a bilayer surface has not yet been experimentally determined. The present study employs EPR site-directed spin labeling and relaxation methods to elucidate the membrane docking geometry of GRP1 PH domain bound to bilayer-embedded PIP3. The model target bilayer contains the neutral background lipid PC and both essential targeting lipids: (i) PIP3 target lipid that provides specificity and affinity, and (ii) PS facilitator lipid that enhances the PIP3 on-rate via an electrostatic search mechanism. The EPR approach measures membrane depth parameters for 18 function-retaining spin labels coupled to the PH domain, and for calibration spin labels coupled to phospholipids. The resulting depth parameters, together with the known high resolution structure of the co-complex between GRP1 PH domain and the PIP3 headgroup, provide sufficient constraints to define an optimized, self-consistent membrane docking geometry. In this optimized geometry the PH domain engulfs the PIP3 headgroup with minimal bilayer penetration, yielding the shallowest membrane position yet described for a lipid binding domain. This binding interaction displaces the PIP3 headgroup from its lowest energy position and orientation in the bilayer, but the headgroup remains within its energetically accessible depth and angular ranges. Finally, the optimized docking geometry explains previous biophysical findings including mutations observed to disrupt membrane binding, and the rapid lateral diffusion observed for PIP3-bound GRP1 PH domain on supported lipid bilayers.
Collapse
Affiliation(s)
| | | | | | | | - Joseph J. Falke
- Department of Chemistry and Biochemistry and the Molecular Biophysics Program, University of Colorado, Boulder, Colorado, United States of America
- * E-mail:
| |
Collapse
|
30
|
Lipid targeting domain with dual-membrane specificity that expands the diversity of intracellular targeting reactions. Proc Natl Acad Sci U S A 2012; 109:1816-7. [PMID: 22308463 DOI: 10.1073/pnas.1120856109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
31
|
Kuo W, Herrick DZ, Cafiso DS. Phosphatidylinositol 4,5-bisphosphate alters synaptotagmin 1 membrane docking and drives opposing bilayers closer together. Biochemistry 2011; 50:2633-41. [PMID: 21344950 DOI: 10.1021/bi200049c] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Synaptotagmin 1 (syt1) is a synaptic vesicle-anchored membrane protein that acts as the calcium sensor for the synchronous component of neuronal exocytosis. Using site-directed spin labeling, the position and membrane interactions of a fragment of syt1 containing its two C2 domains (syt1C2AB) were assessed in bilayers containing phosphatidylcholine (PC), phosphatidylserine (PS), and phosphatidylinositol 4,5-bisphosphate (PIP(2)). Addition of 1 mol % PIP(2) to a lipid mixture of PC and PS results in a deeper membrane penetration of the C2A domain and alters the orientation of the C2B domain so that the polybasic face of C2B comes into the proximity of the bilayer interface. The C2B domain is found to contact the membrane interface in two regions, the Ca(2+)-binding loops and a region opposite the Ca(2+)-binding loops. This suggests that syt1C2AB is configured to bridge two bilayers and is consistent with a model generated previously for syt1C2AB bound to membranes of PC and PS. Point-to-plane depth restraints, obtained by progressive power saturation, and interdomain distance restraints, obtained by double electron-electron resonance, were obtained in the presence of PIP(2) and used in a simulated annealing routine to dock syt1C2AB to two membrane interfaces. The results yield an average structure different from what is found in the absence of PIP(2) and indicate that bilayer-bilayer spacing is decreased in the presence of PIP(2). The results indicate that PIP(2), which is necessary for bilayer fusion, alters C2 domain orientation, enhances syt1-membrane electrostatic interactions, and acts to drive vesicle and cytoplasmic membrane surfaces closer together.
Collapse
Affiliation(s)
- Weiwei Kuo
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, Virginia 22904-4319, United States
| | | | | |
Collapse
|
32
|
Leonard TA, Różycki B, Saidi LF, Hummer G, Hurley JH. Crystal structure and allosteric activation of protein kinase C βII. Cell 2011; 144:55-66. [PMID: 21215369 PMCID: PMC3104240 DOI: 10.1016/j.cell.2010.12.013] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 10/29/2010] [Accepted: 12/09/2010] [Indexed: 12/21/2022]
Abstract
Protein kinase C (PKC) isozymes are the paradigmatic effectors of lipid signaling. PKCs translocate to cell membranes and are allosterically activated upon binding of the lipid diacylglycerol to their C1A and C1B domains. The crystal structure of full-length protein kinase C βII was determined at 4.0 Å, revealing the conformation of an unexpected intermediate in the activation pathway. Here, the kinase active site is accessible to substrate, yet the conformation of the active site corresponds to a low-activity state because the ATP-binding side chain of Phe629 of the conserved NFD motif is displaced. The C1B domain clamps the NFD helix in a low-activity conformation, which is reversed upon membrane binding. A low-resolution solution structure of the closed conformation of PKCβII was derived from small-angle X-ray scattering. Together, these results show how PKCβII is allosterically regulated in two steps, with the second step defining a novel protein kinase regulatory mechanism.
Collapse
Affiliation(s)
- Thomas A Leonard
- Laboratory of Molecular Biology, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
33
|
Ausili A, Corbalán-García S, Gómez-Fernández JC, Marsh D. Membrane docking of the C2 domain from protein kinase Cα as seen by polarized ATR-IR. The role of PIP₂. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:684-95. [PMID: 21144818 DOI: 10.1016/j.bbamem.2010.11.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Revised: 11/03/2010] [Accepted: 11/29/2010] [Indexed: 10/18/2022]
Abstract
We have used attenuated total internal reflection infrared spectroscopy (ATR-IR) spectroscopy to study the association of the C2 domain from protein kinase Cα (PKCα) with different phospholipid membranes, so as to characterise the mode of membrane docking and its modulation by the second-messenger lipid PIP₂. In parallel, we have also examined the membrane interaction of the C2 domain from cytosolic phospholipase A₂. PIP₂ did not induce significant changes in secondary structure of the membrane-bound PKCα-C2 domain, nor did binding of the PKCα-C2 domain change the dichroic ratios of the lipid chains, whereas the C2 domain from phospholipase A₂ did perturb the lipid chain orientation. Measurements of the dichroic ratios for the amide I and amide II protein bands were combined so as to distinguish the tilt of the β-sheets from that of the β-strands within the sheet. When associated with POPC/POPS membranes, the β-sandwich of the PKCα-C2 domain is inclined at an angle α=35° to the membrane normal, i.e., is oriented more nearly perpendicular than parallel to the membrane. In the process of membrane docking, the tilt angle increases to α=44° in the presence of PIP₂, indicating that the β-sandwich comes closer to the membrane surface, so confirming the importance of this lipid in determining docking of the C2 domain and consequent activation of PKCα.
Collapse
Affiliation(s)
- Alessio Ausili
- Departamento de Bioquímica y Biología Molecular A, Universidad de Murcia, Apartado 4021, 30080-Murcia, Spain
| | | | | | | |
Collapse
|
34
|
Membrane docking geometry and target lipid stoichiometry of membrane-bound PKCα C2 domain: a combined molecular dynamics and experimental study. J Mol Biol 2010; 402:301-10. [PMID: 20659476 DOI: 10.1016/j.jmb.2010.07.037] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 07/15/2010] [Accepted: 07/20/2010] [Indexed: 11/21/2022]
Abstract
Protein kinase Cα (PKCα) possesses a conserved C2 domain (PKCα C2 domain) that acts as a Ca(2+)-regulated membrane targeting element. Upon activation by Ca(2+), the PKCα C2 domain directs the kinase protein to the plasma membrane, thereby stimulating an array of cellular pathways. At sufficiently high Ca(2+) concentrations, binding of the C2 domain to the target lipid phosphatidylserine (PS) is sufficient to drive membrane association; however, at typical physiological Ca(2+) concentrations, binding to both PS and phosphoinositidyl-4,5-bisphosphate (PIP(2)) is required for specific plasma membrane targeting. Recent EPR studies have revealed the membrane docking geometries of the PKCα C2 domain docked to (i) PS alone and (ii) both PS and PIP(2) simultaneously. These two EPR docking geometries exhibit significantly different tilt angles relative to the plane of the membrane, presumably induced by the large size of the PIP(2) headgroup. The present study utilizes the two EPR docking geometries as starting points for molecular dynamics simulations that investigate atomic features of the protein-membrane interaction. The simulations yield approximately the same PIP(2)-triggered change in tilt angle observed by EPR. Moreover, the simulations predict a PIP(2):C2 stoichiometry approaching 2:1 at a high PIP(2) mole density. Direct binding measurements titrating the C2 domain with PIP(2) in lipid bilayers yield a 1:1 stoichiometry at moderate mole densities and a saturating 2:1 stoichiometry at high PIP(2) mole densities. Thus, the experiment confirms the target lipid stoichiometry predicted by EPR-guided molecular dynamics simulations. Potential biological implications of the observed docking geometries and PIP(2) stoichiometries are discussed.
Collapse
|
35
|
Dovas A, Choi Y, Yoneda A, Multhaupt HAB, Kwon SH, Kang D, Oh ES, Couchman JR. Serine 34 phosphorylation of rho guanine dissociation inhibitor (RhoGDIalpha) links signaling from conventional protein kinase C to RhoGTPase in cell adhesion. J Biol Chem 2010; 285:23296-308. [PMID: 20472934 PMCID: PMC2906322 DOI: 10.1074/jbc.m109.098129] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Conventional protein kinase C (PKC) isoforms are essential serine/threonine kinases regulating many signaling networks. At cell adhesion sites, PKCα can impact the actin cytoskeleton through its influence on RhoGTPases, but the intermediate steps are not well known. One important regulator of RhoGTPase function is the multifunctional guanine nucleotide dissociation inhibitor RhoGDIα that sequesters several related RhoGTPases in an inactive form, but it may also target them through interactions with actin-associated proteins. Here, it is demonstrated that conventional PKC phosphorylates RhoGDIα on serine 34, resulting in a specific decrease in affinity for RhoA but not Rac1 or Cdc42. The mechanism of RhoGDIα phosphorylation is distinct, requiring the kinase and phosphatidylinositol 4,5-bisphosphate, consistent with recent evidence that the inositide can activate, localize, and orient PKCα in membranes. Phosphospecific antibodies reveal endogenous phosphorylation in several cell types that is sensitive to adhesion events triggered, for example, by hepatocyte growth factor. Phosphorylation is also sensitive to PKC inhibition. Together with fluorescence resonance energy transfer microscopy sensing GTP-RhoA levels, the data reveal a common pathway in cell adhesion linking two essential mediators, conventional PKC and RhoA.
Collapse
Affiliation(s)
- Athanassios Dovas
- Division of Biomedical Sciences, Faculty of Medicine, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Chen CH, Málková S, Pingali SV, Long F, Garde S, Cho W, Schlossman ML. Configuration of PKCalpha-C2 domain bound to mixed SOPC/SOPS lipid monolayers. Biophys J 2010; 97:2794-802. [PMID: 19917234 DOI: 10.1016/j.bpj.2009.08.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 07/20/2009] [Accepted: 08/24/2009] [Indexed: 10/20/2022] Open
Abstract
X-ray reflectivity measurements are used to determine the configuration of the C2 domain of protein kinase Calpha (PKCalpha-C2) bound to a lipid monolayer of a 7:3 mixture of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine and 1-stearoyl-2-oleoyl-sn-glycero-3-phosphoserine supported on a buffered aqueous solution. The reflectivity is analyzed in terms of the known crystallographic structure of PKCalpha-C2 and a slab model representation of the lipid layer. The configuration of lipid-bound PKCalpha-C2 is described by two angles that define its orientation, theta = 35 degrees +/- 10 degrees and phi =210 degrees +/- 30 degrees, and a penetration depth (=7.5 +/- 2 A) into the lipid layer. In this structure, the beta-sheets of PKCalpha-C2 are nearly perpendicular to the lipid layer and the domain penetrates into the headgroup region of the lipid layer, but not into the tailgroup region. This configuration of PKCalpha-C2 determined by our x-ray reflectivity is consistent with many previous findings, particularly mutational studies, and also provides what we believe is new molecular insight into the mechanism of PKCalpha enzyme activation. Our analysis method, which allows us to test all possible protein orientations, shows that our data cannot be explained by a protein that is orientated parallel to the membrane, as suggested by earlier work.
Collapse
Affiliation(s)
- Chiu-Hao Chen
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Knight JD, Falke JJ. Single-molecule fluorescence studies of a PH domain: new insights into the membrane docking reaction. Biophys J 2009; 96:566-82. [PMID: 19167305 DOI: 10.1016/j.bpj.2008.10.020] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 10/23/2008] [Indexed: 01/15/2023] Open
Abstract
Proteins containing membrane targeting domains play essential roles in many cellular signaling pathways. However, important features of the membrane-bound state are invisible to bulk methods, thereby hindering mechanistic analysis of membrane targeting reactions. Here we use total internal reflection fluorescence microscopy (TIRFM), combined with single particle tracking, to probe the membrane docking mechanism of a representative pleckstrin homology (PH) domain isolated from the general receptor for phosphoinositides, isoform 1 (GRP1). The findings show three previously undescribed features of GRP1 PH domain docking to membranes containing its rare target lipid, phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P(3)]. First, analysis of surface diffusion kinetics on supported lipid bilayers shows that in the absence of other anionic lipids, the PI(3,4,5)P(3)-bound protein exhibits the same diffusion constant as a single lipid molecule. Second, the binding of the anionic lipid phosphatidylserine to a previously unidentified secondary binding site slows both diffusion and dissociation kinetics. Third, TIRFM enables direct observation of rare events in which dissociation from the membrane surface is followed by transient diffusion through solution and rapid rebinding to a nearby, membrane-associated target lipid. Overall, this study shows that in vitro single-molecule TIRFM provides a new window into the molecular mechanisms of membrane docking reactions.
Collapse
Affiliation(s)
- Jefferson D Knight
- Molecular Biophysics Program, Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, USA
| | | |
Collapse
|
38
|
Coudevylle N, Montaville P, Leonov A, Zweckstetter M, Becker S. Structural determinants for Ca2+ and phosphatidylinositol 4,5-bisphosphate binding by the C2A domain of rabphilin-3A. J Biol Chem 2008; 283:35918-28. [PMID: 18945677 DOI: 10.1074/jbc.m804094200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rabphilin-3A is a neuronal C2 domain tandem containing protein involved in vesicle trafficking. Both its C2 domains (C2A and C2B) are able to bind phosphatidylinositol 4,5-bisphosphate, a key player in the neurotransmitter release process. The rabphilin-3A C2A domain has previously been shown to bind inositol-1,4,5-trisphosphate (IP3; phosphatidylinositol 4,5-bisphosphate headgroup) in a Ca2+-dependent manner with a relatively high affinity (50 microm) in the presence of saturating concentrations of Ca2+. Moreover, IP3 and Ca2+ binding to the C2A domain mutually enhance each other. Here we present the Ca2+-bound solution structure of the C2A domain. Structural comparison with the previously published Ca2+-free crystal structure revealed that Ca2+ binding induces a conformational change of Ca2+ binding loop 3 (CBL3). Our IP3 binding studies as well as our IP3-C2A docking model show the active involvement of CBL3 in IP3 binding, suggesting that the conformational change on CBL3 upon Ca2+ binding enables the interaction with IP3 and vice versa, in line with a target-activated messenger affinity mechanism. Our data provide detailed structural insight into the functional properties of the rabphilin-3A C2A domain and reveal for the first time the structural determinants of a target-activated messenger affinity mechanism.
Collapse
Affiliation(s)
- Nicolas Coudevylle
- Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|