1
|
Ravichandran K, Olshansky L, Nocera DG, Stubbe J. Subunit Interaction Dynamics of Class Ia Ribonucleotide Reductases: In Search of a Robust Assay. Biochemistry 2020; 59:1442-1453. [PMID: 32186371 PMCID: PMC7160020 DOI: 10.1021/acs.biochem.0c00001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ribonucleotide reductases (RNRs) catalyze the conversion of nucleotides (NDP) to deoxynucleotides (dNDP), in part, by controlling the ratios and quantities of dNTPs available for DNA replication and repair. The active form of Escherichia coli class Ia RNR is an asymmetric α2β2 complex in which α2 contains the active site and β2 contains the stable diferric-tyrosyl radical cofactor responsible for initiating the reduction chemistry. Each dNDP is accompanied by disulfide bond formation. We now report that, under in vitro conditions, β2 can initiate turnover in α2 catalytically under both "one" turnover (no external reductant, though producing two dCDPs) and multiple turnover (with an external reductant) assay conditions. In the absence of reductant, rapid chemical quench analysis of a reaction of α2, substrate, and effector with variable amounts of β2 (1-, 10-, and 100-fold less than α2) yields 3 dCDP/α2 at all ratios of α2:β2 with a rate constant of 8-9 s-1, associated with a rate-limiting conformational change. Stopped-flow fluorescence spectroscopy with a fluorophore-labeled β reveals that the rate constants for subunit association (163 ± 7 μM-1 s-1) and dissociation (75 ± 10 s-1) are fast relative to turnover, consistent with catalytic β2. When assaying in the presence of an external reducing system, the turnover number is dictated by the ratio of α2:β2, their concentrations, and the concentration and nature of the reducing system; the rate-limiting step can change from the conformational gating to a step or steps involving disulfide rereduction, dissociation of the inhibited α4β4 state, or both. The issues encountered with E. coli RNR are likely of importance in all class I RNRs and are central to understanding the development of screening assays for inhibitors of these enzymes.
Collapse
Affiliation(s)
- Kanchana Ravichandran
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Lisa Olshansky
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| |
Collapse
|
2
|
Brignole EJ, Tsai KL, Chittuluru J, Li H, Aye Y, Penczek PA, Stubbe J, Drennan CL, Asturias F. 3.3-Å resolution cryo-EM structure of human ribonucleotide reductase with substrate and allosteric regulators bound. eLife 2018; 7:31502. [PMID: 29460780 PMCID: PMC5819950 DOI: 10.7554/elife.31502] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/15/2018] [Indexed: 12/31/2022] Open
Abstract
Ribonucleotide reductases (RNRs) convert ribonucleotides into deoxyribonucleotides, a reaction essential for DNA replication and repair. Human RNR requires two subunits for activity, the α subunit contains the active site, and the β subunit houses the radical cofactor. Here, we present a 3.3-Å resolution structure by cryo-electron microscopy (EM) of a dATP-inhibited state of human RNR. This structure, which was determined in the presence of substrate CDP and allosteric regulators ATP and dATP, has three α2 units arranged in an α6 ring. At near-atomic resolution, these data provide insight into the molecular basis for CDP recognition by allosteric specificity effectors dATP/ATP. Additionally, we present lower-resolution EM structures of human α6 in the presence of both the anticancer drug clofarabine triphosphate and β2. Together, these structures support a model for RNR inhibition in which β2 is excluded from binding in a radical transfer competent position when α exists as a stable hexamer. Cells often need to make more DNA, for example when they are about to divide or need to repair their genetic information. The building blocks of DNA – also called deoxyribonucleotides – are created through a series of biochemical reactions. Among the enzymes that accomplish these reactions, ribonucleotide reductases (or RNRs, for short) perform a key irreversible step. One prominent class of RNR contains two basic units, named alpha and beta. The active form of these RNRs is made up of a pair of alpha units (α2), which associates with a pair of beta units (β2) to create an α2β2 structure. α2 captures molecules called ribonucleotides and, with the help of β2, converts them to deoxyribonucleotides that after futher processing will be used to create DNA. As RNR produces deoxyribonucleotides, levels of DNA building blocks in the cell rise. To avoid overstocking the cell, RNR contains an ‘off switch’ that is triggered when levels of one of the DNA building blocks, dATP, is high enough to occupy a particular site on the alpha unit. Binding of dATP to this site results in three pairs of alpha units getting together to form a stable ring of six units (called α6). How the formation of this stable α6 ring actually turns off RNR was an open question. Here, Brignole, Tsai et al. use a microscopy method called cryo-EM to reveal the three-dimensional structure of the inactive human RNR almost down to the level of individual atoms. When the alpha pairs form an α6 ring, the hole in the center of this circle is smaller than β2, keeping β2 away from α2. This inaccessibility leads to RNR being switched off. If RNR is inactive, DNA synthesis is impaired and cells cannot divide. In turn, controlling whether or not cells proliferate is key to fighting diseases like cancer (where ‘rogue’ cells keep replicating) or bacterial infections. Certain cancer treatments already target RNR, and create the inactive α6 ring structure. In addition, in bacteria, the inactive form of RNR is different from the human one and forms an α4β4 ring,rather than an α6 ring. Understanding the structure of the human inactive RNR could help scientists to find both new anticancer and antibacterial drugs.
Collapse
Affiliation(s)
- Edward J Brignole
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Kuang-Lei Tsai
- Department of Integrative Computational and Structural Biology, The Scripps Research Institute, La Jolla, United States
| | - Johnathan Chittuluru
- Department of Integrative Computational and Structural Biology, The Scripps Research Institute, La Jolla, United States
| | - Haoran Li
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States
| | - Yimon Aye
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States
| | - Pawel A Penczek
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, Houston, United States
| | - JoAnne Stubbe
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States
| | - Catherine L Drennan
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States
| | - Francisco Asturias
- Department of Integrative Computational and Structural Biology, The Scripps Research Institute, La Jolla, United States
| |
Collapse
|
3
|
Dormán G, Nakamura H, Pulsipher A, Prestwich GD. The Life of Pi Star: Exploring the Exciting and Forbidden Worlds of the Benzophenone Photophore. Chem Rev 2016; 116:15284-15398. [PMID: 27983805 DOI: 10.1021/acs.chemrev.6b00342] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The widespread applications of benzophenone (BP) photochemistry in biological chemistry, bioorganic chemistry, and material science have been prominent in both academic and industrial research. BP photophores have unique photochemical properties: upon n-π* excitation at 365 nm, a biradicaloid triplet state is formed reversibly, which can abstract a hydrogen atom from accessible C-H bonds; the radicals subsequently recombine, creating a stable covalent C-C bond. This light-directed covalent attachment process is exploited in many different ways: (i) binding/contact site mapping of ligand (or protein)-protein interactions; (ii) identification of molecular targets and interactome mapping; (iii) proteome profiling; (iv) bioconjugation and site-directed modification of biopolymers; (v) surface grafting and immobilization. BP photochemistry also has many practical advantages, including low reactivity toward water, stability in ambient light, and the convenient excitation at 365 nm. In addition, several BP-containing building blocks and reagents are commercially available. In this review, we explore the "forbidden" (transitions) and excitation-activated world of photoinduced covalent attachment of BP photophores by touring a colorful palette of recent examples. In this exploration, we will see the pros and cons of using BP photophores, and we hope that both novice and expert photolabelers will enjoy and be inspired by the breadth and depth of possibilities.
Collapse
Affiliation(s)
- György Dormán
- Targetex llc , Dunakeszi H-2120, Hungary.,Faculty of Pharmacy, University of Szeged , Szeged H-6720, Hungary
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology , Yokohama 226-8503, Japan
| | - Abigail Pulsipher
- GlycoMira Therapeutics, Inc. , Salt Lake City, Utah 84108, United States.,Division of Head and Neck Surgery, Rhinology - Sinus and Skull Base Surgery, Department of Surgery, University of Utah School of Medicine , Salt Lake City, Utah 84108, United States
| | - Glenn D Prestwich
- Division of Head and Neck Surgery, Rhinology - Sinus and Skull Base Surgery, Department of Surgery, University of Utah School of Medicine , Salt Lake City, Utah 84108, United States
| |
Collapse
|
4
|
Zimanyi CM, Chen PYT, Kang G, Funk MA, Drennan CL. Molecular basis for allosteric specificity regulation in class Ia ribonucleotide reductase from Escherichia coli. eLife 2016; 5:e07141. [PMID: 26754917 PMCID: PMC4728125 DOI: 10.7554/elife.07141] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 11/12/2015] [Indexed: 02/02/2023] Open
Abstract
Ribonucleotide reductase (RNR) converts ribonucleotides to deoxyribonucleotides, a reaction that is essential for DNA biosynthesis and repair. This enzyme is responsible for reducing all four ribonucleotide substrates, with specificity regulated by the binding of an effector to a distal allosteric site. In all characterized RNRs, the binding of effector dATP alters the active site to select for pyrimidines over purines, whereas effectors dGTP and TTP select for substrates ADP and GDP, respectively. Here, we have determined structures of Escherichia coli class Ia RNR with all four substrate/specificity effector-pairs bound (CDP/dATP, UDP/dATP, ADP/dGTP, GDP/TTP) that reveal the conformational rearrangements responsible for this remarkable allostery. These structures delineate how RNR ‘reads’ the base of each effector and communicates substrate preference to the active site by forming differential hydrogen bonds, thereby maintaining the proper balance of deoxynucleotides in the cell. DOI:http://dx.doi.org/10.7554/eLife.07141.001 DNA contains the instructions required to make proteins and other molecules in cells. DNA is made of four building blocks called deoxyribonucleotides, which are in turn made from molecules called ribonucleotides by enzymes known as ribonucleotide reductases (RNRs for short). RNR enzymes are responsible for maintaining a good balance in the levels of the different deoxyribonucleotides in cells, which is essential for DNA to be made and repaired correctly. Previous work has shown that each RNR can act on all four ribonucleotides. However, these enzymes become more selective for certain ribonucleotides depending on which deoxyribonucleotide is most common within the cell. For example, when a deoxyribonucleotide called dGTP is plentiful, it binds to a so-called “specificity site” on the enzyme and alters the shape of the enzyme’s active site. This then means that a ribonucleotide called ADP will bind in preference to the other ribonucleotides. However, it was not clear how the binding of deoxyribonucleotides to the enzyme influences the shape of the active site. Zimanyi et al. used a technique called X-ray crystallography to determine the three-dimensional structures of a bacterial RNR enzyme when it is bound to all four different combinations of deoxyribonucleotides and ribonucleotides. In the absence of nucleotides, the active site adopts a shape that resembles an open barrel. However, when RNR is bound to a deoxyribonucleotide at the specificity site and a ribonucleotide at the active site, the barrel clamps down, bringing the specificity site and the active site closer together. Additionally, a loop of the protein interacts with each of the deoxyribonucleotides in a different way and communicates their identity directly to the active site, which rearranges itself to hold on to the corresponding preferred ribonucleotide. Zimanyi et al.’s findings provide an explanation for how RNRs can select between ribonucleotides so that they produce a good balance of deoxyribonucleotides in cells. This will inform future efforts to develop molecules that inhibit RNRs, which may have the potential to be used to treat bacterial infections or to kill cancer cells. DOI:http://dx.doi.org/10.7554/eLife.07141.002
Collapse
Affiliation(s)
- Christina M Zimanyi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States
| | | | - Gyunghoon Kang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States
| | - Michael A Funk
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States
| | - Catherine L Drennan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States.,Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
5
|
Nick T, Lee W, Koßmann S, Neese F, Stubbe J, Bennati M. Hydrogen bond network between amino acid radical intermediates on the proton-coupled electron transfer pathway of E. coli α2 ribonucleotide reductase. J Am Chem Soc 2015; 137:289-98. [PMID: 25516424 PMCID: PMC4304443 DOI: 10.1021/ja510513z] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Indexed: 02/05/2023]
Abstract
Ribonucleotide reductases (RNRs) catalyze the conversion of ribonucleotides to deoxyribonucleotides in all organisms. In all Class Ia RNRs, initiation of nucleotide diphosphate (NDP) reduction requires a reversible oxidation over 35 Å by a tyrosyl radical (Y122•, Escherichia coli) in subunit β of a cysteine (C439) in the active site of subunit α. This radical transfer (RT) occurs by a specific pathway involving redox active tyrosines (Y122 ⇆ Y356 in β to Y731 ⇆ Y730 ⇆ C439 in α); each oxidation necessitates loss of a proton coupled to loss of an electron (PCET). To study these steps, 3-aminotyrosine was site-specifically incorporated in place of Y356-β, Y731- and Y730-α, and each protein was incubated with the appropriate second subunit β(α), CDP and effector ATP to trap an amino tyrosyl radical (NH2Y•) in the active α2β2 complex. High-frequency (263 GHz) pulse electron paramagnetic resonance (EPR) of the NH2Y•s reported the gx values with unprecedented resolution and revealed strong electrostatic effects caused by the protein environment. (2)H electron-nuclear double resonance (ENDOR) spectroscopy accompanied by quantum chemical calculations provided spectroscopic evidence for hydrogen bond interactions at the radical sites, i.e., two exchangeable H bonds to NH2Y730•, one to NH2Y731• and none to NH2Y356•. Similar experiments with double mutants α-NH2Y730/C439A and α-NH2Y731/Y730F allowed assignment of the H bonding partner(s) to a pathway residue(s) providing direct evidence for colinear PCET within α. The implications of these observations for the PCET process within α and at the interface are discussed.
Collapse
Affiliation(s)
- Thomas
U. Nick
- Max
Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Wankyu Lee
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Simone Koßmann
- Max
Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max
Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - JoAnne Stubbe
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Marina Bennati
- Max
Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
- Department
of Chemistry, University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
6
|
Parker M, Zhu X, Stubbe J. Bacillus subtilis class Ib ribonucleotide reductase: high activity and dynamic subunit interactions. Biochemistry 2014; 53:766-76. [PMID: 24401092 PMCID: PMC3985883 DOI: 10.1021/bi401056e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 11/22/2013] [Indexed: 11/29/2022]
Abstract
The class Ib ribonucleotide reductase (RNR) isolated from Bacillus subtilis was recently purified as a 1:1 ratio of NrdE (α) and NrdF (β) subunits and determined to have a dimanganic-tyrosyl radical (Mn(III)2-Y·) cofactor. The activity of this RNR and the one reconstituted from recombinantly expressed NrdE and reconstituted Mn(III)2-Y· NrdF using dithiothreitol as the reductant, however, was low (160 nmol min(-1) mg(-1)). The apparent tight affinity between the two subunits, distinct from all class Ia RNRs, suggested that B. subtilis RNR might be the protein that yields to the elusive X-ray crystallographic characterization of an "active" RNR complex. We now report our efforts to optimize the activity of B. subtilis RNR by (1) isolation of NrdF with a homogeneous cofactor, and (2) identification and purification of the endogenous reductant(s). Goal one was achieved using anion exchange chromatography to separate apo-/mismetalated-NrdFs from Mn(III)2-Y· NrdF, yielding enzyme containing 4 Mn and 1 Y·/β2. Goal two was achieved by cloning, expressing, and purifying TrxA (thioredoxin), YosR (a glutaredoxin-like thioredoxin), and TrxB (thioredoxin reductase). The success of both goals increased the specific activity to ~1250 nmol min(-1) mg(-1) using a 1:1 mixture of NrdE:Mn(III)2-Y· NrdF and either TrxA or YosR and TrxB. The quaternary structures of NrdE, NrdF, and NrdE:NrdF (1:1) were characterized by size exclusion chromatography and analytical ultracentrifugation. At physiological concentrations (~1 μM), NrdE is a monomer (α) and Mn(III)2-Y· NrdF is a dimer (β2). A 1:1 mixture of NrdE:NrdF, however, is composed of a complex mixture of structures in contrast to expectations.
Collapse
Affiliation(s)
- Mackenzie
J. Parker
- Departments of Chemistry and Biology, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Xuling Zhu
- Departments of Chemistry and Biology, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - JoAnne Stubbe
- Departments of Chemistry and Biology, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Minnihan EC, Ando N, Brignole EJ, Olshansky L, Chittuluru J, Asturias FJ, Drennan CL, Nocera DG, Stubbe J. Generation of a stable, aminotyrosyl radical-induced α2β2 complex of Escherichia coli class Ia ribonucleotide reductase. Proc Natl Acad Sci U S A 2013; 110:3835-40. [PMID: 23431160 PMCID: PMC3593893 DOI: 10.1073/pnas.1220691110] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ribonucleotide reductase (RNR) catalyzes the conversion of nucleoside diphosphates to deoxynucleoside diphosphates (dNDPs). The Escherichia coli class Ia RNR uses a mechanism of radical propagation by which a cysteine in the active site of the RNR large (α2) subunit is transiently oxidized by a stable tyrosyl radical (Y•) in the RNR small (β2) subunit over a 35-Å pathway of redox-active amino acids: Y122• ↔ [W48?] ↔ Y356 in β2 to Y731 ↔ Y730 ↔ C439 in α2. When 3-aminotyrosine (NH2Y) is incorporated in place of Y730, a long-lived NH2Y730• is generated in α2 in the presence of wild-type (wt)-β2, substrate, and effector. This radical intermediate is chemically and kinetically competent to generate dNDPs. Herein, evidence is presented that NH2Y730• induces formation of a kinetically stable α2β2 complex. Under conditions that generate NH2Y730•, binding between Y730NH2Y-α2 and wt-β2 is 25-fold tighter (Kd = 7 nM) than for wt-α2
Collapse
Affiliation(s)
| | - Nozomi Ando
- Departments of Chemistry and
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139; and
| | - Edward J. Brignole
- Departments of Chemistry and
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139; and
| | | | | | | | - Catherine L. Drennan
- Departments of Chemistry and
- Biology, and
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139; and
| | | | | |
Collapse
|
8
|
Photo-ribonucleotide reductase β2 by selective cysteine labeling with a radical phototrigger. Proc Natl Acad Sci U S A 2011; 109:39-43. [PMID: 22171005 DOI: 10.1073/pnas.1115778108] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photochemical radical initiation is a powerful tool for studying radical initiation and transport in biology. Ribonucleotide reductases (RNRs), which catalyze the conversion of nucleotides to deoxynucleotides in all organisms, are an exemplar of radical mediated transformations in biology. Class Ia RNRs are composed of two subunits: α2 and β2. As a method to initiate radical formation photochemically within β2, a single surface-exposed cysteine of the β2 subunit of Escherichia coli Class Ia RNR has been labeled (98%) with a photooxidant ([Re ] = tricarbonyl(1,10-phenanthroline)(methylpyridyl)rhenium(I)). The labeling was achieved by incubation of S355C-β2 with the 4-(bromomethyl)pyridyl derivative of [Re] to yield the labeled species, [Re]-S355C-β2. Steady-state and time-resolved emission experiments reveal that the metal-to-ligand charge transfer (MLCT) excited-state (3)[Re ](∗) is not significantly perturbed after bioconjugation and is available as a phototrigger of tyrosine radical at position 356 in the β2 subunit; transient absorption spectroscopy reveals that the radical lives for microseconds. The work described herein provides a platform for photochemical radical initiation and study of proton-coupled electron transfer (PCET) in the β2 subunit of RNR, from which radical initiation and transport for this enzyme originates.
Collapse
|
9
|
Clofarabine 5'-di and -triphosphates inhibit human ribonucleotide reductase by altering the quaternary structure of its large subunit. Proc Natl Acad Sci U S A 2011; 108:9815-20. [PMID: 21628579 DOI: 10.1073/pnas.1013274108] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human ribonucleotide reductases (hRNRs) catalyze the conversion of nucleotides to deoxynucleotides and are composed of α- and β-subunits that form active α(n)β(m) (n, m = 2 or 6) complexes. α binds NDP substrates (CDP, UDP, ADP, and GDP, C site) as well as ATP and dNTPs (dATP, dGTP, TTP) allosteric effectors that control enzyme activity (A site) and substrate specificity (S site). Clofarabine (ClF), an adenosine analog, is used in the treatment of refractory leukemias. Its mode of cytotoxicity is thought to be associated in part with the triphosphate functioning as an allosteric inhibitor of hRNR. Studies on the mechanism of inhibition of hRNR by ClF di- and triphosphates (ClFDP and ClFTP) are presented. ClFTP is a reversible inhibitor (K(i) = 40 nM) that rapidly inactivates hRNR. However, with time, 50% of the activity is recovered. D57N-α, a mutant with an altered A site, prevents inhibition by ClFTP, suggesting its A site binding. ClFDP is a slow-binding, reversible inhibitor ( K(i)*; t(1/2) = 23 min). CDP protects α from its inhibition. The altered off-rate of ClFDP from E•ClFDP* by ClFTP (A site) or dGTP (S site) and its inhibition of D57N-α together implicate its C site binding. Size exclusion chromatography of hRNR or α alone with ClFDP or ClFTP, ± ATP or dGTP, reveals in each case that α forms a kinetically stable hexameric state. This is the first example of hexamerization of α induced by an NDP analog that reversibly binds at the active site.
Collapse
|
10
|
Kenaan C, Zhang H, Shea EV, Hollenberg PF. Uncovering the role of hydrophobic residues in cytochrome P450-cytochrome P450 reductase interactions. Biochemistry 2011; 50:3957-67. [PMID: 21462923 DOI: 10.1021/bi1020748] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cytochrome P450 (CYP or P450)-mediated drug metabolism requires the interaction of P450s with their redox partner, cytochrome P450 reductase (CPR). In this work, we have investigated the role of P450 hydrophobic residues in complex formation with CPR and uncovered novel roles for the surface-exposed residues V267 and L270 of CYP2B4 in mediating CYP2B4--CPR interactions. Using a combination of fluorescence labeling and stopped-flow spectroscopy, we have investigated the basis for these interactions. Specifically, in order to study P450--CPR interactions, a single reactive cysteine was introduced in to a genetically engineered variant of CYP2B4 (C79SC152S) at each of seven strategically selected surface-exposed positions. Each of these cysteine residues was modified by reaction with fluorescein-5-maleimide (FM), and the CYP2B4-FM variants were then used to determine the K(d) of the complex by monitoring fluorescence enhancement in the presence of CPR. Furthermore, the intrinsic K(m) values of the CYP2B4 variants for CPR were measured, and stopped-flow spectroscopy was used to determine the intrinsic kinetics and the extent of reduction of the ferric P450 mutants to the ferrous P450--CO adduct by CPR. A comparison of the results from these three approaches reveals that the sites on P450 exhibiting the greatest changes in fluorescence intensity upon binding CPR are associated with the greatest increases in the K(m) values of the P450 variants for CPR and with the greatest decreases in the rates and extents of reduced P450--CO formation.
Collapse
Affiliation(s)
- Cesar Kenaan
- Chemical Biology Doctoral Program, The University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | | | | |
Collapse
|
11
|
Yokoyama K, Uhlin U, Stubbe J. Site-specific incorporation of 3-nitrotyrosine as a probe of pKa perturbation of redox-active tyrosines in ribonucleotide reductase. J Am Chem Soc 2010; 132:8385-97. [PMID: 20518462 DOI: 10.1021/ja101097p] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
E. coli ribonucleotide reductase catalyzes the reduction of nucleoside 5'-diphosphates into 2'-deoxynucleotides and is composed of two subunits: alpha2 and beta2. During turnover, a stable tyrosyl radical (Y*) at Y(122)-beta2 reversibly oxidizes C(439) in the active site of alpha2. This radical propagation step is proposed to occur over 35 A, to use specific redox-active tyrosines (Y(122) and Y(356) in beta2, Y(731) and Y(730) in alpha2), and to involve proton-coupled electron transfer (PCET). 3-Nitrotyrosine (NO(2)Y, pK(a) 7.1) has been incorporated in place of Y(122), Y(731), and Y(730) to probe how the protein environment perturbs each pK(a) in the presence of the second subunit, substrate (S), and allosteric effector (E). The activity of each mutant is <4 x 10(-3) that of the wild-type (wt) subunit. The [NO(2)Y(730)]-alpha2 and [NO(2)Y(731)]-alpha2 each exhibit a pK(a) of 7.8-8.0 with E and E/beta2. The pK(a) of [NO(2)Y(730)]-alpha2 is elevated to 8.2-8.3 in the S/E/beta2 complex, whereas no further perturbation is observed for [NO(2)Y(731)]-alpha2. Mutations in pathway residues adjacent to the NO(2)Y that disrupt H-bonding minimally perturb its pK(a). The pK(a) of NO(2)Y(122)-beta2 alone or with alpha2/S/E is >9.6. X-ray crystal structures have been obtained for all [NO(2)Y]-alpha2 mutants (2.1-3.1 A resolution), which show minimal structural perturbation compared to wt-alpha2. Together with the pK(a) of the previously reported NO(2)Y(356)-beta2 (7.5 in the alpha2/S/E complex; Yee, C. et al. Biochemistry 2003, 42, 14541-14552), these studies provide a picture of the protein environment of the ground state at each Y in the PCET pathway, and are the starting point for understanding differences in PCET mechanisms at each residue in the pathway.
Collapse
Affiliation(s)
- Kenichi Yokoyama
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA
| | | | | |
Collapse
|
12
|
Jiang W, Xie J, Varano PT, Krebs C, Bollinger JM. Two distinct mechanisms of inactivation of the class Ic ribonucleotide reductase from Chlamydia trachomatis by hydroxyurea: implications for the protein gating of intersubunit electron transfer. Biochemistry 2010; 49:5340-9. [PMID: 20462199 DOI: 10.1021/bi100037b] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Catalysis by a class I ribonucleotide reductase (RNR) begins when a cysteine (C) residue in the alpha(2) subunit is oxidized to a thiyl radical (C(*)) by a cofactor approximately 35 A away in the beta(2) subunit. In a class Ia or Ib RNR, a stable tyrosyl radical (Y(*)) is the C oxidant, whereas a Mn(IV)/Fe(III) cluster serves this function in the class Ic enzyme from Chlamydia trachomatis (Ct). It is thought that, in either case, a chain of Y residues spanning the two subunits mediates C oxidation by forming transient "pathway" Y(*)s in a multistep electron transfer (ET) process that is "gated" by the protein so that it occurs only in the ready holoenzyme complex. The drug hydroxyurea (HU) inactivates both Ia/b and Ic beta(2) subunits by reducing their C oxidants. Reduction of the stable cofactor Y(*) (Y122(*)) in Escherichia coli class Ia beta(2) is faster in the presence of alpha(2) and a substrate (CDP), leading to speculation that HU might intercept a transient ET pathway Y(*) under these turnover conditions. Here we show that this mechanism is one of two that are operant in HU inactivation of the Ct enzyme. HU reacts with the Mn(IV)/Fe(III) cofactor to give two distinct products: the previously described homogeneous Mn(III)/Fe(III)-beta(2) complex, which forms only under turnover conditions (in the presence of alpha(2) and the substrate), and a distinct, diamagnetic Mn/Fe cluster, which forms approximately 900-fold less rapidly as a second phase in the reaction under turnover conditions and as the sole outcome in the reaction of Mn(IV)/Fe(III)-beta(2) only. Formation of Mn(III)/Fe(III)-beta(2) also requires (i) either Y338, the subunit-interfacial ET pathway residue of beta(2), or Y222, the surface residue that relays the "extra electron" to the Mn(IV)/Fe(IV) intermediate during activation of beta(2) but is not part of the catalytic ET pathway, and (ii) W51, the cofactor-proximal residue required for efficient ET between either Y222 or Y338 and the cofactor. The combined requirements for the catalytic subunit, the substrate, and, most importantly, a functional surface-to-cofactor electron relay system imply that HU effects the Mn(IV)/Fe(III) --> Mn(III)/Fe(III) reduction by intercepting a Y(*) that forms when the ready holoenzyme complex is assembled, the ET gate is opened, and the Mn(IV) oxidizes either Y222 or Y338.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | |
Collapse
|
13
|
Crona M, Furrer E, Torrents E, Edgell DR, Sjöberg BM. Subunit and small-molecule interaction of ribonucleotide reductases via surface plasmon resonance biosensor analyses. Protein Eng Des Sel 2010; 23:633-41. [PMID: 20534631 PMCID: PMC2898501 DOI: 10.1093/protein/gzq035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Ribonucleotide reductase (RNR) synthesizes deoxyribonucleotides for DNA replication and repair and is controlled by sophisticated allosteric regulation involving differential affinity of nucleotides for regulatory sites. We have developed a robust and sensitive method for coupling biotinylated RNRs to surface plasmon resonance streptavidin biosensor chips via a 30.5 Å linker. In comprehensive studies on three RNRs effector nucleotides strengthened holoenzyme interactions, whereas substrate had no effect on subunit interactions. The RNRs differed in their response to the negative allosteric effector dATP that binds to an ATP-cone domain. A tight RNR complex was formed in Escherichia coli class Ia RNR with a functional ATP cone. No strengthening of subunit interactions was observed in the class Ib RNR from the human pathogen Bacillus anthracis that lacks the ATP cone. A moderate strengthening was seen in the atypical Aeromonas hydrophila phage 1 class Ia RNR that has a split catalytic subunit and a non-functional ATP cone with remnant dATP-mediated regulatory features. We also successfully immobilized a functional catalytic NrdA subunit of the E.coli enzyme, facilitating study of nucleotide interactions. Our surface plasmon resonance methodology has the potential to provide biological insight into nucleotide-mediated regulation of any RNR, and can be used for high-throughput screening of potential RNR inhibitors.
Collapse
Affiliation(s)
- Mikael Crona
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | | | | | |
Collapse
|