1
|
Marques HM. Electron transfer in biological systems. J Biol Inorg Chem 2024; 29:641-683. [PMID: 39424709 PMCID: PMC11638306 DOI: 10.1007/s00775-024-02076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024]
Abstract
Examples of how metalloproteins feature in electron transfer processes in biological systems are reviewed. Attention is focused on the electron transport chains of cellular respiration and photosynthesis, and on metalloproteins that directly couple electron transfer to a chemical reaction. Brief mention is also made of extracellular electron transport. While covering highlights of the recent and the current literature, this review is aimed primarily at introducing the senior undergraduate and the novice postgraduate student to this important aspect of bioinorganic chemistry.
Collapse
Affiliation(s)
- Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa.
| |
Collapse
|
2
|
Yao H, Gao X, Guo J, Wang H, Zhang L, Fan L, Jia F, Guo J, Peng Y. Contribution of nitrous oxide to the carbon footprint of full-scale wastewater treatment plants and mitigation strategies- a critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120295. [PMID: 36181929 DOI: 10.1016/j.envpol.2022.120295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/27/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Nitrous oxide (N2O), a potent greenhouse gas, significantly contributes to the carbon footprint of wastewater treatment plants (WWTPs) and contributes significantly to global climate change and to the deterioration of the natural environment. Our understanding of N2O generation mechanisms has significantly improved in the last decade, but the development of effective N2O emission mitigation strategies has lagged owing to the complexity of parameter regulation, substandard monitoring activities, and inadequate policy criteria. Based on critically screened published studies on N2O control in full-scale WWTPs, this review elucidates N2O generation pathway identifications and emission mechanisms and summarizes the impact of N2O on the total carbon footprint of WWTPs. In particular, a linear relationship was established between N2O emission factors and total nitrogen removal efficiencies in WWTPs located in China. Promising N2O mitigation options were proposed, which focus on optimizing operating conditions and implementation of innovative treatment processes. Furthermore, the sustainable operation of WWTPs has been anticipated to convert WWTPs into absolute greenhouse gas reducers as a result of the refinement and improvement of on-site monitoring activities, mitigation mechanisms, regulation of operational parameters, modeling, and policies.
Collapse
Affiliation(s)
- Hong Yao
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China.
| | - Xinyu Gao
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Jingbo Guo
- School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin, 132012, China
| | - Hui Wang
- SINOPEC Research Institute of Petroleum Processing, Beijing, 100083, China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Liru Fan
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Fangxu Jia
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
3
|
Müller C, Zhang L, Zipfel S, Topitsch A, Lutz M, Eckert J, Prasser B, Chami M, Lü W, Du J, Einsle O. Molecular interplay of an assembly machinery for nitrous oxide reductase. Nature 2022; 608:626-631. [PMID: 35896743 DOI: 10.1038/s41586-022-05015-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/23/2022] [Indexed: 11/09/2022]
Abstract
Emissions of the critical ozone-depleting and greenhouse gas nitrous oxide (N2O) from soils and industrial processes have increased considerably over the last decades1-3. As the final step of bacterial denitrification, N2O is reduced to chemically inert N2 (refs. 1,4) in a reaction that is catalysed by the copper-dependent nitrous oxide reductase (N2OR) (ref. 5). The assembly of its unique [4Cu:2S] active site cluster CuZ requires both the ATP-binding-cassette (ABC) complex NosDFY and the membrane-anchored copper chaperone NosL (refs. 4,6). Here we report cryo-electron microscopy structures of Pseudomonas stutzeri NosDFY and its complexes with NosL and N2OR, respectively. We find that the periplasmic NosD protein contains a binding site for a Cu+ ion and interacts specifically with NosL in its nucleotide-free state, whereas its binding to N2OR requires a conformational change that is triggered by ATP binding. Mutually exclusive structures of NosDFY in complex with NosL and with N2OR reveal a sequential metal-trafficking and assembly pathway for a highly complex copper site. Within this pathway, NosDFY acts as a mechanical energy transducer rather than as a transporter. It links ATP hydrolysis in the cytoplasm to a conformational transition of the NosD subunit in the periplasm, which is required for NosDFY to switch its interaction partner so that copper ions are handed over from the chaperone NosL to the enzyme N2OR.
Collapse
Affiliation(s)
- Christoph Müller
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Lin Zhang
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Sara Zipfel
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Annika Topitsch
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Marleen Lutz
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Johannes Eckert
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Benedikt Prasser
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Mohamed Chami
- BioEM Lab, Biozentrum, Universität Basel, Basel, Switzerland
| | - Wei Lü
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Juan Du
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| | - Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
| |
Collapse
|
4
|
Rathnayaka SC, Mankad NP. Coordination chemistry of the Cu Z site in nitrous oxide reductase and its synthetic mimics. Coord Chem Rev 2021; 429:213718. [PMID: 33692589 PMCID: PMC7939133 DOI: 10.1016/j.ccr.2020.213718] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atmospheric nitrous oxide (N2O) has garnered significant attention recently due to its dual roles as an ozone depletion agent and a potent greenhouse gas. Anthropogenic N2O emissions occur primarily through agricultural disruption of nitrogen homeostasis causing N2O to build up in the atmosphere. The enzyme responsible for N2O fixation within the geochemical nitrogen cycle is nitrous oxide reductase (N2OR), which catalyzes 2H+/2e- reduction of N2O to N2 and H2O at a tetranuclear active site, CuZ. In this review, the coordination chemistry of CuZ is reviewed. Recent advances in the understanding of biological CuZ coordination chemistry is discussed, as are significant breakthroughs in synthetic modeling of CuZ that have emerged in recent years. The latter topic includes both structurally faithful, synthetic [Cu4(µ4-S)] clusters that are able to reduce N2O, as well as dicopper motifs that shed light on reaction pathways available to the critical CuI-CuIV cluster edge of CuZ. Collectively, these advances in metalloenzyme studies and synthetic model systems provide meaningful knowledge about the physiologically relevant coordination chemistry of CuZ but also open new questions that will pose challenges in the near future.
Collapse
Affiliation(s)
- Suresh C. Rathnayaka
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL 60607, United States
| | - Neal P. Mankad
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL 60607, United States
| |
Collapse
|
5
|
Carreira C, Nunes RF, Mestre O, Moura I, Pauleta SR. The effect of pH on Marinobacter hydrocarbonoclasticus denitrification pathway and nitrous oxide reductase. J Biol Inorg Chem 2020; 25:927-940. [PMID: 32851479 DOI: 10.1007/s00775-020-01812-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/12/2020] [Indexed: 11/27/2022]
Abstract
Increasing atmospheric concentration of N2O has been a concern, as it is a potent greenhouse gas and promotes ozone layer destruction. In the N-cycle, release of N2O is boosted upon a drop of pH in the environment. Here, Marinobacter hydrocarbonoclasticus was grown in batch mode in the presence of nitrate, to study the effect of pH in the denitrification pathway by gene expression profiling, quantification of nitrate and nitrite, and evaluating the ability of whole cells to reduce NO and N2O. At pH 6.5, accumulation of nitrite in the medium occurs and the cells were unable to reduce N2O. In addition, the biochemical properties of N2O reductase isolated from cells grown at pH 6.5, 7.5 and 8.5 were compared for the first time. The amount of this enzyme at acidic pH was lower than that at pH 7.5 and 8.5, pinpointing to a post-transcriptional regulation, though pH did not affect gene expression of N2O reductase accessory genes. N2O reductase isolated from cells grown at pH 6.5 has its catalytic center mainly as CuZ(4Cu1S), while that from cells grown at pH 7.5 or 8.5 has it as CuZ(4Cu2S). This study evidences that an in vivo secondary level of regulation is required to maintain N2O reductase in an active state.
Collapse
Affiliation(s)
- Cíntia Carreira
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal
- Biological Chemistry Lab, LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal
| | - Rute F Nunes
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal
| | - Olga Mestre
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal
| | - Isabel Moura
- Biological Chemistry Lab, LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal
| | - Sofia R Pauleta
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal.
| |
Collapse
|
6
|
Ferousi C, Majer SH, DiMucci IM, Lancaster KM. Biological and Bioinspired Inorganic N-N Bond-Forming Reactions. Chem Rev 2020; 120:5252-5307. [PMID: 32108471 PMCID: PMC7339862 DOI: 10.1021/acs.chemrev.9b00629] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The metallobiochemistry underlying the formation of the inorganic N-N-bond-containing molecules nitrous oxide (N2O), dinitrogen (N2), and hydrazine (N2H4) is essential to the lifestyles of diverse organisms. Similar reactions hold promise as means to use N-based fuels as alternative carbon-free energy sources. This review discusses research efforts to understand the mechanisms underlying biological N-N bond formation in primary metabolism and how the associated reactions are tied to energy transduction and organismal survival. These efforts comprise studies of both natural and engineered metalloenzymes as well as synthetic model complexes.
Collapse
Affiliation(s)
- Christina Ferousi
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Sean H Majer
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Ida M DiMucci
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
7
|
Carreira C, Dos Santos MMC, Pauleta SR, Moura I. Proton-coupled electron transfer mechanisms of the copper centres of nitrous oxide reductase from Marinobacter hydrocarbonoclasticus - An electrochemical study. Bioelectrochemistry 2020; 133:107483. [PMID: 32120320 DOI: 10.1016/j.bioelechem.2020.107483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 11/16/2022]
Abstract
Reduction of N2O to N2 is catalysed by nitrous oxide reductase in the last step of the denitrification pathway. This multicopper enzyme has an electron transferring centre, CuA, and a tetranuclear copper-sulfide catalytic centre, "CuZ", which exists as CuZ*(4Cu1S) or CuZ(4Cu2S). The redox behaviour of these metal centres in Marinobacter hydrocarbonoclasticus nitrous oxide reductase was investigated by potentiometry and for the first time by direct electrochemistry. The reduction potential of CuA and CuZ(4Cu2S) was estimated by potentiometry to be +275 ± 5 mV and +65 ± 5 mV vs SHE, respectively, at pH 7.6. A proton-coupled electron transfer mechanism governs CuZ(4Cu2S) reduction potential, due to the protonation/deprotonation of Lys397 with a pKox of 6.0 ± 0.1 and a pKred of 9.2 ± 0.1. The reduction potential of CuA, in enzyme samples with CuZ*(4Cu1S), is controlled by protonation of the coordinating histidine residues in a two-proton coupled electron transfer process. In the cyclic voltammograms, two redox pairs were identified corresponding to CuA and CuZ(4Cu2S), with no additional signals being detected that could be attributed to CuZ*(4Cu1S). However, an enhanced cathodic signal for the activated enzyme was observed under turnover conditions, which is explained by the binding of nitrous oxide to CuZ0(4Cu1S), an intermediate species in the catalytic cycle.
Collapse
Affiliation(s)
- Cíntia Carreira
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal; Biological Chemistry Lab, LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Margarida M C Dos Santos
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sofia R Pauleta
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal. http://docentes.fct.unl.pt/srp/
| | - Isabel Moura
- Biological Chemistry Lab, LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal.
| |
Collapse
|
8
|
Bacterial nitrous oxide respiration: electron transport chains and copper transfer reactions. Adv Microb Physiol 2019; 75:137-175. [PMID: 31655736 DOI: 10.1016/bs.ampbs.2019.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biologically catalyzed nitrous oxide (N2O, laughing gas) reduction to dinitrogen gas (N2) is a desirable process in the light of ever-increasing atmospheric concentrations of this important greenhouse gas and ozone depleting substance. A diverse range of bacterial species produce the copper cluster-containing enzyme N2O reductase (NosZ), which is the only known enzyme that converts N2O to N2. Based on phylogenetic analyses, NosZ enzymes have been classified into clade I or clade II and it has turned out that this differentiation is also applicable to nos gene clusters (NGCs) and some physiological traits of the corresponding microbial cells. The NosZ enzyme is the terminal reductase of anaerobic N2O respiration, in which electrons derived from a donor substrate are transferred to NosZ by means of an electron transport chain (ETC) that conserves energy through proton motive force generation. This chapter presents models of the ETCs involved in clade I and clade II N2O respiration as well as of the respective NosZ maturation and maintenance processes. Despite differences in NGCs and growth yields of N2O-respiring microorganisms, the deduced bioenergetic framework in clade I and clade II N2O respiration is assumed to be equivalent. In both cases proton motive quinol oxidation by N2O is thought to be catalyzed by the Q cycle mechanism of a membrane-bound Rieske/cytochrome bc complex. However, clade I and clade II organisms are expected to differ significantly in terms of auxiliary electron transport processes as well as NosZ active site maintenance and repair.
Collapse
|
9
|
|
10
|
Carreira C, Mestre O, Nunes RF, Moura I, Pauleta SR. Genomic organization, gene expression and activity profile of Marinobacter hydrocarbonoclasticus denitrification enzymes. PeerJ 2018; 6:e5603. [PMID: 30258713 PMCID: PMC6152468 DOI: 10.7717/peerj.5603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/18/2018] [Indexed: 12/19/2022] Open
Abstract
Background Denitrification is one of the main pathways of the N-cycle, during which nitrate is converted to dinitrogen gas, in four consecutive reactions that are each catalyzed by a different metalloenzyme. One of the intermediate metabolites is nitrous oxide, which has a global warming impact greater then carbon dioxide and which atmospheric concentration has been increasing in the last years. The four denitrification enzymes have been isolated and biochemically characterized from Marinobacter hydrocarbonoclasticus in our lab. Methods Bioinformatic analysis of the M. hydrocarbonoclasticus genome to identify the genes involved in the denitrification pathway. The relative gene expression of the gene encoding the catalytic subunits of those enzymes was analyzed during the growth under microoxic conditions. The consumption of nitrate and nitrite, and the reduction of nitric oxide and nitrous oxide by whole-cells was monitored during anoxic and microoxic growth in the presence of 10 mM sodium nitrate at pH 7.5. Results The bioinformatic analysis shows that genes encoding the enzymes and accessory factors required for each step of the denitrification pathway are clustered together. An unusual feature is the co-existence of genes encoding a q- and a c-type nitric oxide reductase, with only the latter being transcribed at similar levels as the ones encoding the catalytic subunits of the other denitrifying enzymes, when cells are grown in the presence of nitrate under microoxic conditions. Using either a batch- or a closed system, nitrate is completely consumed in the beginning of the growth, with transient formation of nitrite, and whole-cells can reduce nitric oxide and nitrous oxide from mid-exponential phase until being collected (time-point 50 h). Discussion M. hydrocarbonoclasticus cells can reduce nitric and nitrous oxide in vivo, indicating that the four denitrification steps are active. Gene expression profile together with promoter regions analysis indicates the involvement of a cascade regulatory mechanism triggered by FNR-type in response to low oxygen tension, with nitric oxide and nitrate as secondary effectors, through DNR and NarXL, respectively. This global characterization of the denitrification pathway of a strict marine bacterium, contributes to the understanding of the N-cycle and nitrous oxide release in marine environments.
Collapse
Affiliation(s)
- Cíntia Carreira
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.,Biological Chemistry Lab, LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Olga Mestre
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Rute F Nunes
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Isabel Moura
- Biological Chemistry Lab, LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Sofia R Pauleta
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| |
Collapse
|
11
|
Wang Y, Wang Z, Duo Y, Wang X, Chen J, Chen J. Gene cloning, expression, and reducing property enhancement of nitrous oxide reductase from Alcaligenes denitrificans strain TB. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 239:43-52. [PMID: 29649759 DOI: 10.1016/j.envpol.2018.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/14/2018] [Accepted: 04/01/2018] [Indexed: 06/08/2023]
Abstract
Nitrous oxide (N2O) is a potent greenhouse gas and tends to accumulate as an intermediate in the process of bacteria denitrification. To achieve complete reduction of nitrogen oxide (NOx) in bacteria denitrification, the structural gene nosZ encoding nitrous oxide reductase (N2OR) was cloned from Alcaligenes denitrificans strain TB (GenBank JQ044686). The recombinant plasmid containing the nosZ gene was built, and the expression of nosZ gene in Escherichia coli was determined. Results show that the nosZ gene consisting of 1917 nucleotides achieves heterologous expression successfully by codon optimization strategy under optimal conditions (pre-induction inoculum OD600 of 0.67, final IPTG concentration of 0.5 mM, inducing time of 6 h, and inducing temperature of 28 °C). Determination result of gas chromatography confirms that N2O degradation efficiency of recombinant E. coli is strengthened by at least 1.92 times compared with that of original strain TB when treated with N2O as substrate. Moreover, N2OR activity in recombinant strain is 2.09 times higher than that in wild strain TB, which validates the aforementioned result and implies that the recombinant E. coli BL21 (DE3)-pET28b-nosZ is a potential candidate to control N2O accumulation and alleviate greenhouse effect. In addition, the N2OR structure and the possible N2O binding site in Alcaligenes sp. TB are predicted, which open an avenue for further research on the relationship between N2OR activity and its structure.
Collapse
Affiliation(s)
- Yu Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zeyu Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yankai Duo
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xiaoping Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jianmeng Chen
- Engineering Research Center of the Ministry of Education for Bioconversion and Biopurification, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jun Chen
- Engineering Research Center of the Ministry of Education for Bioconversion and Biopurification, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
12
|
Nóbrega CS, Pauleta SR. Interaction between Neisseria gonorrhoeae bacterial peroxidase and its electron donor, the lipid-modified azurin. FEBS Lett 2018; 592:1473-1483. [PMID: 29665008 DOI: 10.1002/1873-3468.13053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 11/05/2022]
Abstract
The Neisseria gonorrhoeae bacterial cytochrome c peroxidase plays a key role in detoxifying the cells from H2 O2 by reducing it to water using the lipid-modified azurin, LAz, a small type 1 copper protein, as electron donor. Here, the interaction between these two proteins was characterized by steady-state kinetics, two-dimensional NMR and molecular docking simulations. LAz is an efficient electron donor capable of activating this enzyme. This electron transfer complex is weak with a hydrophobic character, with LAz binding close to the electron transferring heme of the enzyme. The high catalytic rate (39 ± 0.03 s-1 ) is explained by the LAz pre-orientation, due to a positive dipole moment, and by the fast-dynamic ensemble of orientations, suggested by the small chemical shifts.
Collapse
Affiliation(s)
- Cláudia S Nóbrega
- Microbial Stress Lab, UCIBIO, REQUIMTE, Department of Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Sofia R Pauleta
- Microbial Stress Lab, UCIBIO, REQUIMTE, Department of Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| |
Collapse
|
13
|
Effects of Electrode Structure and Electron Energy on Abatement of NO in Dielectric Barrier Discharge Reactor. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8040618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Insights into the recognition and electron transfer steps in nitric oxide reductase from Marinobacter hydrocarbonoclasticus. J Inorg Biochem 2017; 177:402-411. [DOI: 10.1016/j.jinorgbio.2017.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/04/2017] [Accepted: 09/02/2017] [Indexed: 11/23/2022]
|
15
|
The catalytic cycle of nitrous oxide reductase - The enzyme that catalyzes the last step of denitrification. J Inorg Biochem 2017; 177:423-434. [PMID: 28927704 DOI: 10.1016/j.jinorgbio.2017.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 09/02/2017] [Accepted: 09/08/2017] [Indexed: 01/27/2023]
Abstract
The reduction of the potent greenhouse gas nitrous oxide requires a catalyst to overcome the large activation energy barrier of this reaction. Its biological decomposition to the inert dinitrogen can be accomplished by denitrifiers through nitrous oxide reductase, the enzyme that catalyzes the last step of the denitrification, a pathway of the biogeochemical nitrogen cycle. Nitrous oxide reductase is a multicopper enzyme containing a mixed valence CuA center that can accept electrons from small electron shuttle proteins, triggering electron flow to the catalytic sulfide-bridged tetranuclear copper "CuZ center". This enzyme has been isolated with its catalytic center in two forms, CuZ*(4Cu1S) and CuZ(4Cu2S), proven to be spectroscopic and structurally different. In the last decades, it has been a challenge to characterize the properties of this complex enzyme, due to the different oxidation states observed for each of its centers and the heterogeneity of its preparations. The substrate binding site in those two "CuZ center" forms and which is the active form of the enzyme is still a matter of debate. However, in the last years the application of different spectroscopies, together with theoretical calculations have been useful in answering these questions and in identifying intermediate species of the catalytic cycle. An overview of the spectroscopic, kinetics and structural properties of the two forms of the catalytic "CuZ center" is given here, together with the current knowledge on nitrous oxide reduction mechanism by nitrous oxide reductase and its intermediate species.
Collapse
|
16
|
Periplasmic Nicotine Dehydrogenase NdhAB Utilizes Pseudoazurin as Its Physiological Electron Acceptor in Agrobacterium tumefaciens S33. Appl Environ Microbiol 2017. [PMID: 28625985 DOI: 10.1128/aem.01050-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Agrobacterium tumefaciens S33 can grow with nicotine as the sole source of carbon, nitrogen, and energy via a novel hybrid of the pyridine pathway and the pyrrolidine pathway. Characterization of the enzymes involved in the hybrid pathway is important for understanding its biochemical mechanism. Here, we report that the molybdenum-containing nicotine dehydrogenase (NdhAB), which catalyzes the initial step of nicotine degradation, is located in the periplasm of strain S33, while the 6-hydroxynicotine oxidase and 6-hydroxypseudooxynicoine oxidase are in the cytoplasm. This is consistent with the fact that NdhA has a Tat signal peptide. Interestingly, an open reading frame (ORF) adjacent to the ndhAB gene was verified to encode a copper-containing electron carrier, pseudoazurin (Paz), which has a signal peptide typical of bacterial Paz proteins. Both were transported into the periplasm after being produced in the cytoplasm. We purified NdhAB from the periplasmic fraction of strain S33 and found that with Paz as the physiological electron acceptor, NdhAB catalyzed the hydroxylation of nicotine at a specific rate of 110.52 ± 8.09 μmol · min-1 · mg of protein-1, where the oxygen atom in the hydroxyl group of the product 6-hydroxynicotine was derived from H2O. The apparent Km values for nicotine and Paz were 1.64 ± 0.07 μM and 3.61 ± 0.23 μM, respectively. NAD(P)+, O2, and ferredoxin could not serve as electron acceptors. Disruption of the paz gene disabled the strain for nicotine degradation, indicating that Paz is required for nicotine catabolism in the strain. These findings help our understanding of electron transfer during nicotine degradation in bacteria.IMPORTANCE Nicotine is a toxic and addictive N-heterocyclic aromatic alkaloid produced in tobacco. Its catabolism in organisms and degradation in tobacco wastes have become major concerns for human health and the environment. Bacteria usually decompose nicotine using the classical strategy of hydroxylating the pyridine ring with the help of activated oxygen by nicotine dehydrogenase, which binds one molybdopterin, two [2Fe2S] clusters, and usually one flavin adenine dinucleotide (FAD) as well. However, the physiological electron acceptor for the reaction is still unknown. In this study, we found that the two-component nicotine dehydrogenase from Agrobacterium tumefaciens S33, naturally lacking an FAD-binding domain, is located in the periplasmic space and uses a copper-containing electron carrier, pseudoazurin, as its physiological electron acceptor. We report here the role of pseudoazurin in a reaction catalyzed by a molybdopterin-containing hydroxylase occurring in the periplasmic space. These results provide new biochemical knowledge on microbial degradation of N-heterocyclic aromatic compounds.
Collapse
|
17
|
Johnston EM, Carreira C, Dell'Acqua S, Dey SG, Pauleta SR, Moura I, Solomon EI. Spectroscopic Definition of the Cu Z° Intermediate in Turnover of Nitrous Oxide Reductase and Molecular Insight into the Catalytic Mechanism. J Am Chem Soc 2017; 139:4462-4476. [PMID: 28228011 DOI: 10.1021/jacs.6b13225] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Spectroscopic methods and density functional theory (DFT) calculations are used to determine the geometric and electronic structure of CuZ°, an intermediate form of the Cu4S active site of nitrous oxide reductase (N2OR) that is observed in single turnover of fully reduced N2OR with N2O. Electron paramagnetic resonance (EPR), absorption, and magnetic circular dichroism (MCD) spectroscopies show that CuZ° is a 1-hole (i.e., 3CuICuII) state with spin density delocalized evenly over CuI and CuIV. Resonance Raman spectroscopy shows two Cu-S vibrations at 425 and 413 cm-1, the latter with a -3 cm-1 O18 solvent isotope shift. DFT calculations correlated to these spectral features show that CuZ° has a terminal hydroxide ligand coordinated to CuIV, stabilized by a hydrogen bond to a nearby lysine residue. CuZ° can be reduced via electron transfer from CuA using a physiologically relevant reductant. We obtain a lower limit on the rate of this intramolecular electron transfer (IET) that is >104 faster than the unobserved IET in the resting state, showing that CuZ° is the catalytically relevant oxidized form of N2OR. Terminal hydroxide coordination to CuIV in the CuZ° intermediate yields insight into the nature of N2O binding and reduction, specifying a molecular mechanism in which N2O coordinates in a μ-1,3 fashion to the fully reduced state, with hydrogen bonding from Lys397, and two electrons are transferred from the fully reduced μ4S2- bridged tetranuclear copper cluster to N2O via a single Cu atom to accomplish N-O bond cleavage.
Collapse
Affiliation(s)
- Esther M Johnston
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Cíntia Carreira
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa , Campus da Caparica, 2829-516 Caparica, Portugal
| | - Simone Dell'Acqua
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa , Campus da Caparica, 2829-516 Caparica, Portugal
| | - Somdatta Ghosh Dey
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Sofia R Pauleta
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa , Campus da Caparica, 2829-516 Caparica, Portugal
| | - Isabel Moura
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa , Campus da Caparica, 2829-516 Caparica, Portugal
| | - Edward I Solomon
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
18
|
Almeida RM, Dell'Acqua S, Krippahl L, Moura JJG, Pauleta SR. Predicting Protein-Protein Interactions Using BiGGER: Case Studies. Molecules 2016; 21:E1037. [PMID: 27517887 PMCID: PMC6274584 DOI: 10.3390/molecules21081037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 11/29/2022] Open
Abstract
The importance of understanding interactomes makes preeminent the study of protein interactions and protein complexes. Traditionally, protein interactions have been elucidated by experimental methods or, with lower impact, by simulation with protein docking algorithms. This article describes features and applications of the BiGGER docking algorithm, which stands at the interface of these two approaches. BiGGER is a user-friendly docking algorithm that was specifically designed to incorporate experimental data at different stages of the simulation, to either guide the search for correct structures or help evaluate the results, in order to combine the reliability of hard data with the convenience of simulations. Herein, the applications of BiGGER are described by illustrative applications divided in three Case Studies: (Case Study A) in which no specific contact data is available; (Case Study B) when different experimental data (e.g., site-directed mutagenesis, properties of the complex, NMR chemical shift perturbation mapping, electron tunneling) on one of the partners is available; and (Case Study C) when experimental data are available for both interacting surfaces, which are used during the search and/or evaluation stage of the docking. This algorithm has been extensively used, evidencing its usefulness in a wide range of different biological research fields.
Collapse
Affiliation(s)
- Rui M Almeida
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, NOVA, 2829-516 Caparica, Portugal.
| | - Simone Dell'Acqua
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy.
| | - Ludwig Krippahl
- CENTRIA, Departamento de Informática, Faculdade de Ciências e Tecnologia, NOVA, 2829-516 Caparica, Portugal.
| | - José J G Moura
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, NOVA, 2829-516 Caparica, Portugal.
| | - Sofia R Pauleta
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, NOVA, 2829-516 Caparica, Portugal.
| |
Collapse
|
19
|
Qu Z, Bakken LR, Molstad L, Frostegård Å, Bergaust LL. Transcriptional and metabolic regulation of denitrification in Paracoccus denitrificans allows low but significant activity of nitrous oxide reductase under oxic conditions. Environ Microbiol 2016; 18:2951-63. [PMID: 26568281 DOI: 10.1111/1462-2920.13128] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/02/2015] [Accepted: 11/08/2015] [Indexed: 11/27/2022]
Abstract
Oxygen is known to repress denitrification at the transcriptional and metabolic levels. It has been a common notion that nitrous oxide reductase (N2 OR) is the most sensitive enzyme among the four N-oxide reductases involved in denitrification, potentially leading to increased N2 O production under suboxic or fluctuating oxygen conditions. We present detailed gas kinetics and transcription patterns from batch culture experiments with Paracoccus denitrificans, allowing in vivo estimation of e(-) -flow to O2 and N2 O under various O2 regimes. Transcription of nosZ took place concomitantly with that of narG under suboxic conditions, whereas transcription of nirS and norB was inhibited until O2 levels approached 0 μM in the liquid. Catalytically functional N2 OR was synthesized and active in aerobically raised cells transferred to vials with 7 vol% O2 in headspace, but N2 O reduction rates were 10 times higher when anaerobic pre-cultures were subjected to the same conditions. Upon oxygen exposure, there was an incomplete and transient inactivation of N2 OR that could be ascribed to its lower ability to compete for electrons compared with terminal oxidases. The demonstrated reduction of N2 O at high O2 partial pressure and low N2 O concentrations by a bacterium not known as a typical aerobic denitrifier may provide one clue to the understanding of why some soils appear to act as sinks rather than sources for atmospheric N2 O.
Collapse
Affiliation(s)
- Zhi Qu
- Department of Environmental Sciences, Norwegian University of Life Sciences, PO Box 5003, N-1432, Ås, Norway
| | - Lars R Bakken
- Department of Environmental Sciences, Norwegian University of Life Sciences, PO Box 5003, N-1432, Ås, Norway
| | - Lars Molstad
- Department of Environmental Sciences, Norwegian University of Life Sciences, PO Box 5003, N-1432, Ås, Norway
| | - Åsa Frostegård
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, N-1432, Ås, Norway
| | - Linda L Bergaust
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, N-1432, Ås, Norway.
| |
Collapse
|
20
|
Liu Y, Liu Y, Zhou H, Li L, Zheng J, Zhang X, Zheng J, Pan G. Abundance, composition and activity of denitrifier communities in metal polluted paddy soils. Sci Rep 2016; 6:19086. [PMID: 26739424 PMCID: PMC4703955 DOI: 10.1038/srep19086] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 12/04/2015] [Indexed: 11/09/2022] Open
Abstract
Denitrification is one of the most important soil microbial processes leading to the production of nitrous oxide (N2O). The potential changes with metal pollution in soil microbial community for N2O production and reduction are not well addressed. In this study, topsoil samples were collected both from polluted and non-polluted rice paddy fields and denitrifier communities were characterized with molecular fingerprinting procedures. All the retrieved nirK sequences could be grouped into neither α- nor β- proteobacteria, while most of the nosZ sequences were affiliated with α-proteobacteria. The abundances of the nirK and nosZ genes were reduced significantly in the two polluted soils. Thus, metal pollution markedly affected composition of both nirK and nosZ denitrifiers. While the total denitrifying activity and N2O production rate were both reduced under heavy metal pollution of the two sites, the N2O reduction rate showed no significant change. These findings suggest that N2O production activity could be sensitive to heavy metal pollution, which could potentially lead to a decrease in N2O emission in polluted paddies. Therefore, metal pollution could have potential impacts on soil N transformation and thus on N2O emission from paddy soils.
Collapse
Affiliation(s)
- Yuan Liu
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China.,Department of Bioengineering, College of Life Sciences, Huaibei Normal University, 235000, Huaibei, Anhui Province, China
| | - Yongzhuo Liu
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China.,College of Resource and Environment Sciences, Henan Institute of Science and Technology, Xinxiang City, Henan 453003, China
| | - Huimin Zhou
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Lianqing Li
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Jinwei Zheng
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Xuhui Zhang
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Jufeng Zheng
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Genxing Pan
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| |
Collapse
|
21
|
McGrath AP, Laming EL, Casas Garcia GP, Kvansakul M, Guss JM, Trewhella J, Calmes B, Bernhardt PV, Hanson GR, Kappler U, Maher MJ. Structural basis of interprotein electron transfer in bacterial sulfite oxidation. eLife 2015; 4:e09066. [PMID: 26687009 PMCID: PMC4760952 DOI: 10.7554/elife.09066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 11/12/2015] [Indexed: 11/13/2022] Open
Abstract
Interprotein electron transfer underpins the essential processes of life and relies on the formation of specific, yet transient protein-protein interactions. In biological systems, the detoxification of sulfite is catalyzed by the sulfite-oxidizing enzymes (SOEs), which interact with an electron acceptor for catalytic turnover. Here, we report the structural and functional analyses of the SOE SorT from Sinorhizobium meliloti and its cognate electron acceptor SorU. Kinetic and thermodynamic analyses of the SorT/SorU interaction show the complex is dynamic in solution, and that the proteins interact with Kd = 13.5 ± 0.8 μM. The crystal structures of the oxidized SorT and SorU, both in isolation and in complex, reveal the interface to be remarkably electrostatic, with an unusually large number of direct hydrogen bonding interactions. The assembly of the complex is accompanied by an adjustment in the structure of SorU, and conformational sampling provides a mechanism for dissociation of the SorT/SorU assembly.
Collapse
Affiliation(s)
- Aaron P McGrath
- Structural Biology Program, Centenary Institute, Sydney, Australia
| | - Elise L Laming
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - G Patricia Casas Garcia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Marc Kvansakul
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - J Mitchell Guss
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - Jill Trewhella
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - Benoit Calmes
- Centre for Metals in Biology, The University of Queensland, Brisbane, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Paul V Bernhardt
- Centre for Metals in Biology, The University of Queensland, Brisbane, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Graeme R Hanson
- Centre for Metals in Biology, The University of Queensland, Brisbane, Australia
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| | - Ulrike Kappler
- Centre for Metals in Biology, The University of Queensland, Brisbane, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Megan J Maher
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| |
Collapse
|
22
|
Harvilla PB, Wolcott HN, Magyar JS. The structure of ferricytochrome c552 from the psychrophilic marine bacterium Colwellia psychrerythraea 34H. Metallomics 2015; 6:1126-30. [PMID: 24727932 DOI: 10.1039/c4mt00045e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Approximately 40% of all proteins are metalloproteins, and approximately 80% of Earth's ecosystems are at temperatures ≤5 °C, including 90% of the global ocean. Thus, an essential aspect of marine metallobiochemistry is an understanding of the structure, dynamics, and mechanisms of cold adaptation of metalloproteins from marine microorganisms. Here, the molecular structure of the electron-transfer protein cytochrome c552 from the psychrophilic marine bacterium Colwellia psychrerythraea 34H has been determined by X-ray crystallography (PDB: ). The structure is highly superimposable with that of the homologous cytochrome from the mesophile Marinobacter hydrocarbonoclasticus. Based on structural analysis and comparison of psychrophilic, psychrotolerant, and mesophilic sequences, a methionine-based ligand-substitution mechanism for psychrophilic protein stabilization is proposed.
Collapse
Affiliation(s)
- Paul B Harvilla
- Department of Chemistry, Barnard College, Columbia University, 3009 Broadway, New York NY 10027, USA.
| | | | | |
Collapse
|
23
|
Rapson TD, Warneke S, Musameh MM, Dacres H, Macdonald BCT, Trowell SC. Conversion of nitrous oxide to nitrogen by cobalt-substituted myoglobin. RSC Adv 2015. [DOI: 10.1039/c5ra15036a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Turning myoglobin into a nitrous oxide reductase.
Collapse
|
24
|
Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L. Copper active sites in biology. Chem Rev 2014; 114:3659-853. [PMID: 24588098 PMCID: PMC4040215 DOI: 10.1021/cr400327t] [Citation(s) in RCA: 1170] [Impact Index Per Article: 106.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - David E. Heppner
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | - Jake W. Ginsbach
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Jordi Cirera
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Munzarin Qayyum
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | | | - Ryan G. Hadt
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Li Tian
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| |
Collapse
|
25
|
Johnston EM, Dell'Acqua S, Ramos S, Pauleta SR, Moura I, Solomon EI. Determination of the active form of the tetranuclear copper sulfur cluster in nitrous oxide reductase. J Am Chem Soc 2014; 136:614-7. [PMID: 24364717 DOI: 10.1021/ja411500p] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N2OR has been found to have two structural forms of its tetranuclear copper active site, the 4CuS Cu(Z)* form and the 4Cu2S Cu(Z) form. EPR, resonance Raman, and MCD spectroscopies have been used to determine the redox states of these sites under different reductant conditions, showing that the Cu(Z)* site accesses the 1-hole and fully reduced redox states, while the Cu(Z) site accesses the 2-hole and 1-hole redox states. Single-turnover reactions of N2OR for Cu(Z) and Cu(Z)* poised in these redox states and steady-state turnover assays with different proportions of Cu(Z) and Cu(Z)* show that only fully reduced Cu(Z)* is catalytically competent in rapid turnover with N2O.
Collapse
Affiliation(s)
- Esther M Johnston
- Department of Chemistry, Stanford University , Stanford, California 94305-5080, United States
| | | | | | | | | | | |
Collapse
|
26
|
No laughing matter: the unmaking of the greenhouse gas dinitrogen monoxide by nitrous oxide reductase. Met Ions Life Sci 2014; 14:177-210. [PMID: 25416395 DOI: 10.1007/978-94-017-9269-1_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The gas nitrous oxide (N₂O) is generated in a variety of abiotic, biotic, and anthropogenic processes and it has recently been under scrutiny for its role as a greenhouse gas. A single enzyme, nitrous oxide reductase, is known to reduce N₂O to uncritical N₂, in a two-electron reduction process that is catalyzed at two unusual metal centers containing copper. Nitrous oxide reductase is a bacterial metalloprotein from the metabolic pathway of denitrification, and it forms a 130 kDa homodimer in which the two metal sites CuA and CuZ from opposing monomers are brought into close contact to form the active site of the enzyme. CuA is a binuclear, valence-delocalized cluster that accepts and transfers a single electron. The CuA site of nitrous oxide reductase is highly similar to that of respiratory heme-copper oxidases, but in the denitrification enzyme the site additionally undergoes a conformational change on a ligand that is suggested to function as a gate for electron transfer from an external donor protein. CuZ, the tetranuclear active center of nitrous oxide reductase, is isolated under mild and anoxic conditions as a unique [4Cu:2S] cluster. It is easily desulfurylated to yield a [4Cu:S] state termed CuZ (*) that is functionally distinct. The CuZ form of the cluster is catalytically active, while CuZ (*) is inactive as isolated in the [3Cu(1+):1Cu(2+)] state. However, only CuZ (*) can be reduced to an all-cuprous state by sodium dithionite, yielding a form that shows higher activities than CuZ. As the possibility of a similar reductive activation in the periplasm is unconfirmed, the mechanism and the actual functional state of the enzyme remain under debate. Using enzyme from anoxic preparations with CuZ in the [4Cu:2S] state, N2O was shown to bind between the CuA and CuZ sites, suggesting direct electron transfer from CuA to the substrate after its activation by CuZ.
Collapse
|
27
|
|
28
|
Dell'Acqua S, Pauleta SR, Moura JJG, Moura I. Biochemical characterization of the purple form of Marinobacter hydrocarbonoclasticus nitrous oxide reductase. Philos Trans R Soc Lond B Biol Sci 2012; 367:1204-12. [PMID: 22451106 DOI: 10.1098/rstb.2011.0311] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nitrous oxide reductase (N(2)OR) catalyses the final step of the denitrification pathway-the reduction of nitrous oxide to nitrogen. The catalytic centre (CuZ) is a unique tetranuclear copper centre bridged by inorganic sulphur in a tetrahedron arrangement that can have different oxidation states. Previously, Marinobacter hydrocarbonoclasticus N(2)OR was isolated with the CuZ centre as CuZ*, in the [1Cu(2+) : 3Cu(+)] redox state, which is redox inert and requires prolonged incubation under reductive conditions to be activated. In this work, we report, for the first time, the isolation of N(2)OR from M. hydrocarbonoclasticus in the 'purple' form, in which the CuZ centre is in the oxidized [2Cu(2+) : 2Cu(+)] redox state and is redox active. This form of the enzyme was isolated in the presence of oxygen from a microaerobic culture in the presence of nitrate and also from a strictly anaerobic culture. The purple form of the enzyme was biochemically characterized and was shown to be a redox active species, although it is still catalytically non-competent, as its specific activity is lower than that of the activated fully reduced enzyme and comparable with that of the enzyme with the CuZ centre in either the [1Cu(2+) : 3Cu(+)] redox state or in the redox inactive CuZ* state.
Collapse
Affiliation(s)
- Simone Dell'Acqua
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | | | | | | |
Collapse
|
29
|
Direct electron transfer from pseudoazurin to nitrous oxide reductase in catalytic N2O reduction. J Inorg Biochem 2012; 115:163-73. [DOI: 10.1016/j.jinorgbio.2012.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 07/09/2012] [Accepted: 07/10/2012] [Indexed: 11/22/2022]
|
30
|
Dell'acqua S, Moura I, Moura JJG, Pauleta SR. The electron transfer complex between nitrous oxide reductase and its electron donors. J Biol Inorg Chem 2011; 16:1241-54. [PMID: 21739254 DOI: 10.1007/s00775-011-0812-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/20/2011] [Indexed: 11/25/2022]
Abstract
Identifying redox partners and the interaction surfaces is crucial for fully understanding electron flow in a respiratory chain. In this study, we focused on the interaction of nitrous oxide reductase (N(2)OR), which catalyzes the final step in bacterial denitrification, with its physiological electron donor, either a c-type cytochrome or a type 1 copper protein. The comparison between the interaction of N(2)OR from three different microorganisms, Pseudomonas nautica, Paracoccus denitrificans, and Achromobacter cycloclastes, with their physiological electron donors was performed through the analysis of the primary sequence alignment, electrostatic surface, and molecular docking simulations, using the bimolecular complex generation with global evaluation and ranking algorithm. The docking results were analyzed taking into account the experimental data, since the interaction is suggested to have either a hydrophobic nature, in the case of P. nautica N(2)OR, or an electrostatic nature, in the case of P. denitrificans N(2)OR and A. cycloclastes N(2)OR. A set of well-conserved residues on the N(2)OR surface were identified as being part of the electron transfer pathway from the redox partner to N(2)OR (Ala495, Asp519, Val524, His566 and Leu568 numbered according to the P. nautica N(2)OR sequence). Moreover, we built a model for Wolinella succinogenes N(2)OR, an enzyme that has an additional c-type-heme-containing domain. The structures of the N(2)OR domain and the c-type-heme-containing domain were modeled and the full-length structure was obtained by molecular docking simulation of these two domains. The orientation of the c-type-heme-containing domain relative to the N(2)OR domain is similar to that found in the other electron transfer complexes.
Collapse
Affiliation(s)
- Simone Dell'acqua
- REQUIMTE/CQFB, Departamento de Química, Universidade Nova de Lisboa, Caparica, Portugal
| | | | | | | |
Collapse
|
31
|
Dell'Acqua S, Pauleta SR, Moura I, Moura JJG. The tetranuclear copper active site of nitrous oxide reductase: the CuZ center. J Biol Inorg Chem 2011; 16:183-94. [PMID: 21240533 DOI: 10.1007/s00775-011-0753-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 01/03/2011] [Indexed: 01/24/2023]
Abstract
This review focuses on the novel CuZ center of nitrous oxide reductase, an important enzyme owing to the environmental significance of the reaction it catalyzes, reduction of nitrous oxide, and the unusual nature of its catalytic center, named CuZ. The structure of the CuZ center, the unique tetranuclear copper center found in this enzyme, opened a novel area of research in metallobiochemistry. In the last decade, there has been progress in defining the structure of the CuZ center, characterizing the mechanism of nitrous oxide reduction, and identifying intermediates of this reaction. In addition, the determination of the structure of the CuZ center allowed a structural interpretation of the spectroscopic data, which was supported by theoretical calculations. The current knowledge of the structure, function, and spectroscopic characterization of the CuZ center is described here. We would like to stress that although many questions have been answered, the CuZ center remains a scientific challenge, with many hypotheses still being formed.
Collapse
Affiliation(s)
- Simone Dell'Acqua
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | | | | | | |
Collapse
|
32
|
Fernandes AT, Damas JM, Todorovic S, Huber R, Baratto MC, Pogni R, Soares CM, Martins LO. The multicopper oxidase from the archaeon Pyrobaculum aerophilum shows nitrous oxide reductase activity. FEBS J 2010; 277:3176-89. [DOI: 10.1111/j.1742-4658.2010.07725.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
33
|
A new CuZ active form in the catalytic reduction of N2O by nitrous oxide reductase from Pseudomonas nautica. J Biol Inorg Chem 2010; 15:967-76. [DOI: 10.1007/s00775-010-0658-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 04/04/2010] [Indexed: 10/19/2022]
|
34
|
Mitigating release of the potent greenhouse gas N(2)O from the nitrogen cycle - could enzymic regulation hold the key? Trends Biotechnol 2009; 27:388-97. [PMID: 19497629 DOI: 10.1016/j.tibtech.2009.03.009] [Citation(s) in RCA: 247] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 03/30/2009] [Accepted: 03/30/2009] [Indexed: 11/21/2022]
Abstract
When faced with a shortage of oxygen, many bacterial species use nitrate to support respiration via the process of denitrification. This takes place extensively in nitrogen-rich soils and generates the gaseous products nitric oxide (NO), nitrous oxide (N(2)O) and dinitrogen (N(2)). The denitrifying bacteria protect themselves from the endogenous cytotoxic NO produced by converting it to N(2)O, which can be released into the atmosphere. However, N(2)O is a potent greenhouse gas and hence the activity of the enzyme that breaks down N(2)O has a crucial role in restricting its atmospheric levels. Here, we review the current understanding of the process by which N(2)O is produced and destroyed and discuss the potential for feeding this into new approaches for combating N(2)O release.
Collapse
|