1
|
Baserga F, Storm J, Schlesinger R, Heberle J, Stripp ST. The catalytic reaction of cytochrome c oxidase probed by in situ gas titrations and FTIR difference spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:149000. [PMID: 37516233 DOI: 10.1016/j.bbabio.2023.149000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/22/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
Cytochrome c oxidase (CcO) is a transmembrane heme‑copper metalloenzyme that catalyzes the reduction of O2 to H2O at the reducing end of the respiratory electron transport chain. To understand this reaction, we followed the conversion of CcO from Rhodobacter sphaeroides between several active-ready and carbon monoxide-inhibited states via attenuated total reflection Fourier-transform infrared (ATR FTIR) difference spectroscopy. Utilizing a novel gas titration setup, we prepared the mixed-valence, CO-inhibited R2CO state as well as the fully-reduced R4 and R4CO states and induced the "active ready" oxidized state OH. These experiments are performed in the dark yielding FTIR difference spectra exclusively triggered by exposure to O2, the natural substrate of CcO. Our data demonstrate that the presence of CO at heme a3 does not impair the catalytic oxidation of CcO when the cycle starts from the fully-reduced states. Interestingly, when starting from the R2CO state, the release of the CO ligand upon purging with inert gas yield a product that is indistinguishable from photolysis-induced states. The observed changes at heme a3 in the catalytic binuclear center (BNC) result from the loss of CO and are unrelated to electronic excitation upon illumination. Based on our experiments, we re-evaluate the assignment of marker bands that appear in time-resolved photolysis and perfusion-induced experiments on CcO.
Collapse
Affiliation(s)
- Federico Baserga
- Freie Universität Berlin, Experimental Molecular Biophysics, Arnimallee 14, D-14195 Berlin, Germany
| | - Julian Storm
- Freie Universität Berlin, Genetic Biophysics, Arnimallee 14, D-14195 Berlin, Germany
| | - Ramona Schlesinger
- Freie Universität Berlin, Genetic Biophysics, Arnimallee 14, D-14195 Berlin, Germany
| | - Joachim Heberle
- Freie Universität Berlin, Experimental Molecular Biophysics, Arnimallee 14, D-14195 Berlin, Germany
| | - Sven T Stripp
- Freie Universität Berlin, Experimental Molecular Biophysics, Arnimallee 14, D-14195 Berlin, Germany; Technische Universität Berlin, Division of Physical Chemistry, Strasse des 17. Juni 115, D-10623 Berlin, Germany.
| |
Collapse
|
2
|
Siletsky SA. Investigation of the Mechanism of Membrane Potential Generation by Heme-Copper Respiratory Oxidases in a Real Time Mode. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1513-1527. [PMID: 38105021 DOI: 10.1134/s0006297923100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 12/19/2023]
Abstract
Heme-copper respiratory oxidases are highly efficient molecular machines. These membrane enzymes catalyze the final step of cellular respiration in eukaryotes and many prokaryotes: the transfer of electrons from cytochromes or quinols to molecular oxygen and oxygen reduction to water. The free energy released in this redox reaction is converted by heme-copper respiratory oxidases into the transmembrane gradient of the electrochemical potential of hydrogen ions H+). Heme-copper respiratory oxidases have a unique mechanism for generating H+, namely, a redox-coupled proton pump. A combination of direct electrometric method for measuring the kinetics of membrane potential generation with the methods of prestationary kinetics and site-directed mutagenesis in the studies of heme-copper oxidases allows to obtain a unique information on the translocation of protons inside the proteins in real time. The review summarizes the data of studies employing time-resolved electrometry to decipher the mechanisms of functioning of these important bioenergetic enzymes.
Collapse
Affiliation(s)
- Sergei A Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
3
|
Lin HY, Yao CY, Li J, Nimal Gunaratne HQ, Singh W, Huang M, Anslyn EV, de Silva AP. Remarkably Selective Binding, Behavior Modification, and Switchable Release of (Bipyridine) 3Ru(II) vis-à-vis (Phenanthroline) 3Ru(II) by Trimeric Cyclophanes in Water. JACS AU 2023; 3:2257-2268. [PMID: 37654579 PMCID: PMC10466343 DOI: 10.1021/jacsau.3c00279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 09/02/2023]
Abstract
A recurring dream of molecular recognition is to create receptors that distinguish between closely related targets with sufficient accuracy, especially in water. The more useful the targets, the more valuable the dream becomes. We now present multianionic trimeric cyclophane receptors with a remarkable ability to bind the iconic (bipyridine)3Ru(II) (with its huge range of applications) while rejecting the nearly equally iconic (phenanthroline)3Ru(II). These receptors not only selectively capture (bipyridine)3Ru(II) but also can be redox-switched to release the guest. 1D- and 2D(ROESY)-NMR spectroscopy, luminescence spectroscopy, and molecular modeling enabled this discovery. This outcome allows the control of these applications, e.g., as a photocatalyst or as a luminescent sensor, by selectively hiding or exposing (bipyridine)3Ru(II). Overall, a 3D nanometric object is selected, picked-up, and dropped-off by a discrete molecular host. The multianionic receptors protect excited states of these metal complexes from phenolate quenchers so that the initial step in photocatalytic phenolate oxidation is retarded by nearly 2 orders of magnitude. This work opens the way for (bipyridine)3Ru(II) to be manipulated in the presence of other functional nano-objects so that many of its applications can be commanded and controlled. We have a cyclophane-based toolkit that can emulate some aspects of proteins that selectively participate in cell signaling and metabolic pathways by changing shape upon environmental commands being received at a location remote from the active site.
Collapse
Affiliation(s)
- Hong-Yu Lin
- School
of Chemistry and Chemical Engineering, Queen’s
University, Belfast BT9 5AG, United
Kingdom
| | - Chao-Yi Yao
- School
of Chemistry and Chemical Engineering, Queen’s
University, Belfast BT9 5AG, United
Kingdom
- School
of Chemistry and Chemical Engineering, Central
South University, Yuelu
District, Changsha, Hunan
Province 410006, P.R. China
| | - Jialu Li
- School
of Chemistry and Chemical Engineering, Queen’s
University, Belfast BT9 5AG, United
Kingdom
| | - H. Q. Nimal Gunaratne
- School
of Chemistry and Chemical Engineering, Queen’s
University, Belfast BT9 5AG, United
Kingdom
| | - Warispreet Singh
- School
of Chemistry and Chemical Engineering, Queen’s
University, Belfast BT9 5AG, United
Kingdom
- Hub
for Biotechnology in the Built Environment, Northumbria University, Newcastle
upon Tyne NE1 8ST, United Kingdom
| | - Meilan Huang
- School
of Chemistry and Chemical Engineering, Queen’s
University, Belfast BT9 5AG, United
Kingdom
| | - Eric V. Anslyn
- School
of Chemistry and Chemical Engineering, Queen’s
University, Belfast BT9 5AG, United
Kingdom
- Department
of Chemistry, University of Texas at Austin, 100 E 24th Street, Norman Hackerman
Building (Room 114A), Austin, Texas 78712, United States
| | - A. Prasanna de Silva
- School
of Chemistry and Chemical Engineering, Queen’s
University, Belfast BT9 5AG, United
Kingdom
| |
Collapse
|
4
|
Gorriz RF, Volkenandt S, Imhof P. Protonation-State Dependence of Hydration and Interactions in the Two Proton-Conducting Channels of Cytochrome c Oxidase. Int J Mol Sci 2023; 24:10464. [PMID: 37445646 DOI: 10.3390/ijms241310464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
Cytochrome c Oxidase (CcO), a membrane protein of the respiratory chain, pumps protons against an electrochemical gradient by using the energy of oxygen reduction to water. The ("chemical") protons required for this reaction and those pumped are taken up via two distinct channels, named D-channel and K-channel, in a step-wise and highly regulated fashion. In the reductive phase of the catalytic cycle, both channels transport protons so that the pumped proton passes the D-channel before the "chemical" proton has crossed the K-channel. By performing molecular dynamics simulations of CcO in the O→E redox state (after the arrival of the first reducing electron) with various combinations of protonation states of the D- and K-channels, we analysed the effect of protonation on the two channels. In agreement with previous work, the amount of water observed in the D-channel was significantly higher when the terminal residue E286 was not (yet) protonated than when the proton arrived at this end of the D-channel and E286 was neutral. Since a sufficient number of water molecules in the channel is necessary for proton transport, this can be understood as E286 facilitating its own protonation. K-channel hydration shows an even higher dependence on the location of the excess proton in the K-channel. Also in agreement with previous work, the K-channel exhibits a very low hydration level that likely hinders proton transfer when the excess proton is located in the lower part of the K-channel, that is, on the N-side of S365. Once the proton has passed S365 (towards the reaction site, the bi-nuclear centre (BNC)), the amount of water in the K-channel provides hydrogen-bond connectivity that renders proton transfer up to Y288 at the BNC feasible. No significant direct effect of the protonation state of one channel on the hydration level, hydrogen-bond connectivity, or interactions between protein residues in the other channel could be observed, rendering proton conductivity in the two channels independent of each other. Regulation of the order of proton uptake and proton passage in the two channels such that the "chemical" proton leaves its channel last must, therefore, be achieved by other means of communication, such as the location of the reducing electron.
Collapse
Affiliation(s)
- Rene F Gorriz
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
- Computer Chemistry Center, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen, Germany
| | - Senta Volkenandt
- Computer Chemistry Center, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen, Germany
| | - Petra Imhof
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
- Computer Chemistry Center, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen, Germany
| |
Collapse
|
5
|
Muramoto K, Shinzawa-Itoh K. Calcium-bound structure of bovine cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148956. [PMID: 36708913 DOI: 10.1016/j.bbabio.2023.148956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
The crystal structure of bovine cytochrome c oxidase (CcO) shows a sodium ion (Na+) bound to the surface of subunit I. Changes in the absorption spectrum of heme a caused by calcium ions (Ca2+) are detected as small red shifts, and inhibition of enzymatic activity under low turnover conditions is observed by addition of Ca2+ in a competitive manner with Na+. In this study, we determined the crystal structure of Ca2+-bound bovine CcO in the oxidized and reduced states at 1.7 Å resolution. Although Ca2+ and Na+ bound to the same site of oxidized and reduced CcO, they led to different coordination geometries. Replacement of Na+ with Ca2+ caused a small structural change in the loop segments near the heme a propionate and formyl groups, resulting in spectral changes in heme a. Redox-coupled structural changes observed in the Ca2+-bound form were the same as those previously observed in the Na+-bound form, suggesting that binding of Ca2+ does not severely affect enzymatic function, which depends on these structural changes. The relation between the Ca2+ binding and the inhibitory effect during slow turnover, as well as the possible role of bound Ca2+ are discussed.
Collapse
Affiliation(s)
- Kazumasa Muramoto
- Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan.
| | - Kyoko Shinzawa-Itoh
- Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan.
| |
Collapse
|
6
|
Structures of the intermediates in the catalytic cycle of mitochondrial cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148933. [PMID: 36403794 DOI: 10.1016/j.bbabio.2022.148933] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
|
7
|
Baserga F, Vorkas A, Crea F, Schubert L, Chen JL, Redlich A, La Greca M, Storm J, Oldemeyer S, Hoffmann K, Schlesinger R, Heberle J. Membrane Protein Activity Induces Specific Molecular Changes in Nanodiscs Monitored by FTIR Difference Spectroscopy. Front Mol Biosci 2022; 9:915328. [PMID: 35769914 PMCID: PMC9234331 DOI: 10.3389/fmolb.2022.915328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/18/2022] [Indexed: 12/03/2022] Open
Abstract
It is well known that lipids neighboring integral membrane proteins directly influence their function. The opposite effect is true as well, as membrane proteins undergo structural changes after activation and thus perturb the lipidic environment. Here, we studied the interaction between these molecular machines and the lipid bilayer by observing changes in the lipid vibrational bands via FTIR spectroscopy. Membrane proteins with different functionalities have been reconstituted into lipid nanodiscs: Microbial rhodopsins that act as light-activated ion pumps (the proton pumps NsXeR and UmRh1, and the chloride pump NmHR) or as sensors (NpSRII), as well as the electron-driven cytochrome c oxidase RsCcO. The effects of the structural changes on the surrounding lipid phase are compared to mechanically induced lateral tension exerted by the light-activatable lipid analogue AzoPC. With the help of isotopologues, we show that the ν(C = O) ester band of the glycerol backbone reports on changes in the lipids’ collective state induced by mechanical changes in the transmembrane proteins. The perturbation of the nanodisc lipids seems to involve their phase and/or packing state. 13C-labeling of the scaffold protein shows that its structure also responds to the mechanical expansion of the lipid bilayer.
Collapse
Affiliation(s)
- Federico Baserga
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Antreas Vorkas
- Department of Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Fucsia Crea
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Luiz Schubert
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Jheng-Liang Chen
- Department of Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Aoife Redlich
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | | | - Julian Storm
- Department of Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Sabine Oldemeyer
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Kirsten Hoffmann
- Department of Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Ramona Schlesinger
- Department of Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
- *Correspondence: Ramona Schlesinger, ; Joachim Heberle,
| | - Joachim Heberle
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
- *Correspondence: Ramona Schlesinger, ; Joachim Heberle,
| |
Collapse
|
8
|
Charette BJ, Griffin PJ, Zimmerman CM, Olshansky L. Conformationally dynamic copper coordination complexes. Dalton Trans 2022; 51:6212-6219. [PMID: 35357384 PMCID: PMC9188647 DOI: 10.1039/d2dt00312k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The interplay between oxidation state and coordination geometry dictates both kinetic and thermodynamic properties underlying electron transfer events in copper coordination complexes. An ability to stabilize both CuI and CuII oxidation states in a single conformationally dynamic chelating ligand allows access to controlled redox reactivity. We report an analysis of the conformational dynamics of CuI complexes bearing dipicolylaniline (dpaR) ligands, with ortho-aniline substituents R = H and R = OMe. Variable temperature NMR spectroscopy and electrochemical experiments suggest that in solution at room temperature, an equilibrium exists between two conformers. Two metal-centered redox events are observed which, bolstered by structural information from single crystal X-ray diffraction and solution information from EPR and NMR spectroscopies, are ascribed to the CuII/I couple in planar and tetrahedral conformations. Activation and equilibrium parameters for these structural interconversions are presented and provide entry to leveraging redox-triggered conformational dynamics at Cu.
Collapse
Affiliation(s)
- Bronte J Charette
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA.
| | - Paul J Griffin
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA.
| | - Claire M Zimmerman
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA.
| | - Lisa Olshansky
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA.
| |
Collapse
|
9
|
Shoji M, Murakawa T, Nakanishi S, Boero M, Shigeta Y, Hayashi H, Okajima T. Molecular mechanism of a large conformational change of the quinone cofactor in the semiquinone intermediate of bacterial copper amine oxidase. Chem Sci 2022; 13:10923-10938. [PMID: 36320691 PMCID: PMC9491219 DOI: 10.1039/d2sc01356h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022] Open
Abstract
Copper amine oxidase from Arthrobacter globiformis (AGAO) catalyses the oxidative deamination of primary amines via a large conformational change of a topaquinone (TPQ) cofactor during the semiquinone formation step. This conformational change of TPQ occurs in the presence of strong hydrogen bonds and neighboring bulky amino acids, especially the conserved Asn381, which restricts TPQ conformational changes over the catalytic cycle. Whether such a semiquinone intermediate is catalytically active or inert has been a matter of debate in copper amine oxidases. Here, we show that the reaction rate of the Asn381Ala mutant decreases 160-fold, and the X-ray crystal structures of the mutant reveals a TPQ-flipped conformation in both the oxidized and reduced states, preceding semiquinone formation. Our hybrid quantum mechanics/molecular mechanics (QM/MM) simulations show that the TPQ conformational change is realized through the sequential steps of the TPQ ring-rotation and slide. We determine that the bulky side chain of Asn381 hinders the undesired TPQ ring-rotation in the oxidized form, favoring the TPQ ring-rotation in reduced TPQ by a further stabilization leading to the TPQ semiquinone form. The acquired conformational flexibility of TPQ semiquinone promotes a high reactivity of Cu(i) to O2, suggesting that the semiquinone form is catalytically active for the subsequent oxidative half-reaction in AGAO. The ingenious molecular mechanism exerted by TPQ to achieve the “state-specific” reaction sheds new light on a drastic environmental transformation around the catalytic center. The large conformational change of topaquinone in bacterial copper amine oxidase occurs through the TPQ ring rotation and slide, which are essential to stabilize the semiquinone form.![]()
Collapse
Affiliation(s)
- Mitsuo Shoji
- Center for Computational Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba 305-8577 Ibaraki Japan
- JST-PRESTO 4-1-8 Honcho Kawaguchi 332-0012 Saitama Japan
| | - Takeshi Murakawa
- Department of Biochemistry, Osaka Medical and Pharmaceutical University 2-7 Daigakumachi Takatsuki 569-8686 Osaka Japan
| | - Shota Nakanishi
- Institute of Scientific and Industrial Research, Osaka University 8-1 Mihogaoka Ibaraki 567-0047 Osaka Japan
| | - Mauro Boero
- University of Strasbourg, Institut de Physique et Chimie des Matériaux de Strasbourg, CNRS, UMR 7504 23 rue du Loess F-67034 France
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba 305-8577 Ibaraki Japan
| | - Hideyuki Hayashi
- Department of Chemistry, Osaka Medical and Pharmaceutical University 2-7 Daigakumachi Takatsuki 569-8686 Osaka Japan
| | - Toshihide Okajima
- Institute of Scientific and Industrial Research, Osaka University 8-1 Mihogaoka Ibaraki 567-0047 Osaka Japan
- Department of Chemistry, Osaka Medical and Pharmaceutical University 2-7 Daigakumachi Takatsuki 569-8686 Osaka Japan
| |
Collapse
|
10
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
11
|
Siletsky SA, Borisov VB. Proton Pumping and Non-Pumping Terminal Respiratory Oxidases: Active Sites Intermediates of These Molecular Machines and Their Derivatives. Int J Mol Sci 2021; 22:10852. [PMID: 34639193 PMCID: PMC8509429 DOI: 10.3390/ijms221910852] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
Terminal respiratory oxidases are highly efficient molecular machines. These most important bioenergetic membrane enzymes transform the energy of chemical bonds released during the transfer of electrons along the respiratory chains of eukaryotes and prokaryotes from cytochromes or quinols to molecular oxygen into a transmembrane proton gradient. They participate in regulatory cascades and physiological anti-stress reactions in multicellular organisms. They also allow microorganisms to adapt to low-oxygen conditions, survive in chemically aggressive environments and acquire antibiotic resistance. To date, three-dimensional structures with atomic resolution of members of all major groups of terminal respiratory oxidases, heme-copper oxidases, and bd-type cytochromes, have been obtained. These groups of enzymes have different origins and a wide range of functional significance in cells. At the same time, all of them are united by a catalytic reaction of four-electron reduction in oxygen into water which proceeds without the formation and release of potentially dangerous ROS from active sites. The review analyzes recent structural and functional studies of oxygen reduction intermediates in the active sites of terminal respiratory oxidases, the features of catalytic cycles, and the properties of the active sites of these enzymes.
Collapse
Affiliation(s)
- Sergey A. Siletsky
- Department of Bioenergetics, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Vitaliy B. Borisov
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia;
| |
Collapse
|
12
|
Dragelj J, Mroginski MA, Knapp EW. Beating Heart of Cytochrome c Oxidase: The Shared Proton of Heme a3 Propionates. J Phys Chem B 2021; 125:9668-9677. [PMID: 34427096 DOI: 10.1021/acs.jpcb.1c03619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cytochrome c oxidase (CcO) pumps protons from the N-side to the P-side and consumes electrons from the P-side of the mitochondrial membrane driven by energy gained from reduction of dioxygen to water. ATP synthesis uses the resulting proton gradient and electrostatic potential difference. Since the distance a proton travels through CcO is too large for a one-step transfer process, proton-loading sites (PLS) that can carry protons transiently are necessary. One specific pump-active PLS couples to the redox reaction, thus energizing the proton to move across the membrane against electric potential and proton gradient. The PLS should also prevent proton backflow. Therefore, the propionates of the two redox-active hemes in CcO were suggested as PLS candidates although, according to CcO crystal structures, none of the four propionates can be protonated on account of strong H-bonds. Here, we show that modeling the local structure around heme a3 propionates enhances significantly their capability of carrying a proton jointly. This was not possible for the propionates of heme a. The modeled structures are stable in molecular dynamics simulations (MDS) and are energetically similar to the crystal structure. Precise electrostatic energy computations of MDS data are used to estimate the pKA values of all titratable residues in CcO. For the modeled structures, the heme a3 propionates have pKA values high enough to host a proton transiently but not too high to fix the proton permanently. The change in pKA throughout the redox reaction is sufficient to push the proton to the P-side of the membrane and to provide the protons with the necessary amount of energy for ATP synthesis.
Collapse
Affiliation(s)
- Jovan Dragelj
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Fabeckstrasse 36a, 14195 Berlin, Germany.,Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Maria Andrea Mroginski
- Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Ernst Walter Knapp
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Fabeckstrasse 36a, 14195 Berlin, Germany
| |
Collapse
|
13
|
|
14
|
Capitanio G, Papa F, Papa S. The allosteric protein interactions in the proton-motive function of mammalian redox enzymes of the respiratory chain. Biochimie 2021; 189:1-12. [PMID: 34097987 DOI: 10.1016/j.biochi.2021.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/17/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022]
Abstract
Insight into mammalian respiratory complexes defines the role of allosteric protein interactions in their proton-motive activity. In cytochrome c oxidase (CxIV) conformational change of subunit I, caused by O2 binding to heme a32+-CuB+ and reduction, and stereochemical transitions coupled to oxidation/reduction of heme a and CuA, combined with electrostatic effects, determine the proton pumping activity. In ubiquinone-cytochrome c oxidoreductase (CxIII) conformational movement of Fe-S protein between cytochromes b and c1 is the key element of the proton-motive activity. In NADH-ubiquinone oxidoreductase (CxI) ubiquinone binding and reduction result in conformational changes of subunits in the quinone reaction structure which initiate proton pumping.
Collapse
Affiliation(s)
- Giuseppe Capitanio
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124, Bari, Italy.
| | - Francesco Papa
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124, Bari, Italy.
| | - Sergio Papa
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124, Bari, Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121, Napoli, Italy.
| |
Collapse
|
15
|
Noodleman L, Han Du WG, McRee D, Chen Y, Goh T, Götz AW. Coupled transport of electrons and protons in a bacterial cytochrome c oxidase-DFT calculated properties compared to structures and spectroscopies. Phys Chem Chem Phys 2021; 22:26652-26668. [PMID: 33231596 DOI: 10.1039/d0cp04848h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
After a general introduction to the features and mechanisms of cytochrome c oxidases (CcOs) in mitochondria and aerobic bacteria, we present DFT calculated physical and spectroscopic properties for the catalytic reaction cycle compared with experimental observations in bacterial ba3 type CcO, also with comparisons/contrasts to aa3 type CcOs. The Dinuclear Complex (DNC) is the active catalytic reaction center, containing a heme a3 Fe center and a near lying Cu center (called CuB) where by successive reduction and protonation, molecular O2 is transformed to two H2O molecules, and protons are pumped from an inner region across the membrane to an outer region by transit through the CcO integral membrane protein. Structures, energies and vibrational frequencies for Fe-O and O-O modes are calculated by DFT over the catalytic cycle. The calculated DFT frequencies in the DNC of CcO are compared with measured frequencies from Resonance Raman spectroscopy to clarify the composition, geometry, and electronic structures of different intermediates through the reaction cycle, and to trace reaction pathways. X-ray structures of the resting oxidized state are analyzed with reference to the known experimental reaction chemistry and using DFT calculated structures in fitting observed electron density maps. Our calculations lead to a new proposed reaction pathway for coupling the PR → F → OH (ferryl-oxo → ferric-hydroxo) pathway to proton pumping by a water shift mechanism. Through this arc of the catalytic cycle, major shifts in pKa's of the special tyrosine and a histidine near the upper water pool activate proton transfer. Additional mechanisms for proton pumping are explored, and the role of the CuB+ (cuprous state) in controlling access to the dinuclear reaction site is proposed.
Collapse
Affiliation(s)
- Louis Noodleman
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Wolf A, Dragelj J, Wonneberg J, Stellmacher J, Balke J, Woelke AL, Hodoscek M, Knapp EW, Alexiev U. The redox-coupled proton-channel opening in cytochrome c oxidase. Chem Sci 2020. [DOI: 10.1039/c9sc06463j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The interplay of cytochrome c oxidase's cofactor electrostatics, long-range conformational changes, H-bond rearrangement, and water dynamics enables transient proton-channel activation.
Collapse
Affiliation(s)
- Alexander Wolf
- Physics Department
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Jovan Dragelj
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | | | | | - Jens Balke
- Physics Department
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Anna Lena Woelke
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- 14195 Berlin
- Germany
- Department of Chemistry
| | - Milan Hodoscek
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- 14195 Berlin
- Germany
- National Institute of Chemistry
| | - Ernst Walter Knapp
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Ulrike Alexiev
- Physics Department
- Freie Universität Berlin
- 14195 Berlin
- Germany
| |
Collapse
|
17
|
Structure of the cytochrome aa 3 -600 heme-copper menaquinol oxidase bound to inhibitor HQNO shows TM0 is part of the quinol binding site. Proc Natl Acad Sci U S A 2019; 117:872-876. [PMID: 31888984 DOI: 10.1073/pnas.1915013117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Virtually all proton-pumping terminal respiratory oxygen reductases are members of the heme-copper oxidoreductase superfamily. Most of these enzymes use reduced cytochrome c as a source of electrons, but a group of enzymes have evolved to directly oxidize membrane-bound quinols, usually menaquinol or ubiquinol. All of the quinol oxidases have an additional transmembrane helix (TM0) in subunit I that is not present in the related cytochrome c oxidases. The current work reports the 3.6-Å-resolution X-ray structure of the cytochrome aa 3 -600 menaquinol oxidase from Bacillus subtilis containing 1 equivalent of menaquinone. The structure shows that TM0 forms part of a cleft to accommodate the menaquinol-7 substrate. Crystals which have been soaked with the quinol-analog inhibitor HQNO (N-oxo-2-heptyl-4-hydroxyquinoline) or 3-iodo-HQNO reveal a single binding site where the inhibitor forms hydrogen bonds to amino acid residues shown previously by spectroscopic methods to interact with the semiquinone state of menaquinone, a catalytic intermediate.
Collapse
|
18
|
Capitanio G, Palese LL, Papa F, Papa S. Allosteric Cooperativity in Proton Energy Conversion in A1-Type Cytochrome c Oxidase. J Mol Biol 2019; 432:534-551. [PMID: 31626808 DOI: 10.1016/j.jmb.2019.09.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/06/2019] [Accepted: 09/24/2019] [Indexed: 12/30/2022]
Abstract
Cytochrome c oxidase (CcO), the CuA, heme a, heme a3, CuB enzyme of respiratory chain, converts the free energy released by aerobic cytochrome c oxidation into a membrane electrochemical proton gradient (ΔμH+). ΔμH+ derives from the membrane anisotropic arrangement of dioxygen reduction to two water molecules and transmembrane proton pumping from a negative (N) space to a positive (P) space separated by the membrane. Spectroscopic, potentiometric, and X-ray crystallographic analyses characterize allosteric cooperativity of dioxygen binding and reduction with protonmotive conformational states of CcO. These studies show that allosteric cooperativity stabilizes the favorable conformational state for conversion of redox energy into a transmembrane ΔμH+.
Collapse
Affiliation(s)
- Giuseppe Capitanio
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Luigi Leonardo Palese
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Francesco Papa
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Sergio Papa
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124 Bari, Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy.
| |
Collapse
|
19
|
Ehudin MA, Senft L, Franke A, Ivanović-Burmazović I, Karlin KD. Formation and Reactivity of New Isoporphyrins: Implications for Understanding the Tyr-His Cross-Link Cofactor Biogenesis in Cytochrome c Oxidase. J Am Chem Soc 2019; 141:10632-10643. [PMID: 31150209 DOI: 10.1021/jacs.9b01791] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochrome c oxidase (CcO) catalyzes the reduction of dioxygen to water utilizing a heterobinuclear active site composed of a heme moiety and a mononuclear copper center coordinated to three histidine residues, one of which is covalently cross-linked to a tyrosine residue via a post-translational modification (PTM). Although this tyrosine-histidine moiety has functional and structural importance, the pathway behind this net oxidative C-N bond coupling is still unknown. A novel route employing an iron(III) meso-substituted isoporphyrin derivative, isoelectronic with Cmpd-I ((Por•+)FeIV═O), is for the first time proposed to be a key intermediate in the Tyr-His cofactor biogenesis. Newly synthesized iron(III) meso-substituted isoporphyrins were prepared with azide, cyanide, and substituted imidazole functionalities, by adding nucleophiles to an iron(III) π-dication species formed via addition of trifluoroacetic acid to F8Cmpd-I (F8 = (tetrakis(2,6-difluorophenyl)porphyrinate)). Isoporphyrin derivatives were characterized at cryogenic temperatures via ESI-MS and UV-vis, 2H NMR, and EPR spectroscopies. Addition of 1,3,5-trimethoxybenzene or 4-methoxyphenol to the imidazole-substituted isoporphyrin led to formation of the organic product containing the imidazole coupled to aromatic substrate via a new C-N bond, as detected via cryo-ESI-MS. Experimental evidence for the formation of an imidazole-substituted isoporphyrin and its promising reactivity to form the imidazole-phenol coupled product yields viability to the herein proposed pathway behind the PTM (i.e., biogenesis) leading to the key covalent Tyr-His cross-link in CcO.
Collapse
Affiliation(s)
- Melanie A Ehudin
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Laura Senft
- Department of Chemistry and Pharmacy , Friedrich-Alexander University Erlangen-Nuremberg , 91058 Erlangen , Germany
| | - Alicja Franke
- Department of Chemistry and Pharmacy , Friedrich-Alexander University Erlangen-Nuremberg , 91058 Erlangen , Germany
| | - Ivana Ivanović-Burmazović
- Department of Chemistry and Pharmacy , Friedrich-Alexander University Erlangen-Nuremberg , 91058 Erlangen , Germany
| | - Kenneth D Karlin
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| |
Collapse
|
20
|
Geometric and Electronic Structure Contributions to O-O Cleavage and the Resultant Intermediate Generated in Heme-Copper Oxidases. J Am Chem Soc 2019; 141:10068-10081. [PMID: 31146528 DOI: 10.1021/jacs.9b04271] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study investigates the mechanism of O-O bond cleavage in heme-copper oxidase (HCO) enzymes, combining experimental and computational insights from enzyme intermediates and synthetic models. It is determined that HCOs undergo a proton-initiated O-O cleavage mechanism where a single water molecule in the active site enables proton transfer (PT) from the cross-linked tyrosine to a peroxo ligand bridging the heme FeIII and CuII, and multiple H-bonding interactions lower the tyrosine p Ka. Due to sterics within the active site, the proton must either transfer initially to the O(Fe) (a high-energy intermediate), or from another residue over a ∼10 Å distance to reach the O(Cu) atom directly. While the distance between the H+ donor (Tyr) and acceptor (O(Cu)) results in a barrier to PT, this separation is critical for the low barrier to O-O cleavage as it enhances backbonding from Fe into the O22- σ* orbital. Thus, PT from Tyr precedes O-O elongation and is rate-limiting, consistent with available kinetic data. The electron transfers from tyrosinate after the barrier via a superexchange pathway provided by the cross-link, generating intermediate PM. PM is evaluated using available experimental data. The geometric structure contains an FeIV═O that is H-bonded to the CuII-OH. The electronic structure is a singlet, where the FeIV and CuII are antiferromagnetically coupled through the H-bond between the oxo(Fe) and hydroxo(Cu) ligands, while the CuII and Tyr• are ferromagnetically coupled due their delocalization into orthogonal magnetic orbitals on the cross-linked His residue. These findings provide critical insights into the mechanism of efficient O2 reduction in HCOs, and the nature of the PM intermediate that couples this reaction to proton pumping.
Collapse
|
21
|
Ehudin MA, Schaefer AW, Adam SM, Quist DA, Diaz DE, Tang JA, Solomon EI, Karlin KD. Influence of intramolecular secondary sphere hydrogen-bonding interactions on cytochrome c oxidase inspired low-spin heme-peroxo-copper complexes. Chem Sci 2019; 10:2893-2905. [PMID: 30996867 PMCID: PMC6431958 DOI: 10.1039/c8sc05165h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/03/2019] [Indexed: 11/21/2022] Open
Abstract
Dioxygen reduction by heme-copper oxidases is a critical biochemical process, wherein hydrogen bonding is hypothesized to participate in the critical step involving the active-site reductive cleavage of the O-O bond. Sixteen novel synthetic heme-(μ-O2 2-)-Cu(XTMPA) complexes, whose design is inspired by the cytochrome c oxidase active site structure, were generated in an attempt to form the first intramolecular H-bonded complexes. Derivatives of the "parent" ligand (XTMPA, TMPA = (tris((2-pyridyl)methyl)amine)) possessing one or two amine pendants preferentially form an H-bond with the copper-bound O-atom of the peroxide bridge. This is evidenced by a characteristic blue shift in the ligand-to-metal charge transfer (LMCT) bands observed in UV-vis spectroscopy (consistent with lowering of the peroxo π* relative to the iron orbitals) and a weakening of the O-O bond determined by resonance Raman spectroscopy (rR), with support from Density Functional Theory (DFT) calculations. Remarkably, with the TMPA-based infrastructure (versus similar heme-peroxo-copper complexes with different copper ligands), the typically undetected Cu-O stretch for these complexes was observed via rR, affording critical insights into the nature of the O-O peroxo core for the complexes studied. While amido functionalities have been shown to have greater H-bonding capabilities than their amino counterparts, in these heme-peroxo-copper complexes amido substituents distort the local geometry such that H-bonding with the peroxo core only imparts a weak electronic effect; optimal H-bonding interactions are observed by employing two amino groups on the copper ligand. The amino-substituted systems presented in this work reveal a key orientational anisotropy in H-bonding to the peroxo core for activating the O-O bond, offering critical insights into effective O-O cleavage chemistry. These findings indirectly support computational and protein structural studies suggesting the presence of an interstitial H-bonding water molecule in the CcO active site, which is critical for the desired reactivity. The results are evaluated with appropriate controls and discussed with respect to potential O2-reduction capabilities.
Collapse
Affiliation(s)
- Melanie A Ehudin
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , USA .
| | - Andrew W Schaefer
- Department of Chemistry , Stanford University , Stanford , California 94305 , USA .
| | - Suzanne M Adam
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , USA .
| | - David A Quist
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , USA .
| | - Daniel E Diaz
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , USA .
| | - Joel A Tang
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , USA .
| | - Edward I Solomon
- Department of Chemistry , Stanford University , Stanford , California 94305 , USA .
| | - Kenneth D Karlin
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , USA .
| |
Collapse
|
22
|
Snapshot of an oxygen intermediate in the catalytic reaction of cytochrome c oxidase. Proc Natl Acad Sci U S A 2019; 116:3572-3577. [PMID: 30808749 DOI: 10.1073/pnas.1814526116] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytochrome c oxidase (CcO) reduces dioxygen to water and harnesses the chemical energy to drive proton translocation across the inner mitochondrial membrane by an unresolved mechanism. By using time-resolved serial femtosecond crystallography, we identified a key oxygen intermediate of bovine CcO. It is assigned to the PR-intermediate, which is characterized by specific redox states of the metal centers and a distinct protein conformation. The heme a 3 iron atom is in a ferryl (Fe4+ = O2-) configuration, and heme a and CuB are oxidized while CuA is reduced. A Helix-X segment is poised in an open conformational state; the heme a farnesyl sidechain is H-bonded to S382, and loop-I-II adopts a distinct structure. These data offer insights into the mechanism by which the oxygen chemistry is coupled to unidirectional proton translocation.
Collapse
|
23
|
Palese LL. Cytochrome c oxidase structures suggest a four-state stochastic pump mechanism. Phys Chem Chem Phys 2019; 21:4822-4830. [DOI: 10.1039/c8cp07365a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A simple stochastic model for a cytochrome c oxidase proton pump.
Collapse
Affiliation(s)
- Luigi Leonardo Palese
- University of Bari “Aldo Moro”
- Department of Basic Medical Sciences
- Neurosciences and Sense Organs (SMBNOS)
- Bari
- Italy
| |
Collapse
|
24
|
Adam SM, Wijeratne GB, Rogler PJ, Diaz DE, Quist DA, Liu JJ, Karlin KD. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Chem Rev 2018; 118:10840-11022. [PMID: 30372042 PMCID: PMC6360144 DOI: 10.1021/acs.chemrev.8b00074] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heme-copper oxidases (HCOs) are terminal enzymes on the mitochondrial or bacterial respiratory electron transport chain, which utilize a unique heterobinuclear active site to catalyze the 4H+/4e- reduction of dioxygen to water. This process involves a proton-coupled electron transfer (PCET) from a tyrosine (phenolic) residue and additional redox events coupled to transmembrane proton pumping and ATP synthesis. Given that HCOs are large, complex, membrane-bound enzymes, bioinspired synthetic model chemistry is a promising approach to better understand heme-Cu-mediated dioxygen reduction, including the details of proton and electron movements. This review encompasses important aspects of heme-O2 and copper-O2 (bio)chemistries as they relate to the design and interpretation of small molecule model systems and provides perspectives from fundamental coordination chemistry, which can be applied to the understanding of HCO activity. We focus on recent advancements from studies of heme-Cu models, evaluating experimental and computational results, which highlight important fundamental structure-function relationships. Finally, we provide an outlook for future potential contributions from synthetic inorganic chemistry and discuss their implications with relevance to biological O2-reduction.
Collapse
Affiliation(s)
- Suzanne M. Adam
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Gayan B. Wijeratne
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Patrick J. Rogler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Daniel E. Diaz
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David A. Quist
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jeffrey J. Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
25
|
Shimada A, Hatano K, Tadehara H, Yano N, Shinzawa-Itoh K, Yamashita E, Muramoto K, Tsukihara T, Yoshikawa S. X-ray structural analyses of azide-bound cytochrome c oxidases reveal that the H-pathway is critically important for the proton-pumping activity. J Biol Chem 2018; 293:14868-14879. [PMID: 30077971 PMCID: PMC6153300 DOI: 10.1074/jbc.ra118.003123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/31/2018] [Indexed: 01/07/2023] Open
Abstract
Cytochrome c oxidase (CcO) is the terminal oxidase of cellular respiration, reducing O2 to water and pumping protons. X-ray structural features have suggested that CcO pumps protons via a mechanism involving electrostatic repulsions between pumping protons in the hydrogen-bond network of a proton-conducting pathway (the H-pathway) and net positive charges created upon oxidation of an iron site, heme a (Fe a2+), for reduction of O2 at another iron site, heme a3 (Fe a32+). The protons for pumping are transferred to the hydrogen-bond network from the N-side via the water channel of the H-pathway. Back-leakage of protons to the N-side is thought to be blocked by closure of the water channel. To experimentally test this, we examined X-ray structures of the azide-bound, oxidized bovine CcO and found that an azide derivative (N3--Fe a33+, CuB2+-N3-) induces a translational movement of the heme a3 plane. This was accompanied by opening of the water channel, revealing that Fe a3 and the H-pathway are tightly coupled. The channel opening in the oxidized state is likely to induce back-leakage of pumping protons, which lowers the proton level in the hydrogen-bond network during enzymatic turnover. The proton level decrease weakens the electron affinity of Fe a , if Fe a electrostatically interacts with protons in the hydrogen-bond network. The previously reported azide-induced redox-potential decrease in Fe a supports existence of the electrostatic interaction. In summary, our results indicate that the H-pathway is critical for CcO's proton-pumping function.
Collapse
Affiliation(s)
| | | | | | | | | | - Eiki Yamashita
- the Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, and
| | - Kazumasa Muramoto
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akoh, Hyogo 678-1297, , To whom correspondence may be addressed:
Dept. of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akoh, Hyogo 678-1297, Japan. E-mail:
| | - Tomitake Tsukihara
- From the Picobiology Institute and ,the Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, and ,the Japan Science and Technology Agency, CREST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan, To whom correspondence may be addressed:
Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akoh, Hyogo 678-1297, Japan. E-mail:
| | - Shinya Yoshikawa
- From the Picobiology Institute and , To whom correspondence may be addressed:
Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akoh, Hyogo 678-1297, Japan. Tel.:
81-791-58-0189; E-mail:
| |
Collapse
|
26
|
Supekar S, Kaila VRI. Dewetting transitions coupled to K-channel activation in cytochrome c oxidase. Chem Sci 2018; 9:6703-6710. [PMID: 30310604 PMCID: PMC6115622 DOI: 10.1039/c8sc01587b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 07/08/2018] [Indexed: 12/20/2022] Open
Abstract
Cytochrome c oxidase (CcO) drives aerobic respiratory chains in all organisms by transducing the free energy from oxygen reduction into an electrochemical proton gradient across a biological membrane.
Cytochrome c oxidase (CcO) drives aerobic respiratory chains in all organisms by transducing the free energy from oxygen reduction into an electrochemical proton gradient across a biological membrane. CcO employs the so-called D- and K-channels for proton uptake, but the molecular mechanism for activation of the K-channel has remained elusive for decades. We show here by combining large-scale atomistic molecular simulations with graph-theoretical water network analysis, and hybrid quantum/classical (QM/MM) free energy calculations, that the K-channel is activated by formation of a reactive oxidized intermediate in the binuclear heme a3/CuB active site. This state induces electrostatic, hydration, and conformational changes that lower the barrier for proton transfer along the K-channel by dewetting pathways that connect the D-channel with the active site. Our combined results reconcile previous experimental findings and indicate that water dynamics plays a decisive role in the proton pumping machinery in CcO.
Collapse
Affiliation(s)
- Shreyas Supekar
- Department Chemie , Technische Universität München , Lichtenbergstraße 4 , D-85748 Garching , Germany .
| | - Ville R I Kaila
- Department Chemie , Technische Universität München , Lichtenbergstraße 4 , D-85748 Garching , Germany .
| |
Collapse
|
27
|
Kopcova K, Blascakova L, Kozar T, Jancura D, Fabian M. Response of Heme Symmetry to the Redox State of Bovine Cytochrome c Oxidase. Biochemistry 2018; 57:4105-4113. [PMID: 29901388 DOI: 10.1021/acs.biochem.8b00459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Second-derivative absorption spectroscopy was employed to monitor the response of effective symmetry of cytochromes a and a3 to the redox and ligation states of bovine cytochrome c oxidase (CcO). The Soret band π → π* electronic transitions were used to display the changes in symmetry of these chromophores induced by the reduction of CcO inhibited by the exogenous ligands and during catalytic turnover. The second derivative of the difference absorption spectra revealed only a single Soret band for the oxidized cytochromes a and a3 and cyanide-ligated oxidized cytochrome a3. In contrast, two absorption bands were resolved in ferrous cytochrome a and ferrous cytochrome a3 ligated with cyanide. A transition from one-band spectrum to two-band spectrum indicates the lowering of symmetry of these hemes due to the alteration of their immediate surroundings. It is suggested that the changes in polarity occurring in the vicinity of these cofactors are main reason for the split of the Soret band of both ferrous cytochrome a and cyanide-bound ferrous cytochrome a3.
Collapse
Affiliation(s)
- Katarina Kopcova
- Department of Biophysics, Faculty of Science , University of P. J. Safarik , Jesenna 5 , 041 54 Kosice , Slovak Republic
| | - Ludmila Blascakova
- Center for Interdisciplinary Biosciences, Technology and Innovation Park , University of P. J. Safarik , Jesenna 5 , 041 54 Kosice , Slovak Republic
| | - Tibor Kozar
- Center for Interdisciplinary Biosciences, Technology and Innovation Park , University of P. J. Safarik , Jesenna 5 , 041 54 Kosice , Slovak Republic
| | - Daniel Jancura
- Department of Biophysics, Faculty of Science , University of P. J. Safarik , Jesenna 5 , 041 54 Kosice , Slovak Republic.,Center for Interdisciplinary Biosciences, Technology and Innovation Park , University of P. J. Safarik , Jesenna 5 , 041 54 Kosice , Slovak Republic
| | - Marian Fabian
- Center for Interdisciplinary Biosciences, Technology and Innovation Park , University of P. J. Safarik , Jesenna 5 , 041 54 Kosice , Slovak Republic
| |
Collapse
|
28
|
Maréchal A, Hartley AM, Warelow TP, Meunier B, Rich PR. Comparison of redox and ligand binding behaviour of yeast and bovine cytochrome c oxidases using FTIR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:705-711. [PMID: 29852141 PMCID: PMC6094048 DOI: 10.1016/j.bbabio.2018.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/18/2018] [Accepted: 05/24/2018] [Indexed: 11/20/2022]
Abstract
Redox and CO photolysis FTIR spectra of yeast cytochrome c oxidase WT and mutants are compared to those from bovine and P. denitrificans CcOs in order to establish common functional features. All display changes that can be assigned to their E242 (bovine numbering) equivalent and to weakly H-bonded water molecules. The additional redox-sensitive band reported at 1736 cm−1 in bovine CcO and previously assigned to D51 is absent from yeast CcO and couldn't be restored by introduction of a D residue at the equivalent position of the yeast protein. Redox spectra of yeast CcO also show much smaller changes in the amide I region, which may relate to structural differences in the region around D51 and the subunit I/II interface. Redox-induced FTIR difference spectra of WT and mutant yeast CcO are presented. Functionally-relevant features are compared with other A1-type haem copper oxidases. On oxidoreduction, all show perturbations of bovine residue E242 Introduction of bovine D51 in yeast doesn't result in an additional IR redox band. On photolysis of the FR-CO form all show perturbations of E242 and water molecules
Collapse
Affiliation(s)
- Amandine Maréchal
- Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK; Department of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Andrew M Hartley
- Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Thomas P Warelow
- Department of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Brigitte Meunier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Peter R Rich
- Department of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
29
|
Mahinthichaichan P, Gennis RB, Tajkhorshid E. Cytochrome aa 3 Oxygen Reductase Utilizes the Tunnel Observed in the Crystal Structures To Deliver O 2 for Catalysis. Biochemistry 2018; 57:2150-2161. [PMID: 29546752 DOI: 10.1021/acs.biochem.7b01194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cytochrome aa3 is the terminal respiratory enzyme of all eukaryotes and many bacteria and archaea, reducing O2 to water and harnessing the free energy from the reaction to generate the transmembrane electrochemical potential. The diffusion of O2 to the heme-copper catalytic site, which is buried deep inside the enzyme, is the initiation step of the reaction chemistry. Our previous molecular dynamics (MD) study with cytochrome ba3, a homologous enzyme of cytochrome aa3 in Thermus thermophilus, demonstrated that O2 diffuses from the lipid bilayer to its reduction site through a 25 Å long tunnel inferred by Xe binding sites detected by X-ray crystallography [Mahinthichaichan, P., Gennis, R., and Tajkhorshid, E. (2016) Biochemistry 55, 1265-1278]. Although a similar tunnel is observed in cytochrome aa3, this putative pathway appears partially occluded between the entrances and the reduction site. Also, the experimentally determined second-order rate constant for O2 delivery in cytochrome aa3 (∼108 M-1 s-1) is 10 times slower than that in cytochrome ba3 (∼109 M-1 s-1). A question to be addressed is whether cytochrome aa3 utilizes this X-ray-inferred tunnel as the primary pathway for O2 delivery. Using complementary computational methods, including multiple independent flooding MD simulations and implicit ligand sampling calculations, we probe the O2 delivery pathways in cytochrome aa3 of Rhodobacter sphaeroides. All of the O2 molecules that arrived in the reduction site during the simulations were found to diffuse through the X-ray-observed tunnel, despite its apparent constriction, supporting its role as the main O2 delivery pathway in cytochrome aa3. The rate constant for O2 delivery in cytochrome aa3, approximated using the simulation results, is 10 times slower than in cytochrome ba3, in agreement with the experimentally determined rate constants.
Collapse
Affiliation(s)
- Paween Mahinthichaichan
- Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Robert B Gennis
- Department of Biochemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Emad Tajkhorshid
- Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| |
Collapse
|
30
|
Wikström M, Krab K, Sharma V. Oxygen Activation and Energy Conservation by Cytochrome c Oxidase. Chem Rev 2018; 118:2469-2490. [PMID: 29350917 PMCID: PMC6203177 DOI: 10.1021/acs.chemrev.7b00664] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
This review focuses on the type
A cytochrome c oxidases (CcO), which
are found in all mitochondria
and also in several aerobic bacteria. CcO catalyzes
the respiratory reduction of dioxygen (O2) to water by
an intriguing mechanism, the details of which are fairly well understood
today as a result of research for over four decades. Perhaps even
more intriguingly, the membrane-bound CcO couples
the O2 reduction chemistry to translocation of protons
across the membrane, thus contributing to generation of the electrochemical
proton gradient that is used to drive the synthesis of ATP as catalyzed
by the rotary ATP synthase in the same membrane. After reviewing the
structure of the core subunits of CcO, the active
site, and the transfer paths of electrons, protons, oxygen, and water,
we describe the states of the catalytic cycle and point out the few
remaining uncertainties. Finally, we discuss the mechanism of proton
translocation and the controversies in that area that still prevail.
Collapse
Affiliation(s)
- Mårten Wikström
- Institute of Biotechnology , University of Helsinki , P.O. Box 56 , Helsinki FI-00014 , Finland
| | - Klaas Krab
- Department of Molecular Cell Physiology , Vrije Universiteit , P.O. Box 7161 , Amsterdam 1007 MC , The Netherlands
| | - Vivek Sharma
- Institute of Biotechnology , University of Helsinki , P.O. Box 56 , Helsinki FI-00014 , Finland.,Department of Physics , University of Helsinki , P.O. Box 64 , Helsinki FI-00014 , Finland
| |
Collapse
|
31
|
Sharma V, Jambrina PG, Kaukonen M, Rosta E, Rich PR. Insights into functions of the H channel of cytochrome c oxidase from atomistic molecular dynamics simulations. Proc Natl Acad Sci U S A 2017; 114:E10339-E10348. [PMID: 29133387 PMCID: PMC5715751 DOI: 10.1073/pnas.1708628114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Proton pumping A-type cytochrome c oxidase (CcO) terminates the respiratory chains of mitochondria and many bacteria. Three possible proton transfer pathways (D, K, and H channels) have been identified based on structural, functional, and mutational data. Whereas the D channel provides the route for all pumped protons in bacterial A-type CcOs, studies of bovine mitochondrial CcO have led to suggestions that its H channel instead provides this route. Here, we have studied H-channel function by performing atomistic molecular dynamics simulations on the entire, as well as core, structure of bovine CcO in a lipid-solvent environment. The majority of residues in the H channel do not undergo large conformational fluctuations. Its upper and middle regions have adequate hydration and H-bonding residues to form potential proton-conducting channels, and Asp51 exhibits conformational fluctuations that have been observed crystallographically. In contrast, throughout the simulations, we do not observe transient water networks that could support proton transfer from the N phase toward heme a via neutral His413, regardless of a labile H bond between Ser382 and the hydroxyethylfarnesyl group of heme a In fact, the region around His413 only became sufficiently hydrated when His413 was fixed in its protonated imidazolium state, but its calculated pKa is too low for this to provide the means to create a proton transfer pathway. Our simulations show that the electric dipole moment of residues around heme a changes with the redox state, hence suggesting that the H channel could play a more general role as a dielectric well.
Collapse
Affiliation(s)
- Vivek Sharma
- Department of Physics, University of Helsinki, FI-00014, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Pablo G Jambrina
- Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Markus Kaukonen
- Department of Physics, University of Helsinki, FI-00014, Helsinki, Finland
| | - Edina Rosta
- Department of Chemistry, King's College London, London SE1 1DB, United Kingdom
| | - Peter R Rich
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
32
|
Role of conformational change and K-path ligands in controlling cytochrome c oxidase activity. Biochem Soc Trans 2017; 45:1087-1095. [PMID: 28842531 DOI: 10.1042/bst20160138] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 01/19/2023]
Abstract
Given the central role of cytochrome c oxidase (CcO) in health and disease, it is an increasingly important question as to how the activity and efficiency of this key enzyme are regulated to respond to a variety of metabolic states. The present paper summarizes evidence for two modes of regulation of activity: first, by redox-induced conformational changes involving the K-proton uptake path; and secondly, by ligand binding to a conserved site immediately adjacent to the entrance of the K-path that leads to the active site. Both these phenomena highlight the importance of the K-path in control of CcO. The redox-induced structural changes are seen in both the two-subunit and a new four-subunit crystal structure of bacterial CcO and suggest a gating mechanism to control access of protons to the active site. A conserved ligand-binding site, first discovered as a bile salt/steroid site in bacterial and mammalian oxidases, is observed to bind an array of ligands, including nucleotides, detergents, and other amphipathic molecules. Highly variable effects on activity, seen for these ligands and mutations at the K-path entrance, can be explained by differing abilities to inhibit or stimulate K-path proton uptake by preventing or allowing water organization. A new mutant form in which the K-path is blocked by substituting the conserved carboxyl with a tryptophan clarifies the singularity of the K-path entrance site. Further study in eukaryotic systems will determine the physiological significance and pharmacological potential of ligand binding and conformational change in CcO.
Collapse
|
33
|
Mitochondrial cytochrome c oxidase: catalysis, coupling and controversies. Biochem Soc Trans 2017; 45:813-829. [PMID: 28620043 DOI: 10.1042/bst20160139] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 01/04/2023]
Abstract
Mitochondrial cytochrome c oxidase is a member of a diverse superfamily of haem-copper oxidases. Its mechanism of oxygen reduction is reviewed in terms of the cycle of catalytic intermediates and their likely chemical structures. This reaction cycle is coupled to the translocation of protons across the inner mitochondrial membrane in which it is located. The likely mechanism by which this occurs, derived in significant part from studies of bacterial homologues, is presented. These mechanisms of catalysis and coupling, together with current alternative proposals of underlying mechanisms, are critically reviewed.
Collapse
|
34
|
Crystal structure of CO-bound cytochrome c oxidase determined by serial femtosecond X-ray crystallography at room temperature. Proc Natl Acad Sci U S A 2017; 114:8011-8016. [PMID: 28698372 DOI: 10.1073/pnas.1705628114] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytochrome c oxidase (CcO), the terminal enzyme in the electron transfer chain, translocates protons across the inner mitochondrial membrane by harnessing the free energy generated by the reduction of oxygen to water. Several redox-coupled proton translocation mechanisms have been proposed, but they lack confirmation, in part from the absence of reliable structural information due to radiation damage artifacts caused by the intense synchrotron radiation. Here we report the room temperature, neutral pH (6.8), damage-free structure of bovine CcO (bCcO) in the carbon monoxide (CO)-bound state at a resolution of 2.3 Å, obtained by serial femtosecond X-ray crystallography (SFX) with an X-ray free electron laser. As a comparison, an equivalent structure was obtained at a resolution of 1.95 Å, from data collected at a synchrotron light source. In the SFX structure, the CO is coordinated to the heme a3 iron atom, with a bent Fe-C-O angle of ∼142°. In contrast, in the synchrotron structure, the Fe-CO bond is cleaved; CO relocates to a new site near CuB, which, in turn, moves closer to the heme a3 iron by ∼0.38 Å. Structural comparison reveals that ligand binding to the heme a3 iron in the SFX structure is associated with an allosteric structural transition, involving partial unwinding of the helix-X between heme a and a3, thereby establishing a communication linkage between the two heme groups, setting the stage for proton translocation during the ensuing redox chemistry.
Collapse
|
35
|
Andersson R, Safari C, Dods R, Nango E, Tanaka R, Yamashita A, Nakane T, Tono K, Joti Y, Båth P, Dunevall E, Bosman R, Nureki O, Iwata S, Neutze R, Brändén G. Serial femtosecond crystallography structure of cytochrome c oxidase at room temperature. Sci Rep 2017; 7:4518. [PMID: 28674417 PMCID: PMC5495810 DOI: 10.1038/s41598-017-04817-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/19/2017] [Indexed: 11/11/2022] Open
Abstract
Cytochrome c oxidase catalyses the reduction of molecular oxygen to water while the energy released in this process is used to pump protons across a biological membrane. Although an extremely well-studied biological system, the molecular mechanism of proton pumping by cytochrome c oxidase is still not understood. Here we report a method to produce large quantities of highly diffracting microcrystals of ba3-type cytochrome c oxidase from Thermus thermophilus suitable for serial femtosecond crystallography. The room-temperature structure of cytochrome c oxidase is solved to 2.3 Å resolution from data collected at an X-ray Free Electron Laser. We find overall agreement with earlier X-ray structures solved from diffraction data collected at cryogenic temperature. Previous structures solved from synchrotron radiation data, however, have shown conflicting results regarding the identity of the active-site ligand. Our room-temperature structure, which is free from the effects of radiation damage, reveals that a single-oxygen species in the form of a water molecule or hydroxide ion is bound in the active site. Structural differences between the ba3-type and aa3-type cytochrome c oxidases around the proton-loading site are also described.
Collapse
Affiliation(s)
- Rebecka Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530, Gothenburg, Sweden
| | - Cecilia Safari
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530, Gothenburg, Sweden
| | - Robert Dods
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530, Gothenburg, Sweden
| | - Eriko Nango
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.,Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Rie Tanaka
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Ayumi Yamashita
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Takanori Nakane
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Petra Båth
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530, Gothenburg, Sweden
| | - Elin Dunevall
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530, Gothenburg, Sweden
| | - Robert Bosman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530, Gothenburg, Sweden
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - So Iwata
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.,Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530, Gothenburg, Sweden
| | - Gisela Brändén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530, Gothenburg, Sweden.
| |
Collapse
|
36
|
Shimada A, Kubo M, Baba S, Yamashita K, Hirata K, Ueno G, Nomura T, Kimura T, Shinzawa-Itoh K, Baba J, Hatano K, Eto Y, Miyamoto A, Murakami H, Kumasaka T, Owada S, Tono K, Yabashi M, Yamaguchi Y, Yanagisawa S, Sakaguchi M, Ogura T, Komiya R, Yan J, Yamashita E, Yamamoto M, Ago H, Yoshikawa S, Tsukihara T. A nanosecond time-resolved XFEL analysis of structural changes associated with CO release from cytochrome c oxidase. SCIENCE ADVANCES 2017; 3:e1603042. [PMID: 28740863 PMCID: PMC5510965 DOI: 10.1126/sciadv.1603042] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 06/14/2017] [Indexed: 05/21/2023]
Abstract
Bovine cytochrome c oxidase (CcO), a 420-kDa membrane protein, pumps protons using electrostatic repulsion between protons transferred through a water channel and net positive charges created by oxidation of heme a (Fe a ) for reduction of O2 at heme a3 (Fe a3). For this process to function properly, timing is essential: The channel must be closed after collection of the protons to be pumped and before Fe a oxidation. If the channel were to remain open, spontaneous backflow of the collected protons would occur. For elucidation of the channel closure mechanism, the opening of the channel, which occurs upon release of CO from CcO, is investigated by newly developed time-resolved x-ray free-electron laser and infrared techniques with nanosecond time resolution. The opening process indicates that CuB senses completion of proton collection and binds O2 before binding to Fe a3 to close the water channel using a conformational relay system, which includes CuB, heme a3, and a transmembrane helix, to block backflow of the collected protons.
Collapse
Affiliation(s)
- Atsuhiro Shimada
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Minoru Kubo
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Seiki Baba
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Keitaro Yamashita
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kunio Hirata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Go Ueno
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Takashi Nomura
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tetsunari Kimura
- Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Kyoko Shinzawa-Itoh
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Junpei Baba
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Keita Hatano
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Yuki Eto
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Akari Miyamoto
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Hironori Murakami
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Takashi Kumasaka
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Shigeki Owada
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Makina Yabashi
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Yoshihiro Yamaguchi
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Sachiko Yanagisawa
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Miyuki Sakaguchi
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Takashi Ogura
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Ryo Komiya
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Jiwang Yan
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Eiki Yamashita
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masaki Yamamoto
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Hideo Ago
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Corresponding author. (T.T.); (S.Y.); (H.A.)
| | - Shinya Yoshikawa
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
- Corresponding author. (T.T.); (S.Y.); (H.A.)
| | - Tomitake Tsukihara
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Corresponding author. (T.T.); (S.Y.); (H.A.)
| |
Collapse
|
37
|
Abstract
Measurements of voltage changes in response to charge separation within membrane proteins can offer fundamental information on spectroscopically "invisible" steps. For example, results from studies of voltage changes associated with electron and proton transfer in cytochrome c oxidase could, in principle, be used to discriminate between different theoretical models describing the molecular mechanism of proton pumping. Earlier analyses of data from these measurements have been based on macroscopic considerations that may not allow for exploring the actual molecular mechanisms. Here, we have used a coarse-grained model describing the relation between observed voltage changes and specific charge-transfer reactions, which includes an explicit description of the membrane, the electrolytes, and the electrodes. The results from these calculations offer mechanistic insights at the molecular level. Our main conclusion is that previously assumed mechanistic evidence that was based on electrogenic measurements is not unique. However, the ability of our calculations to obtain reliable voltage changes means that we have a tool that can be used to describe a wide range of electrogenic charge transfers in channels and transporters, by combining voltage measurements with other experiments and simulations to analyze new mechanistic proposals.
Collapse
|
38
|
Cassano JA, Choi SK, McDonald W, Szundi I, Villa Gawboy TR, Gennis RB, Einarsdóttir Ó. The CO Photodissociation and Recombination Dynamics of the W172Y/F282T Ligand Channel Mutant of Rhodobacter sphaeroides aa3 Cytochrome c Oxidase. Photochem Photobiol 2016; 92:410-9. [PMID: 27029379 DOI: 10.1111/php.12587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 02/25/2016] [Indexed: 12/26/2022]
Abstract
In the ligand channel of the cytochrome c oxidase from Rhodobacter sphaeroides (Rs aa3 ) W172 and F282 have been proposed to generate a constriction that may slow ligand access to and from the active site. To explore this issue, the tryptophan and phenylalanine residues in Rs aa3 were mutated to the less bulky tyrosine and threonine residues, respectively, which occupy these sites in Thermus thermophilus (Tt) ba3 cytochrome oxidase. The CO photolysis and recombination dynamics of the reduced wild-type Rs aa3 and the W172Y/F282T mutant were investigated using time-resolved optical absorption spectroscopy. The spectral changes associated with the multiple processes are attributed to different conformers. The major CO recombination process (44 μs) in the W172Y/F282T mutant is ~500 times faster than the predominant CO recombination process in the wild-type enzyme (~23 ms). Classical dynamic simulations of the wild-type enzyme and double mutant showed significant structural changes at the active site in the mutant, including movement of the heme a3 ring-D propionate toward CuB and reduced binuclear center cavity volume. These structural changes effectively close the ligand exit pathway from the binuclear center, providing a basis for the faster CO recombination in the double mutant.
Collapse
Affiliation(s)
- Jennifer A Cassano
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA
| | - Sylvia K Choi
- Center for Biophysics and Computational Biology, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL
| | - William McDonald
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA
| | - Istvan Szundi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA
| | - Terra R Villa Gawboy
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA
| | - Robert B Gennis
- Center for Biophysics and Computational Biology, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Ólöf Einarsdóttir
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA
| |
Collapse
|
39
|
Oliveira ASF, Campos SRR, Baptista AM, Soares CM. Coupling between protonation and conformation in cytochrome c oxidase: Insights from constant-pH MD simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:759-71. [PMID: 27033303 DOI: 10.1016/j.bbabio.2016.03.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/18/2016] [Accepted: 03/23/2016] [Indexed: 12/11/2022]
Abstract
Cytochrome c oxidases (CcOs) are the terminal enzymes of the respiratory chain in mitochondria and most bacteria. These enzymes reduce dioxygen (O(2)) to water and, simultaneously, generate a transmembrane electrochemical proton gradient. Despite their importance in the aerobic metabolism and the large amount of structural and biochemical data available for the A1-type CcO family, there is still no consensually accepted description of the molecular mechanisms operating in this protein. A substantial number of questions about the CcO's working mechanism remain to be answered, including how the protonation behavior of some key residues is modulated during a reduction cycle and how is the conformation of the protein affected by protonation. The main objective of this work was to study the protonation-conformation coupling in CcOs and identify the molecular factors that control the protonation state of some key residues. In order to directly capture the interplay between protonation and conformational effects, we have performed constant-pH MD simulations of an A1-type CcO inserted into a lipid bilayer in two redox states (oxidized and reduced) at physiological pH. From the simulations, we were able to identify several groups with unusual titration behavior that are highly dependent on the protein redox state, including the A-propionate from heme a and the D-propionate from heme a3, two key groups possibly involved in proton pumping. The protonation state of these two groups is heavily influenced by subtle conformational changes in the protein (notably of R481(I) and R482(I)) and by small changes in the hydrogen bond network.
Collapse
Affiliation(s)
- A Sofia F Oliveira
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sara R R Campos
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - António M Baptista
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - Cláudio M Soares
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
40
|
Samudio BM, Couch V, Stuchebrukhov AA. Monte Carlo Simulations of Glu-242 in Cytochrome c Oxidase. J Phys Chem B 2016; 120:2095-105. [PMID: 26865374 DOI: 10.1021/acs.jpcb.5b10998] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Monte Carlo (MC) simulations of conformational changes and protonation of Glu-242, a key residue that shuttles protons in cytochrome c oxidase (CcO), are reported. Previous studies suggest that this residue may play a role of the valve of the enzyme proton pump. Here we examine how sensitive the results of simulations are to the computational method used. We applied both molecular mechanic (MM) and hybrid quantum mechanic:molecular mechanic (QM:MM) methods and find that the results are qualitatively different. The results indicate that the mechanism for proton gating in CcO is still an open issue.
Collapse
Affiliation(s)
- Benjamin M Samudio
- Department of Chemistry , University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Vernon Couch
- Department of Chemistry , University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Alexei A Stuchebrukhov
- Department of Chemistry , University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
41
|
Sharma V, Wikström M. The role of the K-channel and the active-site tyrosine in the catalytic mechanism of cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1111-1115. [PMID: 26898520 DOI: 10.1016/j.bbabio.2016.02.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/09/2016] [Accepted: 02/15/2016] [Indexed: 02/08/2023]
Abstract
The active site of cytochrome c oxidase (CcO) comprises an oxygen-binding heme, a nearby copper ion (CuB), and a tyrosine residue that is covalently linked to one of the histidine ligands of CuB. Two proton-conducting pathways are observed in CcO, namely the D- and the K-channels, which are used to transfer protons either to the active site of oxygen reduction (substrate protons) or for pumping. Proton transfer through the D-channel is very fast, and its role in efficient transfer of both substrate and pumped protons is well established. However, it has not been fully clear why a separate K-channel is required, apparently for the supply of substrate protons only. In this work, we have analysed the available experimental and computational data, based on which we provide new perspectives on the role of the K-channel. Our analysis suggests that proton transfer in the K-channel may be gated by the protonation state of the active-site tyrosine (Tyr244) and that the neutral radical form of this residue has a more general role in the CcO mechanism than thought previously. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Vivek Sharma
- Department of Physics, Tampere University of Technology, Tampere FI-33101, Finland; Department of Physics, University of Helsinki, Helsinki, Finland.
| | - Mårten Wikström
- Institute of Biotechnology, University of Helsinki, Helsinki, FI-00014, Finland.
| |
Collapse
|
42
|
Lyons JA, Hilbers F, Caffrey M. Structure and Function of Bacterial Cytochrome c Oxidases. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2016. [DOI: 10.1007/978-94-017-7481-9_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
43
|
Vilhjálmsdóttir J, Johansson AL, Brzezinski P. Structural Changes and Proton Transfer in Cytochrome c Oxidase. Sci Rep 2015; 5:12047. [PMID: 26310633 PMCID: PMC4550891 DOI: 10.1038/srep12047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/16/2015] [Indexed: 01/28/2023] Open
Abstract
In cytochrome c oxidase electron transfer from cytochrome c to O2 is linked to transmembrane proton pumping, which contributes to maintaining a proton electrochemical gradient across the membrane. The mechanism by which cytochrome c oxidase couples the exergonic electron transfer to the endergonic proton translocation is not known, but it presumably involves local structural changes that control the alternating proton access to the two sides of the membrane. Such redox-induced structural changes have been observed in X-ray crystallographic studies at residues 423-425 (in the R. sphaeroides oxidase), located near heme a. The aim of the present study is to investigate the functional effects of these structural changes on reaction steps associated with proton pumping. Residue Ser425 was modified using site-directed mutagenesis and time-resolved spectroscopy was used to investigate coupled electron-proton transfer upon reaction of the oxidase with O2. The data indicate that the structural change at position 425 propagates to the D proton pathway, which suggests a link between redox changes at heme a and modulation of intramolecular proton-transfer rates.
Collapse
Affiliation(s)
- Jóhanna Vilhjálmsdóttir
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ann-Louise Johansson
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
44
|
Lysine 362 in cytochrome c oxidase regulates opening of the K-channel via changes in pKA and conformation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1837:1998-2003. [PMID: 25149865 DOI: 10.1016/j.bbabio.2014.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/09/2014] [Accepted: 08/12/2014] [Indexed: 11/21/2022]
Abstract
The metabolism of aerobic life uses the conversion of molecular oxygen to water as an energy source. This reaction is catalyzed by cytochrome e oxidase (CeO) consuming four electrons and four protons, which move along specific routes. While all four electrons are transferred via the same cofactors to the binuclear reaction center (BNC), the protons take two different routes in the A-type CeO, i.e., two of the four chemical protons consumed in the reaction arrive via the D-channel in the oxidative first half starting after oxygen binding. The other two chemical protons enter via the K-channel in the reductive second half of the reaction cycle. To date, the mechanism behind these separate proton transport pathways has not been understood. In this study, we propose a model that can explain the reaction-step specific opening and closing of the K-channel by conformational and pKA changes of its central lysine 362. Molecular dynamics simulations reveal an upward movement of Lys362 towards the BNC, which had already been supposed by several experimental studies. Redox state-dependent pKA calculations provide evidence that Lys362 may protonate transiently, thereby opening the K-channel only in the reductive second half of the reaction cycle. From our results, we develop a model that assigns a key role to Lys362 in the proton gating between the two proton input channels of the A-type CeO.
Collapse
|
45
|
Wikström M, Sharma V, Kaila VRI, Hosler JP, Hummer G. New Perspectives on Proton Pumping in Cellular Respiration. Chem Rev 2015; 115:2196-221. [DOI: 10.1021/cr500448t] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mårten Wikström
- Institute
of Biotechnology, University of Helsinki, Biocenter 3 (Viikinkaari 1), PB
65, Helsinki 00014, Finland
| | - Vivek Sharma
- Department
of Physics, Tampere University of Technology, Korkeakoulunkatu 3, Tampere 33720, Finland
| | - Ville R. I. Kaila
- Department
Chemie, Technische Universität München, Lichtenbergstraße 4, D-85748 Garching, Germany
| | - Jonathan P. Hosler
- Department
of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216, United States
| | - Gerhard Hummer
- Department
of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße
3, 60438 Frankfurt
am Main, Germany
| |
Collapse
|
46
|
Affiliation(s)
- Shinya Yoshikawa
- Picobiology Institute, Graduate
School of Life Science, University of Hyogo, Kamigohri Akoh Hyogo, 678-1297, Japan
| | - Atsuhiro Shimada
- Picobiology Institute, Graduate
School of Life Science, University of Hyogo, Kamigohri Akoh Hyogo, 678-1297, Japan
| |
Collapse
|
47
|
Goyal P, Yang S, Cui Q. Microscopic basis for kinetic gating in Cytochrome c oxidase: insights from QM/MM analysis. Chem Sci 2015; 6:826-841. [PMID: 25678950 PMCID: PMC4321873 DOI: 10.1039/c4sc01674b] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Understanding the mechanism of vectorial proton pumping in biomolecules requires establishing the microscopic basis for the regulation of both thermodynamic and kinetic features of the relevant proton transfer steps.
Understanding the mechanism of vectorial proton pumping in biomolecules requires establishing the microscopic basis for the regulation of both thermodynamic and kinetic features of the relevant proton transfer steps. For the proton pump cytochrome c oxidase, while the regulation of thermodynamic driving force for key proton transfers has been discussed in great detail, the microscopic basis for the control of proton transfer kinetics has been poorly understood. Here we carry out extensive QM/MM free energy simulations to probe the kinetics of relevant proton transfer steps and analyze the effects of local structure and hydration level. We show that protonation of the proton loading site (PLS, taken to be a propionate of heme a3) requires a concerted process in which a key glutamic acid (Glu286H) delivers the proton to the PLS while being reprotonated by an excess proton coming from the D-channel. The concerted nature of the mechanism is a crucial feature that enables the loading of the PLS before the cavity containing Glu286 is better hydrated to lower its pKa to experimentally measured range; the charged rather than dipolar nature of the process also ensures a tight coupling with heme a reduction, as emphasized by Siegbahn and Blomberg. In addition, we find that rotational flexibility of the PLS allows its protonation before that of the binuclear center (the site where oxygen gets reduced to water). Together with our recent study (P. Goyal, et al., Proc. Natl. Acad. Sci. U. S. A., 2013, 110, 18886–18891) that focused on the modulation of Glu286 pKa, the current work suggests a mechanism that builds in a natural sequence for the protonation of the PLS prior to that of the binuclear center. This provides microscopic support to the kinetic constraints revealed by kinetic network analysis as essential elements that ensure an efficient vectorial proton transport in cytochrome c oxidase.
Collapse
Affiliation(s)
- Puja Goyal
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
| | - Shuo Yang
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
| | - Qiang Cui
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
| |
Collapse
|
48
|
Dance I. The pathway for serial proton supply to the active site of nitrogenase: enhanced density functional modeling of the Grotthuss mechanism. Dalton Trans 2015; 44:18167-86. [DOI: 10.1039/c5dt03223g] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proton translocation along a chain of eight waters to the active site of nitrogenase is described in detail, using density functional simulations with a 269 atom system that includes surrounding amino acids.
Collapse
Affiliation(s)
- Ian Dance
- School of Chemistry
- UNSW Australia
- Sydney 2052
- Australia
| |
Collapse
|
49
|
Oliveira ASF, Damas JM, Baptista AM, Soares CM. Exploring O2 diffusion in A-type cytochrome c oxidases: molecular dynamics simulations uncover two alternative channels towards the binuclear site. PLoS Comput Biol 2014; 10:e1004010. [PMID: 25474152 PMCID: PMC4256069 DOI: 10.1371/journal.pcbi.1004010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 10/29/2014] [Indexed: 12/04/2022] Open
Abstract
Cytochrome c oxidases (Ccoxs) are the terminal enzymes of the respiratory chain in mitochondria and most bacteria. These enzymes couple dioxygen (O2) reduction to the generation of a transmembrane electrochemical proton gradient. Despite decades of research and the availability of a large amount of structural and biochemical data available for the A-type Ccox family, little is known about the channel(s) used by O2 to travel from the solvent/membrane to the heme a3-CuB binuclear center (BNC). Moreover, the identification of all possible O2 channels as well as the atomic details of O2 diffusion is essential for the understanding of the working mechanisms of the A-type Ccox. In this work, we determined the O2 distribution within Ccox from Rhodobacter sphaeroides, in the fully reduced state, in order to identify and characterize all the putative O2 channels leading towards the BNC. For that, we use an integrated strategy combining atomistic molecular dynamics (MD) simulations (with and without explicit O2 molecules) and implicit ligand sampling (ILS) calculations. Based on the 3D free energy map for O2 inside Ccox, three channels were identified, all starting in the membrane hydrophobic region and connecting the surface of the protein to the BNC. One of these channels corresponds to the pathway inferred from the X-ray data available, whereas the other two are alternative routes for O2 to reach the BNC. Both alternative O2 channels start in the membrane spanning region and terminate close to Y288I. These channels are a combination of multiple transiently interconnected hydrophobic cavities, whose opening and closure is regulated by the thermal fluctuations of the lining residues. Furthermore, our results show that, in this Ccox, the most likely (energetically preferred) routes for O2 to reach the BNC are the alternative channels, rather than the X-ray inferred pathway. Cytochrome c oxidases (Ccoxs), the terminal enzymes of the respiratory electron transport chain in eukaryotes and many prokaryotes, are key enzymes in aerobic respiration. These proteins couple the reduction of molecular dioxygen to water with the creation of a transmembrane electrochemical proton gradient. Over the last decades, most of the Ccoxs research focused on the mechanisms and energetics of reduction and/or proton pumping, and little emphasis has been given to the pathways used by dioxygen to reach the binuclear center, where dioxygen reduction takes place. In particular, the existence and the characteristics of the channel(s) used by O2 to travel from the solvent/membrane to the binuclear site are still unclear. In this work, we combine all-atom molecular dynamics simulations and implicit ligand sampling calculations in order to identify and characterize the O2 delivery channels in the Ccox from Rhodobacter sphaeroides. Altogether, our results suggest that, in this Ccox, O2 can diffuse via three well-defined channels that start in membrane region (where O2 solubility is higher than in the water). One of these channels corresponds to the pathway inferred from the X-ray data available, whereas the other two are alternative routes for O2 to reach the binuclear center.
Collapse
Affiliation(s)
- A. Sofia F. Oliveira
- ITQB - Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - João M. Damas
- ITQB - Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - António M. Baptista
- ITQB - Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cláudio M. Soares
- ITQB - Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
50
|
Abstract
Cytochrome c oxidase (CcO) uses the energy released by reduction of O2 to H2O to drive eight charges from the high pH to low pH side of the membrane, increasing the electrochemical gradient. Four electrons and protons are used for chemistry, while four more protons are pumped. Proton pumping requires that residues on a pathway change proton affinity through the reaction cycle to load and then release protons. The protonation states of all residues in CcO are determined in MultiConformational Continuum Electrostatics simulations with the protonation and redox states of heme a, a3, Cu(B), Y288, and E286 used to define the catalytic cycle. One proton is found to be loaded and released from residues identified as the proton loading site (PLS) on the P-side of the protein in each of the four CcO redox states. Thus, the same proton pumping mechanism can be used each time CcO is reduced. Calculations with structures of Rhodobacter sphaeroides, Paracoccus denitrificans, and bovine CcO derived by crystallography and molecular dynamics show the PLS functions similarly in different CcO species. The PLS is a cluster rather than a single residue, as different structures show 1-4 residues load and release protons. However, the proton affinity of the heme a3 propionic acids primarily determines the number of protons loaded into the PLS; if their proton affinity is too low, less than one proton is loaded.
Collapse
|