1
|
Etzerodt A, Mikkelsen JH, Torvund-Jensen M, Hennig D, Boesen T, Graversen JH, Moestrup SK, Kollman JM, Andersen CBF. The Cryo-EM structure of human CD163 bound to haptoglobin-hemoglobin reveals molecular mechanisms of hemoglobin scavenging. Nat Commun 2024; 15:10871. [PMID: 39738064 DOI: 10.1038/s41467-024-55171-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025] Open
Abstract
CD163, a macrophage-specific receptor, plays a critical role in scavenging hemoglobin released during hemolysis, protecting against oxidative effects of heme iron. In the bloodstream, hemoglobin is bound by haptoglobin, leading to its immediate endocytosis by CD163. While haptoglobin's structure and function are well understood, CD163's structure and its interaction with the haptoglobin-hemoglobin complex have remained elusive. Here, we present the cryo-electron microscopy structure of the entire extracellular domain of human CD163 in complex with haptoglobin-hemoglobin. The structure reveals that CD163 assembles into trimers (and to some extent dimers), binding haptoglobin-hemoglobin in their center. Key acidic residues in CD163 interact with lysine residues from both haptoglobin and hemoglobin. Calcium-binding sites located near the haptoglobin-hemoglobin interface in CD163 provide explanation for the calcium dependence of the interaction. Furthermore, we show that the interaction facilitating CD163 oligomerization mimics ligand binding and is also calcium dependent. This structural insight into CD163 advances our understanding of its role in hemoglobin scavenging as well as its broader relevance to structurally related scavenger receptors.
Collapse
Affiliation(s)
- Anders Etzerodt
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | | | | | - Dorle Hennig
- Inflammation Research, Department of Molecular Medicine, University of Southern Denmark, 5000, Odense C, Denmark
| | - Thomas Boesen
- Interdisciplinary Nanoscience Center, Aarhus University, 8000, Aarhus C, Denmark
| | - Jonas Heilskov Graversen
- Inflammation Research, Department of Molecular Medicine, University of Southern Denmark, 5000, Odense C, Denmark
| | - Søren Kragh Moestrup
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
- Inflammation Research, Department of Molecular Medicine, University of Southern Denmark, 5000, Odense C, Denmark
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
2
|
Ishemgulova A, Mukhamedova L, Trebichalská Z, Rájecká V, Payne P, Šmerdová L, Moravcová J, Hrebík D, Buchta D, Škubník K, Füzik T, Vaňáčová Š, Nováček J, Plevka P. Endosome rupture enables enteroviruses from the family Picornaviridae to infect cells. Commun Biol 2024; 7:1465. [PMID: 39511383 PMCID: PMC11543853 DOI: 10.1038/s42003-024-07147-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024] Open
Abstract
Membrane penetration by non-enveloped viruses is diverse and generally not well understood. Enteroviruses, one of the largest groups of non-enveloped viruses, cause diseases ranging from the common cold to life-threatening encephalitis. Enteroviruses enter cells by receptor-mediated endocytosis. However, how enterovirus particles or RNA genomes cross the endosome membrane into the cytoplasm remains unknown. Here we used cryo-electron tomography of infected cells to show that endosomes containing enteroviruses deform, rupture, and release the virus particles into the cytoplasm. Blocking endosome acidification with bafilomycin A1 reduced the number of particles that released their genomes, but did not prevent them from reaching the cytoplasm. Inhibiting post-endocytic membrane remodeling with wiskostatin promoted abortive enterovirus genome release in endosomes. The rupture of endosomes also occurs in control cells and after the endocytosis of very low-density lipoprotein. In summary, our results show that cellular membrane remodeling disrupts enterovirus-containing endosomes and thus releases the virus particles into the cytoplasm to initiate infection. Since the studied enteroviruses employ different receptors for cell entry but are delivered into the cytoplasm by cell-mediated endosome disruption, it is likely that most if not all enteroviruses, and probably numerous other viruses from the family Picornaviridae, can utilize endosome rupture to infect cells.
Collapse
Affiliation(s)
- Aygul Ishemgulova
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
| | - Liya Mukhamedova
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Zuzana Trebichalská
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Veronika Rájecká
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Pavel Payne
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Lenka Šmerdová
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Jana Moravcová
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Dominik Hrebík
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - David Buchta
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Karel Škubník
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Tibor Füzik
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Štěpánka Vaňáčová
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Jiří Nováček
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Pavel Plevka
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
| |
Collapse
|
3
|
Enrich C, Lu A, Tebar F, Rentero C, Grewal T. Ca 2+ and Annexins - Emerging Players for Sensing and Transferring Cholesterol and Phosphoinositides via Membrane Contact Sites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:393-438. [PMID: 36988890 DOI: 10.1007/978-3-031-21547-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Maintaining lipid composition diversity in membranes from different organelles is critical for numerous cellular processes. However, many lipids are synthesized in the endoplasmic reticulum (ER) and require delivery to other organelles. In this scenario, formation of membrane contact sites (MCS) between neighbouring organelles has emerged as a novel non-vesicular lipid transport mechanism. Dissecting the molecular composition of MCS identified phosphoinositides (PIs), cholesterol, scaffolding/tethering proteins as well as Ca2+ and Ca2+-binding proteins contributing to MCS functioning. Compelling evidence now exists for the shuttling of PIs and cholesterol across MCS, affecting their concentrations in distinct membrane domains and diverse roles in membrane trafficking. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at the plasma membrane (PM) not only controls endo-/exocytic membrane dynamics but is also critical in autophagy. Cholesterol is highly concentrated at the PM and enriched in recycling endosomes and Golgi membranes. MCS-mediated cholesterol transfer is intensely researched, identifying MCS dysfunction or altered MCS partnerships to correlate with de-regulated cellular cholesterol homeostasis and pathologies. Annexins, a conserved family of Ca2+-dependent phospholipid binding proteins, contribute to tethering and untethering events at MCS. In this chapter, we will discuss how Ca2+ homeostasis and annexins in the endocytic compartment affect the sensing and transfer of cholesterol and PIs across MCS.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.
| | - Albert Lu
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
4
|
Rocchetti G, Vitali M, Zappaterra M, Righetti L, Sirri R, Lucini L, Dall’Asta C, Davoli R, Galaverna G. A molecular insight into the lipid changes of pig Longissimus thoracis muscle following dietary supplementation with functional ingredients. PLoS One 2022; 17:e0264953. [PMID: 35324931 PMCID: PMC8947141 DOI: 10.1371/journal.pone.0264953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/20/2022] [Indexed: 11/29/2022] Open
Abstract
In this work, the Longissimus thoracis pig skeletal muscle was used as a model to investigate the impact of two different diets, supplemented with n-3 polyunsaturated fatty acids from extruded linseed (L) and polyphenols from grape skin and oregano extracts (L+P), on the lipidomic profile of meat. A standard diet for growing-finishing pigs (CTRL) was used as a control. Changes in lipids profile were investigated through an untargeted lipidomics and transcriptomics combined investigation. The lipidomics identified 1507 compounds, with 195 compounds fitting with the MS/MS spectra of LipidBlast database. When compared with the CTRL group, the L+P diet significantly increased 15 glycerophospholipids and 8 sphingolipids, while the L diet determined a marked up-accumulation of glycerolipids. According to the correlations outlined between discriminant lipids and genes, the L diet may act preventing adipogenesis and the related inflammation processes, while the L+P diet promoted the expression of genes involved in lipids' biosynthesis and adipogenic extracellular matrix formation and functioning.
Collapse
Affiliation(s)
- Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Marika Vitali
- Interdepartmental centre for Industrial Agrifood research (CIRI-AGRO)—Università di Bologna, Cesena, Italy
- Department of Agricultural and Food sciences (DISTAL), Alma Mater Studiorum–Università di Bologna, Bologna, Italy
| | - Martina Zappaterra
- Department of Agricultural and Food sciences (DISTAL), Alma Mater Studiorum–Università di Bologna, Bologna, Italy
| | - Laura Righetti
- Department of Food and Drug, Parco Area delle Scienze, Parma, Italy
| | - Rubina Sirri
- Interdepartmental centre for Industrial Agrifood research (CIRI-AGRO)—Università di Bologna, Cesena, Italy
- Department of Agricultural and Food sciences (DISTAL), Alma Mater Studiorum–Università di Bologna, Bologna, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Chiara Dall’Asta
- Department of Food and Drug, Parco Area delle Scienze, Parma, Italy
| | - Roberta Davoli
- Interdepartmental centre for Industrial Agrifood research (CIRI-AGRO)—Università di Bologna, Cesena, Italy
- Department of Agricultural and Food sciences (DISTAL), Alma Mater Studiorum–Università di Bologna, Bologna, Italy
| | - Gianni Galaverna
- Department of Food and Drug, Parco Area delle Scienze, Parma, Italy
| |
Collapse
|
5
|
Matsarskaia O, Roosen‐Runge F, Schreiber F. Multivalent ions and biomolecules: Attempting a comprehensive perspective. Chemphyschem 2020; 21:1742-1767. [PMID: 32406605 PMCID: PMC7496725 DOI: 10.1002/cphc.202000162] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/13/2020] [Indexed: 12/13/2022]
Abstract
Ions are ubiquitous in nature. They play a key role for many biological processes on the molecular scale, from molecular interactions, to mechanical properties, to folding, to self-organisation and assembly, to reaction equilibria, to signalling, to energy and material transport, to recognition etc. Going beyond monovalent ions to multivalent ions, the effects of the ions are frequently not only stronger (due to the obviously higher charge), but qualitatively different. A typical example is the process of binding of multivalent ions, such as Ca2+ , to a macromolecule and the consequences of this ion binding such as compaction, collapse, potential charge inversion and precipitation of the macromolecule. Here we review these effects and phenomena induced by multivalent ions for biological (macro)molecules, from the "atomistic/molecular" local picture of (potentially specific) interactions to the more global picture of phase behaviour including, e. g., crystallisation, phase separation, oligomerisation etc. Rather than attempting an encyclopedic list of systems, we rather aim for an embracing discussion using typical case studies. We try to cover predominantly three main classes: proteins, nucleic acids, and amphiphilic molecules including interface effects. We do not cover in detail, but make some comparisons to, ion channels, colloidal systems, and synthetic polymers. While there are obvious differences in the behaviour of, and the relevance of multivalent ions for, the three main classes of systems, we also point out analogies. Our attempt of a comprehensive discussion is guided by the idea that there are not only important differences and specific phenomena with regard to the effects of multivalent ions on the main systems, but also important similarities. We hope to bridge physico-chemical mechanisms, concepts of soft matter, and biological observations and connect the different communities further.
Collapse
Affiliation(s)
| | - Felix Roosen‐Runge
- Department of Biomedical Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Faculty of Health and SocietyMalmö UniversitySweden
- Division of Physical ChemistryLund UniversitySweden
| | | |
Collapse
|
6
|
Development of an LDL Receptor-Targeted Peptide Susceptible to Facilitate the Brain Access of Diagnostic or Therapeutic Agents. BIOLOGY 2020; 9:biology9070161. [PMID: 32664518 PMCID: PMC7407834 DOI: 10.3390/biology9070161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 12/02/2022]
Abstract
Blood-brain barrier (BBB) crossing and brain penetration are really challenging for the delivery of therapeutic agents and imaging probes. The development of new crossing strategies is needed, and a wide range of approaches (invasive or not) have been proposed so far. The receptor-mediated transcytosis is an attractive mechanism, allowing the non-invasive penetration of the BBB. Among available targets, the low-density lipoprotein (LDL) receptor (LDLR) shows favorable characteristics mainly because of the lysosome-bypassed pathway of LDL delivery to the brain, allowing an intact discharge of the carried ligand to the brain targets. The phage display technology was employed to identify a dodecapeptide targeted to the extracellular domain of LDLR (ED-LDLR). This peptide was able to bind the ED-LDLR in the presence of natural ligands and dissociated at acidic pH and in the absence of calcium, in a similar manner as the LDL. In vitro, our peptide was endocytosed by endothelial cells through the caveolae-dependent pathway, proper to the LDLR route in BBB, suggesting the prevention of its lysosomal degradation. The in vivo studies performed by magnetic resonance imaging and fluorescent lifetime imaging suggested the brain penetration of this ED-LDLR-targeted peptide.
Collapse
|
7
|
Cho HJ, Lee JG, Kim JH, Kim SY, Huh YH, Kim HJ, Lee KS, Yu K, Lee JS. Vascular defects of DYRK1A knockouts are ameliorated by modulating calcium signaling in zebrafish. Dis Model Mech 2019; 12:dmm.037044. [PMID: 31043432 PMCID: PMC6550036 DOI: 10.1242/dmm.037044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 04/11/2019] [Indexed: 01/05/2023] Open
Abstract
DYRK1A is a major causative gene in Down syndrome (DS). Reduced incidence of solid tumors such as neuroblastoma in DS patients and increased vascular anomalies in DS fetuses suggest a potential role of DYRK1A in angiogenic processes, but in vivo evidence is still scarce. Here, we used zebrafish dyrk1aa mutant embryos to understand DYRK1A function in cerebral vasculature formation. Zebrafish dyrk1aa mutants exhibited cerebral hemorrhage and defects in angiogenesis of central arteries in the developing hindbrain. Such phenotypes were rescued by wild-type dyrk1aa mRNA, but not by a kinase-dead form, indicating the importance of DYRK1A kinase activity. Chemical screening using a bioactive small molecule library identified a calcium chelator, EGTA, as one of the hits that most robustly rescued the hemorrhage. Vascular defects of mutants were also rescued by independent modulation of calcium signaling by FK506. Furthermore, the transcriptomic analyses supported the alterations of calcium signaling networks in dyrk1aa mutants. Together, our results suggest that DYRK1A plays an essential role in angiogenesis and in maintenance of the developing cerebral vasculature via regulation of calcium signaling, which may have therapeutic potential for DYRK1A-related vascular diseases. Summary: The roles of DYRK1A in angiogenesis and maintenance of the developing cerebral vasculature mediated by calcium signaling were revealed using zebrafish dyrk1aa knockout mutants.
Collapse
Affiliation(s)
- Hyun-Ju Cho
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Dementia DTC R&D Convergence Program, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jae-Geun Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jong-Hwan Kim
- KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seon-Young Kim
- KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yang Hoon Huh
- Electron Microscopy Research Center, Korea Basic Science Institute, 162 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28119, Republic of Korea
| | - Hyo-Jeong Kim
- Electron Microscopy Research Center, Korea Basic Science Institute, 162 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28119, Republic of Korea
| | - Kyu-Sun Lee
- KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Hazards Monitoring BNT Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kweon Yu
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Dementia DTC R&D Convergence Program, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jeong-Soo Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea .,Dementia DTC R&D Convergence Program, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| |
Collapse
|
8
|
Dong H, Zhao Z, LeBrun DG, Michaely P. Identification of roles for H264, H306, H439, and H635 in acid-dependent lipoprotein release by the LDL receptor. J Lipid Res 2016; 58:364-374. [PMID: 27895090 DOI: 10.1194/jlr.m070938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/19/2016] [Indexed: 11/20/2022] Open
Abstract
Lipoproteins internalized by the LDL receptor (LDLR) are released from this receptor in endosomes through a process that involves acid-dependent conformational changes in the receptor ectodomain. How acidic pH promotes this release process is not well understood. Here, we assessed roles for six histidine residues for which either genetic or structural data suggested a possible role in the acid-responsiveness of the LDLR. Using assays that measured conformational change, acid-dependent lipoprotein release, LDLR recycling, and net lipoprotein uptake, we show that H635 plays important roles in acid-dependent conformational change and lipoprotein release, while H264, H306, and H439 play ancillary roles in the response of the LDLR to acidic pH.
Collapse
Affiliation(s)
- Hongyun Dong
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Zhenze Zhao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Drake G LeBrun
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Peter Michaely
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
9
|
Wierød L, Cameron J, Strøm TB, Leren TP. Studies of the autoinhibitory segment comprising residues 31-60 of the prodomain of PCSK9: Possible implications for the mechanism underlying gain-of-function mutations. Mol Genet Metab Rep 2016; 9:86-93. [PMID: 27896130 PMCID: PMC5121147 DOI: 10.1016/j.ymgmr.2016.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/14/2016] [Indexed: 01/07/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to the low density lipoprotein receptor (LDLR) at the cell surface and is internalized as a complex with the LDLR. In the acidic milieu of the sorting endosome, PCSK9 remains bound to the LDLR and prevents the LDLR from folding over itself to adopt a closed conformation. As a consequence, the LDLR fails to recycle back to the cell membrane. Even though it is the catalytic domain of PCSK9 that interacts with the LDLR at the cell surface, the structurally disordered segment consisting of residues 31–60 and which is rich in acidic residues, has a negative effect both on autocatalytic cleavage and on the activity of PCSK9 towards the LDLR. Thus, this unstructured segment represents an autoinhibitory domain of PCSK9. One may speculate that post-translational modifications within residues 31–60 may affect the inhibitory activity of this segment, and represent a mechanism for fine-tuning the activity of PCSK9 towards the LDLR. Our data indicate that the inhibitory effect of this unstructured segment results from an interaction with basic residues of the catalytic domain of PCSK9. Mutations in the catalytic domain which involve charged residues, could therefore be gain-of-function mutations by affecting the positioning of this segment.
Collapse
Affiliation(s)
- Lene Wierød
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Jamie Cameron
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Thea Bismo Strøm
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Trond P Leren
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
10
|
Martínez-Oliván J, Arias-Moreno X, Hurtado-Guerrero R, Carrodeguas JA, Miguel-Romero L, Marina A, Bruscolini P, Sancho J. The closed conformation of the LDL receptor is destabilized by the low Ca(++) concentration but favored by the high Mg(++) concentration in the endosome. FEBS Lett 2015; 589:3534-40. [PMID: 26526611 DOI: 10.1016/j.febslet.2015.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/06/2015] [Accepted: 10/14/2015] [Indexed: 10/22/2022]
Abstract
The LDL receptor (LDLR) internalizes LDL and VLDL particles. In the endosomes, it adopts a closed conformation important for recycling, by interaction of two modules of the ligand binding domain (LR4-5) and a β-propeller motif. Here, we investigate by SPR the interactions between those two modules and the β-propeller. Our results indicate that the two modules cooperate to bind the β-propeller. The binding is favored by low pH and by high [Ca(++)]. Our data show that Mg(++), at high concentration in the endosome, favors the formation of the closed conformation by replacing the structuring effect of Ca(++) in LR5. We propose a sequential model of LDL release where formation of the close conformation follows LDL release.
Collapse
Affiliation(s)
- Juan Martínez-Oliván
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain; Aragon Health Research Institute (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain
| | - Xabier Arias-Moreno
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| | - Ramón Hurtado-Guerrero
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Zaragoza, Spain; Aragon Health Research Institute (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain; Fundación ARAID, Diputación General de Aragón, Spain
| | - José Alberto Carrodeguas
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain; Aragon Health Research Institute (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain
| | - Laura Miguel-Romero
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Spain
| | - Alberto Marina
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Spain
| | - Pierpaolo Bruscolini
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Zaragoza, Spain
| | - Javier Sancho
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain; Aragon Health Research Institute (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain.
| |
Collapse
|
11
|
Release of Vesicular Stomatitis Virus Spike Protein G-Pseudotyped Lentivirus from the Host Cell Is Impaired upon Low-Density Lipoprotein Receptor Overexpression. J Virol 2015; 89:11723-6. [PMID: 26339060 DOI: 10.1128/jvi.01869-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 08/28/2015] [Indexed: 01/08/2023] Open
Abstract
Production of a vesicular stomatitis virus spike protein G (VSVG)-pseudotyped lentiviral expression vector in HEK293 cells decreased on overexpression of low-density lipoprotein receptor (LDLR) but not that of ICAM1 or TfR1. Reverse transcription-quantitative PCR (RT-qPCR) revealed a reduction in vector RNA as a function of LDLR expression. Decreased syncytium formation suggested diminished surface expression of VSVG. Intracellular VSVG granules colocalized with LDLR, ER-Golgi intermediate compartment protein 53 (ERGIC53), LAMP2, and vimentin but not with GM130 or calnexin, suggesting that VSVG interacts with LDLR within the ERGIC, resulting in rerouting into the aggresome/autophagosome pathway.
Collapse
|
12
|
Wüstner D, Solanko K. How cholesterol interacts with proteins and lipids during its intracellular transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1908-26. [DOI: 10.1016/j.bbamem.2015.05.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 04/14/2015] [Accepted: 05/13/2015] [Indexed: 12/13/2022]
|
13
|
Martínez-Oliván J, Rozado-Aguirre Z, Arias-Moreno X, Angarica VE, Velázquez-Campoy A, Sancho J. Low-density lipoprotein receptor is a calcium/magnesium sensor - role of LR4 and LR5 ion interaction kinetics in low-density lipoprotein release in the endosome. FEBS J 2014; 281:2638-58. [PMID: 24720672 DOI: 10.1111/febs.12811] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/25/2014] [Accepted: 04/08/2014] [Indexed: 11/28/2022]
Abstract
The low-density lipoprotein receptor (LDLR) captures circulating lipoproteins and delivers them in the endosome for degradation. Its function is essential for cholesterol homeostasis, and mutations in the LDLR are the major cause of familiar hypercholesterolemia. The release of LDL is usually attributed to endosome acidification. As the pH drops, the affinity of the LDLR/LDL complex is reduced, whereas the strength of a self-complex formed between two domains of the receptor (i.e. the LDL binding domain and the β-propeller domain) increases. However, an alternative model states that, as a consequence of a drop in both pH and Ca(2+) concentration, the LDLR binding domain is destabilized in the endosome, which weakens the LDLR/LDL complex, thus liberating the LDL particles. In the present study, we test a key underlying assumption of the second model, namely that the lipoprotein binding repeats of the receptor (specifically repeats 4 and 5, LR4 and LR5) rapidly sense endosomal changes in Ca(2+) concentration. Our kinetic and thermodynamic analysis of Ca(2+) and Mg(2+) binding to LR4 and LR5, as well as to the tandem of the two (LR4-5), shows that both repeats spontaneously release Ca(2+) in a time scale much shorter than endosomal delivery of LDL, thus acting as Ca(2+) sensors that become unfolded under endosomal conditions. Our analysis additionally explains the lower Ca(2+) affinity of repeat LR4, compared to LR5, as arising from a very slow Ca(2+) binding reaction in the former, most likely related to the lower conformational stability of apolipoprotein LR4, compared to apolipoprotein LR5, as determined from thermal unfolding experiments and molecular dynamics simulations.
Collapse
Affiliation(s)
- Juan Martínez-Oliván
- Biocomputation and Complex Systems Physics Institute (BIFI) - Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Distribution of the LDL receptor within clathrin-coated pits and caveolae in rat and human liver. Biochem Biophys Res Commun 2014; 445:422-7. [PMID: 24530906 DOI: 10.1016/j.bbrc.2014.02.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 02/05/2014] [Indexed: 11/22/2022]
Abstract
Several findings suggest that the low-density lipoprotein (LDL) receptor may internalize different lipoprotein particles via diverse pathways. Using a combination of discontinuous sucrose gradients and Triton solubilization studies, we demonstrated that the LDL receptor could be located simultaneously in clathrin-coated pits and caveolae in rat and human liver and in human hepatocyte-like C3A cells. Treatment with the cholesterol biosynthesis inhibitor, zaragozic acid A, shifted the distribution of the LDL receptor to clathrin containing fractions, whereas treatment with cholesterol or LDL shifted the receptor distribution towards caveolin-1 containing fractions. The LDL-dependent shift of the LDL receptor to caveolae coincided with a reduction in internalization of Bodipy-LDL. Redistribution within plasma membrane microdomains in response to specific treatments resulting in changes in LDL receptor function represents a novel paradigm that could be exploited in the development of a new class of therapeutic drugs.
Collapse
|
15
|
Martins IJ, Creegan R. Links between Insulin Resistance, Lipoprotein Metabolism and Amyloidosis in Alzheimer’s Disease. Health (London) 2014. [DOI: 10.4236/health.2014.612190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
LDL receptor and its family members serve as the cellular receptors for vesicular stomatitis virus. Proc Natl Acad Sci U S A 2013; 110:7306-11. [PMID: 23589850 DOI: 10.1073/pnas.1214441110] [Citation(s) in RCA: 426] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Vesicular stomatitis virus (VSV) exhibits a remarkably robust and pantropic infectivity, mediated by its coat protein, VSV-G. Using this property, recombinant forms of VSV and VSV-G-pseudotyped viral vectors are being developed for gene therapy, vaccination, and viral oncolysis and are extensively used for gene transduction in vivo and in vitro. The broad tropism of VSV suggests that it enters cells through a highly ubiquitous receptor, whose identity has so far remained elusive. Here we show that the LDL receptor (LDLR) serves as the major entry port of VSV and of VSV-G-pseudotyped lentiviral vectors in human and mouse cells, whereas other LDLR family members serve as alternative receptors. The widespread expression of LDLR family members accounts for the pantropism of VSV and for the broad applicability of VSV-G-pseudotyped viral vectors for gene transduction.
Collapse
|
17
|
Tveten K, Str M TB, Berge KE, Leren TP. PCSK9-mediated degradation of the LDL receptor generates a 17 kDa C-terminal LDL receptor fragment. J Lipid Res 2013; 54:1560-1566. [PMID: 23509406 DOI: 10.1194/jlr.m034371] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to the LDL receptor (LDLR) at the cell surface and reroutes the internalized LDLR to intracellular degradation. In this study, we have shown that PCSK9-mediated degradation of the full-length 160 kDa LDLR generates a 17 kDa C-terminal LDLR fragment. This fragment was not generated from mutant LDLRs resistant to PCSK9-mediated degradation or when degradation was prevented by chemicals such as ammonium chloride or the cysteine cathepsin inhibitor E64d. The observation that the 17 kDa fragment was only detected when the cells were cultured in the presence of the γ-secretase inhibitor DAPT indicates that this 17 kDa fragment undergoes γ-secretase cleavage within the transmembrane domain. The failure to detect the complementary 143 kDa ectodomain fragment is likely to be due to its rapid degradation in the endosomal lumen. The 17 kDa C-terminal LDLR fragment was also generated from a Class 5 mutant LDLR undergoing intracellular degradation. Thus, one may speculate that an LDLR with bound PCSK9 and a Class 5 LDLR with bound LDL are degraded by a similar mechanism that could involve ectodomain cleavage in the endosome.
Collapse
Affiliation(s)
- Kristian Tveten
- Department of Medical Genetics, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Thea Bismo Str M
- Department of Medical Genetics, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Knut Erik Berge
- Department of Medical Genetics, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Trond P Leren
- Department of Medical Genetics, Oslo University Hospital Rikshospitalet, Oslo, Norway.
| |
Collapse
|
18
|
Pompey S, Zhao Z, Luby-Phelps K, Michaely P. Quantitative fluorescence imaging reveals point of release for lipoproteins during LDLR-dependent uptake. J Lipid Res 2013; 54:744-753. [PMID: 23296879 PMCID: PMC3617948 DOI: 10.1194/jlr.m033548] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/21/2012] [Indexed: 11/20/2022] Open
Abstract
The LDL receptor (LDLR) supports efficient uptake of both LDL and VLDL remnants by binding lipoprotein at the cell surface, internalizing lipoprotein through coated pits, and releasing lipoprotein in endocytic compartments before returning to the surface for further rounds of uptake. While many aspects of lipoprotein binding and receptor entry are well understood, it is less clear where, when, and how the LDLR releases lipoprotein. To address these questions, the current study employed quantitative fluorescence imaging to visualize the uptake and endosomal processing of LDL and the VLDL remnant β-VLDL. We find that lipoprotein release is rapid, with most release occurring prior to entry of lipoprotein into early endosomes. Published biochemical studies have identified two mechanisms of lipoprotein release: one that involves the β-propeller module of the LDLR and a second that is independent of this module. Quantitative imaging comparing uptake supported by the normal LDLR or by an LDLR variant incapable of β-propeller-dependent release shows that the β-propeller-independent process is sufficient for release for both lipoproteins but that the β-propeller process accelerates both LDL and β-VLDL release. Together these findings define where, when, and how lipoprotein release occurs and provide a generalizable methodology for visualizing endocytic handling in situ.
Collapse
Affiliation(s)
- Shanica Pompey
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Zhenze Zhao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Kate Luby-Phelps
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Peter Michaely
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
19
|
Abstract
Fluorescence microscopy can be used to assess quantitatively the interaction between a ligand and its receptor, between two macromolecules, or between a macromolecule and a particular intracellular compartment by co-localization analysis. In general, this analysis involves tagging potential interacting partners with distinct fluorophores-by direct labeling of a small ligand, by expression of fluorescent cDNA constructs, by immunofluorescence labeling, or by some combination of these methods. Pairwise comparison of the fluorescence intensity of the two fluorophores at each pixel in a two channel digital image of the sample reveals regions where both are present. With appropriate protocols, the image data can be interpreted to indicate where the potential interacting partners are co-localized. Keeping in mind the limited resolution of the light microscope, co-localization is often used to support the claim that two molecules are interacting.All quantitative methods for evaluating co-localization begin with identifying the pixels where the intensities of both color channels are above background. Typically this involves two sequential image segmentation steps: the first to exclude pixels where neither channel is above background, and the second to set overlap thresholds that exclude pixels where only one color channel is present. Following segmentation, various quantitative measures can be computed to describe the remaining subset of pixels where the two color channels overlap. These metrics range from simple calculation of the fraction of pixels where overlap occurs to more sophisticated image correlation metrics. Additional constraints may be employed to distinguish true co-localization from random overlap. Finally, an image map showing only the co-localized pixels may be displayed as an additional image channel in order to visualize the spatial distribution of co-localized pixels. Several commercial and open source software solutions provide this type of co-localization analysis, making image segmentation and calculation of metrics relatively straightforward. As an example, we provide a protocol for the time-dependent co-localization of fluorescently tagged lipoproteins with LDL receptor (LDLR) and with the early endosome marker EEA1.
Collapse
|
20
|
De Marcos Lousa C, Gershlick DC, Denecke J. Mechanisms and concepts paving the way towards a complete transport cycle of plant vacuolar sorting receptors. THE PLANT CELL 2012; 24:1714-32. [PMID: 22570446 PMCID: PMC3442565 DOI: 10.1105/tpc.112.095679] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Delivery of proteins to the lytic vacuole in plants is a complex cascade of selective interactions that specifically excludes residents of the endoplasmic reticulum and secreted proteins. Vacuolar transport must be highly efficient to avoid mistargeting of hydrolytic enzymes to locations where they could be harmful. While plant vacuolar sorting signals have been well described for two decades, it is only during the last 5 years that a critical mass of data was gathered that begins to reveal how vacuolar sorting receptors (VSRs) may complete a full transport cycle. Yet, the field is far from reaching a consensus regarding the organelles that could be involved in vacuolar sorting, their potential biogenesis, and the ultimate recycling of membranes and protein machinery that maintain this pathway. This review will highlight the important landmarks in our understanding of VSR function and compare recent transport models that have been proposed so that an emerging picture of plant vacuolar sorting mechanisms can be drawn.
Collapse
|
21
|
Guttman M, Komives EA. The structure, dynamics, and binding of the LA45 module pair of the low-density lipoprotein receptor suggest an important role for LA4 in ligand release. Biochemistry 2011; 50:11001-8. [PMID: 22091758 DOI: 10.1021/bi2014486] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The low-density lipoprotein receptor (LDLR), the primary receptor for cholesterol uptake, binds ligands through its seven LDL-A modules (LAs). We present nuclear magnetic resonance (NMR) and ligand binding measurements on the fourth and fifth modules of the LDLR (LA45), the modules critical for ApoE binding, at physiological pH. Unlike LA5 and all other modules in LDLR, LA4 has a very weak calcium affinity, which probably plays a critical role in endosomal ligand release. The NMR solution structure of each module in the LA45 pair only showed minor differences compared to the analogous domains in previously determined crystal structures. The 12-residue linker connecting the modules, though slightly structured through an interaction with LA4, is highly flexible. Although no intermodule nuclear Overhauser effects were detected, chemical shift perturbations and backbone dynamics suggest cross talk between the two modules. The ligand affinity of both modules is enhanced when the two are linked. LA4 is more flexible than LA5 and remains so even in the module pair, which likely is related to its weaker calcium binding affinity.
Collapse
Affiliation(s)
- Miklos Guttman
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093-0378, United States
| | | |
Collapse
|
22
|
Calandra S, Tarugi P, Speedy HE, Dean AF, Bertolini S, Shoulders CC. Mechanisms and genetic determinants regulating sterol absorption, circulating LDL levels, and sterol elimination: implications for classification and disease risk. J Lipid Res 2011; 52:1885-926. [PMID: 21862702 DOI: 10.1194/jlr.r017855] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This review integrates historical biochemical and modern genetic findings that underpin our understanding of the low-density lipoprotein (LDL) dyslipidemias that bear on human disease. These range from life-threatening conditions of infancy through severe coronary heart disease of young adulthood, to indolent disorders of middle- and old-age. We particularly focus on the biological aspects of those gene mutations and variants that impact on sterol absorption and hepatobiliary excretion via specific membrane transporter systems (NPC1L1, ABCG5/8); the incorporation of dietary sterols (MTP) and of de novo synthesized lipids (HMGCR, TRIB1) into apoB-containing lipoproteins (APOB) and their release into the circulation (ANGPTL3, SARA2, SORT1); and receptor-mediated uptake of LDL and of intestinal and hepatic-derived lipoprotein remnants (LDLR, APOB, APOE, LDLRAP1, PCSK9, IDOL). The insights gained from integrating the wealth of genetic data with biological processes have important implications for the classification of clinical and presymptomatic diagnoses of traditional LDL dyslipidemias, sitosterolemia, and newly emerging phenotypes, as well as their management through both nutritional and pharmaceutical means.
Collapse
Affiliation(s)
- Sebastiano Calandra
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | | | | | | | |
Collapse
|
23
|
Scott CC, Gruenberg J. Ion flux and the function of endosomes and lysosomes: pH is just the start: the flux of ions across endosomal membranes influences endosome function not only through regulation of the luminal pH. Bioessays 2011; 33:103-10. [PMID: 21140470 DOI: 10.1002/bies.201000108] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ionic nature of endosomes varies considerably in character along the endocytic pathway. Counter-ion flux across the limiting membrane of endosomes has long been considered essential for full acidification and normal endosome/lysosomal function. The proximal functions of luminal ions, however, have been difficult to assess. The recent development of transgenic mice carrying mutations in the intracellular chloride channels (ClCs) has provided a tool to uncouple Cl(-) influx from endosomal acidification. Intriguingly, many of the defects of the endo-lysomal system attributed to aberrant pH persist in the Cl(-)-deficient mice implying a direct regulatory role for Cl(-) influx in endosome function. These observations may begin to explain the abundance of endosomal ion transporters, including ClCs, sodium-proton exchangers, two-pore channels and mucolipins, that have been localized to endo-lysosomes, and the extensive changes in luminal ion composition therein. In this review, we summarize what is known regarding the mediators of endosomal ion flux, and discuss the implications of changing ionic content on endo-lysosomal function.
Collapse
Affiliation(s)
- Cameron C Scott
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
24
|
Zhao Z, Michaely P. Role of an intramolecular contact on lipoprotein uptake by the LDL receptor. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:397-408. [PMID: 21511053 DOI: 10.1016/j.bbalip.2011.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/09/2011] [Accepted: 04/01/2011] [Indexed: 01/06/2023]
Abstract
The LDL receptor (LDLR) is an endocytic receptor that plays a major role in the clearance of atherogenic lipoproteins from the circulation. During the endocytic process, the LDLR first binds lipoprotein at the cell surface and then traffics to endosomes, where the receptor releases bound lipoprotein. Release is acid-dependent and correlates with the formation of an intramolecular contact within the receptor. Human mutations at residues that form the contact are associated with familial hypercholesterolemia (FH) and the goal of the present study was to determine the role of contact residues on LDLR function. We show that mutations at nine contact residues reduce the ability of the LDLR to support lipoprotein uptake. Unexpectedly, only four of the mutations (W515A, W541A, H562Y and H586Y) impaired acid-dependent lipoprotein release. The remaining mutations decreased the lipoprotein-binding capacity of the LDLR through either reduction in the number of surface receptors (H190Y, K560W, H562Y and K582W) or reduction in the fraction of surface receptors that were competent to bind lipoprotein (W144A and W193A). We also examined three residues, distal to the contact, which were predicted to be necessary for the LDLR to adopt the acidic conformation. Of the three mutations we tested (G293S, F362A and G375S), one mutation (F362A) reduced lipoprotein uptake. Together, these data suggest that the intramolecular interface plays multiple roles in LDLR function.
Collapse
Affiliation(s)
- Zhenze Zhao
- Department of Cell Biology at the University of Texas Southwestern Medical Center, Dallas, TX 75390-9039 USA
| | | |
Collapse
|
25
|
Hauser PS, Narayanaswami V, Ryan RO. Apolipoprotein E: from lipid transport to neurobiology. Prog Lipid Res 2010; 50:62-74. [PMID: 20854843 DOI: 10.1016/j.plipres.2010.09.001] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/04/2010] [Accepted: 09/12/2010] [Indexed: 12/17/2022]
Abstract
Apolipoprotein (apo) E has a storied history as a lipid transport protein. The integral association between cholesterol homeostasis and lipoprotein clearance from circulation are intimately related to apoE's function as a ligand for cell-surface receptors of the low-density lipoprotein receptor family. The receptor binding properties of apoE are strongly influenced by isoform specific amino acid differences as well as the lipidation state of the protein. As understanding of apoE as a structural component of circulating plasma lipoproteins has evolved, exciting developments in neurobiology have revitalized interest in apoE. The strong and enduring correlation between the apoE4 isoform and age of onset and increased risk of Alzheimer's disease has catapulted apoE to the forefront of neurobiology. Using genetic tools generated for study of apoE lipoprotein metabolism, transgenic "knock-in" and gene-disrupted mice are now favored models for study of its role in a variety of neurodegenerative diseases. Key structural knowledge of apoE and isoform-specific differences is driving research activity designed to elucidate how a single amino acid change can manifest such profoundly significant pathological consequences. This review describes apoE through a lens of structure-based knowledge that leads to hypotheses that attempt to explain the functions of apoE and isoform-specific effects relating to disease mechanism.
Collapse
Affiliation(s)
- Paul S Hauser
- Center for Prevention of Obesity, Cardiovascular Disease and Diabetes, Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, USA
| | | | | |
Collapse
|
26
|
Arias-Moreno X, Cuesta-Lopez S, Millet O, Sancho J, Velazquez-Campoy A. Thermodynamics of protein-cation interaction: Ca+2and Mg+2binding to the fifth binding module of the LDL receptor. Proteins 2009; 78:950-61. [DOI: 10.1002/prot.22619] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|