1
|
Satoh Y, Higuchi K, Nishikawa D, Wakimoto H, Konami M, Sakamoto K, Kitagawa Y, Gotoh B, Jiang DP, Hotta H, Itoh M. M protein of subacute sclerosing panencephalitis virus, synergistically with the F protein, plays a crucial role in viral neuropathogenicity. J Gen Virol 2021; 102. [PMID: 34643483 PMCID: PMC8604190 DOI: 10.1099/jgv.0.001682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Subacute sclerosing panencephalitis (SSPE) is a rare fatal neurodegenerative disease caused by a measles virus (MV) variant, SSPE virus, that accumulates mutations during long-term persistent infection of the central nervous system (CNS). Clusters of mutations identified around the matrix (M) protein in many SSPE viruses suppress productive infectious particle release and accelerate cell–cell fusion, which are features of SSPE viruses. It was reported, however, that these defects of M protein function might not be correlated directly with promotion of neurovirulence, although they might enable establishment of persistent infection. Neuropathogenicity is closely related to the character of the viral fusion (F) protein, and amino acid substitution(s) in the F protein of some SSPE viruses confers F protein hyperfusogenicity, facilitating viral propagation in the CNS through cell–cell fusion and leading to neurovirulence. The F protein of an SSPE virus Kobe-1 strain, however, displayed only moderately enhanced fusion activity and required additional mutations in the M protein for neuropathogenicity in mice. We demonstrated here the mechanism for the M protein of the Kobe-1 strain supporting the fusion activity of the F protein and cooperatively inducing neurovirulence, even though each protein, independently, has no effect on virulence. The occurrence of SSPE has been estimated recently as one in several thousand in children who acquired measles under the age of 5 years, markedly higher than reported previously. The probability of a specific mutation (or mutations) occurring in the F protein conferring hyperfusogenicity and neuropathogenicity might not be sufficient to explain the high frequency of SSPE. The induction of neurovirulence by M protein synergistically with moderately fusogenic F protein could account for the high frequency of SSPE.
Collapse
Affiliation(s)
- Yuto Satoh
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Kurara Higuchi
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Daichi Nishikawa
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Hiroshi Wakimoto
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Miho Konami
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Kento Sakamoto
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Yoshinori Kitagawa
- Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Bin Gotoh
- Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Da-Peng Jiang
- Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Hak Hotta
- Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
- Present address: Faculty of Clinical Nutrition and Dietetics, Konan Women’s University, Kobe, Hyogo, Japan
| | - Masae Itoh
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
- *Correspondence: Masae Itoh,
| |
Collapse
|
2
|
Nagarkar RP, Fichman G, Schneider JP. Engineering and characterization of apH‐sensitive homodimeric antiparallel coiled coil. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Radhika P. Nagarkar
- Department of Chemistry and Biochemistry University of Delaware Newark Delaware USA
| | - Galit Fichman
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health Frederick Maryland USA
| | - Joel P. Schneider
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health Frederick Maryland USA
| |
Collapse
|
3
|
Kalbermatter D, Shrestha N, Ader-Ebert N, Herren M, Moll P, Plemper RK, Altmann KH, Langedijk JP, Gall F, Lindenmann U, Riedl R, Fotiadis D, Plattet P. Primary resistance mechanism of the canine distemper virus fusion protein against a small-molecule membrane fusion inhibitor. Virus Res 2018; 259:28-37. [PMID: 30296457 DOI: 10.1016/j.virusres.2018.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/30/2018] [Accepted: 10/03/2018] [Indexed: 10/28/2022]
Abstract
Morbilliviruses (e.g. measles virus [MeV] or canine distemper virus [CDV]) employ the attachment (H) and fusion (F) envelope glycoproteins for cell entry. H protein engagement to a cognate receptor eventually leads to F-triggering. Upon activation, F proteins transit from a prefusion to a postfusion conformation; a refolding process that is associated with membrane merging. Small-molecule morbilliviral fusion inhibitors such as the compound 3G (a chemical analog in the AS-48 class) were previously generated and mechanistic studies revealed a stabilizing effect on morbilliviral prefusion F trimers. Here, we aimed at designing 3G-resistant CDV F mutants by introducing single cysteine residues at hydrophobic core positions of the helical stalk region. Covalently-linked F dimers were generated, which highlighted substantial conformational flexibility within the stalk to achieve those irregular F conformations. Our findings demonstrate that "top-stalk" CDV F cysteine mutants (F-V571C and F-L575C) remained functional and gained resistance to 3G. Conversely, although not all "bottom-stalk" F cysteine variants preserved proper bioactivity, those that remained functional exhibited 3G-sensitivity. According to the recently determined prefusion MeV F trimer/AS-48 co-crystal structure, CDV residues F-V571 and F-L575 may directly interact with 3G. A combination of conformation-specific anti-F antibodies and low-resolution electron microscopy structural analyses confirmed that 3G lost its stabilizing effect on "top-stalk" F cysteine mutants thus suggesting a primary resistance mechanism. Overall, our data suggest that the fusion inhibitor 3G stabilizes prefusion CDV F trimers by docking at the top of the stalk domain.
Collapse
Affiliation(s)
- David Kalbermatter
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, CH-3012, Bern, Switzerland
| | - Neeta Shrestha
- Division of Experimental and Clinical Research, Vetsuisse Faculty, University of Bern, CH-3001, Bern, Switzerland
| | - Nadine Ader-Ebert
- Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland
| | - Michael Herren
- Division of Experimental and Clinical Research, Vetsuisse Faculty, University of Bern, CH-3001, Bern, Switzerland
| | - Pascal Moll
- Division of Experimental and Clinical Research, Vetsuisse Faculty, University of Bern, CH-3001, Bern, Switzerland
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Karl-Heinz Altmann
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | | | - Flavio Gall
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, CH-8820, Wädenswil, Switzerland
| | - Urs Lindenmann
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, CH-8820, Wädenswil, Switzerland
| | - Rainer Riedl
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, CH-8820, Wädenswil, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, CH-3012, Bern, Switzerland
| | - Philippe Plattet
- Division of Experimental and Clinical Research, Vetsuisse Faculty, University of Bern, CH-3001, Bern, Switzerland.
| |
Collapse
|
4
|
Satoh Y, Yonemori S, Hirose M, Shogaki H, Wakimoto H, Kitagawa Y, Gotoh B, Shirai T, Takahashi KI, Itoh M. A residue located at the junction of the head and stalk regions of measles virus fusion protein regulates membrane fusion by controlling conformational stability. J Gen Virol 2017; 98:143-154. [PMID: 27911256 DOI: 10.1099/jgv.0.000670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The fusion (F) protein of measles virus performs refolding from the thermodynamically metastable prefusion form to the highly stable postfusion form via an activated unstable intermediate stage, to induce membrane fusion. Some amino acids involved in the fusion regulation cluster in the heptad repeat B (HR-B) domain of the stalk region, among which substitution of residue 465 by various amino acids revealed that fusion activity correlates well with its side chain length from the Cα (P<0.01) and van der Waals volume (P<0.001), except for Phe, Tyr, Trp, Pro and His carrying ring structures. Directed towards the head region, longer side chains of the non-ring-type 465 residues penetrate more deeply into the head region and may disturb the hydrophobic interaction between the stalk and head regions and cause destabilization of the molecule by lowering the energy barrier for refolding, which conferred the F protein enhanced fusion activity. Contrarily, the side chain of ring-type 465 residues turned away from the head region, resulting in not only no contact with the head region but also extensive coverage of the HR-B surface, which may prevent the dissociation of the HR-B bundle for initiation of membrane fusion and suppress fusion activity. Located in the HR-B domain just at the junction between the head and stalk regions, amino acid 465 is endowed with a possible ability to either destabilize or stabilize the F protein depending on its molecular volume and the direction of the side chain, regulating fusion activity of measles virus F protein.
Collapse
Affiliation(s)
- Yuto Satoh
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan
| | - Saeka Yonemori
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan
| | - Mitsuhiro Hirose
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan
| | - Hiroko Shogaki
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan
| | - Hiroshi Wakimoto
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan
| | - Yoshinori Kitagawa
- Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Bin Gotoh
- Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Tsuyoshi Shirai
- Department of Computer Bioscience, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan
| | - Ken-Ichi Takahashi
- Department of Computer Bioscience, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan
| | - Masae Itoh
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan
| |
Collapse
|
5
|
Tahara M, Takeda M. [Measles Virus]. Uirusu 2017; 67:3-16. [PMID: 29593149 DOI: 10.2222/jsv.67.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Measles virus (MeV) is exceptionally contagious and still a major cause of death in child.However, recently significant progress towards the elimination of measles has been made through increased vaccination coverage of measles-containing vaccines. The hemagglutinin (H) protein of MeV interacts with a cellular receptor, and this interaction is the first step of infection. MeV uses two different receptors, signaling lymphocyte activation molecule (SLAM) and nectin-4 expressed on immune cells and epithelial cells, respectively. The interactions of MeV with these receptors nicely explain the immune suppressive and high contagious properties of MeV. Binding of the H protein to a receptor triggers conformational changes in the fusion (F) protein, inducing fusion between viral and host plasma membranes for entry. The stalk region of the H protein plays a key role in the F protein-triggering. Recent studies of the H protein epitopes have revealed that the receptor binding site of the H protein constitutes a major neutralizing epitope. The interaction with two proteinaceous receptors probably imposes strong functional constraints on this epitope for amino acid changes. This would be a reason why measles vaccines, which are derived from MV strains isolated more than 60 years ago, are still highly effective against all MV strains currently circulating.
Collapse
Affiliation(s)
- Maino Tahara
- Department of Virology III, National Institute of Infectious Diseases
| | - Makoto Takeda
- Department of Virology III, National Institute of Infectious Diseases
| |
Collapse
|
6
|
Measles Virus Fusion Protein: Structure, Function and Inhibition. Viruses 2016; 8:112. [PMID: 27110811 PMCID: PMC4848605 DOI: 10.3390/v8040112] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/26/2016] [Accepted: 04/14/2016] [Indexed: 01/02/2023] Open
Abstract
Measles virus (MeV), a highly contagious member of the Paramyxoviridae family, causes measles in humans. The Paramyxoviridae family of negative single-stranded enveloped viruses includes several important human and animal pathogens, with MeV causing approximately 120,000 deaths annually. MeV and canine distemper virus (CDV)-mediated diseases can be prevented by vaccination. However, sub-optimal vaccine delivery continues to foster MeV outbreaks. Post-exposure prophylaxis with antivirals has been proposed as a novel strategy to complement vaccination programs by filling herd immunity gaps. Recent research has shown that membrane fusion induced by the morbillivirus glycoproteins is the first critical step for viral entry and infection, and determines cell pathology and disease outcome. Our molecular understanding of morbillivirus-associated membrane fusion has greatly progressed towards the feasibility to control this process by treating the fusion glycoprotein with inhibitory molecules. Current approaches to develop anti-membrane fusion drugs and our knowledge on drug resistance mechanisms strongly suggest that combined therapies will be a prerequisite. Thus, discovery of additional anti-fusion and/or anti-attachment protein small-molecule compounds may eventually translate into realistic therapeutic options.
Collapse
|
7
|
Canine Distemper Virus Fusion Activation: Critical Role of Residue E123 of CD150/SLAM. J Virol 2015; 90:1622-37. [PMID: 26608324 DOI: 10.1128/jvi.02405-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/18/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Measles virus (MeV) and canine distemper virus (CDV) possess tetrameric attachment proteins (H) and trimeric fusion proteins, which cooperate with either SLAM or nectin 4 receptors to trigger membrane fusion for cell entry. While the MeV H-SLAM cocrystal structure revealed the binding interface, two distinct oligomeric H assemblies were also determined. In one of the conformations, two SLAM units were sandwiched between two discrete H head domains, thus spotlighting two binding interfaces ("front" and "back"). Here, we investigated the functional relevance of both interfaces in activating the CDV membrane fusion machinery. While alanine-scanning mutagenesis identified five critical regulatory residues in the front H-binding site of SLAM, the replacement of a conserved glutamate residue (E at position 123, replaced with A [E123A]) led to the most pronounced impact on fusion promotion. Intriguingly, while determination of the interaction of H with the receptor using soluble constructs revealed reduced binding for the identified SLAM mutants, no effect was recorded when physical interaction was investigated with the full-length counterparts of both molecules. Conversely, although mutagenesis of three strategically selected residues within the back H-binding site of SLAM did not substantially affect fusion triggering, nevertheless, the mutants weakened the H-SLAM interaction recorded with the membrane-anchored protein constructs. Collectively, our findings support a mode of binding between the attachment protein and the V domain of SLAM that is common to all morbilliviruses and suggest a major role of the SLAM residue E123, located at the front H-binding site, in triggering the fusion machinery. However, our data additionally support the hypothesis that other microdomain(s) of both glycoproteins (including the back H-binding site) might be required to achieve fully productive H-SLAM interactions. IMPORTANCE A complete understanding of the measles virus and canine distemper virus (CDV) cell entry molecular framework is still lacking, thus impeding the rational design of antivirals. Both viruses share many biological features that partially rely on the use of analogous Ig-like host cell receptors, namely, SLAM and nectin 4, for entering immune and epithelial cells, respectively. Here, we provide evidence that the mode of binding between the membrane-distal V domain of SLAM and the attachment protein (H) of morbilliviruses is very likely conserved. Moreover, although structural information revealed two discrete conformational states of H, one of the structures displayed two H-SLAM binding interfaces ("front" and "back"). Our data not only spotlight the front H-binding site of SLAM as the main determinant of membrane fusion promotion but suggest that the triggering efficiency of the viral entry machinery may rely on a local conformational change within the front H-SLAM interactive site rather than the binding affinity.
Collapse
|
8
|
Ader-Ebert N, Khosravi M, Herren M, Avila M, Alves L, Bringolf F, Örvell C, Langedijk JP, Zurbriggen A, Plemper RK, Plattet P. Sequential conformational changes in the morbillivirus attachment protein initiate the membrane fusion process. PLoS Pathog 2015; 11:e1004880. [PMID: 25946112 PMCID: PMC4422687 DOI: 10.1371/journal.ppat.1004880] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/14/2015] [Indexed: 11/18/2022] Open
Abstract
Despite large vaccination campaigns, measles virus (MeV) and canine distemper virus (CDV) cause major morbidity and mortality in humans and animals, respectively. The MeV and CDV cell entry system relies on two interacting envelope glycoproteins: the attachment protein (H), consisting of stalk and head domains, co-operates with the fusion protein (F) to mediate membrane fusion. However, how receptor-binding by the H-protein leads to F-triggering is not fully understood. Here, we report that an anti-CDV-H monoclonal antibody (mAb-1347), which targets the linear H-stalk segment 126-133, potently inhibits membrane fusion without interfering with H receptor-binding or F-interaction. Rather, mAb-1347 blocked the F-triggering function of H-proteins regardless of the presence or absence of the head domains. Remarkably, mAb-1347 binding to headless CDV H, as well as standard and engineered bioactive stalk-elongated CDV H-constructs treated with cells expressing the SLAM receptor, was enhanced. Despite proper cell surface expression, fusion promotion by most H-stalk mutants harboring alanine substitutions in the 126-138 "spacer" section was substantially impaired, consistent with deficient receptor-induced mAb-1347 binding enhancement. However, a previously reported F-triggering defective H-I98A variant still exhibited the receptor-induced "head-stalk" rearrangement. Collectively, our data spotlight a distinct mechanism for morbillivirus membrane fusion activation: prior to receptor contact, at least one of the morbillivirus H-head domains interacts with the membrane-distal "spacer" domain in the H-stalk, leaving the F-binding site located further membrane-proximal in the stalk fully accessible. This "head-to-spacer" interaction conformationally stabilizes H in an auto-repressed state, which enables intracellular H-stalk/F engagement while preventing the inherent H-stalk's bioactivity that may prematurely activate F. Receptor-contact disrupts the "head-to-spacer" interaction, which subsequently "unlocks" the stalk, allowing it to rearrange and trigger F. Overall, our study reveals essential mechanistic requirements governing the activation of the morbillivirus membrane fusion cascade and spotlights the H-stalk "spacer" microdomain as a possible drug target for antiviral therapy.
Collapse
Affiliation(s)
- Nadine Ader-Ebert
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health (DCR-VPH), Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Mojtaba Khosravi
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health (DCR-VPH), Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Michael Herren
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health (DCR-VPH), Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Mislay Avila
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health (DCR-VPH), Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Lisa Alves
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health (DCR-VPH), Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Fanny Bringolf
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health (DCR-VPH), Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Claes Örvell
- Division of Laboratory Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | - Andreas Zurbriggen
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health (DCR-VPH), Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Richard K. Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
| | - Philippe Plattet
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health (DCR-VPH), Vetsuisse Faculty, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
9
|
SLAM- and nectin-4-independent noncytolytic spread of canine distemper virus in astrocytes. J Virol 2015; 89:5724-33. [PMID: 25787275 DOI: 10.1128/jvi.00004-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/09/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Measles and canine distemper viruses (MeV and CDV, respectively) first replicate in lymphatic and epithelial tissues by using SLAM and nectin-4 as entry receptors, respectively. The viruses may also invade the brain to establish persistent infections, triggering fatal complications, such as subacute sclerosis pan-encephalitis (SSPE) in MeV infection or chronic, multiple sclerosis-like, multifocal demyelinating lesions in the case of CDV infection. In both diseases, persistence is mediated by viral nucleocapsids that do not require packaging into particles for infectivity but are directly transmitted from cell to cell (neurons in SSPE or astrocytes in distemper encephalitis), presumably by relying on restricted microfusion events. Indeed, although morphological evidence of fusion remained undetectable, viral fusion machineries and, thus, a putative cellular receptor, were shown to contribute to persistent infections. Here, we first showed that nectin-4-dependent cell-cell fusion in Vero cells, triggered by a demyelinating CDV strain, remained extremely limited, thereby supporting a potential role of nectin-4 in mediating persistent infections in astrocytes. However, nectin-4 could not be detected in either primary cultured astrocytes or the white matter of tissue sections. In addition, a bioengineered "nectin-4-blind" recombinant CDV retained full cell-to-cell transmission efficacy in primary astrocytes. Combined with our previous report demonstrating the absence of SLAM expression in astrocytes, these findings are suggestive for the existence of a hitherto unrecognized third CDV receptor expressed by glial cells that contributes to the induction of noncytolytic cell-to-cell viral transmission in astrocytes. IMPORTANCE While persistent measles virus (MeV) infection induces SSPE in humans, persistent canine distemper virus (CDV) infection causes chronic progressive or relapsing demyelination in carnivores. Common to both central nervous system (CNS) infections is that persistence is based on noncytolytic cell-to-cell spread, which, in the case of CDV, was demonstrated to rely on functional membrane fusion machinery complexes. This inferred a mechanism where nucleocapsids are transmitted through macroscopically invisible microfusion events between infected and target cells. Here, we provide evidence that CDV induces such microfusions in a SLAM- and nectin-4-independent manner, thereby strongly suggesting the existence of a third receptor expressed in glial cells (referred to as GliaR). We propose that GliaR governs intercellular transfer of nucleocapsids and hence contributes to viral persistence in the brain and ensuing demyelinating lesions.
Collapse
|
10
|
Bose S, Jardetzky TS, Lamb RA. Timing is everything: Fine-tuned molecular machines orchestrate paramyxovirus entry. Virology 2015; 479-480:518-31. [PMID: 25771804 PMCID: PMC4424121 DOI: 10.1016/j.virol.2015.02.037] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 01/21/2015] [Accepted: 02/18/2015] [Indexed: 11/30/2022]
Abstract
The Paramyxoviridae include some of the great and ubiquitous disease-causing viruses of humans and animals. In most paramyxoviruses, two viral membrane glycoproteins, fusion protein (F) and receptor binding protein (HN, H or G) mediate a concerted process of recognition of host cell surface molecules followed by fusion of viral and cellular membranes, resulting in viral nucleocapsid entry into the cytoplasm. The interactions between the F and HN, H or G viral glycoproteins and host molecules are critical in determining host range, virulence and spread of these viruses. Recently, atomic structures, together with biochemical and biophysical studies, have provided major insights into how these two viral glycoproteins successfully interact with host receptors on cellular membranes and initiate the membrane fusion process to gain entry into cells. These studies highlight the conserved core mechanisms of paramyxovirus entry that provide the fundamental basis for rational anti-viral drug design and vaccine development. New structural and functional insights into paramyxovirus entry mechanisms. Current data on paramyxovirus glycoproteins suggest a core conserved entry mechanism. Diverse mechanisms preventing premature fusion activation exist in these viruses. Precise spacio-temporal interplay between paramyxovirus glycoproteins initiate entry.
Collapse
Affiliation(s)
- Sayantan Bose
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208-3500, United States.
| | - Theodore S Jardetzky
- Department of Structural Biology and Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Robert A Lamb
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208-3500, United States; Howard Hughes Medical Institute, Northwestern University, Evanston, IL 60208-3500, United States.
| |
Collapse
|
11
|
Canine distemper virus envelope protein interactions modulated by hydrophobic residues in the fusion protein globular head. J Virol 2014; 89:1445-51. [PMID: 25355896 DOI: 10.1128/jvi.01828-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Membrane fusion for morbillivirus cell entry relies on critical interactions between the viral fusion (F) and attachment (H) envelope glycoproteins. Through extensive mutagenesis of an F cavity recently proposed to contribute to F's interaction with the H protein, we identified two neighboring hydrophobic residues responsible for severe F-to-H binding and fusion-triggering deficiencies when they were mutated in combination. Since both residues reside on one side of the F cavity, the data suggest that H binds the F globular head domain sideways.
Collapse
|
12
|
Kumar N, Maherchandani S, Kashyap SK, Singh SV, Sharma S, Chaubey KK, Ly H. Peste des petits ruminants virus infection of small ruminants: a comprehensive review. Viruses 2014; 6:2287-327. [PMID: 24915458 PMCID: PMC4074929 DOI: 10.3390/v6062287] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/26/2014] [Accepted: 05/28/2014] [Indexed: 12/14/2022] Open
Abstract
Peste des petits ruminants (PPR) is caused by a Morbillivirus that belongs to the family Paramyxoviridae. PPR is an acute, highly contagious and fatal disease primarily affecting goats and sheep, whereas cattle undergo sub-clinical infection. With morbidity and mortality rates that can be as high as 90%, PPR is classified as an OIE (Office International des Epizooties)-listed disease. Considering the importance of sheep and goats in the livelihood of the poor and marginal farmers in Africa and South Asia, PPR is an important concern for food security and poverty alleviation. PPR virus (PPRV) and rinderpest virus (RPV) are closely related Morbilliviruses. Rinderpest has been globally eradicated by mass vaccination. Though a live attenuated vaccine is available against PPR for immunoprophylaxis, due to its instability in subtropical climate (thermo-sensitivity), unavailability of required doses and insufficient coverage (herd immunity), the disease control program has not been a great success. Further, emerging evidence of poor cross neutralization between vaccine strain and PPRV strains currently circulating in the field has raised concerns about the protective efficacy of the existing PPR vaccines. This review summarizes the recent advancement in PPRV replication, its pathogenesis, immune response to vaccine and disease control. Attempts have also been made to highlight the current trends in understanding the host susceptibility and resistance to PPR.
Collapse
Affiliation(s)
- Naveen Kumar
- Virology Laboratory, Division of Animal Health, Central Institute for Research on Goats, Makhdoom, P.O. Farah, Mathura, UP 281122, India.
| | - Sunil Maherchandani
- Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan 334001, India.
| | - Sudhir Kumar Kashyap
- Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan 334001, India.
| | - Shoor Vir Singh
- Virology Laboratory, Division of Animal Health, Central Institute for Research on Goats, Makhdoom, P.O. Farah, Mathura, UP 281122, India.
| | - Shalini Sharma
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana 125004, India.
| | - Kundan Kumar Chaubey
- Virology Laboratory, Division of Animal Health, Central Institute for Research on Goats, Makhdoom, P.O. Farah, Mathura, UP 281122, India.
| | - Hinh Ly
- Veterinary and Biomedical Sciences Department, University of Minnesota, 1988 Fitch Ave., Ste 295, Saint Paul, MN 55108, USA.
| |
Collapse
|
13
|
Identification of amino acid substitutions with compensational effects in the attachment protein of canine distemper virus. J Virol 2014; 88:8057-64. [PMID: 24807725 DOI: 10.1128/jvi.00454-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hemagglutinin (H) gene of canine distemper virus (CDV) encodes the receptor-binding protein. This protein, together with the fusion (F) protein, is pivotal for infectivity since it contributes to the fusion of the viral envelope with the host cell membrane. Of the two receptors currently known for CDV (nectin-4 and the signaling lymphocyte activation molecule [SLAM]), SLAM is considered the most relevant for host susceptibility. To investigate how evolution might have impacted the host-CDV interaction, we examined the functional properties of a series of missense single nucleotide polymorphisms (SNPs) naturally accumulating within the H-gene sequences during the transition between two distinct but related strains. The two strains, a wild-type strain and a consensus strain, were part of a single continental outbreak in European wildlife and occurred in distinct geographical areas 2 years apart. The deduced amino acid sequence of the two H genes differed at 5 residues. A panel of mutants carrying all the combinations of the SNPs was obtained by site-directed mutagenesis. The selected mutant, wild type, and consensus H proteins were functionally evaluated according to their surface expression, SLAM binding, fusion protein interaction, and cell fusion efficiencies. The results highlight that the most detrimental functional effects are associated with specific sets of SNPs. Strikingly, an efficient compensational system driven by additional SNPs appears to come into play, virtually neutralizing the negative functional effects. This system seems to contribute to the maintenance of the tightly regulated function of the H-gene-encoded attachment protein. Importance: To investigate how evolution might have impacted the host-canine distemper virus (CDV) interaction, we examined the functional properties of naturally occurring single nucleotide polymorphisms (SNPs) in the hemagglutinin gene of two related but distinct strains of CDV. The hemagglutinin gene encodes the attachment protein, which is pivotal for infection. Our results show that few SNPs have a relevant detrimental impact and they generally appear in specific combinations (molecular signatures). These drastic negative changes are neutralized by compensatory mutations, which contribute to maintenance of an overall constant bioactivity of the attachment protein. This compensational mechanism might reflect the reaction of the CDV machinery to the changes occurring in the virus following antigenic variations critical for virulence.
Collapse
|
14
|
Qeska V, Barthel Y, Herder V, Stein VM, Tipold A, Urhausen C, Günzel-Apel AR, Rohn K, Baumgärtner W, Beineke A. Canine distemper virus infection leads to an inhibitory phenotype of monocyte-derived dendritic cells in vitro with reduced expression of co-stimulatory molecules and increased interleukin-10 transcription. PLoS One 2014; 9:e96121. [PMID: 24769532 PMCID: PMC4000198 DOI: 10.1371/journal.pone.0096121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/02/2014] [Indexed: 12/27/2022] Open
Abstract
Canine distemper virus (CDV) exhibits a profound lymphotropism that causes immunosuppression and increased susceptibility of affected dogs to opportunistic infections. Similar to human measles virus, CDV is supposed to inhibit terminal differentiation of dendritic cells (DCs), responsible for disturbed repopulation of lymphoid tissues and diminished antigen presenting function in dogs. In order to testify the hypothesis that CDV-infection leads to an impairment of professional antigen presenting cells, canine DCs have been generated from peripheral blood monocytes in vitro and infected with CDV. Virus infection was confirmed and quantified by transmission electron microscopy, CDV-specific immunofluorescence, and virus titration. Flow cytometric analyses revealed a significant down-regulation of the major histocompatibility complex class II and co-stimulatory molecules CD80 and CD86 in CDV-infected DCs, indicative of disturbed antigen presenting capacity. Molecular analyses revealed an increased expression of the immune inhibitory cytokine interleukin-10 in DCs following infection. Results of the present study demonstrate that CDV causes phenotypical changes and altered cytokine expression of DCs, which represent potential mechanisms to evade host immune responses and might contribute to immune dysfunction and virus persistence in canine distemper.
Collapse
Affiliation(s)
- Visar Qeska
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Yvonne Barthel
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Vanessa Herder
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Veronika M. Stein
- Center for Systems Neuroscience, Hannover, Germany
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Andrea Tipold
- Center for Systems Neuroscience, Hannover, Germany
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Carola Urhausen
- Unit for Reproductive Medicine, Small Animal Clinic, University of Veterinary Medicine Hannover, Germany
| | - Anne-Rose Günzel-Apel
- Unit for Reproductive Medicine, Small Animal Clinic, University of Veterinary Medicine Hannover, Germany
| | - Karl Rohn
- Department of Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
15
|
Molecular determinants defining the triggering range of prefusion F complexes of canine distemper virus. J Virol 2013; 88:2951-66. [PMID: 24371057 DOI: 10.1128/jvi.03123-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The morbillivirus cell entry machinery consists of a fusion (F) protein trimer that refolds to mediate membrane fusion following receptor-induced conformational changes in its binding partner, the tetrameric attachment (H) protein. To identify molecular determinants that control F refolding, we generated F chimeras between measles virus (MeV) and canine distemper virus (CDV). We located a central pocket in the globular head domain of CDV F that regulates the stability of the metastable, prefusion conformational state of the F trimer. Most mutations introduced into this "pocket'" appeared to mediate a destabilizing effect, a phenotype associated with enhanced membrane fusion activity. Strikingly, under specific triggering conditions (i.e., variation of receptor type and H protein origin), some F mutants also exhibited resistance to a potent morbillivirus entry inhibitor, which is known to block F triggering by enhancing the stability of prefusion F trimers. Our data reveal that the molecular nature of the F stimulus and the intrinsic stability of metastable prefusion F both regulate the efficiency of F refolding and escape from small-molecule refolding blockers. IMPORTANCE With the aim to better characterize the thermodynamic basis of morbillivirus membrane fusion for cell entry and spread, we report here that the activation energy barrier of prefusion F trimers together with the molecular nature of the triggering "stimulus" (attachment protein and receptor types) define a "triggering range," which governs the initiation of the membrane fusion process. A central "pocket" microdomain in the globular F head contributes substantially to the regulation of the conformational stability of the prefusion complexes. The triggering range also defines the mechanism of viral escape from entry inhibitors and describes how the cellular environment can affect membrane fusion efficiency.
Collapse
|
16
|
A stabilized headless measles virus attachment protein stalk efficiently triggers membrane fusion. J Virol 2013; 87:11693-703. [PMID: 23966411 DOI: 10.1128/jvi.01945-13] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Paramyxovirus attachment and fusion (F) envelope glycoprotein complexes mediate membrane fusion required for viral entry. The measles virus (MeV) attachment (H) protein stalk domain is thought to directly engage F for fusion promotion. However, past attempts to generate truncated, fusion-triggering-competent H-stem constructs remained fruitless. In this study, we addressed the problem by testing the hypothesis that truncated MeV H stalks may require stabilizing oligomerization tags to maintain intracellular transport competence and F-triggering activity. We engineered H-stems of different lengths with added 4-helix bundle tetramerization domains and demonstrate restored cell surface expression, efficient interaction with F, and fusion promotion activity of these constructs. The stability of the 4-helix bundle tags and the relative orientations of the helical wheels of H-stems and oligomerization tags govern the kinetics of fusion promotion, revealing a balance between H stalk conformational stability and F-triggering activity. Recombinant MeV particles expressing a bioactive H-stem construct in the place of full-length H are viable, albeit severely growth impaired. Overall, we demonstrate that the MeV H stalk represents the effector domain for MeV F triggering. Fusion promotion appears linked to the conformational flexibility of the stalk, which must be tightly regulated in viral particles to ensure efficient virus entry. While the pathways toward assembly of functional fusion complexes may differ among diverse members of the paramyxovirus family, central elements of the triggering machinery emerge as highly conserved.
Collapse
|
17
|
Mechanism for active membrane fusion triggering by morbillivirus attachment protein. J Virol 2012; 87:314-26. [PMID: 23077316 DOI: 10.1128/jvi.01826-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The paramyxovirus entry machinery consists of two glycoproteins that tightly cooperate to achieve membrane fusion for cell entry: the tetrameric attachment protein (HN, H, or G, depending on the paramyxovirus genus) and the trimeric fusion protein (F). Here, we explore whether receptor-induced conformational changes within morbillivirus H proteins promote membrane fusion by a mechanism requiring the active destabilization of prefusion F or by the dissociation of prefusion F from intracellularly preformed glycoprotein complexes. To properly probe F conformations, we identified anti-F monoclonal antibodies (MAbs) that recognize conformation-dependent epitopes. Through heat treatment as a surrogate for H-mediated F triggering, we demonstrate with these MAbs that the morbillivirus F trimer contains a sufficiently high inherent activation energy barrier to maintain the metastable prefusion state even in the absence of H. This notion was further validated by exploring the conformational states of destabilized F mutants and stabilized soluble F variants combined with the use of a membrane fusion inhibitor (3g). Taken together, our findings reveal that the morbillivirus H protein must lower the activation energy barrier of metastable prefusion F for fusion triggering.
Collapse
|
18
|
Brunner JM, Plattet P, Doucey MA, Rosso L, Curie T, Montagner A, Wittek R, Vandelvelde M, Zurbriggen A, Hirling H, Desvergne B. Morbillivirus glycoprotein expression induces ER stress, alters Ca2+ homeostasis and results in the release of vasostatin. PLoS One 2012; 7:e32803. [PMID: 22403712 PMCID: PMC3293893 DOI: 10.1371/journal.pone.0032803] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 02/04/2012] [Indexed: 11/26/2022] Open
Abstract
Although the pathology of Morbillivirus in the central nervous system (CNS) is well described, the molecular basis of neurodegenerative events still remains poorly understood. As a model to explore Morbillivirus-mediated CNS dysfunctions, we used canine distemper virus (CDV) that we inoculated into two different cell systems: a monkey cell line (Vero) and rat primary hippocampal neurons. Importantly, the recombinant CDV used in these studies not only efficiently infects both cell types but recapitulates the uncommon, non-cytolytic cell-to-cell spread mediated by virulent CDVs in brain of dogs. Here, we demonstrated that both CDV surface glycoproteins (F and H) markedly accumulated in the endoplasmic reticulum (ER). This accumulation triggered an ER stress, characterized by increased expression of the ER resident chaperon calnexin and the proapoptotic transcription factor CHOP/GADD 153. The expression of calreticulin (CRT), another ER resident chaperon critically involved in the response to misfolded proteins and in Ca(2+) homeostasis, was also upregulated. Transient expression of recombinant CDV F and H surface glycoproteins in Vero cells and primary hippocampal neurons further confirmed a correlation between their accumulation in the ER, CRT upregulation, ER stress and disruption of ER Ca(2+) homeostasis. Furthermore, CDV infection induced CRT fragmentation with re-localisation of a CRT amino-terminal fragment, also known as vasostatin, on the surface of infected and neighbouring non-infected cells. Altogether, these results suggest that ER stress, CRT fragmentation and re-localization on the cell surface may contribute to cytotoxic effects and ensuing cell dysfunctions triggered by Morbillivirus, a mechanism that might potentially be relevant for other neurotropic viruses.
Collapse
Affiliation(s)
- Jean-Marc Brunner
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Institut de Biotechnologie, University of Lausanne, Lausanne, Switzerland
| | - Philippe Plattet
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Marie-Agnès Doucey
- Division of Experimental Oncology, Multidisciplinary Oncology Center, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Lia Rosso
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Thomas Curie
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Alexandra Montagner
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Riccardo Wittek
- Institut de Biotechnologie, University of Lausanne, Lausanne, Switzerland
| | - Marc Vandelvelde
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andreas Zurbriggen
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Harald Hirling
- Brain Mind Institute, Faculté des Sciences de la Vie, Ecole Polytechnique Fédérale de Lausanne EPFL, Lausanne, Switzerland
| | - Béatrice Desvergne
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
19
|
Canine distemper virus infects canine keratinocytes and immune cells by using overlapping and distinct regions located on one side of the attachment protein. J Virol 2011; 85:11242-54. [PMID: 21849439 DOI: 10.1128/jvi.05340-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The morbilliviruses measles virus (MeV) and canine distemper virus (CDV) both rely on two surface glycoproteins, the attachment (H) and fusion proteins, to promote fusion activity for viral cell entry. Growing evidence suggests that morbilliviruses infect multiple cell types by binding to distinct host cell surface receptors. Currently, the only known in vivo receptor used by morbilliviruses is CD150/SLAM, a molecule expressed in certain immune cells. Here we investigated the usage of multiple receptors by the highly virulent and demyelinating CDV strain A75/17. We based our study on the assumption that CDV-H may interact with receptors similar to those for MeV, and we conducted systematic alanine-scanning mutagenesis on CDV-H throughout one side of the β-propeller documented in MeV-H to contain multiple receptor-binding sites. Functional and biochemical assays performed with SLAM-expressing cells and primary canine epithelial keratinocytes identified 11 residues mutation of which selectively abrogated fusion in keratinocytes. Among these, four were identical to amino acids identified in MeV-H as residues contacting a putative receptor expressed in polarized epithelial cells. Strikingly, when mapped on a CDV-H structural model, all residues clustered in or around a recessed groove located on one side of CDV-H. In contrast, reported CDV-H mutants with SLAM-dependent fusion deficiencies were characterized by additional impairments to the promotion of fusion in keratinocytes. Furthermore, upon transfer of residues that selectively impaired fusion induction in keratinocytes into the CDV-H of the vaccine strain, fusion remained largely unaltered. Taken together, our results suggest that a restricted region on one side of CDV-H contains distinct and overlapping sites that control functional interaction with multiple receptors.
Collapse
|
20
|
Distinct reactivities of interleukin-4-specific antibodies with recombinant and native canine interleukin-4 in various assays. Vet Immunol Immunopathol 2010; 137:310-6. [PMID: 20591502 DOI: 10.1016/j.vetimm.2010.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 05/26/2010] [Accepted: 05/27/2010] [Indexed: 11/23/2022]
Abstract
Interleukin 4 (IL-4) plays a central role in immune responses to parasites and allergens. IL-4 drives the differentiation of naive T cells into Th2 cells and regulates immunoglobulin class switching to IgE.Little is known about the role of IL-4 in canine allergies and parasite infections. Most of the information derives from measurement of IL-4 mRNA expression in dog tissues, but detection of IL-4 protein has been difficult so far, probably due to low sensitivity of available methods. Antibodies (Ab) specific for canine IL-4 are available from various sources, but these Ab have been produced against recombinant Escherichia coli-expressed canine IL-4 and there is only limited information on their reactivities with native canine IL-4. Therefore, in the present study, we tested six available canine IL-4-specific Ab for their reactivities with recombinant canine IL-4 expressed in E. coli (rec.IL-4) or in mammalian cells (mam.IL-4), and with supernatants from stimulated canine peripheral blood mononuclear cells (PBMCs) using several detection methods, including Western blotting, ELISA, cytokine bead assay, and intracellular IL-4 staining. Additionally, we tested a bovine IL-4-specific antibody that has been previously shown to cross-react with canine IL-4. All tested Ab except anti-bovine IL-4 reacted with rec.IL-4, and most of them reacted with mam.IL-4. However, only the cytokine bead assay was sensitive enough to allow the detection of IL-4 in supernatants of canine PBMCs.
Collapse
|
21
|
Owczarek-Lipska M, Plattet P, Zipperle L, Drögemüller C, Posthaus H, Dolf G, Braunschweig MH. A nonsense mutation in the optic atrophy 3 gene (OPA3) causes dilated cardiomyopathy in Red Holstein cattle. Genomics 2010; 97:51-7. [PMID: 20923700 DOI: 10.1016/j.ygeno.2010.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/01/2010] [Accepted: 09/28/2010] [Indexed: 01/29/2023]
Abstract
Cardiomyopathies are severe degenerative disorders of the myocardium that lead to heart failure. During the last three decades bovine dilated cardiomyopathy (BDCMP) was observed worldwide in cattle of Holstein-Friesian origin. In the Swiss cattle population BDCMP affects Fleckvieh and Red Holstein breeds. The heart of affected animals is enlarged due to dilation of both ventricles. Clinical signs are caused by systolic dysfunction and affected individuals die as a result of severe heart insufficiency. BDCMP follows an autosomal recessive pattern of inheritance and the disease-causing locus was mapped to bovine chromosome 18 (BTA18). In the present study we describe the successful identification of the causative mutation in the OPA3 gene located on BTA18 that was previously reported to cause 3-methylglutaconic aciduria type III in Iraqi-Jewish patients. We demonstrated conclusive genetic and functional evidence that the nonsense mutation c.343C>T in the bovine OPA3 gene causes the late-onset dilated cardiomyopathy in Red Holstein cattle.
Collapse
Affiliation(s)
- Marta Owczarek-Lipska
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, CH-3001 Berne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
22
|
Side chain packing below the fusion peptide strongly modulates triggering of the Hendra virus F protein. J Virol 2010; 84:10928-32. [PMID: 20702638 DOI: 10.1128/jvi.01108-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Triggering of the Hendra virus fusion (F) protein is required to initiate the conformational changes which drive membrane fusion, but the factors which control triggering remain poorly understood. Mutation of a histidine predicted to lie near the fusion peptide to alanine greatly reduced fusion despite wild-type cell surface expression levels, while asparagine substitution resulted in a moderate restoration in fusion levels. Slowed kinetics of six-helix bundle formation, as judged by sensitivity to heptad repeat B-derived peptides, was observed for all H372 mutants. These data suggest that side chain packing beneath the fusion peptide is an important regulator of Hendra virus F triggering.
Collapse
|
23
|
Singethan K, Hiltensperger G, Kendl S, Wohlfahrt J, Plattet P, Holzgrabe U, Schneider-Schaulies J. N-(3-Cyanophenyl)-2-phenylacetamide, an effective inhibitor of morbillivirus-induced membrane fusion with low cytotoxicity. J Gen Virol 2010; 91:2762-72. [PMID: 20685931 DOI: 10.1099/vir.0.025650-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Based on the structural similarity of viral fusion proteins within the family Paramyxoviridae, we tested recently described and newly synthesized acetanilide derivatives for their capacity to inhibit measles virus (MV)-, canine distemper virus (CDV)- and Nipah virus (NiV)-induced membrane fusion. We found that N-(3-cyanophenyl)-2-phenylacetamide (compound 1) has a high capacity to inhibit MV- and CDV-induced (IC(50) μM), but not NiV-induced, membrane fusion. This compound is of outstanding interest because it can be easily synthesized and its cytotoxicity is low [50 % cytotoxic concentration (CC(50)) ≥ 300 μM], leading to a CC(50)/IC(50) ratio of approximately 100. In addition, primary human peripheral blood lymphocytes and primary dog brain cell cultures (DBC) also tolerate high concentrations of compound 1. Infection of human PBMC with recombinant wild-type MV is inhibited by an IC(50) of approximately 20 μM. The cell-to-cell spread of recombinant wild-type CDV in persistently infected DBC can be nearly completely inhibited by compound 1 at 50 μM, indicating that the virus spread between brain cells is dependent on the activity of the viral fusion protein. Our findings demonstrate that this compound is a most applicable inhibitor of morbillivirus-induced membrane fusion in tissue culture experiments including highly sensitive primary cells.
Collapse
Affiliation(s)
- K Singethan
- Institut für Virologie und Immunbiologie, University of Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Identification of key residues in virulent canine distemper virus hemagglutinin that control CD150/SLAM-binding activity. J Virol 2010; 84:9618-24. [PMID: 20631152 DOI: 10.1128/jvi.01077-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Morbillivirus cell entry is controlled by hemagglutinin (H), an envelope-anchored viral glycoprotein determining interaction with multiple host cell surface receptors. Subsequent to virus-receptor attachment, H is thought to transduce a signal triggering the viral fusion glycoprotein, which in turn drives virus-cell fusion activity. Cell entry through the universal morbillivirus receptor CD150/SLAM was reported to depend on two nearby microdomains located within the hemagglutinin. Here, we provide evidence that three key residues in the virulent canine distemper virus A75/17 H protein (Y525, D526, and R529), clustering at the rim of a large recessed groove created by beta-propeller blades 4 and 5, control SLAM-binding activity without drastically modulating protein surface expression or SLAM-independent F triggering.
Collapse
|