1
|
Colson C, Wang Y, Atherton J, Su X. SLC45A4 encodes a mitochondrial putrescine transporter that promotes GABA de novo synthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604788. [PMID: 39091866 PMCID: PMC11291067 DOI: 10.1101/2024.07.23.604788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Solute carriers (SLC) are membrane proteins that facilitate the transportation of ions and metabolites across either the plasma membrane or the membrane of intracellular organelles. With more than 450 human genes annotated as SLCs, many of them are still orphan transporters without known biochemical functions. We developed a metabolomic-transcriptomic association analysis, and we found that the expression of SLC45A4 has a strong positive correlation with the cellular level of γ-aminobutyric acid (GABA). Using mass spectrometry and the stable isotope tracing approach, we demonstrated that SLC45A4 promotes GABA de novo synthesis through the Arginine/Ornithine/Putrescine (AOP) pathway. SLC45A4 functions as a putrescine transporter localized to the mitochondrial membrane to facilitate GABA production. Taken together, our results revealed a new biochemical mechanism where SLC45A4 controls GABA production.
Collapse
Affiliation(s)
- Cecilia Colson
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Yujue Wang
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - James Atherton
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Xiaoyang Su
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| |
Collapse
|
2
|
Cai Y, Gong D, Xiang T, Zhang X, Pan J. Markers of intestinal barrier damage in patients with chronic insomnia disorder. Front Psychiatry 2024; 15:1373462. [PMID: 38606411 PMCID: PMC11007705 DOI: 10.3389/fpsyt.2024.1373462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024] Open
Abstract
Objective Insomnia disorder stands out as one of the prevalent clinical sleep and psychiatric disorders. Prior research has unequivocally demonstrated variations in the diversity and abundance of gut microbiota among individuals with insomnia disorder. These alterations may play a direct or indirect role in the onset and progression of insomnia disorder by compromising the integrity of the intestinal barrier. This study aims to evaluate the impairment of the intestinal barrier in individuals with insomnia disorder by scrutinizing the serum functionality of this barrier. Materials and methods 45 patients with chronic insomnia disorder and 30 matched healthy volunteers were meticulously selected based on inclusion criteria. ELISA technology was employed to measure serum levels of diamine oxidase (DAO), D-lactic acid (D-LA), intestinal fatty acid binding protein (I-FABP), and endothelin (ET). Spearman correlation analysis was used to explore the relationship between intestinal mucosal markers and clinical characteristics. Data were analyzed using SPSS 26.0. Results Compared to the healthy control group, the insomnia disorder group exhibited significantly elevated scores on subjective mood and sleep scales (GAD-7, PHQ-9, HAMA, HAMD, PSQI, and ISI) (P < 0.05). Overnight PSG indicated a notable increase in bed time, total wake time, sleep onset latency, and wake after sleep onset in individuals with insomnia disorder. Additionally, there was a decrease in sleep efficiency and alterations in sleep structure (increased proportion of N1 and N3 stages, prolonged N1 stage) (P < 0.05). The chronic insomnia disorder group displayed significantly reduced concentrations of serum DAO, D-LA, I-FABP, and ET (P < 0.05). Furthermore, significant positive correlations were identified between intestinal epithelial barrier markers and sleep efficiency, while negative correlations were found with wake after sleep onset, total wake time, PSQI, HAMA, and HAMD. Additionally, D-LA levels were significantly positively correlated with ET concentrations. Conclusion Individuals with chronic insomnia disorder manifest disruptions in sleep structure, heightened susceptibility to anxiety and depressive moods, and impaired intestinal barrier function. These findings suggest that the occurrence and development of insomnia disorder may be linked to the impairment of the intestinal barrier.
Collapse
Affiliation(s)
- Yixian Cai
- Department of Psychiatry, Sleep Medicine Centre, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Di Gong
- Shenzhen Eye Hospital, Jinan University, Shenzhen, China
| | - Ting Xiang
- Department of Sleep Disorders, Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xiaotao Zhang
- Department of Psychiatry, Sleep Medicine Centre, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jiyang Pan
- Department of Psychiatry, Sleep Medicine Centre, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Hou J, Li XX, Sun Y, Li Y, Yang XY, Sun YP, Cui HL. Novel Archaeal Histamine Oxidase from Natronobeatus ordinarius: Insights into Histamine Degradation for Enhancing Food Safety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6519-6525. [PMID: 38497614 DOI: 10.1021/acs.jafc.4c00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Histamine, found abundantly in salt-fermented foods, poses a risk of food poisoning. Natronobeatus ordinarius, a halophilic archaeon isolated from a salt lake, displayed a strong histamine degradation ability. Its histamine oxidase (HOD) gene was identified (hodNbs). This is the first report of an archaeal HOD. The HODNbs protein was determined to be a tetramer with a molecular weight of 307 kDa. HODNbs displayed optimum activity at 60-65 °C, 1.5-2.0 M NaCl, and pH 6.5. Notably, within the broad NaCl range between 0.5 and 2.5 M, HODNbs retained above 50% of its maximum activity. HODNbs exhibited good thermal stability, pH stability, and salinity tolerance. HODNbs was able to degrade various biogenic amines. The Vmax of HODNbs for histamine was 0.29 μmol/min/mg, and the Km was 0.56 mM. HODNbs exhibited high efficiency in histamine removal from fish sauce, namely, 100 μg of HODNbs degraded 5.63 mg of histamine (37.9%) in 10 g of fish sauce within 24 h at 50 °C. This study showed that HODNbs with excellent enzymatic properties has promising application potentials to degrade histamine in high-salt foods.
Collapse
Affiliation(s)
- Jing Hou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Xin-Xin Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Yu Sun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Yang Li
- School of Oceanography, Zhejiang University, 1 Zheda Road, Dinghai District, Zhoushan 316021, Zhejiang, People's Republic of China
| | - Xiao-Yan Yang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Ya-Ping Sun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang 212013, Jiangsu, People's Republic of China
| |
Collapse
|
4
|
Ponce Díaz-Reixa J, Aller Rodríguez M, Martínez Breijo S, Suanzes Hernández J, Ruiz Casares E, Perucho Alcalde T, Bohorquez Cruz M, Mosquera Seoane T, Sánchez Merino JM, Freire Calvo J, Fernández Suárez P, Chantada Abal V. Lower Urinary Tract Symptoms (LUTS) as a New Clinical Presentation of Histamine Intolerance: A Prevalence Study of Genetic Diamine Oxidase Deficiency. J Clin Med 2023; 12:6870. [PMID: 37959335 PMCID: PMC10647782 DOI: 10.3390/jcm12216870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Lower urinary tract symptoms (LUTS) are highly prevalent, and their treatment is mainly focused on the control of symptoms. Histamine intolerance (HIT) has been related to a variety of systemic symptoms. DAO deficiency has been identified as a significant factor contributing to histamine intolerance (HIT). Preclinical evidence indicates the involvement of histamine in the lower urinary tract. This study aimed to assess the prevalence of diamine oxidase deficiency (DAO) in a prospective cohort of 100 patients with at least moderate LUTS. A genetic study of four single nucleotide polymorphisms (SNPs) (c.-691G>T, c.47C>T, c.995C>T, and c.1990C>G) was performed. HIT was found in 85.9% of patients. The prevalence of at least one minor allele in the SNPs analyzed was 88%, without gender differences. Storage symptoms were more intense in the presence of HIT as well as asthenia and neurological and musculoskeletal symptoms. The presence of minor alleles of the AOC1 gene was associated with a higher intensity of symptoms. Minor alleles from c.-691G>T and c.47C>T SNPs were also associated with a greater severity of obstructive symptoms. Thirty-one percent of patients presented the four SNPS with at least one associated minor allele. The relationship between HIT and LUTS in a mixed population of men and women found in this study supports further investigations to define the pathophysiology of histamine in LUTS.
Collapse
Affiliation(s)
- Jose Ponce Díaz-Reixa
- Urology Department, Complexo Hospitalario Universitario A Coruña (CHUAC), 15006 A Coruña, Spain; (M.A.R.); (S.M.B.); (M.B.C.); (T.M.S.); (J.M.S.M.); (J.F.C.); (V.C.A.)
| | - Marcos Aller Rodríguez
- Urology Department, Complexo Hospitalario Universitario A Coruña (CHUAC), 15006 A Coruña, Spain; (M.A.R.); (S.M.B.); (M.B.C.); (T.M.S.); (J.M.S.M.); (J.F.C.); (V.C.A.)
| | - Sara Martínez Breijo
- Urology Department, Complexo Hospitalario Universitario A Coruña (CHUAC), 15006 A Coruña, Spain; (M.A.R.); (S.M.B.); (M.B.C.); (T.M.S.); (J.M.S.M.); (J.F.C.); (V.C.A.)
| | - Jorge Suanzes Hernández
- Statistics Department, Complexo Hospitalario Universitario A Coruña (CHUAC), 15006 A Coruña, Spain;
| | - Eva Ruiz Casares
- VIVO Laboratorio, Grupo Vivo, 28100 Alcobendas, Spain; (E.R.C.); (T.P.A.)
- Department of Genetics, Faculty of Medicine, CEU-San Pablo University, 28668 Madrid, Spain
| | - Teresa Perucho Alcalde
- VIVO Laboratorio, Grupo Vivo, 28100 Alcobendas, Spain; (E.R.C.); (T.P.A.)
- Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Manuel Bohorquez Cruz
- Urology Department, Complexo Hospitalario Universitario A Coruña (CHUAC), 15006 A Coruña, Spain; (M.A.R.); (S.M.B.); (M.B.C.); (T.M.S.); (J.M.S.M.); (J.F.C.); (V.C.A.)
| | - Teresa Mosquera Seoane
- Urology Department, Complexo Hospitalario Universitario A Coruña (CHUAC), 15006 A Coruña, Spain; (M.A.R.); (S.M.B.); (M.B.C.); (T.M.S.); (J.M.S.M.); (J.F.C.); (V.C.A.)
| | - Jose M. Sánchez Merino
- Urology Department, Complexo Hospitalario Universitario A Coruña (CHUAC), 15006 A Coruña, Spain; (M.A.R.); (S.M.B.); (M.B.C.); (T.M.S.); (J.M.S.M.); (J.F.C.); (V.C.A.)
| | - Jacobo Freire Calvo
- Urology Department, Complexo Hospitalario Universitario A Coruña (CHUAC), 15006 A Coruña, Spain; (M.A.R.); (S.M.B.); (M.B.C.); (T.M.S.); (J.M.S.M.); (J.F.C.); (V.C.A.)
| | - Paula Fernández Suárez
- Radiodiagnostic Department, Complexo Hospitalario Universitario A Coruña (CHUAC), 15006 A Coruña, Spain;
| | - Venancio Chantada Abal
- Urology Department, Complexo Hospitalario Universitario A Coruña (CHUAC), 15006 A Coruña, Spain; (M.A.R.); (S.M.B.); (M.B.C.); (T.M.S.); (J.M.S.M.); (J.F.C.); (V.C.A.)
| |
Collapse
|
5
|
Kim EK, Koo JS. Expression of Amine Oxidase Proteins in Adrenal Cortical Neoplasm and Pheochromocytoma. Biomedicines 2023; 11:1896. [PMID: 37509535 PMCID: PMC10376964 DOI: 10.3390/biomedicines11071896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
We delved into the expression of amine oxidase family proteins and their potential significance in adrenal gland neoplasm. Tissue microarrays were prepared for 132 cases of adrenal cortical neoplasm (ACN) consisting of 115 cases of adrenal cortical adenoma (ACA), 17 cases of adrenal cortical carcinoma (ACC), and 163 cases of pheochromocytoma (PCC). Immunohistochemical stainings for MAOA, MAOB, LOX, and AOC3 were performed to evaluate the H-scores and compare them with clinicopathological parameters. The H-scores of MAOA (T; p = 0.005) and MAOB (T; p = 0.006) in tumor cells (T) were high in ACN, whereas LOX (T, S; p < 0.001) in tumor and stromal cells (S) and AOC3 (T; p < 0.001) were higher in PCC. In stromal cells, MAOA (S; p < 0.001) and AOC3 (S; p = 0.010) were more expressed in ACA than in ACC. MAOB (S) in PCC showed higher H-scores when the grading of adrenal pheochromocytoma and paraganglioma (GAPP) score was 3 or higher (p = 0.027). In the univariate analysis, low MAOA expression in stromal cells of ACN was associated with shorter overall survival (p = 0.008). In conclusion, monoamine oxidase proteins revealed differences in expression between ACN and PCC and also between benign and malignant cells.
Collapse
Affiliation(s)
- Eun Kyung Kim
- Department of Pathology, National Health Insurance Service Ilsan Hospital, Goyang 10444, Republic of Korea
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
6
|
Schober L, Dobiašová H, Jurkaš V, Parmeggiani F, Rudroff F, Winkler M. Enzymatic reactions towards aldehydes: An overview. FLAVOUR FRAG J 2023; 38:221-242. [PMID: 38505272 PMCID: PMC10947199 DOI: 10.1002/ffj.3739] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/21/2024]
Abstract
Many aldehydes are volatile compounds with distinct and characteristic olfactory properties. The aldehydic functional group is reactive and, as such, an invaluable chemical multi-tool to make all sorts of products. Owing to the reactivity, the selective synthesis of aldehydic is a challenging task. Nature has evolved a number of enzymatic reactions to produce aldehydes, and this review provides an overview of aldehyde-forming reactions in biological systems and beyond. Whereas some of these biotransformations are still in their infancy in terms of synthetic applicability, others are developed to an extent that allows their implementation as industrial biocatalysts.
Collapse
Affiliation(s)
- Lukas Schober
- Institute of Molecular BiotechnologyGraz University of TechnologyGrazAustria
| | - Hana Dobiašová
- Institute of Chemical and Environmental EngineeringSlovak University of TechnologyBratislavaSlovakia
| | - Valentina Jurkaš
- Institute of Molecular BiotechnologyGraz University of TechnologyGrazAustria
| | - Fabio Parmeggiani
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica “Giulio Natta”Politecnico di MilanoMilanItaly
| | - Florian Rudroff
- Institute of Applied Synthetic ChemistryTU WienViennaAustria
| | - Margit Winkler
- Institute of Molecular BiotechnologyGraz University of TechnologyGrazAustria
- Area BiotransformationsAustrian Center of Industrial BiotechnologyGrazAustria
| |
Collapse
|
7
|
Givanoudi S, Heyndrickx M, Depuydt T, Khorshid M, Robbens J, Wagner P. A Review on Bio- and Chemosensors for the Detection of Biogenic Amines in Food Safety Applications: The Status in 2022. SENSORS (BASEL, SWITZERLAND) 2023; 23:613. [PMID: 36679407 PMCID: PMC9860941 DOI: 10.3390/s23020613] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
This article provides an overview on the broad topic of biogenic amines (BAs) that are a persistent concern in the context of food quality and safety. They emerge mainly from the decomposition of amino acids in protein-rich food due to enzymes excreted by pathogenic bacteria that infect food under inappropriate storage conditions. While there are food authority regulations on the maximum allowed amounts of, e.g., histamine in fish, sensitive individuals can still suffer from medical conditions triggered by biogenic amines, and mass outbreaks of scombroid poisoning are reported regularly. We review first the classical techniques used for selective BA detection and quantification in analytical laboratories and focus then on sensor-based solutions aiming at on-site BA detection throughout the food chain. There are receptor-free chemosensors for BA detection and a vastly growing range of bio- and biomimetic sensors that employ receptors to enable selective molecular recognition. Regarding the receptors, we address enzymes, antibodies, molecularly imprinted polymers (MIPs), and aptamers as the most recent class of BA receptors. Furthermore, we address the underlying transducer technologies, including optical, electrochemical, mass-sensitive, and thermal-based sensing principles. The review concludes with an assessment on the persistent limitations of BA sensors, a technological forecast, and thoughts on short-term solutions.
Collapse
Affiliation(s)
- Stella Givanoudi
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Brusselsesteenweg 370, B-9090 Melle, Belgium
- Laboratory for Soft Matter and Biophysics, ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
- Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Marine Division—Cell Blue Biotech/Food Integrity, Jacobsenstraat 1, B-8400 Oostende, Belgium
| | - Marc Heyndrickx
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Brusselsesteenweg 370, B-9090 Melle, Belgium
| | - Tom Depuydt
- Laboratory for Soft Matter and Biophysics, ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Mehran Khorshid
- Laboratory for Soft Matter and Biophysics, ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Johan Robbens
- Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Marine Division—Cell Blue Biotech/Food Integrity, Jacobsenstraat 1, B-8400 Oostende, Belgium
| | - Patrick Wagner
- Laboratory for Soft Matter and Biophysics, ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| |
Collapse
|
8
|
Advances in the Clinical Application of Histamine and Diamine Oxidase (DAO) Activity: A Review. Catalysts 2022. [DOI: 10.3390/catal13010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The serum level of diamine oxidase (DAO) reflects the integrity and maturation of the small intestinal mucosa. This measure is important in diagnosing various diseases, including chronic urticaria tachyphylaxis, multiple organ dysfunction syndrome, preterm abortion, and migraine. This review aimed to summarize the findings of previous studies on the changes in DAO levels in diverse diseases and the application of this enzyme in the clinical setting, as well as the roles of this enzyme under physiological and pathological conditions. The advances in the mechanism and clinical application of DAO presented in this review will contribute to a better understanding of this enzyme and open up new and broader perspectives for future basic research and clinical applications.
Collapse
|
9
|
Morphological Assessment and Biomarkers of Low-Grade, Chronic Intestinal Inflammation in Production Animals. Animals (Basel) 2022; 12:ani12213036. [PMID: 36359160 PMCID: PMC9654368 DOI: 10.3390/ani12213036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022] Open
Abstract
Simple Summary Production animals are continuously exposed to environmental and dietary factors that might induce a state of low-grade, chronic intestinal inflammation. This condition compromises the productive performance and well-fare of these animals, requiring studies to understand what causes it and to develop control strategies. An intestinal inflammatory process is generally associated with alterations in the structure and functionality of its wall, resulting in the release of cellular components into the blood and/or feces. These components can act as biomarkers, i.e., they are measured to identify and quantify an inflammatory process without requiring invasive methods. In this review we discuss the mechanisms of low-grade inflammation, its effects on animal production and sustainability, and the identification of biomarkers that could provide early diagnosis of this process and support studies of useful interventional strategies. Abstract The complex interaction between the intestinal mucosa, the gut microbiota, and the diet balances the host physiological homeostasis and is fundamental for the maximal genetic potential of production animals. However, factors such as chemical and physical characteristics of the diet and/or environmental stressors can continuously affect this balance, potentially inducing a state of chronic low-grade inflammation in the gut, where inflammatory parameters are present and demanding energy, but not in enough intensity to provoke clinical manifestations. It’s vital to expand the understanding of inflammation dynamics and of how they compromise the function activity and microscopic morphology of the intestinal mucosa. These morphometric alterations are associated with the release of structural and functional cellular components into the feces and the blood stream creating measurable biomarkers to track this condition. Moreover, the identification of novel, immunometabolic biomarkers can provide dynamic and predictors of low-grade chronic inflammation, but also provide indicators of successful nutritional or feed additive intervention strategies. The objective of this paper is to review the mechanisms of low-grade inflammation, its effects on animal production and sustainability, and the biomarkers that could provide early diagnosis of this process and support studies of useful interventional strategies.
Collapse
|
10
|
Kettner L, Seitl I, Fischer L. Recent advances in the application of microbial diamine oxidases and other histamine-oxidizing enzymes. World J Microbiol Biotechnol 2022; 38:232. [PMID: 36208352 PMCID: PMC9547800 DOI: 10.1007/s11274-022-03421-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022]
Abstract
The consumption of foods fraught with histamine can lead to various allergy-like symptoms if the histamine is not sufficiently degraded in the human body. The degradation occurs primarily in the small intestine, naturally catalyzed by the human diamine oxidase (DAO). An inherent or acquired deficiency in human DAO function causes the accumulation of histamine and subsequent intrusion of histamine into the bloodstream. The histamine exerts its effects acting on different histamine receptors all over the body but also directly in the intestinal lumen. The inability to degrade sufficient amounts of dietary histamine is known as the 'histamine intolerance'. It would be preferable to solve this problem initially by the production of histamine-free or -reduced foods and by the oral supplementation of exogenous DAO supporting the human DAO in the small intestine. For the latter, DAOs from mammalian, herbal and microbial sources may be applicable. Microbial DAOs seem to be the most promising choice due to their possibility of an efficient biotechnological production in suitable microbial hosts. However, their biochemical properties, such as activity and stability under process conditions and substrate selectivity, play important roles for their successful application. This review deals with the advances and challenges of DAOs and other histamine-oxidizing enzymes for their potential application as processing aids for the production of histamine-reduced foods or as orally administered adjuvants to humans who have been eating food fraught with histamine.
Collapse
Affiliation(s)
- Lucas Kettner
- Department of Biotechnology and Enzyme Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Ines Seitl
- Department of Biotechnology and Enzyme Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Lutz Fischer
- Department of Biotechnology and Enzyme Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany.
| |
Collapse
|
11
|
Babina M, Franke K, Bal G. How "Neuronal" Are Human Skin Mast Cells? Int J Mol Sci 2022; 23:ijms231810871. [PMID: 36142795 PMCID: PMC9505265 DOI: 10.3390/ijms231810871] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
Mast cells are evolutionarily old cells and the principal effectors in allergic responses and inflammation. They are seeded from the yolk sac during embryogenesis or are derived from hematopoietic progenitors and are therefore related to other leukocyte subsets, even though they form a separate clade in the hematopoietic system. Herein, we systematically bundle information from several recent high-throughput endeavors, especially those comparing MCs with other cell types, and combine such information with knowledge on the genes’ functions to reveal groups of neuronal markers specifically expressed by MCs. We focus on recent advances made regarding human tissue MCs, but also refer to studies in mice. In broad terms, genes hyper-expressed in MCs, but largely inactive in other myelocytes, can be classified into subcategories such as traffic/lysosomes (MLPH and RAB27B), the dopamine system (MAOB, DRD2, SLC6A3, and SLC18A2), Ca2+-related entities (CALB2), adhesion molecules (L1CAM and NTM) and, as an overall principle, the transcription factors and modulators of transcriptional activity (LMO4, PBX1, MEIS2, and EHMT2). Their function in MCs is generally unknown but may tentatively be deduced by comparison with other systems. MCs share functions with the nervous system, as they express typical neurotransmitters (histamine and serotonin) and a degranulation machinery that shares features with the neuronal apparatus at the synapse. Therefore, selective overlaps are plausible, and they further highlight the uniqueness of MCs within the myeloid system, as well as when compared with basophils. Apart from investigating their functional implications in MCs, a key question is whether their expression in the lineage is due to the specific reactivation of genes normally silenced in leukocytes or whether the genes are not switched off during mastocytic development from early progenitors.
Collapse
Affiliation(s)
- Magda Babina
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Allergology, Hindenburgdamm 30, 12203 Berlin, Germany
- Correspondence:
| | - Kristin Franke
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Allergology, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Gürkan Bal
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Allergology, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
12
|
Pravda J. Evidence-based pathogenesis and treatment of ulcerative colitis: A causal role for colonic epithelial hydrogen peroxide. World J Gastroenterol 2022; 28:4263-4298. [PMID: 36159014 PMCID: PMC9453768 DOI: 10.3748/wjg.v28.i31.4263] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/19/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
In this comprehensive evidence-based analysis of ulcerative colitis (UC), a causal role is identified for colonic epithelial hydrogen peroxide (H2O2) in both the pathogenesis and relapse of this debilitating inflammatory bowel disease. Studies have shown that H2O2 production is significantly increased in the non-inflamed colonic epithelium of individuals with UC. H2O2 is a powerful neutrophilic chemotactic agent that can diffuse through colonic epithelial cell membranes creating an interstitial chemotactic molecular “trail” that attracts adjacent intravascular neutrophils into the colonic epithelium leading to mucosal inflammation and UC. A novel therapy aimed at removing the inappropriate H2O2 mediated chemotactic signal has been highly effective in achieving complete histologic resolution of colitis in patients experiencing refractory disease with at least one (biopsy-proven) histologic remission lasting 14 years to date. The evidence implies that therapeutic intervention to prevent the re-establishment of a pathologic H2O2 mediated chemotactic signaling gradient will indefinitely preclude neutrophilic migration into the colonic epithelium constituting a functional cure for this disease. Cumulative data indicate that individuals with UC have normal immune systems and current treatment guidelines calling for the suppression of the immune response based on the belief that UC is caused by an underlying immune dysfunction are not supported by the evidence and may cause serious adverse effects. It is the aim of this paper to present experimental and clinical evidence that identifies H2O2 produced by the colonic epithelium as the causal agent in the pathogenesis of UC. A detailed explanation of a novel therapeutic intervention to normalize colonic H2O2, its rationale, components, and formulation is also provided.
Collapse
Affiliation(s)
- Jay Pravda
- Disease Pathogenesis, Inflammatory Disease Research Centre, Palm Beach Gardens, FL 33410, United States
| |
Collapse
|
13
|
SOX15 transcriptionally increases the function of AOC1 to modulate ferroptosis and progression in prostate cancer. Cell Death Dis 2022; 13:673. [PMID: 35922412 PMCID: PMC9349193 DOI: 10.1038/s41419-022-05108-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 01/21/2023]
Abstract
Amine oxidase copper-containing 1 (AOC1) is considered an oncogene in many types of tumors. Nevertheless, there have been no investigations of AOC1 and its regulatory mechanism in prostate cancer. Here, we reveal a novel action of AOC1 and a tumor suppressor mechanism in prostate cancer. AOC1 is downregulated in prostate cancer. Abatement of AOC1 in prostate cancer tissue is positively correlated with the tumor size, lymph node metastasis, and Gleason score for prostate cancer. Conversely, high expression of AOC1 is significantly associated with reduced proliferation and migration in prostate cancer both in vitro and in vivo. We show that the anticancer effect of AOC1 is mediated by its action on spermidine which leads to the activation of reactive oxygen species and ferroptosis. AOC1 expression in prostate cancer is positively regulated by the transcription factor SOX15. Therefore, SOX15 can transcriptionally promote AOC1 expression and strengthen this effect. Targeting AOC1 and SOX15 may be promising for the treatment of prostate cancer.
Collapse
|
14
|
Boehm T, Alix M, Petroczi K, Vakal S, Gludovacz E, Borth N, Salminen TA, Jilma B. Nafamostat is a potent human diamine oxidase inhibitor possibly augmenting hypersensitivity reactions during nafamostat administration. J Pharmacol Exp Ther 2022; 382:113-122. [PMID: 35688477 DOI: 10.1124/jpet.122.001248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022] Open
Abstract
Nafamostat is an approved short acting serine protease. However, its administration is also associated with anaphylactic reactions. One mechanism to augment hypersensitivity reactions could be inhibition of diamine oxidase (DAO). The chemical structure of nafamostat is related to the potent DAO inhibitors pentamidine and diminazene. Therefore we tested whether nafamostat is a human DAO inhibitor. Using different activity assays nafamostat reversibly inhibited recombinant human DAO with an IC50 of 300 to 400 nM using 200 µM substrate concentrations. The Ki of nafamostat for the inhibition of putrescine and histamine deamination is 27 nM and 138 nM respectively. For both substrates nafamostat is a mixed mode inhibitor with p-values <0.01 compared to other inhibition types. Using 80% to 90% EDTA plasma the IC50 of nafamostat inhibition was approximately 360 nM using 20 µM cadaverine. In 90% EDTA plasma the IC50 concentrations were 2-3 µM using 0.9 µM and 0.18 µM histamine as substrate. In silico modeling showed a high overlap compared to published diminazene crystallography data, with a preferred orientation of the guanidine group towards topaquinone. In conclusion, nafamostat is a potent human DAO inhibitor and might increase severity of anaphylactic reaction by interfering with DAO‑mediated extracellular histamine degradation. Significance Statement Treatment with the short-acting anticoagulant nafamostat during hemodialysis, leukocytapheresis, extracorporeal membrane oxygenator procedures and disseminated intravascular coagulation is associated with severe anaphylaxis in humans. Histamine is a central mediator in anaphylaxis. Potent inhibition of the only extracellular histamine-degrading enzyme diamine oxidase could augment anaphylaxis reactions during nafamostat treatment.
Collapse
Affiliation(s)
- Thomas Boehm
- Clinical Pharmacology, Medical University of Vienna, Austria
| | | | | | | | | | - Nicole Borth
- University of Natural Resources and Life Sciences, Austria
| | | | | |
Collapse
|
15
|
Gludovacz E, Resch M, Schuetzenberger K, Petroczi K, Maresch D, Hofbauer S, Jilma B, Borth N, Boehm T. Glycosylation site Asn168 is important for slow in vivo clearance of recombinant human diamine oxidase heparin-binding motif mutants. Glycobiology 2022; 32:404-413. [PMID: 35088086 DOI: 10.1093/glycob/cwab122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Elevated plasma and tissues histamine concentrations can cause severe symptoms in mast cell activation syndrome, mastocytosis or anaphylaxis. Endogenous and recombinant human diamine oxidase (rhDAO) can rapidly and completely degrade histamine, and administration of rhDAO represents a promising new treatment approach for diseases with excess histamine release from activated mast cells. We recently generated heparin-binding motif mutants of rhDAO with considerably increased in vivo half-lives in rodents compared with the rapidly cleared wildtype protein. Herein, we characterize the role of an evolutionary recently added glycosylation site asparagine 168 in the in vivo clearance and the influence of an unusually solvent accessible free cysteine 123 on the oligomerization of diamine oxidase (DAO). Mutation of the unpaired cysteine 123 strongly reduced oligomerization without influence on enzymatic DAO activity and in vivo clearance. Recombinant hDAO produced in ExpiCHO-S™ cells showed a 15-fold reduction in the percentage of glycans with terminal sialic acid at Asn168 compared with Chinese hamster ovary (CHO)-K1 cells. Capping with sialic acid was also strongly reduced at the other glycosylation sites. The high abundance of terminal mannose and N-acetylglucosamine residues in the four glycans expressed in ExpiCHO-S™ cells compared with CHO-K1 cells resulted in rapid in vivo clearance. Mutation of Asn168 or sialidase treatment also significantly increased clearance. Intact N-glycans at Asn168 seem to protect DAO from rapid clearance in rodents. Full processing of all glycoforms is critical for preserving the improved in vivo half-life characteristics of the rhDAO heparin-binding motif mutants.
Collapse
Affiliation(s)
- Elisabeth Gludovacz
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Marlene Resch
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Kornelia Schuetzenberger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Karin Petroczi
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Daniel Maresch
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.,Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Stefan Hofbauer
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Nicole Borth
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Thomas Boehm
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
16
|
Karer M, Rager-Resch M, Haider T, Petroczi K, Gludovacz E, Borth N, Jilma B, Boehm T. Diamine oxidase knockout mice are not hypersensitive to orally or subcutaneously administered histamine. Inflamm Res 2022; 71:497-511. [PMID: 35303133 PMCID: PMC8989821 DOI: 10.1007/s00011-022-01558-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/21/2022] [Accepted: 03/04/2022] [Indexed: 11/19/2022] Open
Abstract
Objective To evaluate the contribution of endogenous diamine oxidase (DAO) in the inactivation of exogenous histamine, to find a mouse strain with increased histamine sensitivity and to test the efficacy of rhDAO in a histamine challenge model. Methods Diamine oxidase knockout (KO) mice were challenged with orally and subcutaneously administered histamine in combination with the β-adrenergic blocker propranolol, with the two histamine-N-methyltransferase (HNMT) inhibitors metoprine and tacrine, with folic acid to mimic acute kidney injury and treated with recombinant human DAO. Core body temperature was measured using a subcutaneously implanted microchip and histamine plasma levels were quantified using a homogeneous time resolved fluorescence assay. Results Core body temperature and plasma histamine levels were not significantly different between wild type (WT) and DAO KO mice after oral and subcutaneous histamine challenge with and without acute kidney injury or administration of HNMT inhibitors. Treatment with recombinant human DAO reduced the mean area under the curve (AUC) for core body temperature loss by 63% (p = 0.002) and the clinical score by 88% (p < 0.001). The AUC of the histamine concentration was reduced by 81%. Conclusions Inactivation of exogenous histamine is not driven by enzymatic degradation and kidney filtration. Treatment with recombinant human DAO strongly reduced histamine-induced core body temperature loss, histamine concentrations and prevented the development of severe clinical symptoms. Supplementary Information The online version contains supplementary material available at 10.1007/s00011-022-01558-2.
Collapse
Affiliation(s)
- Matthias Karer
- Department of Clinical Pharmacology, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Marlene Rager-Resch
- Department of Clinical Pharmacology, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Teresa Haider
- Department of Neurophysiology, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Karin Petroczi
- Department of Clinical Pharmacology, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Elisabeth Gludovacz
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Nicole Borth
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Thomas Boehm
- Department of Clinical Pharmacology, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
17
|
Kettner L, Braun C, Seitl I, Pross E, Fischer L. Production and characterization of a new diamine oxidase from Yarrowia lipolytica. J Biotechnol 2021; 340:39-46. [PMID: 34474093 DOI: 10.1016/j.jbiotec.2021.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 10/20/2022]
Abstract
A putative diamine oxidase (DAO) from Yarrowia lipolytica PO1f (DAO-1) was homologously recombinantly integrated into the genome of Y. lipolytica PO1f using the CRISPR-Cas9 system for the subsequent DAO production in a bioreactor. Thereby, it was proven that the DAO-1 produced was indeed a functional DAO. The cultivation yielded 2343 ± 98 nkat/Lculture with a specific DAO activity of 1301 ± 54.2 nkat/gprotein, which was a 93-fold increase of specific DAO activity compared to the native Y. lipolytica PO1f DAO-1 production. The DAO-1 showed a broad substrate selectivity with tyramine, histamine, putrescine and cadaverine being the most favored substrates. It was most active at 40 °C, pH 7.2 in Tris-HCl buffer (50 mM) (with histamine as substrate), which is comparable to human and porcine DAOs. The affinity of DAO-1 towards histamine was lower compared to mammalian DAOs (Km = 2.3 ± 0.2 mM). Nevertheless, DAO-1 degraded around 75% of the histamine used in a bioconversion experiment with a food-relevant concentration of 150 mg/L. With its broad selectivity for the most relevant biogenic amines in foods, DAO-1 from Y. lipolytica PO1f is an interesting enzyme for application in the food industry for the degradation of biogenic amines.
Collapse
Affiliation(s)
- Lucas Kettner
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, Garbenstr. 25, 70599 Stuttgart, Germany
| | - Carina Braun
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, Garbenstr. 25, 70599 Stuttgart, Germany
| | - Ines Seitl
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, Garbenstr. 25, 70599 Stuttgart, Germany
| | - Eva Pross
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, Garbenstr. 25, 70599 Stuttgart, Germany
| | - Lutz Fischer
- University of Hohenheim, Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, Garbenstr. 25, 70599 Stuttgart, Germany.
| |
Collapse
|
18
|
Gludovacz E, Schuetzenberger K, Resch M, Tillmann K, Petroczi K, Schosserer M, Vondra S, Vakal S, Klanert G, Pollheimer J, Salminen TA, Jilma B, Borth N, Boehm T. Heparin-binding motif mutations of human diamine oxidase allow the development of a first-in-class histamine-degrading biopharmaceutical. eLife 2021; 10:68542. [PMID: 34477104 PMCID: PMC8445614 DOI: 10.7554/elife.68542] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 09/01/2021] [Indexed: 01/25/2023] Open
Abstract
Background Excessive plasma histamine concentrations cause symptoms in mast cell activation syndrome, mastocytosis, or anaphylaxis. Anti-histamines are often insufficiently efficacious. Human diamine oxidase (hDAO) can rapidly degrade histamine and therefore represents a promising new treatment strategy for conditions with pathological histamine concentrations. Methods Positively charged amino acids of the heparin-binding motif of hDAO were replaced with polar serine or threonine residues. Binding to heparin and heparan sulfate, cellular internalization and clearance in rodents were examined. Results Recombinant hDAO is rapidly cleared from the circulation in rats and mice. After mutation of the heparin-binding motif, binding to heparin and heparan sulfate was strongly reduced. The double mutant rhDAO-R568S/R571T showed minimal cellular uptake. The short α-distribution half-life of the wildtype protein was eliminated, and the clearance was significantly reduced in rodents. Conclusions The successful decrease in plasma clearance of rhDAO by mutations of the heparin-binding motif with unchanged histamine-degrading activity represents the first step towards the development of rhDAO as a first-in-class biopharmaceutical to effectively treat diseases characterized by excessive histamine concentrations in plasma and tissues. Funding Austrian Science Fund (FWF) Hertha Firnberg program grant T1135 (EG); Sigrid Juselius Foundation, Medicinska Understödsförening Liv och Hälsa rft (TAS and SeV).
Collapse
Affiliation(s)
- Elisabeth Gludovacz
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Kornelia Schuetzenberger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Marlene Resch
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Katharina Tillmann
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Karin Petroczi
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Markus Schosserer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Sigrid Vondra
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Serhii Vakal
- Strutural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Gerald Klanert
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Jürgen Pollheimer
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Tiina A Salminen
- Strutural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Nicole Borth
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Thomas Boehm
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Hrubisko M, Danis R, Huorka M, Wawruch M. Histamine Intolerance-The More We Know the Less We Know. A Review. Nutrients 2021; 13:2228. [PMID: 34209583 PMCID: PMC8308327 DOI: 10.3390/nu13072228] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 12/16/2022] Open
Abstract
The intake of food may be an initiator of adverse reactions. Food intolerance is an abnormal non-immunological response of the organism to the ingestion of food or its components in a dosage normally tolerated. Despite the fact that food intolerance is spread throughout the world, its diagnosing is still difficult. Histamine intolerance (HIT) is the term for that type of food intolerance which includes a set of undesirable reactions as a result of accumulated or ingested histamine. Manifestations may be caused by various pathophysiological mechanisms or a combination of them. The problem with a "diagnosis" of HIT is precisely the inconstancy and variety of the manifestations in the same individual following similar stimuli. The diagnosing of HIT therefore requires a complex time-demanding multidisciplinary approach, including the systematic elimination of disorders with a similar manifestation of symptoms. Among therapeutic approaches, the gold standard is a low-histamine diet. A good response to such a diet is considered to be confirmation of HIT. Alongside the dietary measures, DAO supplementation supporting the degradation of ingested histamine may be considered as subsidiary treatment for individuals with intestinal DAO deficiency. If antihistamines are indicated, the treatment should be conscious and time-limited, while 2nd or 3rd generation of H1 antihistamines should take precedence.
Collapse
Affiliation(s)
- Martin Hrubisko
- Department of Clinical Allergology and Immunology, Oncological Institute of St. Elizabeth, Heydukova 2157/10, 812 50 Bratislava, Slovakia;
- Institute of Immunology and Allergology, Slovak Medical University, Limbová 12, 833 03 Bratislava, Slovakia
| | - Radoslav Danis
- Institute of Pharmacology and Clinical Pharmacology, Faculty of Medicine at Comenius University of Bratislava, Špitálska 24, 831 72 Bratislava, Slovakia;
| | - Martin Huorka
- Department of Gastroenterology and Hepatology, University Hospital Bratislava, Ružinovská 6, 821 01 Bratislava, Slovakia;
| | - Martin Wawruch
- Institute of Pharmacology and Clinical Pharmacology, Faculty of Medicine at Comenius University of Bratislava, Špitálska 24, 831 72 Bratislava, Slovakia;
| |
Collapse
|
20
|
Production of Aldehydes by Biocatalysis. Int J Mol Sci 2021; 22:ijms22094949. [PMID: 34066641 PMCID: PMC8124467 DOI: 10.3390/ijms22094949] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023] Open
Abstract
The production of aldehydes, highly reactive and toxic chemicals, brings specific challenges to biocatalytic processes. Absence of natural accumulation of aldehydes in microorganisms has led to a combination of in vitro and in vivo strategies for both, bulk and fine production. Advances in genetic and metabolic engineering and implementation of computational techniques led to the production of various enzymes with special requirements. Cofactor synthesis, post-translational modifications and structure engineering are applied to prepare active enzymes for one-step or cascade reactions. This review presents the highlights in biocatalytical production of aldehydes with the potential to shape future industrial applications.
Collapse
|
21
|
Gludovacz E, Schuetzenberger K, Resch M, Tillmann K, Petroczi K, Vondra S, Vakal S, Schosserer M, Virgolini N, Pollheimer J, Salminen TA, Jilma B, Borth N, Boehm T. Human diamine oxidase cellular binding and internalization in vitro and rapid clearance in vivo are not mediated by N-glycans but by heparan sulfate proteoglycan interactions. Glycobiology 2021; 31:444-458. [PMID: 32985651 DOI: 10.1093/glycob/cwaa090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 09/03/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
Human diamine oxidase (hDAO) rapidly inactivates histamine by deamination. No pharmacokinetic data are available to better understand its potential as a new therapeutic modality for diseases with excess local and systemic histamine, like anaphylaxis, urticaria or mastocytosis. After intravenous administration of recombinant hDAO to rats and mice, more than 90% of the dose disappeared from the plasma pool within 10 min. Human DAO did not only bind to various endothelial and epithelial cell lines in vitro, but was also unexpectedly internalized and visible in granule-like structures. The uptake of rhDAO into cells was dependent on neither the asialoglycoprotein-receptor (ASGP-R) nor the mannose receptor (MR) recognizing terminal galactose or mannose residues, respectively. Competition experiments with ASGP-R and MR ligands did not block internalization in vitro or rapid clearance in vivo. The lack of involvement of N-glycans was confirmed by testing various glycosylation mutants. High but not low molecular weight heparin strongly reduced the internalization of rhDAO in HepG2 cells and HUVECs. Human DAO was readily internalized by CHO-K1 cells, but not by the glycosaminoglycan- and heparan sulfate-deficient CHO cell lines pgsA-745 and pgsD-677, respectively. A docked heparin hexasaccharide interacted well with the predicted heparin binding site 568RFKRKLPK575. These results strongly imply that rhDAO clearance in vivo and cellular uptake in vitro is independent of N-glycan interactions with the classical clearance receptors ASGP-R and MR, but is mediated by binding to heparan sulfate proteoglycans followed by internalization via an unknown receptor.
Collapse
Affiliation(s)
- Elisabeth Gludovacz
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna 1190, Austria.,Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Kornelia Schuetzenberger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Marlene Resch
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Katharina Tillmann
- Center for Biomedical Research, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Karin Petroczi
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Sigrid Vondra
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Serhii Vakal
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, Turku 20520, Finland
| | - Markus Schosserer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna 1190, Austria
| | - Nikolaus Virgolini
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna 1190, Austria
| | - Jürgen Pollheimer
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Tiina A Salminen
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, Turku 20520, Finland
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Nicole Borth
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna 1190, Austria
| | - Thomas Boehm
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| |
Collapse
|
22
|
ATP7A-Regulated Enzyme Metalation and Trafficking in the Menkes Disease Puzzle. Biomedicines 2021; 9:biomedicines9040391. [PMID: 33917579 PMCID: PMC8067471 DOI: 10.3390/biomedicines9040391] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022] Open
Abstract
Copper is vital for numerous cellular functions affecting all tissues and organ systems in the body. The copper pump, ATP7A is critical for whole-body, cellular, and subcellular copper homeostasis, and dysfunction due to genetic defects results in Menkes disease. ATP7A dysfunction leads to copper deficiency in nervous tissue, liver, and blood but accumulation in other tissues. Site-specific cellular deficiencies of copper lead to loss of function of copper-dependent enzymes in all tissues, and the range of Menkes disease pathologies observed can now be explained in full by lack of specific copper enzymes. New pathways involving copper activated lysosomal and steroid sulfatases link patient symptoms usually related to other inborn errors of metabolism to Menkes disease. Additionally, new roles for lysyl oxidase in activation of molecules necessary for the innate immune system, and novel adapter molecules that play roles in ERGIC trafficking of brain receptors and other proteins, are emerging. We here summarize the current knowledge of the roles of copper enzyme function in Menkes disease, with a focus on ATP7A-mediated enzyme metalation in the secretory pathway. By establishing mechanistic relationships between copper-dependent cellular processes and Menkes disease symptoms in patients will not only increase understanding of copper biology but will also allow for the identification of an expanding range of copper-dependent enzymes and pathways. This will raise awareness of rare patient symptoms, and thus aid in early diagnosis of Menkes disease patients.
Collapse
|
23
|
Jouybari L, Kiani F, Islami F, Sanagoo A, Sayehmiri F, Hosnedlova B, Doşa MD, Kizek R, Chirumbolo S, Bjørklund G. Copper Concentrations in Breast Cancer: A Systematic Review and Meta-Analysis. Curr Med Chem 2021; 27:6373-6383. [PMID: 31533596 DOI: 10.2174/0929867326666190918120209] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 11/22/2022]
Abstract
Breast cancer is the most common neoplasm, comprising 16% of all women's cancers worldwide. Research of Copper (Cu) concentrations in various body specimens have suggested an association between Cu levels and breast cancer risks. This systematic review and meta-analysis summarize the results of published studies and examine this association. We searched the databases PubMed, Scopus, Web of Science, and Google Scholar and the reference lists of relevant publications. The Standardized Mean Differences (SMDs) between Cu levels in cancer cases and controls and corresponding Confidence Intervals (CIs), as well as I2 statistics, were calculated to examine heterogeneity. Following the specimens used in the original studies, the Cu concentrations were examined in three subgroups: serum or plasma, breast tissue, and scalp hair. We identified 1711 relevant studies published from 1984 to 2017. There was no statistically significant difference between breast cancer cases and controls for Cu levels assayed in any studied specimen; the SMD (95% CI) was -0.01 (-1.06 - 1.03; P = 0.98) for blood or serum, 0.51 (-0.70 - 1.73; P = 0.41) for breast tissue, and -0.88 (-3.42 - 1.65; P = 0.50) for hair samples. However, the heterogeneity between studies was very high (P < 0.001) in all subgroups. We did not find evidence for publication bias (P = 0.91). The results of this meta-analysis do not support an association between Cu levels and breast cancer. However, due to high heterogeneity in the results of original studies, this conclusion needs to be confirmed by well-designed prospective studies.
Collapse
Affiliation(s)
- Leila Jouybari
- Nursing Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Faezeh Kiani
- Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran
| | - Farhad Islami
- Surveillance and Health Services Research, American Cancer Society, Atlanta, United States
| | - Akram Sanagoo
- Nursing Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fatemeh Sayehmiri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bozena Hosnedlova
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic,CONEM Metallomics Nanomedicine Research Group (CMNRG), Brno-Bohunice, Brno, Czech Republic
| | - Monica Daniela Doşa
- Department of Pharmacology, Faculty of Medicine, Ovidius University, Constanta, Romania
| | - Rene Kizek
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic,CONEM Metallomics Nanomedicine Research Group (CMNRG), Brno-Bohunice, Brno, Czech Republic
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy,CONEM Scientific Secretary, Verona, Italy
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| |
Collapse
|
24
|
Neree AT, Soret R, Marcocci L, Pietrangeli P, Pilon N, Mateescu MA. Vegetal diamine oxidase alleviates histamine-induced contraction of colonic muscles. Sci Rep 2020; 10:21563. [PMID: 33299054 PMCID: PMC7726047 DOI: 10.1038/s41598-020-78134-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/20/2020] [Indexed: 02/08/2023] Open
Abstract
Excess of histamine in gut lumen generates a pronounced gastrointestinal discomfort, which may include diarrhea and peristalsis dysfunctions. Deleterious effects of histamine can be alleviated with antihistamine drugs targeting histamine receptors. However, many antihistamine agents come with various undesirable side effects. Vegetal diamine oxidase (vDAO) might be a relevant alternative owing to its histaminase activity. Mammalian intestinal mucosa contains an endogenous DAO, yet possessing lower activity compared to that of vDAO preparation. Moreover, in several pathological conditions such as inflammatory bowel disease and irritable bowel syndrome, this endogenous DAO enzyme can be lost or inactivated. Here, we tested the therapeutic potential of vDAO by focusing on the well-known effect of histamine on gut motility. Using ex vivo and in vitro assays, we found that vDAO is more potent than commercial anti-histamine drugs at inhibiting histamine-induced contraction of murine distal colon muscles. We also identified pyridoxal 5′-phosphate (the biologically active form of vitamin B6) as an effective enhancer of vDAO antispasmodic activity. Furthermore, we discovered that rectally administered vDAO can be retained on gut mucosa and remain active. These observations make administration of vDAO in the gut lumen a valid alternative treatment for histamine-induced intestinal dysfunctions.
Collapse
Affiliation(s)
- Armelle Tchoumi Neree
- Department of Chemistry, Research Chair on Enteric Dysfunctions "Allerdys", University of Quebec at Montreal, Montreal, QC, H3C 3P8, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), University of Quebec at Montreal, Montreal, QC, H2X 3Y7, Canada
| | - Rodolphe Soret
- Department of Biological Sciences, Research Chair on Rare Genetic Diseases, University of Quebec at Montreal, Montreal, QC, H2X 3Y7, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), University of Quebec at Montreal, Montreal, QC, H2X 3Y7, Canada
| | - Lucia Marcocci
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, 00185, Rome, Italy
| | - Paola Pietrangeli
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, 00185, Rome, Italy
| | - Nicolas Pilon
- Department of Biological Sciences, Research Chair on Rare Genetic Diseases, University of Quebec at Montreal, Montreal, QC, H2X 3Y7, Canada. .,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), University of Quebec at Montreal, Montreal, QC, H2X 3Y7, Canada. .,Department of Pediatrics, University of Montreal, Montreal, QC, H3T 1C5, Canada.
| | - Mircea Alexandru Mateescu
- Department of Chemistry, Research Chair on Enteric Dysfunctions "Allerdys", University of Quebec at Montreal, Montreal, QC, H3C 3P8, Canada. .,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), University of Quebec at Montreal, Montreal, QC, H2X 3Y7, Canada.
| |
Collapse
|
25
|
Pietrangeli P, Corpetti C, Seguella L, Del Re A, Pesce M, Vincenzi M, Lori C, Annunziata G, Mateescu MA, Sarnelli G, Esposito G, Marcocci L. Lathyrus sativus diamine oxidase reduces Clostridium difficile toxin A-induced toxicity in Caco-2 cells by rescuing RhoA-GTPase and inhibiting pp38-MAPK/NF-κB/HIF-1α activation. Phytother Res 2020; 35:415-423. [PMID: 32914548 DOI: 10.1002/ptr.6814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/16/2020] [Accepted: 07/01/2020] [Indexed: 12/16/2022]
Abstract
Clostridium difficile toxin A (TcdA) impairs the intestinal epithelial barrier, increasing the mucosa permeability and triggering a robust inflammatory response. Lathyrus sativus diamino oxidase (LSAO) is a nutraceutical compound successfully used in various gastrointestinal dysfunctions. Here, we evaluated the LSAO (0.004-0.4 μM) ability to counter TcdA-induced (30 ng/mL) toxicity and damage in Caco-2 cells, investigating its possible mechanism of action. LSAO has improved the transepithelial electrical resistance (TEER) score and increased cell viability in TcdA-treated cells, significantly rescuing the protein expression of Ras homolog family members, A-GTPase (RhoA-GTPase), occludin, and zonula occludens-1 (ZO-1). LSAO has also exhibited an anti-apoptotic effect by inhibiting the TcdA-induced expression of Bcl-2-associated X protein (Bax), p50 nuclear factor-kappa-B (p50), p65nuclear factor-kappa-B (p65), and hypoxia-inducible transcription factor-1 alpha (HIF-1α), and the release of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and vascular endothelial growth factor (VEGF) in the cell milieu. Our data showed that LSAO exerts a protective effect on TcdA-induced toxicity in Caco-2 cells, placing itself as an interesting nutraceutical to supplement the current treatment of the Clostridium difficile infections.
Collapse
Affiliation(s)
- Paola Pietrangeli
- Department of Biochemical Sciences "A. Rossi Fanelli", Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy
| | - Chiara Corpetti
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Luisa Seguella
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Alessandro Del Re
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Marcella Pesce
- Department of Clinical Medicine and Surgery, section of Gastroenterology, University Federico II, Naples, Italy
| | - Martina Vincenzi
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Chiara Lori
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | | | - Mircea A Mateescu
- Department of Chemistry and Centre CERMO-FC, Université du Québec à Montreal, CP8888 Branch A, Montreal (Québec), Montreal, Québec, Canada
| | - Giovanni Sarnelli
- Department of Clinical Medicine and Surgery, section of Gastroenterology, University Federico II, Naples, Italy
| | - Giuseppe Esposito
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Lucia Marcocci
- Department of Biochemical Sciences "A. Rossi Fanelli", Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
26
|
Beltrán-Ortiz C, Peralta T, Ramos V, Durán M, Behrens C, Maureira D, Guzmán MA, Bastias C, Ferrer P. Standardization of a colorimetric technique for determination of enzymatic activity of diamine oxidase (DAO) and its application in patients with clinical diagnosis of histamine intolerance. World Allergy Organ J 2020; 13:100457. [PMID: 32922624 PMCID: PMC7475190 DOI: 10.1016/j.waojou.2020.100457] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/23/2020] [Accepted: 08/09/2020] [Indexed: 12/30/2022] Open
Abstract
Background Diamine Oxidase (DAO) has an essential role for degradation of exogenous histamine in the intestine; thus, histamine intolerance (HI) mainly has been correlated to a low concentration and/or activity of this enzyme. The objective of the study was to standardize a colorimetric technique to measure the enzymatic activity (function) of hDAO to then apply it to a series of 22 patients with a clinical diagnosis of HI. Methods For the standardization variables such as volume and type of sample, incubation time, wavelength of maximum absorption, types of substrates, and concentration of oxidized ascorbate were evaluated. Then the activity and concentration of DAO was determined in 22 patients diagnosed with HI and 22 healthy subjects. Results The mean of serum DAO concentration in the 22 patients was of 9.268 ± 1.124 U/mL. The mean of serum DAO concentration in the 22 controls was of 20.710 ± 2.509 U/mL, being significantly higher (P value 0.0002) the mean of the samples. The mean of serum DAO activity of the patients was of 1.143 ± 0.085 U/L and the controls was 1.533 ± 0.119 U/L, significantly greater than the patients (P value 0.011). In addition, the sensitivity of both techniques was 0.63. In the measuring of DAO concentration the specificity was 0.9, constituting a good diagnostic test, especially to rule out the true negatives. The determination of DAO activity had a specificity of 0.68. Conclusions Although we used a small number of patients and controls and the absorbance values were lower than expected, statistically significant differences were found in the levels of concentration and DAO activity between the patients with histamine intolerance and the controls. Therefore, the measuring of DAO concentration and DAO activity is a good diagnostic strategy for study suspect cases of HI. The simultaneous use of both assays allows to reduce positive and negative false results, for example, patients with normal DAO levels that could present a dysfunction in the activity of this enzyme.
Collapse
Affiliation(s)
- Camila Beltrán-Ortiz
- Section of Immunology, HIV and Allergy, Department of Medicine, Clinical Hospital University of Chile, Chile
| | - Teresa Peralta
- Section of Immunology, HIV and Allergy, Department of Medicine, Clinical Hospital University of Chile, Chile
| | - Verónica Ramos
- Section of Immunology, HIV and Allergy, Department of Medicine, Clinical Hospital University of Chile, Chile
| | - Magdalena Durán
- Section of Immunology, HIV and Allergy, Department of Medicine, Clinical Hospital University of Chile, Chile
| | - Carolina Behrens
- Section of Immunology, HIV and Allergy, Department of Medicine, Clinical Hospital University of Chile, Chile
| | - Daniella Maureira
- Section of Immunology, HIV and Allergy, Department of Medicine, Clinical Hospital University of Chile, Chile
| | - Maria A Guzmán
- Section of Immunology, HIV and Allergy, Department of Medicine, Clinical Hospital University of Chile, Chile
| | - Carla Bastias
- Section of Immunology, HIV and Allergy, Department of Medicine, Clinical Hospital University of Chile, Chile
| | - Pablo Ferrer
- Section of Immunology, HIV and Allergy, Department of Medicine, Clinical Hospital University of Chile, Chile
| |
Collapse
|
27
|
Comas-Basté O, Sánchez-Pérez S, Veciana-Nogués MT, Latorre-Moratalla M, Vidal-Carou MDC. Histamine Intolerance: The Current State of the Art. Biomolecules 2020; 10:E1181. [PMID: 32824107 PMCID: PMC7463562 DOI: 10.3390/biom10081181] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/18/2022] Open
Abstract
Histamine intolerance, also referred to as enteral histaminosis or sensitivity to dietary histamine, is a disorder associated with an impaired ability to metabolize ingested histamine that was described at the beginning of the 21st century. Although interest in histamine intolerance has considerably grown in recent years, more scientific evidence is still required to help define, diagnose and clinically manage this condition. This article will provide an updated review on histamine intolerance, mainly focusing on its etiology and the existing diagnostic and treatment strategies. In this work, a glance on histamine intoxication will also be provided, as well as the analysis of some uncertainties historically associated to histamine intoxication outbreaks that may be better explained by the existence of interindividual susceptibility to ingested histamine.
Collapse
Affiliation(s)
- Oriol Comas-Basté
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona, Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain; (O.C.-B.); (S.S.-P.); (M.T.V.-N.); (M.L.-M.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA·UB), Universitat de Barcelona, Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
- Xarxa de Referència en Tecnologia dels Aliments de la Generalitat de Catalunya (XaRTA), C/Baldiri Reixac 4, 08028 Barcelona, Spain
| | - Sònia Sánchez-Pérez
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona, Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain; (O.C.-B.); (S.S.-P.); (M.T.V.-N.); (M.L.-M.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA·UB), Universitat de Barcelona, Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
- Xarxa de Referència en Tecnologia dels Aliments de la Generalitat de Catalunya (XaRTA), C/Baldiri Reixac 4, 08028 Barcelona, Spain
| | - Maria Teresa Veciana-Nogués
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona, Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain; (O.C.-B.); (S.S.-P.); (M.T.V.-N.); (M.L.-M.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA·UB), Universitat de Barcelona, Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
- Xarxa de Referència en Tecnologia dels Aliments de la Generalitat de Catalunya (XaRTA), C/Baldiri Reixac 4, 08028 Barcelona, Spain
| | - Mariluz Latorre-Moratalla
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona, Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain; (O.C.-B.); (S.S.-P.); (M.T.V.-N.); (M.L.-M.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA·UB), Universitat de Barcelona, Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
- Xarxa de Referència en Tecnologia dels Aliments de la Generalitat de Catalunya (XaRTA), C/Baldiri Reixac 4, 08028 Barcelona, Spain
| | - María del Carmen Vidal-Carou
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona, Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain; (O.C.-B.); (S.S.-P.); (M.T.V.-N.); (M.L.-M.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA·UB), Universitat de Barcelona, Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
- Xarxa de Referència en Tecnologia dels Aliments de la Generalitat de Catalunya (XaRTA), C/Baldiri Reixac 4, 08028 Barcelona, Spain
| |
Collapse
|
28
|
Vakal S, Jalkanen S, Dahlström KM, Salminen TA. Human Copper-Containing Amine Oxidases in Drug Design and Development. Molecules 2020; 25:E1293. [PMID: 32178384 PMCID: PMC7144023 DOI: 10.3390/molecules25061293] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/28/2022] Open
Abstract
Two members of the copper-containing amine oxidase family are physiologically important proteins: (1) Diamine oxidase (hDAO; AOC1) with a preference for diamines is involved in degradation of histamine and (2) Vascular adhesion protein-1 (hVAP-1; AOC3) with a preference for monoamines is a multifunctional cell-surface receptor and an enzyme. hVAP-1-targeted inhibitors are designed to treat inflammatory diseases and cancer, whereas the off-target binding of the designed inhibitors to hDAO might result in adverse drug reactions. The X-ray structures for both human enzymes are solved and provide the basis for computer-aided inhibitor design, which has been reported by several research groups. Although the putative off-target effect of hDAO is less studied, computational methods could be easily utilized to avoid the binding of VAP-1-targeted inhibitors to hDAO. The choice of the model organism for preclinical testing of hVAP-1 inhibitors is not either trivial due to species-specific binding properties of designed inhibitors and different repertoire of copper-containing amine oxidase family members in mammalian species. Thus, the facts that should be considered in hVAP-1-targeted inhibitor design are discussed in light of the applied structural bioinformatics and structural biology approaches.
Collapse
Affiliation(s)
- Serhii Vakal
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, FI-20520 Turku, Finland; (S.V.); (K.M.D.)
| | - Sirpa Jalkanen
- MediCity Research Laboratory, University of Turku, Tykistökatu 6A, FI-20520 Turku, Finland;
| | - Käthe M. Dahlström
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, FI-20520 Turku, Finland; (S.V.); (K.M.D.)
| | - Tiina A. Salminen
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, FI-20520 Turku, Finland; (S.V.); (K.M.D.)
| |
Collapse
|
29
|
McLamore ES, Palit Austin Datta S, Morgan V, Cavallaro N, Kiker G, Jenkins DM, Rong Y, Gomes C, Claussen J, Vanegas D, Alocilja EC. SNAPS: Sensor Analytics Point Solutions for Detection and Decision Support Systems. SENSORS 2019; 19:s19224935. [PMID: 31766116 PMCID: PMC6891700 DOI: 10.3390/s19224935] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 12/16/2022]
Abstract
In this review, we discuss the role of sensor analytics point solutions (SNAPS), a reduced complexity machine-assisted decision support tool. We summarize the approaches used for mobile phone-based chemical/biological sensors, including general hardware and software requirements for signal transduction and acquisition. We introduce SNAPS, part of a platform approach to converge sensor data and analytics. The platform is designed to consist of a portfolio of modular tools which may lend itself to dynamic composability by enabling context-specific selection of relevant units, resulting in case-based working modules. SNAPS is an element of this platform where data analytics, statistical characterization and algorithms may be delivered to the data either via embedded systems in devices, or sourced, in near real-time, from mist, fog or cloud computing resources. Convergence of the physical systems with the cyber components paves the path for SNAPS to progress to higher levels of artificial reasoning tools (ART) and emerge as data-informed decision support, as a service for general societal needs. Proof of concept examples of SNAPS are demonstrated both for quantitative data and qualitative data, each operated using a mobile device (smartphone or tablet) for data acquisition and analytics. We discuss the challenges and opportunities for SNAPS, centered around the value to users/stakeholders and the key performance indicators users may find helpful, for these types of machine-assisted tools.
Collapse
Affiliation(s)
- Eric S. McLamore
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA or (V.M.); (N.C.); (G.K.); (Y.R.)
- Correspondence: ; Tel.: +1-(352)294-6703
| | - Shoumen Palit Austin Datta
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA or (V.M.); (N.C.); (G.K.); (Y.R.)
- MIT Auto-ID Labs, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- MDPnP Labs, Biomedical Engineering Program, Department of Anesthesiology, Massachusetts General Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | - Victoria Morgan
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA or (V.M.); (N.C.); (G.K.); (Y.R.)
| | - Nicholas Cavallaro
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA or (V.M.); (N.C.); (G.K.); (Y.R.)
| | - Greg Kiker
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA or (V.M.); (N.C.); (G.K.); (Y.R.)
| | - Daniel M. Jenkins
- Molecular Biosciences and Bioengineering, University of Hawaii Manoa, Honolulu, HI 96822, USA;
| | - Yue Rong
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA or (V.M.); (N.C.); (G.K.); (Y.R.)
| | - Carmen Gomes
- Mechanical Engineering, Iowa State University, Ames, IA 50011, USA;
| | - Jonathan Claussen
- Mechanical Engineering Department, Iowa State University, Ames, IA 50011, USA;
- Ames Laboratory, Ames, IA 50011, USA
| | - Diana Vanegas
- Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA;
| | - Evangelyn C. Alocilja
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA;
- Nano-Biosensors Lab, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
30
|
Lopes de Carvalho L, Bligt-Lindén E, Ramaiah A, Johnson MS, Salminen TA. Evolution and functional classification of mammalian copper amine oxidases. Mol Phylogenet Evol 2019; 139:106571. [PMID: 31351182 DOI: 10.1016/j.ympev.2019.106571] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/05/2019] [Accepted: 07/23/2019] [Indexed: 12/14/2022]
Abstract
Mammalian copper-containing amine oxidases (CAOs), encoded by four genes (AOC1-4) and catalyzing the oxidation of primary amines to aldehydes, regulate many biological processes and are linked to various diseases including inflammatory conditions and histamine intolerance. Despite the known differences in their substrate preferences, CAOs are currently classified based on their preference for either primary monoamines (EC 1.4.3.21) or diamines (EC 1.4.3.22). Here, we present the first extensive phylogenetic study of CAOs that, combined with structural analyses of the CAO active sites, provides in-depth knowledge of their relationships and guidelines for classification of mammalian CAOs into AOC1-4 sub-families. The phylogenetic results show that CAOs can be classified based on two residues, X1 and X2, from the active site motif: T/S-X1-X2-N-Y-D. Residue X2 discriminates among the AOC1 (Tyr), AOC2 (Gly), and AOC3/AOC4 (Leu) proteins, while residue X1 further classifies the AOC3 (Leu) and AOC4 (Met) proteins that so far have been poorly identified and annotated. Residues X1 and X2 conserved within each sub-family and located in the catalytic site seem to be the key determinants for the unique substrate preference of each CAO sub-family. Furthermore, one residue located at 10 Å distance from the catalytic site is different between the sub-families but highly conserved within each sub-family (Asp in AOC1, His in AOC2, Thr in AOC3 and Asn in AOC4) and likely contributes to substrate selectivity. Altogether, our results will benefit the design of new sub-family specific inhibitors and the design of in vitro tests to detect individual CAO levels for diagnostic purposes.
Collapse
Affiliation(s)
- Leonor Lopes de Carvalho
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Eva Bligt-Lindén
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Arunachalam Ramaiah
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland; Sri Paramakalyani Centre for Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tamil Nadu 627412, India
| | - Mark S Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Tiina A Salminen
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
| |
Collapse
|
31
|
Pietrangeli P, Seguella L, Annunziata G, Casano F, Capuano R, Pesce M, De Conno B, Gigli S, Sarnelli G, Pesce M, Mateescu MA, Esposito G, Marcocci L. Lathyrus sativus
diamine oxidase counteracts histamine‐induced cell proliferation, migration and pro‐angiogenic mediators release in human colon adenocarcinoma cell line Caco‐2. Phytother Res 2019; 33:1878-1887. [DOI: 10.1002/ptr.6378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Paola Pietrangeli
- Department of Biochemical Sciences“A. Rossi Fanelli”‐ Sapienza University of Rome Rome Italy
| | - Luisa Seguella
- Department of Physiology and Pharmacology“V.Erspamer”‐ Sapienza University of Rome Rome Italy
| | - Giuseppe Annunziata
- Department of Pharmacy, Faculty of PharmacyUniversity Federico II Naples Italy
| | - Fabrizio Casano
- Department of Physiology and Pharmacology“V.Erspamer”‐ Sapienza University of Rome Rome Italy
| | - Riccardo Capuano
- Department of Physiology and Pharmacology“V.Erspamer”‐ Sapienza University of Rome Rome Italy
| | - Mirella Pesce
- Department of Physiology and Pharmacology“V.Erspamer”‐ Sapienza University of Rome Rome Italy
| | - Barbara De Conno
- Department of Clinical Medicine and Surgery, section of GastroenterologyUniversity Federico II Naples Italy
| | - Stefano Gigli
- Department of Physiology and Pharmacology“V.Erspamer”‐ Sapienza University of Rome Rome Italy
| | - Giovanni Sarnelli
- Department of Clinical Medicine and Surgery, section of GastroenterologyUniversity Federico II Naples Italy
| | - Marcella Pesce
- Department of Clinical Medicine and Surgery, section of GastroenterologyUniversity Federico II Naples Italy
| | | | - Giuseppe Esposito
- Department of Physiology and Pharmacology“V.Erspamer”‐ Sapienza University of Rome Rome Italy
| | - Lucia Marcocci
- Department of Biochemical Sciences“A. Rossi Fanelli”‐ Sapienza University of Rome Rome Italy
| |
Collapse
|
32
|
Adelson CN, Johnston EM, Hilmer KM, Watts H, Dey SG, Brown DE, Broderick JB, Shepard EM, Dooley DM, Solomon EI. Characterization of the Preprocessed Copper Site Equilibrium in Amine Oxidase and Assignment of the Reactive Copper Site in Topaquinone Biogenesis. J Am Chem Soc 2019; 141:8877-8890. [PMID: 31060358 DOI: 10.1021/jacs.9b01922] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Copper-dependent amine oxidases produce their redox active cofactor, 2,4,5-trihydroxyphenylalanine quinone (TPQ), via the CuII-catalyzed oxygenation of an active site tyrosine. This study addresses possible mechanisms for this biogenesis process by presenting the geometric and electronic structure characterization of the CuII-bound, prebiogenesis (preprocessed) active site of the enzyme Arthrobacter globiformis amine oxidase (AGAO). CuII-loading into the preprocessed AGAO active site is slow ( kobs = 0.13 h-1), and is preceded by CuII binding in a separate kinetically favored site that is distinct from the active site. Preprocessed active site CuII is in a thermal equilibrium between two species, an entropically favored form with tyrosine protonated and unbound from the CuII site, and an enthalpically favored form with tyrosine bound deprotonated to the CuII active site. It is shown that the CuII-tyrosinate bound form is directly active in biogenesis. The electronic structure determined for the reactive form of the preprocessed CuII active site is inconsistent with a biogenesis pathway that proceeds through a CuI-tyrosyl radical intermediate, but consistent with a pathway that overcomes the spin forbidden reaction of 3O2 with the bound singlet substrate via a three-electron concerted charge-transfer mechanism.
Collapse
Affiliation(s)
- Charles N Adelson
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Esther M Johnston
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Kimberly M Hilmer
- Department of Chemistry and Biochemistry , Montana State University , Bozeman , Montana 59717 , United States
| | - Hope Watts
- Department of Chemistry and Biochemistry , Montana State University , Bozeman , Montana 59717 , United States
| | - Somdatta Ghosh Dey
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Doreen E Brown
- Department of Chemistry and Biochemistry , Montana State University , Bozeman , Montana 59717 , United States
| | - Joan B Broderick
- Department of Chemistry and Biochemistry , Montana State University , Bozeman , Montana 59717 , United States
| | - Eric M Shepard
- Department of Chemistry and Biochemistry , Montana State University , Bozeman , Montana 59717 , United States
| | - David M Dooley
- Department of Chemistry and Biochemistry , Montana State University , Bozeman , Montana 59717 , United States.,University of Rhode Island , Kingston , Rhode Island 02881 , United States
| | - Edward I Solomon
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| |
Collapse
|
33
|
Boehm T, Reiter B, Ristl R, Petroczi K, Sperr W, Stimpfl T, Valent P, Jilma B. Massive release of the histamine-degrading enzyme diamine oxidase during severe anaphylaxis in mastocytosis patients. Allergy 2019; 74:583-593. [PMID: 30418682 PMCID: PMC6590243 DOI: 10.1111/all.13663] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/12/2018] [Accepted: 10/18/2018] [Indexed: 12/19/2022]
Abstract
Background Histaminolytic activity mediated by diamine oxidase (DAO) is present in plasma after induction of severe anaphylaxis in rats, guinea pigs, and rabbits. Heparin released during mast cell degranulation in the gastrointestinal tract might liberate DAO from heparin‐sensitive storage sites. DAO release during anaphylaxis has not been demonstrated in humans. Methods Plasma DAO, tryptase, and histamine concentrations of four severe anaphylaxis events were determined at multiple serial time points in two patients with systemic mastocytosis. The histamine degradation rates were measured in anaphylaxis samples and in pregnancy sera and plasma with comparable DAO concentrations. Results Mean DAO (132 ng/mL) and tryptase (304 ng/mL) concentrations increased 187‐ and 4.0‐fold, respectively, over baseline values (DAO 0.7 ng/mL, tryptase 76 ng/mL) during severe anaphylaxis. Under non‐anaphylaxis conditions, DAO concentrations were not elevated in 29 mastocytosis patients compared to healthy volunteers and there was no correlation between DAO and tryptase levels in mastocytosis patients. The histamine degradation rate of DAO in plasma from mastocytosis patients during anaphylaxis is severely compromised compared to DAO from pregnancy samples. Conclusion During severe anaphylaxis in mastocytosis patients, DAO is likely released from heparin‐sensitive gastrointestinal storage sites. The measured concentrations can degrade histamine, but DAO activity is compromised compared to pregnancy samples. For accurate histamine measurements during anaphylaxis, DAO inhibition is essential to inhibit further histamine degradation after blood withdrawal. Determination of DAO antigen levels might be of clinical value to improve the diagnosis of mast cell activation.
Collapse
Affiliation(s)
- Thomas Boehm
- Department of Clinical Pharmacology; Medical University of Vienna; Vienna Austria
| | - Birgit Reiter
- Analytical Toxicology; Clinical Institute of Laboratory Medicine; Medical University of Vienna; Vienna Austria
| | - Robin Ristl
- Section for Medical Statistics (IMS); Center of Medical Statistics; Informatics and Intelligent Systems; Medical University of Vienna; Vienna Austria
| | - Karin Petroczi
- Department of Clinical Pharmacology; Medical University of Vienna; Vienna Austria
| | - Wolfgang Sperr
- Department of Internal Medicine I; Division of Hematology & Hemostaseology and Ludwig Boltzmann Cluster Oncology; Medical University of Vienna; Vienna Austria
| | - Thomas Stimpfl
- Analytical Toxicology; Clinical Institute of Laboratory Medicine; Medical University of Vienna; Vienna Austria
| | - Peter Valent
- Department of Internal Medicine I; Division of Hematology & Hemostaseology and Ludwig Boltzmann Cluster Oncology; Medical University of Vienna; Vienna Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology; Medical University of Vienna; Vienna Austria
| |
Collapse
|
34
|
Histamine N-Methyltransferase in the Brain. Int J Mol Sci 2019; 20:ijms20030737. [PMID: 30744146 PMCID: PMC6386932 DOI: 10.3390/ijms20030737] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 12/13/2022] Open
Abstract
Brain histamine is a neurotransmitter and regulates diverse physiological functions. Previous studies have shown the involvement of histamine depletion in several neurological disorders, indicating the importance of drug development targeting the brain histamine system. Histamine N-methyltransferase (HNMT) is a histamine-metabolising enzyme expressed in the brain. Although pharmacological studies using HNMT inhibitors have been conducted to reveal the direct involvement of HNMT in brain functions, HNMT inhibitors with high specificity and sufficient blood–brain barrier permeability have not been available until now. Recently, we have phenotyped Hnmt-deficient mice to elucidate the importance of HNMT in the central nervous system. Hnmt disruption resulted in a robust increase in brain histamine concentration, demonstrating the essential role of HNMT in the brain histamine system. Clinical studies have suggested that single nucleotide polymorphisms of the human HNMT gene are associated with several brain disorders such as Parkinson’s disease and attention deficit hyperactivity disorder. Postmortem studies also have indicated that HNMT expression is altered in human brain diseases. These findings emphasise that an increase in brain histamine levels by novel HNMT inhibitors could contribute to the improvement of brain disorders.
Collapse
|
35
|
Abstract
Significance: Vascular adhesion protein-1 (VAP-1) is an ectoenzyme that oxidates primary amines in a reaction producing also hydrogen peroxide. VAP-1 on the blood vessel endothelium regulates leukocyte extravasation from the blood into tissues under physiological and pathological conditions. Recent Advances: Inhibition of VAP-1 by neutralizing antibodies and by several novel small-molecule enzyme inhibitors interferes with leukocyte trafficking and alleviates inflammation in many experimental models. Targeting of VAP-1 also shows beneficial effects in several other diseases, such as ischemia/reperfusion, fibrosis, and cancer. Moreover, soluble VAP-1 levels may serve as a new prognostic biomarker in selected diseases. Critical Issues: Understanding the contribution of the enzyme activity-independent and enzyme activity-dependent functions, which often appear to be mediated by the hydrogen peroxide production, in the VAP-1 biology will be crucial. Similarly, there is a pressing need to understand which of the VAP-1 functions are regulated through the modulation of leukocyte trafficking, and what is the role of VAP-1 synthesized in adipose and smooth muscle cells. Future Directions: The specificity and selectivity of new VAP-1 inhibitors, and their value in animal models under therapeutic settings need to be addressed. Results from several programs studying the therapeutic potential of VAP-1 inhibition, which now are in clinical trials, will reveal the relevance of this amine oxidase in humans.
Collapse
Affiliation(s)
- Marko Salmi
- 1 MediCity , Turku, Finland .,2 Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sirpa Jalkanen
- 1 MediCity , Turku, Finland .,2 Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
36
|
Furlan V, Konc J, Bren U. Inverse Molecular Docking as a Novel Approach to Study Anticarcinogenic and Anti-Neuroinflammatory Effects of Curcumin. Molecules 2018; 23:E3351. [PMID: 30567342 PMCID: PMC6321024 DOI: 10.3390/molecules23123351] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/07/2018] [Accepted: 12/17/2018] [Indexed: 11/16/2022] Open
Abstract
Research efforts are placing an ever increasing emphasis on identifying signal transduction pathways related to the chemopreventive activity of curcumin. Its anticarcinogenic effects are presumably mediated by the regulation of signaling cascades, including nuclear factor κB (NF-κB), activator protein 1 (AP-1), and mitogen-activated protein kinases (MAPK). By modulating signal transduction pathways, curcumin induces apoptosis in malignant cells, thus inhibiting cancer development and progression. Due to the lack of mechanistic insight in the scientific literature, we developed a novel inverse molecular docking protocol based on the CANDOCK algorithm. For the first time, we performed inverse molecular docking of curcumin into a collection of 13,553 available human protein structures from the Protein Data Bank resulting in prioritized target proteins of curcumin. Our predictions were in agreement with the scientific literature and confirmed that curcumin binds to folate receptor β, DNA (cytosine-5)-methyltransferase 3A, metalloproteinase-2, mitogen-activated protein kinase 9, epidermal growth factor receptor and apoptosis-inducing factor 1. We also identified new potential protein targets of curcumin, namely deoxycytidine kinase, NAD-dependent protein deacetylase sirtuin-1 and -2, ecto-5'-nucleotidase, core histone macro-H2A.1, tyrosine-protein phosphatase non-receptor type 11, macrophage colony-stimulating factor 1 receptor, GTPase HRas, aflatoxin B1 aldehyde reductase member 3, aldo-keto reductase family 1 member C3, amiloride-sensitive amine oxidase, death-associated protein kinase 2 and tryptophan-tRNA ligase, that may all play a crucial role in its observed anticancer effects. Moreover, our inverse docking results showed that curcumin potentially binds also to the proteins cAMP-specific 3',5'-cyclic phosphodiesterase 4D and 17-β-hydroxysteroid dehydrogenase type 10, which provides a new explanation for its efficiency in the treatment of Alzheimer's disease. We firmly believe that our computational results will complement and direct future experimental studies on curcumin's anticancer activity as well as on its therapeutic effects against Alzheimer's disease.
Collapse
Affiliation(s)
- Veronika Furlan
- Faculty of Chemistry and Chemical Technology, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia.
| | - Janez Konc
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.
| | - Urban Bren
- Faculty of Chemistry and Chemical Technology, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia.
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
37
|
Razali NN, Hashim NH, Leow ATC, Salleh AB. Conformational Design and Characterisation of a Truncated Diamine Oxidase from Arthrobacter globiformis. High Throughput 2018; 7:ht7030021. [PMID: 30149644 PMCID: PMC6163217 DOI: 10.3390/ht7030021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 11/16/2022] Open
Abstract
A functional mini protein can be developed by miniaturising its size. The minimisation technique provides an excellent model system for studying native enzymes, especially in creating an alternative novel biocatalyst. Miniaturised proteins may have enhanced stability, a crucial characteristic for large-scale production and industrial applications. In this study, a huge enzyme molecule, known as diamine oxidase (DAO, comprising 700 amino acids), was selected to undergo the process. By retaining the arrangement of the original functional sites of DAO in the fourth domain, a mini DAO can be designed via homology modelling. After several downsizing processes, a final configuration of 220 amino acids displayed high binding affinity towards histamine, a short-chain substrate that was catalysed by the parental DAO. The configuration also showed enhanced affinity towards a long-chain substrate known as spermidine. The gene for the designed protein was cloned and expressed in pET102/TOPO vector and overexpressed in E. coli BL21 (DE3). The new mini DAO had similar temperature tolerance and versatile substrates specificity characteristics as its parental protein. An active mini-protein with these characteristics is potentially useful for several applications such as detecting biogenic amines in the biological fluids and the environment that may give rise to health issues.
Collapse
Affiliation(s)
- Nur Nadia Razali
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia.
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang 43400, Malaysia.
| | - Nur Hafizah Hashim
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang 43400, Malaysia.
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia.
| | - Adam Thean Chor Leow
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia.
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang 43400, Malaysia.
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia.
| | - Abu Bakar Salleh
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia.
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang 43400, Malaysia.
| |
Collapse
|
38
|
Gaule TG, Smith MA, Tych KM, Pirrat P, Trinh CH, Pearson AR, Knowles PF, McPherson MJ. Oxygen Activation Switch in the Copper Amine Oxidase of Escherichia coli. Biochemistry 2018; 57:5301-5314. [PMID: 30110143 PMCID: PMC6136094 DOI: 10.1021/acs.biochem.8b00633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Copper amine oxidases (CuAOs) are metalloenzymes that reduce molecular oxygen to hydrogen peroxide during catalytic turnover of primary amines. In addition to Cu2+ in the active site, two peripheral calcium sites, ∼32 Å from the active site, have roles in Escherichia coli amine oxidase (ECAO). The buried Ca2+ (Asp533, Leu534, Asp535, Asp678, and Ala679) is essential for full-length protein production, while the surface Ca2+ (Glu573, Tyr667, Asp670, and Glu672) modulates biogenesis of the 2,4,5-trihydroxyphenylalanine quinone (TPQ) cofactor. The E573Q mutation at the surface site prevents calcium binding and TPQ biogenesis. However, TPQ biogenesis can be restored by a suppressor mutation (I342F) in the proposed oxygen delivery channel to the active site. While supporting TPQ biogenesis (∼60% WTECAO TPQ), I342F/E573Q has almost no amine oxidase activity (∼4.6% WTECAO activity). To understand how these long-range mutations have major effects on TPQ biogenesis and catalysis, we employed ultraviolet-visible spectroscopy, steady-state kinetics, inhibition assays, and X-ray crystallography. We show that the surface metal site controls the equilibrium (disproportionation) of the Cu2+-substrate reduced TPQ (TPQAMQ) Cu+-TPQ semiquinone (TPQSQ) couple. Removal of the calcium ion from this site by chelation or mutagenesis shifts the equilibrium to Cu2+-TPQAMQ or destabilizes Cu+-TPQSQ. Crystal structure analysis shows that TPQ biogenesis is stalled at deprotonation in the Cu2+-tyrosinate state. Our findings support WTECAO using the inner sphere electron transfer mechanism for oxygen reduction during catalysis, and while a Cu+-tyrosyl radical intermediate is not essential for TPQ biogenesis, it is required for efficient biogenesis.
Collapse
Affiliation(s)
- Thembaninkosi G Gaule
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences , University of Leeds , Leeds LS2 9JT , U.K
| | - Mark A Smith
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences , University of Leeds , Leeds LS2 9JT , U.K
| | - Katarzyna M Tych
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences , University of Leeds , Leeds LS2 9JT , U.K.,Physik-Department, Lehrstuhl für Biophysik E22 , Technische Universität München , D-85748 Garching , Germany
| | - Pascale Pirrat
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences , University of Leeds , Leeds LS2 9JT , U.K
| | - Chi H Trinh
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences , University of Leeds , Leeds LS2 9JT , U.K
| | - Arwen R Pearson
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences , University of Leeds , Leeds LS2 9JT , U.K.,Hamburg Centre of Ultrafast Imaging and Institute for Nanostructure and Solid State Physics , Universität Hamburg , D-22761 Hamburg , Germany
| | - Peter F Knowles
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences , University of Leeds , Leeds LS2 9JT , U.K
| | - Michael J McPherson
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences , University of Leeds , Leeds LS2 9JT , U.K
| |
Collapse
|
39
|
Gallelli CA, Calcagnini S, Romano A, Koczwara JB, de Ceglia M, Dante D, Villani R, Giudetti AM, Cassano T, Gaetani S. Modulation of the Oxidative Stress and Lipid Peroxidation by Endocannabinoids and Their Lipid Analogues. Antioxidants (Basel) 2018; 7:E93. [PMID: 30021985 PMCID: PMC6070960 DOI: 10.3390/antiox7070093] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023] Open
Abstract
Growing evidence supports the pivotal role played by oxidative stress in tissue injury development, thus resulting in several pathologies including cardiovascular, renal, neuropsychiatric, and neurodegenerative disorders, all characterized by an altered oxidative status. Reactive oxygen and nitrogen species and lipid peroxidation-derived reactive aldehydes including acrolein, malondialdehyde, and 4-hydroxy-2-nonenal, among others, are the main responsible for cellular and tissue damages occurring in redox-dependent processes. In this scenario, a link between the endocannabinoid system (ECS) and redox homeostasis impairment appears to be crucial. Anandamide and 2-arachidonoylglycerol, the best characterized endocannabinoids, are able to modulate the activity of several antioxidant enzymes through targeting the cannabinoid receptors type 1 and 2 as well as additional receptors such as the transient receptor potential vanilloid 1, the peroxisome proliferator-activated receptor alpha, and the orphan G protein-coupled receptors 18 and 55. Moreover, the endocannabinoids lipid analogues N-acylethanolamines showed to protect cell damage and death from reactive aldehydes-induced oxidative stress by restoring the intracellular oxidants-antioxidants balance. In this review, we will provide a better understanding of the main mechanisms triggered by the cross-talk between the oxidative stress and the ECS, focusing also on the enzymatic and non-enzymatic antioxidants as scavengers of reactive aldehydes and their toxic bioactive adducts.
Collapse
Affiliation(s)
- Cristina Anna Gallelli
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Silvio Calcagnini
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Adele Romano
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Justyna Barbara Koczwara
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Marialuisa de Ceglia
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Donatella Dante
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Rosanna Villani
- C.U.R.E. University Centre for Liver Disease Research and Treatment, Department of Medical and Surgical Sciences, Institute of Internal Medicine, University of Foggia, 71122 Foggia, Italy.
| | - Anna Maria Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, Via Luigi Pinto, c/o Ospedali Riuniti, 71122 Foggia, Italy.
| | - Silvana Gaetani
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
40
|
Mergemeier K, Lehr M. HPLC-UV assays for evaluation of inhibitors of mono and diamine oxidases using novel phenyltetrazolylalkanamine substrates. Anal Biochem 2018; 549:29-38. [PMID: 29550344 DOI: 10.1016/j.ab.2018.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/05/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
Abstract
Recently, we have described an HPLC-UV assay for the evaluation of inhibitors of plasma amine oxidase (PAO) using 6-(5-phenyl-2H-tetrazol-2-yl)hexan-1-amine (4) as a new type of substrate. Now we studied, whether this compound or homologues of it can also function as substrate for related amine oxidases, namely diamine oxidase (DAO), monoamine oxidase A (MAO A) and monoamine oxidase B (MAO B). Among these substances, 4 was converted by DAO with the highest rate. The best substrate for MAO A and B was 4-(5-phenyl-2H-tetrazol-2-yl)butan-1-amine (2). To validate the new assays, the inhibition values of known enzyme inhibitors were determined and the data were compared with those obtained with the substrate benzylamine, which is often used in amine oxidase assays. For the DAO inhibitor 2-(4-phenylphenyl)acetohydrazide an about 10fold lower IC50-value against DAO was obtained when benzylamine was applied instead of 4, indicating that 4 binds to the enzyme with higher affinity than benzylamine. The IC50-values of clorgiline and selegiline against MAO A and B, respectively, also decreased (two- and 30fold) replacing 2 by benzylamine. The discrepancies largely disappeared, when the enzymes were pre-incubated with the inhibitors for 15 min. This can be explained with the covalent inhibition mechanism of the inhibitors.
Collapse
Affiliation(s)
- Kira Mergemeier
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstrasse 48, 48149 Münster, Germany
| | - Matthias Lehr
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstrasse 48, 48149 Münster, Germany.
| |
Collapse
|
41
|
Davidson VL. Protein-Derived Cofactors Revisited: Empowering Amino Acid Residues with New Functions. Biochemistry 2018; 57:3115-3125. [PMID: 29498828 DOI: 10.1021/acs.biochem.8b00123] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A protein-derived cofactor is a catalytic or redox-active site in a protein that is formed by post-translational modification of one or more amino acid residues. These post-translational modifications are irreversible and endow the modified amino acid residues with new functional properties. This Perspective focuses on the following advances in this area that have occurred during recent years. The biosynthesis of the tryptophan tryptophylquinone cofactor is catalyzed by a diheme enzyme, MauG. A bis-FeIV redox state of the hemes performs three two-electron oxidations of specific Trp residues via long-range electron transfer. In contrast, a flavoenzyme catalyzes the biosynthesis of the cysteine tryptophylquinone (CTQ) cofactor present in a newly discovered family of CTQ-dependent oxidases. Another carbonyl cofactor, the pyruvoyl cofactor found in classes of decarboxylases and reductases, is formed during an apparently autocatalytic cleavage of a precursor protein at the N-terminus of the cleavage product. It has been shown that in at least some cases, the cleavage is facilitated by binding to an accessory protein. Tyrosylquinonine cofactors, topaquinone and lysine tyrosylquinone, are found in copper-containing amine oxidases and lysyl oxidases, respectively. The physiological roles of different families of these enzymes in humans have been more clearly defined and shown to have significant implications with respect to human health. There has also been continued characterization of the roles of covalently cross-linked amino acid side chains that influence the reactivity of redox-active metal centers in proteins. These include Cys-Tyr species in galactose oxidase and cysteine dioxygenase and the Met-Tyr-Trp species in the catalase-peroxidase KatG.
Collapse
Affiliation(s)
- Victor L Davidson
- Burnett School of Biomedical Sciences, College of Medicine , University of Central Florida , Orlando , Florida 32827 , United States
| |
Collapse
|
42
|
Mapping the interaction site and effect of the Siglec-9 inflammatory biomarker on human primary amine oxidase. Sci Rep 2018; 8:2086. [PMID: 29391504 PMCID: PMC5794975 DOI: 10.1038/s41598-018-20618-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/22/2018] [Indexed: 12/21/2022] Open
Abstract
Human primary amine oxidase (hAOC3), also known as vascular adhesion protein 1, mediates leukocyte rolling and trafficking to sites of inflammation by a multistep adhesion cascade. hAOC3 is absent on the endothelium of normal tissues and is kept upregulated during inflammatory conditions, which is an applicable advantage for imaging inflammatory diseases. Sialic acid binding immunoglobulin like-lectin 9 (Siglec-9) is a leukocyte ligand for hAOC3. The peptide (CARLSLSWRGLTLCPSK) based on the region of Siglec-9 that interacts with hAOC3, can be used as a specific tracer for hAOC3-targeted imaging of inflammation using Positron Emission Tomography (PET). In the present study, we show that the Siglec-9 peptide binds to hAOC3 and triggers its amine oxidase activity towards benzylamine. Furthermore, the hAOC3 inhibitors semicarbazide and imidazole reduce the binding of wild type and Arg/Ala mutated Siglec-9 peptides to hAOC3. Molecular docking of the Siglec-9 peptide is in accordance with the experimental results and predicts that the R3 residue in the peptide interacts in the catalytic site of hAOC3 when the topaquinone cofactor is in the non-catalytic on-copper conformation. The predicted binding mode of Siglec-9 peptide to hAOC3 is supported by the PET studies using rodent, rabbit and pig AOC3 proteins.
Collapse
|
43
|
Gludovacz E, Maresch D, Lopes de Carvalho L, Puxbaum V, Baier LJ, Sützl L, Guédez G, Grünwald-Gruber C, Ulm B, Pils S, Ristl R, Altmann F, Jilma B, Salminen TA, Borth N, Boehm T. Oligomannosidic glycans at Asn-110 are essential for secretion of human diamine oxidase. J Biol Chem 2017; 293:1070-1087. [PMID: 29187599 DOI: 10.1074/jbc.m117.814244] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/14/2017] [Indexed: 01/28/2023] Open
Abstract
N-Glycosylation plays a fundamental role in many biological processes. Human diamine oxidase (hDAO), required for histamine catabolism, has multiple N-glycosylation sites, but their roles, for example in DAO secretion, are unclear. We recently reported that the N-glycosylation sites Asn-168, Asn-538, and Asn-745 in recombinant hDAO (rhDAO) carry complex-type glycans, whereas Asn-110 carries only mammalian-atypical oligomannosidic glycans. Here, we show that Asn-110 in native hDAO from amniotic fluid and Caco-2 cells, DAO from porcine kidneys, and rhDAO produced in two different HEK293 cell lines is also consistently occupied by oligomannosidic glycans. Glycans at Asn-168 were predominantly sialylated with bi- to tetra-antennary branches, and Asn-538 and Asn-745 had similar complex-type glycans with some tissue- and cell line-specific variations. The related copper-containing amine oxidase human vascular adhesion protein-1 also exclusively displayed high-mannose glycosylation at Asn-137. X-ray structures revealed that the residues adjacent to Asn-110 and Asn-137 form a highly conserved hydrophobic cleft interacting with the core trisaccharide. Asn-110 replacement with Gln completely abrogated rhDAO secretion and caused retention in the endoplasmic reticulum. Mutations of Asn-168, Asn-538, and Asn-745 reduced rhDAO secretion by 13, 71, and 32%, respectively. Asn-538/745 double and Asn-168/538/745 triple substitutions reduced rhDAO secretion by 85 and 94%. Because of their locations in the DAO structure, Asn-538 and Asn-745 glycosylations might be important for efficient DAO dimer formation. These functional results are reflected in the high evolutionary conservation of all four glycosylation sites. Human DAO is abundant only in the gastrointestinal tract, kidney, and placenta, and glycosylation seems essential for reaching high enzyme expression levels in these tissues.
Collapse
Affiliation(s)
- Elisabeth Gludovacz
- From the Departments of Biotechnology.,the Departments of Clinical Pharmacology and
| | | | - Leonor Lopes de Carvalho
- the Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| | | | | | - Leander Sützl
- Food Science and Technology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Gabriela Guédez
- the Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| | | | | | | | - Robin Ristl
- the Section for Medical Statistics (IMS), Center of Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria, and
| | | | - Bernd Jilma
- the Departments of Clinical Pharmacology and
| | - Tiina A Salminen
- the Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| | | | | |
Collapse
|
44
|
Mapping of the binding sites of human diamine oxidase (DAO) monoclonal antibodies. Inflamm Res 2017; 67:245-253. [PMID: 29164268 PMCID: PMC5807474 DOI: 10.1007/s00011-017-1118-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/10/2017] [Accepted: 11/14/2017] [Indexed: 01/16/2023] Open
Abstract
Objective Recently we characterized five mouse monoclonal antibodies that allow the specific and sensitive detection of human diamine oxidase (DAO). To understand differences in binding characteristics and recognition of enzyme variants, we mapped the antibody binding sites. Methods Fragments of human DAO were expressed as glutathione-S-transferase fusion proteins that were used for testing antibody binding on immunoblots. Combined information from species cross-reactivity, sequence comparison and binding site-prediction software were used to localize the epitope recognized by each antibody. Results All five monoclonal DAO antibodies bound to linear epitopes between the N3 and enzymatic domains of the 732 amino acid protein. The binding sites could be mapped onto amino acid regions V262-E278 and P279-R288, respectively, which exhibit considerable sequence variation in mammals explaining the fact that the human DAO antibodies do not cross-react with DAO from other species. The antibodies efficiently bind only denatured human DAO but not the native protein. Conclusions Characterization of the binding sites of the DAO antibodies revealed that the antibodies bind two adjacent epitopes and exhibit similar binding characteristics and species cross-reactivity. As the epitopes do not overlap any of the amino acid substitutions described for clinically significant DAO gene polymorphisms, our antibodies will also be useful for analyses of the mutant DAO proteins.
Collapse
|
45
|
Sahlgren C, Meinander A, Zhang H, Cheng F, Preis M, Xu C, Salminen TA, Toivola D, Abankwa D, Rosling A, Karaman DŞ, Salo-Ahen OMH, Österbacka R, Eriksson JE, Willför S, Petre I, Peltonen J, Leino R, Johnson M, Rosenholm J, Sandler N. Tailored Approaches in Drug Development and Diagnostics: From Molecular Design to Biological Model Systems. Adv Healthc Mater 2017; 6. [PMID: 28892296 DOI: 10.1002/adhm.201700258] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/04/2017] [Indexed: 12/13/2022]
Abstract
Approaches to increase the efficiency in developing drugs and diagnostics tools, including new drug delivery and diagnostic technologies, are needed for improved diagnosis and treatment of major diseases and health problems such as cancer, inflammatory diseases, chronic wounds, and antibiotic resistance. Development within several areas of research ranging from computational sciences, material sciences, bioengineering to biomedical sciences and bioimaging is needed to realize innovative drug development and diagnostic (DDD) approaches. Here, an overview of recent progresses within key areas that can provide customizable solutions to improve processes and the approaches taken within DDD is provided. Due to the broadness of the area, unfortunately all relevant aspects such as pharmacokinetics of bioactive molecules and delivery systems cannot be covered. Tailored approaches within (i) bioinformatics and computer-aided drug design, (ii) nanotechnology, (iii) novel materials and technologies for drug delivery and diagnostic systems, and (iv) disease models to predict safety and efficacy of medicines under development are focused on. Current developments and challenges ahead are discussed. The broad scope reflects the multidisciplinary nature of the field of DDD and aims to highlight the convergence of biological, pharmaceutical, and medical disciplines needed to meet the societal challenges of the 21st century.
Collapse
Affiliation(s)
- Cecilia Sahlgren
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; FI-20520 Turku Finland
- Department of Biomedical Engineering; Technical University of Eindhoven; 5613 DR Eindhoven Netherlands
| | - Annika Meinander
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
| | - Hongbo Zhang
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Fang Cheng
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
| | - Maren Preis
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Chunlin Xu
- Faculty of Science and Engineering; Natural Materials Technology; Åbo Akademi University; FI-20500 Turku Finland
| | - Tiina A. Salminen
- Faculty of Science and Engineering; Structural Bioinformatics Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Diana Toivola
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
- Turku Center for Disease Modeling; University of Turku; FI-20520 Turku Finland
| | - Daniel Abankwa
- Department of Biomedical Engineering; Technical University of Eindhoven; 5613 DR Eindhoven Netherlands
| | - Ari Rosling
- Faculty of Science and Engineering; Polymer Technologies; Åbo Akademi University; FI-20500 Turku Finland
| | - Didem Şen Karaman
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Outi M. H. Salo-Ahen
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
- Faculty of Science and Engineering; Structural Bioinformatics Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Ronald Österbacka
- Faculty of Science and Engineering; Physics; Åbo Akademi University; FI-20500 Turku Finland
| | - John E. Eriksson
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; FI-20520 Turku Finland
| | - Stefan Willför
- Faculty of Science and Engineering; Natural Materials Technology; Åbo Akademi University; FI-20500 Turku Finland
| | - Ion Petre
- Faculty of Science and Engineering; Computer Science; Åbo Akademi University; FI-20500 Turku Finland
| | - Jouko Peltonen
- Faculty of Science and Engineering; Physical Chemistry; Åbo Akademi University; FI-20500 Turku Finland
| | - Reko Leino
- Faculty of Science and Engineering; Organic Chemistry; Johan Gadolin Process Chemistry Centre; Åbo Akademi University; FI-20500 Turku Finland
| | - Mark Johnson
- Faculty of Science and Engineering; Structural Bioinformatics Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Jessica Rosenholm
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Niklas Sandler
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| |
Collapse
|
46
|
Sahlgren C, Meinander A, Zhang H, Cheng F, Preis M, Xu C, Salminen TA, Toivola D, Abankwa D, Rosling A, Karaman DŞ, Salo-Ahen OMH, Österbacka R, Eriksson JE, Willför S, Petre I, Peltonen J, Leino R, Johnson M, Rosenholm J, Sandler N. Tailored Approaches in Drug Development and Diagnostics: From Molecular Design to Biological Model Systems. Adv Healthc Mater 2017. [DOI: 10.1002/adhm.201700258 10.1002/adhm.201700258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Affiliation(s)
- Cecilia Sahlgren
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; FI-20520 Turku Finland
- Department of Biomedical Engineering; Technical University of Eindhoven; 5613 DR Eindhoven Netherlands
| | - Annika Meinander
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
| | - Hongbo Zhang
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Fang Cheng
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
| | - Maren Preis
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Chunlin Xu
- Faculty of Science and Engineering; Natural Materials Technology; Åbo Akademi University; FI-20500 Turku Finland
| | - Tiina A. Salminen
- Faculty of Science and Engineering; Structural Bioinformatics Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Diana Toivola
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
- Turku Center for Disease Modeling; University of Turku; FI-20520 Turku Finland
| | - Daniel Abankwa
- Department of Biomedical Engineering; Technical University of Eindhoven; 5613 DR Eindhoven Netherlands
| | - Ari Rosling
- Faculty of Science and Engineering; Polymer Technologies; Åbo Akademi University; FI-20500 Turku Finland
| | - Didem Şen Karaman
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Outi M. H. Salo-Ahen
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
- Faculty of Science and Engineering; Structural Bioinformatics Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Ronald Österbacka
- Faculty of Science and Engineering; Physics; Åbo Akademi University; FI-20500 Turku Finland
| | - John E. Eriksson
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; FI-20520 Turku Finland
| | - Stefan Willför
- Faculty of Science and Engineering; Natural Materials Technology; Åbo Akademi University; FI-20500 Turku Finland
| | - Ion Petre
- Faculty of Science and Engineering; Computer Science; Åbo Akademi University; FI-20500 Turku Finland
| | - Jouko Peltonen
- Faculty of Science and Engineering; Physical Chemistry; Åbo Akademi University; FI-20500 Turku Finland
| | - Reko Leino
- Faculty of Science and Engineering; Organic Chemistry; Johan Gadolin Process Chemistry Centre; Åbo Akademi University; FI-20500 Turku Finland
| | - Mark Johnson
- Faculty of Science and Engineering; Structural Bioinformatics Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Jessica Rosenholm
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Niklas Sandler
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| |
Collapse
|
47
|
Grimmelsmann L, Marefat Khah A, Spies C, Hättig C, Nuernberger P. Ultrafast Dynamics of a Triazene: Excited-State Pathways and the Impact of Binding to the Minor Groove of DNA and Further Biomolecular Systems. J Phys Chem Lett 2017; 8:1986-1992. [PMID: 28426228 DOI: 10.1021/acs.jpclett.7b00472] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Many synthetic DNA minor groove binders exhibit a strong increase in fluorescence when bound to DNA. The pharmaceutical-relevant berenil (diminazene aceturate) is an exception with an extremely low fluorescence quantum yield (on the order of 10-4). We investigate the ultrafast excited-state dynamics of this triazene by femtosecond time-resolved fluorescence experiments in water, ethylene glycol, and buffer and bound to the enzyme β-trypsin, the minor groove of AT-rich DNA, and G-quadruplex DNA. Ab initio calculations provide additional mechanistic insight. The complementing studies unveil that the excited-state motion initiated by ππ* excitation occurs in two phases: a subpicosecond phase associated with the lengthening of the central N═N double bond, followed by a bicycle-pedal-type motion of the triazene bridge, which is almost volume-conserving and can proceed efficiently within only a few picoseconds even under spatially confined conditions. Our results elucidate the excited-state relaxation mechanism of aromatic triazenes and explain the modest sensitivity of the fluorescence quantum yield of berenil even when it is bound to various biomolecules.
Collapse
Affiliation(s)
- Lena Grimmelsmann
- Physikalische Chemie II and ‡Theoretische Chemie, Ruhr-Universität Bochum , 44780 Bochum, Germany
| | - Alireza Marefat Khah
- Physikalische Chemie II and ‡Theoretische Chemie, Ruhr-Universität Bochum , 44780 Bochum, Germany
| | - Christian Spies
- Physikalische Chemie II and ‡Theoretische Chemie, Ruhr-Universität Bochum , 44780 Bochum, Germany
| | - Christof Hättig
- Physikalische Chemie II and ‡Theoretische Chemie, Ruhr-Universität Bochum , 44780 Bochum, Germany
| | - Patrick Nuernberger
- Physikalische Chemie II and ‡Theoretische Chemie, Ruhr-Universität Bochum , 44780 Bochum, Germany
| |
Collapse
|
48
|
Hutchinson JH, Rowbottom MW, Lonergan D, Darlington J, Prodanovich P, King CD, Evans JF, Bain G. Small Molecule Lysyl Oxidase-like 2 (LOXL2) Inhibitors: The Identification of an Inhibitor Selective for LOXL2 over LOX. ACS Med Chem Lett 2017; 8:423-427. [PMID: 28435530 DOI: 10.1021/acsmedchemlett.7b00014] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/01/2017] [Indexed: 11/28/2022] Open
Abstract
Two series of novel LOXL2 enzyme inhibitors are described: benzylamines substituted with electron withdrawing groups at the para-position and 2-substituted pyridine-4-ylmethanamines. The most potent compound, (2-chloropyridin-4-yl)methanamine 20 (hLOXL2 IC50 = 126 nM), was shown to be selective for LOXL2 over LOX and three other amine oxidases (MAO-A, MAO-B, and SSAO). Compound 20 is the first published small molecule inhibitor selective for LOXL2 over LOX.
Collapse
Affiliation(s)
- John H. Hutchinson
- PharmAkea Inc., 3030 Bunker Hill Street, Suite 300, San Diego, California 92109, United States
| | - Martin W. Rowbottom
- PharmAkea Inc., 3030 Bunker Hill Street, Suite 300, San Diego, California 92109, United States
| | - David Lonergan
- PharmAkea Inc., 3030 Bunker Hill Street, Suite 300, San Diego, California 92109, United States
| | - Janice Darlington
- PharmAkea Inc., 3030 Bunker Hill Street, Suite 300, San Diego, California 92109, United States
| | - Pat Prodanovich
- PharmAkea Inc., 3030 Bunker Hill Street, Suite 300, San Diego, California 92109, United States
| | - Christopher D. King
- PharmAkea Inc., 3030 Bunker Hill Street, Suite 300, San Diego, California 92109, United States
| | - Jilly F. Evans
- PharmAkea Inc., 3030 Bunker Hill Street, Suite 300, San Diego, California 92109, United States
| | - Gretchen Bain
- PharmAkea Inc., 3030 Bunker Hill Street, Suite 300, San Diego, California 92109, United States
| |
Collapse
|
49
|
Boehm T, Pils S, Gludovacz E, Szoelloesi H, Petroczi K, Majdic O, Quaroni A, Borth N, Valent P, Jilma B. Quantification of human diamine oxidase. Clin Biochem 2016; 50:444-451. [PMID: 28041932 DOI: 10.1016/j.clinbiochem.2016.12.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/21/2016] [Accepted: 12/28/2016] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Diamine oxidase (DAO) is essential for extracellular degradation of histamine. For decades activity assays with inherent limitations were used to quantify the relative amounts of DAO. No reference DAO standard is available. Absolute DAO amounts cannot be determined. Controversy exists, whether DAO is circulating or not in non-pregnant individuals. The role of DAO as biomarker in various diseases is ambiguous. It is not clear, whether precise quantification of human DAO antigen using commercially available enzyme-linked immunosorbent assays (ELISAs) is possible. The objective was to develop a precise and robust ELISA to quantify DAO in various biological fluids. DESIGN AND METHODS A research prototype ELISA was established using a mouse monoclonal antibody for capturing and a polyclonal rabbit serum IgG fraction for the detection of human DAO. The limit of blank (LoB), limit of detection (LoD) and estimated limit of quantification (eLoQ) and normal DAO concentrations in serum and plasma were determined. RESULTS The LoB, LoD and eLoQ derived from 42 standard curves are 0.27, 0.48 and 0.7ng/mL respectively. The detection range using the LoD as the lower and the highest DAO standard as the upper boundary is 0.5 to 450ng/mL. Serum and plasma mean/median concentrations are between 0.5 and 1.5ng/mL in healthy volunteers (n=58) and mastocytosis patients (n=19) and plateau at approximately 145ng/mL (n=16) during pregnancy. Accurate quantification was not influenced by heparin (DAO is a heparin-binding protein), lipaemic or hemolytic serum. The measured DAO antigen concentrations are in close agreement with published enzymatic activity data using radioactive putrescine as substrate. CONCLUSIONS This research prototype ELISA is able to reliably and accurately quantify human DAO in different biological fluids. The potential of DAO as biomarker in various diseases can be evaluated.
Collapse
Affiliation(s)
- Thomas Boehm
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | - Sophie Pils
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Elisabeth Gludovacz
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Helen Szoelloesi
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Karin Petroczi
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Otto Majdic
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Andrea Quaroni
- Department of Biomedical Sciences, Veterinary Research Tower, Cornell University, Ithaca, NY 14853-6401, USA
| | - Nicole Borth
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
50
|
Bartko J, Gludovacz E, Petroczi K, Borth N, Jilma B, Boehm T. Recombinant human diamine oxidase activity is not inhibited by ethanol, acetaldehyde, disulfiram, diethyldithiocarbamate or cyanamide. Alcohol 2016; 54:51-9. [PMID: 27401969 DOI: 10.1016/j.alcohol.2016.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/23/2016] [Accepted: 06/01/2016] [Indexed: 12/11/2022]
Abstract
Human diamine oxidase (hDAO, EC 1.4.3.22) is the key enzyme in the degradation of extracellular histamine. Consumption of alcohol is a known trigger of mast cell degranulation in patients with mast cell activation syndrome. Ethanol may also interfere with enzymatic histamine degradation, but reports on the effects on DAO activity are controversial. There are also conflicting reports whether disulfiram, an FDA-approved agent in the treatment of alcohol dependence, inhibits DAO. We therefore investigated the inhibitory potential of ethanol and disulfiram and their metabolites on recombinant human DAO (rhDAO) in three different assay systems. Relevant concentrations of ethanol, acetaldehyde, and acetate did not inhibit rhDAO activity in an in vitro assay system using horseradish peroxidase (HRP) -mediated luminol oxidation. The aldehyde dehydrogenase (ALDH; EC 1.2.1.3) inhibitors cyanamide and its dimer dicyanamide also had no effect on DAO activity. In one assay system, the irreversible ALDH inhibitor disulfiram and its main metabolite diethyldithiocarbamate seemed to inhibit DAO activity. However, the decreased product formation was not due to a direct block of DAO activity but resulted from inhibition of peroxidase employed in the coupled system. Our in vitro data do not support a direct blocking effect of ethanol, disulfiram, and their metabolites on DAO activity in vivo.
Collapse
|