1
|
Barreca MM, Raimondo S, Conigliaro A, Siragusa S, Napolitano M, Alessandro R, Corrado C. The Combination of Natural Compounds Escin-Bromelain-Ginkgo Biloba-Sage Miltiorrhiza (EBGS) Reduces Platelet Adhesion to TNFα-Activated Vascular Endothelium through FAK Signaling. Int J Mol Sci 2024; 25:9252. [PMID: 39273200 PMCID: PMC11395133 DOI: 10.3390/ijms25179252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Thrombosis is a key process that determines acute coronary syndrome and ischemic stroke and is the leading cause of morbidity and mortality in the world, together with cancer. Platelet adhesion and subsequent activation and aggregation are critical processes that cause thrombus formation after endothelial damage. To date, high hopes are associated with compounds of natural origin, which show anticoagulant action without undesirable effects and can be proposed as supportive therapies. We investigated the effect of the new combination of four natural compounds, escin-bromelain-ginkgo biloba-sage miltiorrhiza (EBGS), on the initial process of the coagulation cascade, which is the adhesion of platelets to activated vascular endothelium. Our results demonstrated that EBGS pretreatment of endothelial cells reduces platelet adhesion even in the presence of the monocyte-lymphocyte population. Our data indicate that EBGS exerts its effects by inhibiting the transcription of adhesion molecules, including P-selectin, platelet membrane glycoprotein GP1b, integrins αV and β3, and reducing the secretion of the pro-inflammatory cytokines interleukin 6, interleukin 8, and the metalloproteinases MMP-2 and MMP-9. Furthermore, we demonstrated that EBGS inhibited the expression of focal adhesion kinase (FAK), strictly involved in platelet adhesion, and whose activity is correlated with that of integrin β3. The results shown in this manuscript suggest a possible inhibitory role of the new combination EBGS in the reduction in platelet adhesion to activated endothelium, thus possibly preventing coagulation cascade initiation.
Collapse
Affiliation(s)
- Maria Magdalena Barreca
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Biology and Genetics Section, University of Palermo, 90133 Palermo, Italy; (M.M.B.); (S.R.); (A.C.); (R.A.)
| | - Stefania Raimondo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Biology and Genetics Section, University of Palermo, 90133 Palermo, Italy; (M.M.B.); (S.R.); (A.C.); (R.A.)
| | - Alice Conigliaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Biology and Genetics Section, University of Palermo, 90133 Palermo, Italy; (M.M.B.); (S.R.); (A.C.); (R.A.)
| | - Sergio Siragusa
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Haematology Section, University of Palermo, 90127 Palermo, Italy; (S.S.); (M.N.)
| | - Mariasanta Napolitano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Haematology Section, University of Palermo, 90127 Palermo, Italy; (S.S.); (M.N.)
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Biology and Genetics Section, University of Palermo, 90133 Palermo, Italy; (M.M.B.); (S.R.); (A.C.); (R.A.)
| | - Chiara Corrado
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Biology and Genetics Section, University of Palermo, 90133 Palermo, Italy; (M.M.B.); (S.R.); (A.C.); (R.A.)
| |
Collapse
|
2
|
Sarkar A, Niraula G, LeVine D, Zhao Y, Tu Y, Mollaeian K, Ren J, Que L, Wang X. Development of a Ratiometric Tension Sensor Exclusively Responding to Integrin Tension Magnitude in Live Cells. ACS Sens 2023; 8:3701-3712. [PMID: 37738233 PMCID: PMC10788086 DOI: 10.1021/acssensors.3c00606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Integrin tensions are critical for cell mechanotransduction. By converting force to fluorescence, molecular tension sensors image integrin tensions in live cells with a high resolution. However, the fluorescence signal intensity results collectively from integrin tension magnitude, tension dwell time, integrin density, sensor accessibility, and so forth, making it highly challenging to specifically monitor the molecular force level of integrin tensions. Here, a ratiometric tension sensor (RTS) was developed to exclusively monitor the integrin tension magnitude. The RTS consists of two tension-sensing units that are coupled in series and always subject to the same integrin tension. These two units are activated by tension to fluoresce in separate spectra and with different activation rates. The ratio of their activation probabilities, reported by fluorescence ratiometric measurement, is solely determined by the local integrin tension magnitude. RTS responded sensitively to the variation of integrin tension magnitude in platelets and focal adhesions due to different cell plating times, actomyosin inhibition, or vinculin knockout. At last, RTS confirmed that integrin tension magnitude in platelets and focal adhesions decreases monotonically with the substrate rigidity, verifying the rigidity dependence of integrin tensions in live cells and suggesting that integrin tension magnitude could be a key biomechanical factor in cell rigidity sensing.
Collapse
Affiliation(s)
- Anwesha Sarkar
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| | - Gopal Niraula
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| | - Dana LeVine
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, Iowa 50011, United States
| | - Yuanchang Zhao
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| | - Ying Tu
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| | - Keyvan Mollaeian
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Juan Ren
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Long Que
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Xuefeng Wang
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
- Hoxworth Blood Center, College of Medicine, The University of Cincinnati, Cincinnati, Ohio 45219, United States
| |
Collapse
|
3
|
Kwan JC, Flannagan RS, Vásquez Peña M, Heinrichs DE, Holdsworth DW, Gillies ER. Induction Heating Triggers Antibiotic Release and Synergistic Bacterial Killing on Polymer-Coated Titanium Surfaces. Adv Healthc Mater 2023; 12:e2202807. [PMID: 37053473 PMCID: PMC11469058 DOI: 10.1002/adhm.202202807] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/30/2023] [Indexed: 04/15/2023]
Abstract
Infection is a major complication associated with orthopedic implants. It often involves the development of biofilms on metal substrates, which act as barriers to the host's immune system and systemic antibiotic treatment. The current standard of treatment is revision surgery, often involving the delivery of antibiotics through incorporation into bone cements. However, these materials exhibit sub-optimal antibiotic release kinetics and revision surgeries have drawbacks of high cost and recovery time. Herein, a new approach is presented using induction heating of a metal substrate, combined with an antibiotic-loaded poly(ester amide) coating undergoing a glass transition just above physiological temperature to enable thermally triggered antibiotic release. At normal physiological temperature, the coating provides a rifampicin depot for >100 days, while heating of the coating accelerates drug release, with >20% release over a 1-h induction heating cycle. Induction heating or antibiotic-loaded coating alone each reduce Staphylococcus aureus (S. aureus) viability and biofilm formation on Ti, but the combination causes synergistic killing of S. aureus as measured by crystal violet staining, determination of bacterial viability (>99.9% reduction), and fluorescence microscopy of bacteria on surfaces. Overall, these materials provide a promising platform enabling externally triggered antibiotic release to prevent and/or treat bacterial colonization of implants.
Collapse
Affiliation(s)
- Jan C. Kwan
- School of Biomedical EngineeringThe University of Western Ontario1151 Richmond StreetLondonOntarioN6A 5B9Canada
- Bone and Joint InstituteThe University of Western OntarioThe Sandy Kirkley Centre for Musculoskeletal ResearchUniversity Hospital B6‐200LondonOntarioN6G 2V4Canada
| | - Ronald S. Flannagan
- Department of Microbiology and ImmunologyThe University of Western Ontario1151 Richmond StreetLondonOntarioN6A 5C1Canada
| | - Mónica Vásquez Peña
- School of Biomedical EngineeringThe University of Western Ontario1151 Richmond StreetLondonOntarioN6A 5B9Canada
- Bone and Joint InstituteThe University of Western OntarioThe Sandy Kirkley Centre for Musculoskeletal ResearchUniversity Hospital B6‐200LondonOntarioN6G 2V4Canada
| | - David E. Heinrichs
- Department of Microbiology and ImmunologyThe University of Western Ontario1151 Richmond StreetLondonOntarioN6A 5C1Canada
| | - David W. Holdsworth
- School of Biomedical EngineeringThe University of Western Ontario1151 Richmond StreetLondonOntarioN6A 5B9Canada
- Bone and Joint InstituteThe University of Western OntarioThe Sandy Kirkley Centre for Musculoskeletal ResearchUniversity Hospital B6‐200LondonOntarioN6G 2V4Canada
- Imaging Research LaboratoriesRobarts Research InstituteThe University of Western Ontario1151 Richmond StreetLondonOntarioN6A 2B8Canada
- Department of Medical BiophysicsThe University of Western Ontario1151 Richmond StreetLondonOntarioN6A 5C1Canada
| | - Elizabeth R. Gillies
- School of Biomedical EngineeringThe University of Western Ontario1151 Richmond StreetLondonOntarioN6A 5B9Canada
- Bone and Joint InstituteThe University of Western OntarioThe Sandy Kirkley Centre for Musculoskeletal ResearchUniversity Hospital B6‐200LondonOntarioN6G 2V4Canada
- Department of ChemistryThe University of Western Ontario1151 Richmond StreetLondonOntarioN6A 5B7Canada
- Department of Chemical and Biochemical EngineeringThe University of Western Ontario1151 Richmond StreetLondonOntarioN6A 5B9Canada
| |
Collapse
|
4
|
Kramer RA, Zimmermann R, Strobel J, Achenbach S, Ströbel AM, Hackstein H, Messerer DAC, Schneider S. An Exploratory Study Using Next-Generation Sequencing to Identify Prothrombotic Variants in Patients with Cerebral Vein Thrombosis. Int J Mol Sci 2023; 24:ijms24097976. [PMID: 37175682 PMCID: PMC10178986 DOI: 10.3390/ijms24097976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Prothrombotic hereditary risk factors for cerebral vein thrombosis (CVT) are of clinical interest to better understand the underlying pathophysiology and stratify patients for the risk of recurrence. This study explores prothrombotic risk factors in CVT patients. An initial screening in patients of the outpatient clinic of the Department of Transfusion Medicine and Hemostaseology of the University Hospital Erlangen, Germany, revealed 183 patients with a history of CVT. An initial screening identified a number of common prothrombic risk factors, including Factor V Leiden (rs6025) and Prothrombin G20210A (rs1799963). All patients without relevant findings (58 individuals) were invited to participate in a subsequent genetic analysis of 55 relevant genes using next-generation sequencing (NGS). Three intron variants (ADAMTS13: rs28446901, FN1: rs56380797, rs35343655) were identified to occur with a significantly higher frequency in the CVT patient cohort compared to the general European population. Furthermore, the combined prevalence of at least two of four potentially prothrombic variants (FGA (rs6050), F13A1 (rs5985), ITGB3 (rs5918), and PROCR (rs867186)) was significantly higher in the CVT subjects. The possible impact of the identified variants on CVT is discussed.
Collapse
Affiliation(s)
- Robert Anton Kramer
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Robert Zimmermann
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Julian Strobel
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Susanne Achenbach
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Armin Michael Ströbel
- Center for Clinical Studies (CCS), Medical Faculty, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Holger Hackstein
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, 91054 Erlangen, Germany
| | - David Alexander Christian Messerer
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Sabine Schneider
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
5
|
Podolnikova NP, Key S, Wang X, Ugarova TP. THE CIS ASSOCIATION OF CD47 WITH INTEGRIN Mac-1 REGULATES MACROPHAGE RESPONSES BY STABILIZING THE EXTENDED INTEGRIN CONFORMATION. J Biol Chem 2023; 299:103024. [PMID: 36796515 PMCID: PMC10124913 DOI: 10.1016/j.jbc.2023.103024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
CD47 is a ubiquitously expressed cell surface integrin-associated protein. Recently, we have demonstrated that integrin Mac-1 (αMβ2, CD11b/CD18, CR3), the major adhesion receptor on the surface of myeloid cells, can be coprecipitated with CD47. However, the molecular basis for the CD47-Mac-1 interaction and its functional consequences remain unclear. Here, we demonstrated that CD47 regulates macrophage functions directly interacting with Mac-1. In particular, adhesion, spreading, migration, phagocytosis, and fusion of CD47-deficient macrophages were significantly decreased. We validated the functional link between CD47 and Mac-1 by co-immunoprecipitation analysis using various Mac-1-expressing cells. In HEK293 cells expressing individual αM and β2 integrin subunits, CD47 was found to bind both subunits. Interestingly, a higher amount of CD47 was recovered with the free β2 subunit than in the complex with the whole integrin. Furthermore, activating Mac-1-expressing HEK293 cells with PMA, Mn2+, and activating antibody MEM48 increased the amount of CD47 in complex with Mac-1, suggesting CD47 has a greater affinity for the extended integrin conformation. Notably, on the surface of cells lacking CD47, fewer Mac-1 molecules could convert into an extended conformation in response to activation. Additionally, we identified the binding site in CD47 for Mac-1 in its constituent IgV domain. The complementary binding sites for CD47 in Mac-1 were localized in integrin epidermal growth factor-like domains 3 and 4 of the β2 and calf-1 and calf-2 domains of the α subunits. These results indicate that Mac-1 forms a lateral complex with CD47, which regulates essential macrophage functions by stabilizing the extended integrin conformation.
Collapse
Affiliation(s)
| | - Shundene Key
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287
| | - Xu Wang
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287
| | | |
Collapse
|
6
|
Fibrin polymer on the surface of biomaterial implants drives the foreign body reaction. Biomaterials 2021; 277:121087. [PMID: 34478933 DOI: 10.1016/j.biomaterials.2021.121087] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/09/2021] [Accepted: 08/23/2021] [Indexed: 12/18/2022]
Abstract
Implantation of biomaterials and medical devices in the body triggers the foreign body reaction (FBR) which is characterized by macrophage fusion at the implant surface leading to the formation of foreign body giant cells and the development of the fibrous capsule enveloping the implant. While adhesion of macrophages to the surface is an essential step in macrophage fusion and implanted biomaterials are known to rapidly acquire a layer of host proteins, a biological substrate that is responsible for this process in vivo is unknown. Here we show that mice with genetically imposed fibrinogen deficiency display a dramatic reduction of macrophage fusion on biomaterials implanted intraperitoneally and subcutaneously and are protected from the formation of the fibrin-containing fibrous capsule. Furthermore, macrophage fusion on biomaterials implanted in FibAEK mice that express a mutated form of fibrinogen incapable of thrombin-mediated polymerization was strongly reduced. Despite the lack of fibrin, the capsule was formed in FibAEK mice, although it had a different composition and distinct mechanical properties than that in wild-type mice. Specifically, while mononuclear α-SMA-expressing macrophages embedded in the capsule of both strains of mice secreted collagen, the amount of collagen and its density in the tissue of FibAEK mice was reduced. These data identify fibrin polymer as a key biological substrate driving the development of the FBR.
Collapse
|
7
|
Obermann WMJ, Brockhaus K, Eble JA. Platelets, Constant and Cooperative Companions of Sessile and Disseminating Tumor Cells, Crucially Contribute to the Tumor Microenvironment. Front Cell Dev Biol 2021; 9:674553. [PMID: 33937274 PMCID: PMC8085416 DOI: 10.3389/fcell.2021.674553] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Although platelets and the coagulation factors are components of the blood system, they become part of and contribute to the tumor microenvironment (TME) not only within a solid tumor mass, but also within a hematogenous micrometastasis on its way through the blood stream to the metastatic niche. The latter basically consists of blood-borne cancer cells which are in close association with platelets. At the site of the primary tumor, the blood components reach the TME via leaky blood vessels, whose permeability is increased by tumor-secreted growth factors, by incomplete angiogenic sprouts or by vasculogenic mimicry (VM) vessels. As a consequence, platelets reach the primary tumor via several cell adhesion molecules (CAMs). Moreover, clotting factor VII from the blood associates with tissue factor (TF) that is abundantly expressed on cancer cells. This extrinsic tenase complex turns on the coagulation cascade, which encompasses the activation of thrombin and conversion of soluble fibrinogen into insoluble fibrin. The presence of platelets and their release of growth factors, as well as fibrin deposition changes the TME of a solid tumor mass substantially, thereby promoting tumor progression. Disseminating cancer cells that circulate in the blood stream also recruit platelets, primarily by direct cell-cell interactions via different receptor-counterreceptor pairs and indirectly by fibrin, which bridges the two cell types via different integrin receptors. These tumor cell-platelet aggregates are hematogenous micrometastases, in which platelets and fibrin constitute a particular TME in favor of the cancer cells. Even at the distant site of settlement, the accompanying platelets help the tumor cell to attach and to grow into metastases. Understanding the close liaison of cancer cells with platelets and coagulation factors that change the TME during tumor progression and spreading will help to curb different steps of the metastatic cascade and may help to reduce tumor-induced thrombosis.
Collapse
Affiliation(s)
| | | | - Johannes A. Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| |
Collapse
|
8
|
Martins Lima A, Saint Auguste DS, Cuenot F, Martins Cavaco AC, Lachkar T, Khawand CME, Fraga-Silva RA, Stergiopulos N. Standardization and Validation of Fluorescence-Based Quantitative Assay to Study Human Platelet Adhesion to Extracellular-Matrix in a 384-Well Plate. Int J Mol Sci 2020; 21:ijms21186539. [PMID: 32906775 PMCID: PMC7554887 DOI: 10.3390/ijms21186539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 11/17/2022] Open
Abstract
Platelets play a crucial role in the immunological response and are involved in the pathological settings of vascular diseases, and their adhesion to the extracellular matrix is important to bring leukocytes close to the endothelial cells and to form and stabilize the thrombus. Currently there are several methods to study platelet adhesion; however, the optimal parameters to perform the assay vary among studies, which hinders their comparison and reproducibility. Here, a standardization and validation of a fluorescence-based quantitative adhesion assay to study platelet-ECM interaction in a high-throughput screening format is proposed. Our study confirms that fluorescence-based quantitative assays can be effectively used to detect platelet adhesion, in which BCECF-AM presents the highest sensitivity in comparison to other dyes.
Collapse
Affiliation(s)
- Augusto Martins Lima
- Laboratory of Hemodynamics and Cardiovascular Technology (LHTC), Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; (D.S.S.A.); (F.C.); (T.L.); (C.M.E.K.); (R.A.F.-S.); (N.S.)
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne Station 09, MED 3.2924, CH-1015 Lausanne, Switzerland
- Correspondence:
| | - Damian S. Saint Auguste
- Laboratory of Hemodynamics and Cardiovascular Technology (LHTC), Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; (D.S.S.A.); (F.C.); (T.L.); (C.M.E.K.); (R.A.F.-S.); (N.S.)
- Laboratory for Orthopaedic Technology, Institute for Biomechanics, Swiss Federal Institute of Technology Zurich, 8093 Zurich, Switzerland
| | - François Cuenot
- Laboratory of Hemodynamics and Cardiovascular Technology (LHTC), Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; (D.S.S.A.); (F.C.); (T.L.); (C.M.E.K.); (R.A.F.-S.); (N.S.)
| | - Ana C. Martins Cavaco
- Luis Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal;
| | - Tom Lachkar
- Laboratory of Hemodynamics and Cardiovascular Technology (LHTC), Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; (D.S.S.A.); (F.C.); (T.L.); (C.M.E.K.); (R.A.F.-S.); (N.S.)
| | - Cindy Marie Elodie Khawand
- Laboratory of Hemodynamics and Cardiovascular Technology (LHTC), Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; (D.S.S.A.); (F.C.); (T.L.); (C.M.E.K.); (R.A.F.-S.); (N.S.)
| | - Rodrigo A. Fraga-Silva
- Laboratory of Hemodynamics and Cardiovascular Technology (LHTC), Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; (D.S.S.A.); (F.C.); (T.L.); (C.M.E.K.); (R.A.F.-S.); (N.S.)
| | - Nikolaos Stergiopulos
- Laboratory of Hemodynamics and Cardiovascular Technology (LHTC), Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; (D.S.S.A.); (F.C.); (T.L.); (C.M.E.K.); (R.A.F.-S.); (N.S.)
| |
Collapse
|
9
|
Rahman SM, Hlady V. Downstream platelet adhesion and activation under highly elevated upstream shear forces. Acta Biomater 2019; 91:135-143. [PMID: 31004847 DOI: 10.1016/j.actbio.2019.04.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/04/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022]
Abstract
Elevated shear force caused by an anastomotic stenosis is a common complication at the blood vessel-vascular implant interface. Although elevated shear forces were found to cause platelet aggregation around a stenotic region, transient platelet exposure to elevated shear forces and subsequent downstream events occurring under lower shear force were not extensively studied. We hypothesize that effects of elevated shear forces on pre-activation of platelets for downstream adhesion and activation are relevant in understanding the increased thrombotic risk associated with blood-contacting devices. We designed a microfluidic flow system to mimic the hemodynamic environment of vasculature with an upstream anastomotic stenosis with five wall shear strain rates ranging from 1620 s-1 to 11560 s-1. Under shear flow conditions, transient exposure of whole blood to elevated shear forces resulted in higher downstream platelet adhesion onto three different immobilized platelet agonists: fibrinogen, collagen, or von Willebrand factor. Platelet expression of four activation markers (P-selectin, GPIIb/IIIa, lysosomal glycoprotein, and phosphatidylserine) significantly increased after transient exposure to higher upstream wall shear strain rates of 2975-11560 s-1. A significant lysis was observed when platelets were primed by upstream wall shear strain rate of 11560 s-1. These experimental results could be helpful to understand how altered hemodynamics around an anastomotic stenosis promotes thrombus formation downstream. STATEMENT OF SIGNIFICANCE: Studying the downstream response of platelets following transient exposure to an upstream agonist is important because of significant clinical implications to the implantation of vascular devices. Due to intimal fibrous hyperplasia, vascular biomaterials such as synthetic small-diameter vascular grafts sometimes become stenotic (narrow), leading to transient platelet exposure to elevated shear forces. In this study, a microfluidic flow system was developed to mimic a stenosed vascular graft and to investigate how highly elevated, transient upstream shear forces, typically found in severe stenosis, results in the pre-activation of platelets for downstream adhesion and activation. The findings of the present study have implications for optimizing the design of blood-contacting biomaterials in order to minimize thrombotic risk associated with transiently elevated shear forces. The findings also provide additional insights into the mechanisms of thrombus formation at the post-stenotic regions of vascular implants.
Collapse
|
10
|
Wdr-1 is essential for F-actin interaction with focal adhesions in platelets. Blood Coagul Fibrinolysis 2018; 29:540-545. [PMID: 29995657 DOI: 10.1097/mbc.0000000000000756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
: Wdr-1, an actin interacting protein, enhances cofilin's capacity to accelerate depolymerization of F-actin filaments. Wdr-1-deficient mice have impaired hemostasis due to defective inside-out integrin signaling in platelets. Here, we studied the role of Wdr-1 on outside-in signaling necessary for retraction of the clot and platelet spreading. Outside-in signaling was assessed by fibrin clot retraction assay and by adhesion and spreading of unstimulated platelets on fibrinogen substrate. The spatial distribution of actin, cofilin-1 and Wdr-1 were determined by immunofluorescence microscopy. Interaction of F-actin with focal adhesion kinase was assessed in dual-color confocal images and by immunoblotting of F-actin filaments. Clot retraction is markedly impaired in Wdr-1-deficient platelets. Wdr-1-deficient platelets adhere and spread poorly on fibrinogen substrate compared with wild-type controls. In resting platelets, Wdr-1 is colocalized with cofilin-1 in cortical actin. Following platelets spreading on fibrinogen substrate, Wdr-1 translocates to the cytoskeleton in association with cofilin-1. In Wdr-1-deficient platelets, cofilin-1 is aberrantly localized throughout the cytoplasm and there is no significant change following adhesion to fibrinogen substrate. The actin filaments formed upon spreading on fibrinogen are mostly in the periphery of the platelets and does not traverse the cytoplasm. Furthermore, there is diminished colocalization of actin filaments with focal adhesion kinase. These studies show that Wdr-1 is essential for the localization of cofilin-1 to the platelet membrane skeleton. F-actin fails to attach to focal adhesions resulting in defective reorganization of actin filaments necessary for platelet spreading and clot retraction.
Collapse
|
11
|
Köhler S, Schmid F, Settanni G. Molecular Dynamics Simulations of the Initial Adsorption Stages of Fibrinogen on Mica and Graphite Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:13180-90. [PMID: 26569042 DOI: 10.1021/acs.langmuir.5b03371] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Fibrinogen, a blood glycoprotein of vertebrates, plays an essential role in blood clotting by polymerizing into fibrin when activated. Upon adsorption on material surfaces, it also contributes to determine their biocompatibility and has been implicated in the onset of thrombosis and inflammation at medical implants. Here we present the first fully atomistic simulations of the initial stages of the adsorption process of fibrinogen on mica and graphite surfaces. The simulations reveal a weak adsorption on mica that allows frequent desorption and reorientation events. This adsorption is driven by electrostatic interactions between the protein and the silicate surface as well as the counterion layer. Preferred adsorption orientations for the globular regions of the protein are identified. The adsorption on graphite is found to be stronger with fewer reorientation and desorption events and shows the onset of denaturation of the protein.
Collapse
Affiliation(s)
- Stephan Köhler
- Institut für Physik, ‡Graduate School Materials Science in Mainz, and §Max Planck Graduate Center, Johannes Gutenberg-Universität , Mainz 55099, Germany
| | - Friederike Schmid
- Institut für Physik, ‡Graduate School Materials Science in Mainz, and §Max Planck Graduate Center, Johannes Gutenberg-Universität , Mainz 55099, Germany
| | - Giovanni Settanni
- Institut für Physik, ‡Graduate School Materials Science in Mainz, and §Max Planck Graduate Center, Johannes Gutenberg-Universität , Mainz 55099, Germany
| |
Collapse
|
12
|
Deposition of fibrinogen on the surface of in vitro thrombi prevents platelet adhesion. Thromb Res 2015; 136:1231-9. [PMID: 26482763 DOI: 10.1016/j.thromres.2015.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 09/01/2015] [Accepted: 10/02/2015] [Indexed: 11/21/2022]
Abstract
The initial accumulation of platelets after vessel injury is followed by thrombin-mediated generation of fibrin which is deposited around the plug. While numerous in vitro studies have shown that fibrin is highly adhesive for platelets, the surface of experimental thrombi in vivo contains very few platelets suggesting the existence of natural anti-adhesive mechanisms protecting stabilized thrombi from platelet accumulation and continuous thrombus propagation. We previously showed that adsorption of fibrinogen on pure fibrin clots results in the formation of a nonadhesive matrix, highlighting a possible role of this process in surface-mediated control of thrombus growth. However, the deposition of fibrinogen on the surface of blood clots has not been examined. In this study, we investigated the presence of intact fibrinogen on the surface of fibrin-rich thrombi generated from flowing blood and determined whether deposited fibrinogen is nonadhesive for platelets. Stabilized fibrin-rich thrombi were generated using a flow chamber and the time that platelets spend on the surface of thrombi was determined by video recording. The presence of fibrinogen and fibrin on the surface of thrombi was analyzed by confocal microscopy using specific antibodies. Examination of the spatial distribution of two proteins revealed the presence of intact fibrinogen on the surface of stabilized thrombi. By manipulating the surface of thrombi to display either fibrin or intact fibrinogen, we found that platelets adhere to fibrin- but not to fibrinogen-coated thrombi. These results indicate that the fibrinogen matrix assembled on the outer layer of stabilized in vitro thrombi protects them from platelet adhesion.
Collapse
|
13
|
Safiullin R, Christenson W, Owaynat H, Yermolenko IS, Kadirov MK, Ros R, Ugarova TP. Fibrinogen matrix deposited on the surface of biomaterials acts as a natural anti-adhesive coating. Biomaterials 2015. [PMID: 26210181 DOI: 10.1016/j.biomaterials.2015.07.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Adsorption of fibrinogen on the luminal surface of biomaterials is a critical early event during the interaction of blood with implanted vascular graft prostheses which determines their thrombogenicity. We have recently identified a nanoscale process by which fibrinogen modifies the adhesive properties of various surfaces for platelets and leukocytes. In particular, adsorption of fibrinogen at low density promotes cell adhesion while its adsorption at high density results in the formation of an extensible multilayer matrix, which dramatically reduces cell adhesion. It remains unknown whether deposition of fibrinogen on the surface of vascular graft materials produces this anti-adhesive effect. Using atomic force spectroscopy, single cell force spectroscopy, and standard adhesion assays with platelets and leukocytes, we have characterized the adhesive and physical properties of the contemporary biomaterials, before and after coating with fibrinogen. We found that uncoated PET, PTFE and ePTFE exhibited high adhesion forces developed between the AFM tip or cells and the surfaces. Adsorption of fibrinogen at the increasing concentrations progressively reduced adhesion forces, and at ≥2 μg/ml all surfaces were virtually nonadhesive. Standard adhesion assays performed with platelets and leukocytes confirmed this dependence. These results provide a better understanding of the molecular events underlying thrombogenicity of vascular grafts.
Collapse
Affiliation(s)
- Roman Safiullin
- Center for Metabolic and Vascular Biology, School of Life Sciences, Tempe, AZ 85287, United States; Kazan National Research Technological University, Kazan 420088, Russian Federation
| | - Wayne Christenson
- Center for Biological Physics, Tempe, AZ 85287, United States; Department of Physics, Arizona State University, Tempe, AZ 85287, United States
| | - Hadil Owaynat
- Center for Metabolic and Vascular Biology, School of Life Sciences, Tempe, AZ 85287, United States
| | - Ivan S Yermolenko
- Center for Metabolic and Vascular Biology, School of Life Sciences, Tempe, AZ 85287, United States
| | - Marsil K Kadirov
- Kazan National Research Technological University, Kazan 420088, Russian Federation; Arbuzov Institute of Organic and Physical Chemistry, Kazan 420088, Russian Federation
| | - Robert Ros
- Center for Biological Physics, Tempe, AZ 85287, United States; Department of Physics, Arizona State University, Tempe, AZ 85287, United States
| | - Tatiana P Ugarova
- Center for Metabolic and Vascular Biology, School of Life Sciences, Tempe, AZ 85287, United States.
| |
Collapse
|
14
|
Platelet mechanosensing of substrate stiffness during clot formation mediates adhesion, spreading, and activation. Proc Natl Acad Sci U S A 2014; 111:14430-5. [PMID: 25246564 DOI: 10.1073/pnas.1322917111] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
As platelets aggregate and activate at the site of vascular injury to stem bleeding, they are subjected to a myriad of biochemical and biophysical signals and cues. As clot formation ensues, platelets interact with polymerizing fibrin scaffolds, exposing platelets to a large range of mechanical microenvironments. Here, we show for the first time (to our knowledge) that platelets, which are anucleate cellular fragments, sense microenvironmental mechanical properties, such as substrate stiffness, and transduce those cues into differential biological signals. Specifically, as platelets mechanosense the stiffness of the underlying fibrin/fibrinogen substrate, increasing substrate stiffness leads to increased platelet adhesion and spreading. Importantly, adhesion on stiffer substrates also leads to higher levels of platelet activation, as measured by integrin αIIbβ3 activation, α-granule secretion, and procoagulant activity. Mechanistically, we determined that Rac1 and actomyosin activity mediate substrate stiffness-dependent platelet adhesion, spreading, and activation to different degrees. This capability of platelets to mechanosense microenvironmental cues in a growing thrombus or hemostatic plug and then mechanotransduce those cues into differential levels of platelet adhesion, spreading, and activation provides biophysical insight into the underlying mechanisms of platelet aggregation and platelet activation heterogeneity during thrombus formation.
Collapse
|
15
|
Wu W, Okamoto O, Kato A, Matsuo N, Kumai J, Nomizu M, Fujiwara S. Functional peptide of dermatopontin produces fibrinogen fibrils and modifies its biological activity. J Dermatol Sci 2014; 76:34-43. [PMID: 25082449 DOI: 10.1016/j.jdermsci.2014.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/11/2014] [Accepted: 07/03/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND Dermatopontin (DP), a small extracellular matrix protein, interacts with both fibrinogen and fibrin. DP accelerates fibrin fibril formation and enhances cell adhesion to fibrin fibrils but DP does not influence fibrinogen fibril formation. We have previously demonstrated that DP-4 (PHGQVVVAVRS) is a functional dermatopontin peptide (Wu et al., 2014). OBJECTIVE Identification of biological functions of DP-4. METHODS Protein-protein interactions were examined by solid-phase assay. The kinetics of fibrinogen/fibrin polymer formation was monitored by turbidity change, SDS-PAGE, and electron microscopy. A cell adhesion assay was performed using human umbilical vein endothelial cells. RESULTS Although DP promoted fibrin formation, the DP-4 peptide promoted fibrinogen polymerization but did not apparently affect fibrin formation. The polymerized fibrinogen formed straight solid fibrils comparable to the normally formed fibrin fibrils. A minimum functional sequence of the DP-4 peptide was determined to be VVVAVRS. An αC domain in fibrinogen was involved in the fibril formation. Fibrinogen fibrils made by DP-4 enhanced endothelial cell adhesion and spreading in a dose-dependent manner. This cell adhesion was inhibited by heparin and by anti-αvβ3 and β1 integrin antibodies. CONCLUSION DP-4 did not reproduce the full functional biological activities of DP with fibrin but DP-4 did promote fibrinogen fibril formation. The fibrinogen fibrils produced by DP-4 are useful as a novel synthetic biomaterial for therapeutic applications.
Collapse
Affiliation(s)
- Weimin Wu
- Department of Plastic Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu-shi, Oita 879-5593, Japan
| | - Osamu Okamoto
- Department of Dermatology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu-shi, Oita 879-5593, Japan.
| | - Aiko Kato
- Department of Plastic Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu-shi, Oita 879-5593, Japan
| | - Noritaka Matsuo
- Department of Biochemistry, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu-shi, Oita 879-5593, Japan
| | - Jun Kumai
- Laboratory of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Motoyoshi Nomizu
- Laboratory of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Sakuhei Fujiwara
- Department of Dermatology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu-shi, Oita 879-5593, Japan
| |
Collapse
|
16
|
A novel mechanism controlling the growth of hemostatic thrombi. UKRAINIAN BIOCHEMICAL JOURNAL 2013. [DOI: 10.15407/ubj85.06.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
17
|
Christenson W, Yermolenko I, Plochberger B, Camacho-Alanis F, Ros A, Ugarova TP, Ros R. Combined single cell AFM manipulation and TIRFM for probing the molecular stability of multilayer fibrinogen matrices. Ultramicroscopy 2013; 136:211-5. [PMID: 24239757 DOI: 10.1016/j.ultramic.2013.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/06/2013] [Accepted: 10/09/2013] [Indexed: 10/26/2022]
Abstract
Adsorption of fibrinogen on various surfaces produces a nanoscale multilayer matrix, which strongly reduces the adhesion of platelets and leukocytes with implications for hemostasis and blood compatibility of biomaterials. The nonadhesive properties of fibrinogen matrices are based on their extensibility, ensuing the inability to transduce strong mechanical forces via cellular integrins and resulting in weak intracellular signaling. In addition, reduced cell adhesion may arise from the weaker associations between fibrinogen molecules in the superficial layers of the matrix. Such reduced stability would allow integrins to pull fibrinogen molecules out of the matrix with comparable or smaller forces than required to break integrin-fibrinogen bonds. To examine this possibility, we developed a method based on the combination of total internal reflection fluorescence microscopy, single cell manipulation with an atomic force microscope and microcontact printing to study the transfer of fibrinogen molecules out of a matrix onto cells. We calculated the average fluorescence intensities per pixel for wild-type HEK 293 (HEK WT) and HEK 293 cells expressing leukocyte integrin Mac-1 (HEK Mac-1) before and after contact with multilayered matrices of fluorescently labeled fibrinogen. For contact times of 500 s, HEK Mac-1 cells show a median increase of 57% of the fluorescence intensity compared to 6% for HEK WT cells. The results suggest that the integrin Mac-1-fibrinogen interactions are stronger than the intermolecular fibrinogen interactions in the superficial layer of the matrix. The low mechanical stability of the multilayer fibrinogen surface may contribute to the reduced cell adhesive properties of fibrinogen-coated substrates. We anticipate that the described method can be applied to various cell types to examine their integrin-mediated adhesion to the extracellular matrices with a variable protein composition.
Collapse
Affiliation(s)
- W Christenson
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA; Center for Biological Physics, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Yermolenko IS, Gorkun OV, Fuhrmann A, Podolnikova NP, Lishko VK, Oshkadyerov SP, Lord ST, Ros R, Ugarova TP. The assembly of nonadhesive fibrinogen matrices depends on the αC regions of the fibrinogen molecule. J Biol Chem 2012; 287:41979-90. [PMID: 23086938 DOI: 10.1074/jbc.m112.410696] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adsorption of fibrinogen on fibrin clots and other surfaces strongly reduces integrin-mediated adhesion of platelets and leukocytes with implications for the surface-mediated control of thrombus growth and blood compatibility of biomaterials. The underlying mechanism of this process is surface-induced aggregation of fibrinogen, resulting in the assembly of a nanoscale multilayered matrix. The matrix is extensible, which makes it incapable of transducing strong mechanical forces via cellular integrins, resulting in insufficient intracellular signaling and weak cell adhesion. To determine the mechanism of the multilayer formation, the physical and adhesive properties of fibrinogen matrices prepared from human plasma fibrinogen (hFg), recombinant normal (rFg), and fibrinogen with the truncated αC regions (FgAα251) were compared. Using atomic force microscopy and force spectroscopy, we show that whereas hFg and rFg generated the matrices with a thickness of ∼8 nm consisting of 7-8 molecular layers, the deposition of FgAα251 was terminated at two layers, indicating that the αC regions are essential for the multilayer formation. The extensibility of the matrix prepared from FgAα251 was 2-fold lower than that formed from hFg and rFg. In agreement with previous findings that cell adhesion inversely correlates with the extensibility of the fibrinogen matrix, the less extensible FgAα251 matrix and matrices generated from human fibrinogen variants lacking the αC regions supported sustained adhesion of leukocytes and platelets. The persistent adhesiveness of matrices formed from fibrinogen derivatives without the αC regions may have implications for conditions in which elevated levels of these molecules are found, including vascular pathologies, diabetes, thrombolytic therapy, and dysfibrinogenemia.
Collapse
Affiliation(s)
- Ivan S Yermolenko
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lishko VK, Yermolenko IS, Owaynat H, Ugarova TP. Fibrinogen counteracts the antiadhesive effect of fibrin-bound plasminogen by preventing its activation by adherent U937 monocytic cells. J Thromb Haemost 2012; 10:1081-90. [PMID: 22507544 PMCID: PMC4532274 DOI: 10.1111/j.1538-7836.2012.04745.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Fibrinogen and plasminogen strongly reduce adhesion of leukocytes and platelets to fibrin clots, highlighting a possible role for these plasma proteins in surface-mediated control of thrombus growth and stability. In particular, adsorption of fibrinogen on fibrin clots renders their surfaces non-adhesive, while the conversion of surface-bound plasminogen to plasmin by transiently adherent blood cells results in degradation of a superficial fibrin layer, leading to cell detachment. Although the mechanisms whereby these proteins exert their antiadhesive effects are different, the outcome is the same: the formation of a mechanically unstable surface that does not allow firm cell attachment. OBJECTIVES Since fibrin clots in circulation are exposed to both fibrinogen and plasminogen, their combined effect on adhesion of monocytic cells was examined. METHODS Fibrin gels were coated with plasminogen and its activation by adherent U937 monocytic cells in the presence of increasing concentrations of fibrinogen was examined by either measuring (125) I-labeled fibrin degradation products or plasmin amidolytic activity. RESULTS Unexpectedly, the antiadhesive effects of two fibrin binding proteins were not additive; in fact, in the presence of fibrinogen, the effect of plasminogen was strongly reduced. An investigation of the underlying mechanism revealed that fibrinogen prevented activation of fibrin-bound plasminogen by cells. Confocal microscopy showed that fibrinogen accumulates in a thin superficial layer of a clot, where it exerts its blocking effect on activation of plasminogen. CONCLUSION The results point to a complex interplay between the fibrinogen- and plasminogen-dependent antiadhesive systems, which may contribute to the mechanisms that control the adhesiveness of a fibrin shell on the surface of hemostatic thrombi.
Collapse
Affiliation(s)
- V K Lishko
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Integrin α2β1-mediated adhesion of human platelets to monomeric type I collagen or to the GFOGER peptide caused a time-dependent activation of PI3K and Akt phosphorylation. This process was abrogated by pharmacologic inhibition of PI3Kβ, but not of PI3Kγ or PI3Kα. Moreover, Akt phosphorylation was undetectable in murine platelets expressing a kinase-dead mutant of PI3Kβ (PI3Kβ(KD)), but occurred normally in PI3Kγ(KD) platelets. Integrin α2β1 failed to stimulate PI3Kβ in platelets from phospholipase Cγ2 (PLCγ2)-knockout mice, and we found that intracellular Ca(2+) linked PLCγ2 to PI3Kβ activation. Integrin α2β1 also caused a time-dependent stimulation of the focal kinase Pyk2 downstream of PLCγ2 and intracellular Ca(2+). Whereas activation of Pyk2 occurred normally in PI3Kβ(KD) platelets, stimulation of PI3Kβ was strongly reduced in Pyk2-knockout mice. Neither Pyk2 nor PI3Kβ was required for α2β1-mediated adhesion and spreading. However, activation of Rap1b and inside-out stimulation of integrin αIIbβ3 were reduced after inhibition of PI3Kβ and were significantly impaired in Pyk2-deficient platelets. Finally, both PI3Kβ and Pyk2 significantly contributed to thrombus formation under flow. These results demonstrate that Pyk2 regulates PI3Kβ downstream of integrin α2β1, and document a novel role for Pyk2 and PI3Kβ in integrin α2β1 promoted inside-out activation of integrin αIIbβ3 and thrombus formation.
Collapse
|
21
|
Litvinov RI, Barsegov V, Schissler AJ, Fisher AR, Bennett JS, Weisel JW, Shuman H. Dissociation of bimolecular αIIbβ3-fibrinogen complex under a constant tensile force. Biophys J 2011; 100:165-73. [PMID: 21190668 DOI: 10.1016/j.bpj.2010.11.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 11/08/2010] [Accepted: 11/16/2010] [Indexed: 02/07/2023] Open
Abstract
The regulated ability of integrin αIIbβ3 to bind fibrinogen plays a crucial role in platelet aggregation, adhesion, and hemostasis. Employing an optical-trap-based electronic force clamp, we studied the thermodynamics and kinetics of αIIbβ3-fibrinogen bond formation and dissociation under constant unbinding forces, mimicking the forces of physiologic blood shear on a thrombus. The distribution of bond lifetimes was bimodal, indicating that the αIIbβ3-fibrinogen complex exists in two bound states with different mechanical stability. The αIIbβ3 antagonist, abciximab, inhibited binding without affecting the unbinding kinetics, whereas Mn²(+) biased the αIIbβ3-fibrinogen complex to the strong bound state with reduced off-rate. The average bond lifetimes decreased exponentially with increasing pulling force from ∼5 pN to 50 pN, suggesting that in this force range the αIIbβ3-fibrinogen interactions are classical slip bonds. We found no evidence for catch bonds, which is consistent with the known lack of shear-enhanced platelet adhesion on fibrinogen-coated surfaces. Taken together, these data provide important quantitative and qualitative characteristics of αIIbβ3-fibrinogen binding and unbinding that underlie the dynamics of platelet adhesion and aggregation in blood flow.
Collapse
Affiliation(s)
- Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Lippi G, Montagnana M, Danese E, Favaloro EJ, Franchini M. Glycoprotein IIb/IIIa inhibitors: an update on the mechanism of action and use of functional testing methods to assess antiplatelet efficacy. Biomark Med 2011; 5:63-70. [DOI: 10.2217/bmm.10.119] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The human glycoprotein (GP)IIb/IIIa belongs to a large family of cation-dependent adhesion molecules known as integrins, which share a common heterodimeric structure. The primary function of GPIIb/IIIa is to aid platelet aggregation by transmitting bidirectional signals across the plasma membrane. Since the GPIIb/IIIa receptor is among the key integrins involved in platelet aggregation and, therefore, thrombus formation, the development of GPIIb/IIIa antagonists (e.g., abciximab, eptifibatide and tirofiban) has become an attractive strategy for antiplatelet therapy with an expected strong and specific effect. All three drugs are administered intravenously, and large-scale clinical trials have demonstrated a clear clinical benefit and good safety profile in high-risk patients, especially those undergoing percutaneous coronary intervention. However, the adverse events related to thrombosis or bleeding are still reported in patients undergoing therapy with GPIIb/IIIa antagonists and reflect a variable interindividual responsiveness. Therefore, some form of laboratory monitoring is required to optimize the effects of a drug or to indicate that it needs replacing with other antithrombotic agents, as well as for identifying and enhancing the platelet inhibition in this subgroup of patients to improve the clinical outcome and reduce bleeding complications. As such, the aim of this article is to provide an update on the mechanism of action and use of functional testing methods to assess antiplatelet efficacy in patients undergoing therapy with GPIIb/IIIa antagonists.
Collapse
Affiliation(s)
- Giuseppe Lippi
- UO di Diagnostica Ematochimica, Dipartimento di Patologia e Medicina di Laboratorio, Azienda Ospedaliero-Universitaria di Parma, Italy, UO Diagnostica Ematochimica, Azienda Ospedaliero-Universitaria di Parma, Strada Abbeveratoia 14, 43126, Parma, Italy
| | - Martina Montagnana
- Sezione di Chimica Clinica, Dipartimento di Scienze della Vita e della Riproduzione, Università di Verona, Italy
| | - Elisa Danese
- Sezione di Chimica Clinica, Dipartimento di Scienze della Vita e della Riproduzione, Università di Verona, Italy
| | - Emmanuel J Favaloro
- Servizio di Immunoematologia e Trasfusione, Azienda Ospedaliero-Universitaria di Parma, Italy
| | - Massimo Franchini
- Department of Haematology, Institute of Clinical Pathology & Medical Research (ICPMR), Westmead Hospital, Westmead, Australia
| |
Collapse
|
23
|
Abstract
Fibrinogen adsorption on a surface results in the modification of its functional characteristics. Our previous studies revealed that fibrinogen adsorbs onto surfaces essentially in 2 different orientations depending on its concentration in the solution: "side-on" at low concentrations and "end-on" at high concentrations. In the present study, we analyzed the thrombin-mediated release of fibrinopeptides A and B (FpA and FpB) from fibrinogen adsorbed in these orientations, as well as from surface-bound fibrinogen-fibrin complexes prepared by converting fibrinogen adsorbed in either orientation into fibrin and subsequently adding fibrinogen. The release of fibrinopeptides from surface-adsorbed fibrinogen and from surface-bound fibrinogen-fibrin complexes differed significantly compared with that from fibrinogen in solution. The release of FpB occurred without the delay (lag phase) characteristic of its release from fibrinogen in solution. The amount of FpB released from end-on adsorbed fibrinogen and from adsorbed fibrinogen-fibrin complexes was much higher than that of FpA. FpB is known as a potent chemoattractant, so its preferential release suggests a physiological purpose in the attraction of cells to the site of injury. The N-terminal portions of fibrin β chains including residues Bβ15-42, which are exposed after cleavage of FpB, have been implicated in many processes, including angiogenesis and inflammation.
Collapse
|
24
|
Yermolenko IS, Fuhrmann A, Magonov SN, Lishko VK, Oshkadyerov SP, Ros R, Ugarova TP. Origin of the nonadhesive properties of fibrinogen matrices probed by force spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:17269-77. [PMID: 20883009 PMCID: PMC2993253 DOI: 10.1021/la101791r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The deposition of a multilayered fibrinogen matrix on various surfaces results in a dramatic reduction of integrin-mediated cell adhesion and outside-in signaling in platelets and leukocytes. The conversion of a highly adhesive, low-density fibrinogen substrate to the nonadhesive high-density fibrinogen matrix occurs within a very narrow range of fibrinogen coating concentrations. The molecular events responsible for this transition are not well understood. Herein, single-cell and molecular force spectroscopy were used to determine the early steps in the formation of nonadhesive fibrinogen substrates. We show that the adsorption of fibrinogen in the form of a molecular bilayer coincides with a several-fold reduction in the adhesion forces generated between the AFM tip and the substrate as well as between a cell and the substrate. The subsequent deposition of new layers at higher coating concentrations of fibrinogen results in a small additional decrease in adhesion forces. The poorly adhesive fibrinogen bilayer is more extensible under an applied tensile force than is the surface-bound fibrinogen monolayer. Following chemical cross-linking, the stabilized bilayer displays the mechanical and adhesive properties characteristic of a more adhesive fibrinogen monolayer. We propose that a greater compliance of the bi- and multilayer fibrinogen matrices has its origin in the interaction between the molecules forming the adjacent layers. Understanding the mechanical properties of nonadhesive fibrinogen matrices should be of importance in the therapeutic control of pathological thrombosis and in biomaterials science.
Collapse
Affiliation(s)
- Ivan S. Yermolenko
- Center for Metabolic Biology and School of Life Sciences
- Institute for Metal Physics, NAS of Ukraine, Kiev
| | | | | | | | | | - Robert Ros
- Department of Physics, Arizona State University, Tempe, AZ 85287
| | | |
Collapse
|
25
|
Lishko VK, Yermolenko IS, Ugarova TP. Plasminogen on the surfaces of fibrin clots prevents adhesion of leukocytes and platelets. J Thromb Haemost 2010; 8:799-807. [PMID: 20095998 PMCID: PMC4530790 DOI: 10.1111/j.1538-7836.2010.03778.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVES Although leukocytes and platelets adhere to fibrin with alacrity in vitro, these cells do not readily accumulate on the surfaces of fibrin clots in vivo. The difference in the capacity of blood cell integrins to adhere to fibrin in vivo and in vitro is striking and implies the existence of a physiologic antiadhesive mechanism. The surfaces of fibrin clots in the circulation are continually exposed to plasma proteins, several of which can bind fibrin and influence cell adhesion. Recently, we have demonstrated that adsorption of soluble fibrinogen on the surface of a fibrin clot results in its deposition as a soft multilayer matrix, which prevents attachment of blood cells. In the present study, we demonstrate that another plasma protein, plasminogen, which is known to accumulate in the superficial layer of fibrin, exerts an antiadhesive effect. RESULTS After being coated with plasminogen, the surfaces of fibrin clots became essentially non-adhesive for U937 monocytic cells, blood monocytes, and platelets. The data revealed that activation of fibrin-bound plasminogen by the plasminogen-activating system assembled on adherent cells resulted in the generation of plasmin, which decomposed the superficial fibrin layer, resulting in cell detachment under flow. The surfaces generated after the initial cell adhesion remained non-adhesive for subsequent attachment of leukocytes and platelets. CONCLUSION We propose that the limited degradation of fibrin by plasmin generated by adherent cells loosens the fibers on the clot surface, producing a mechanically unstable substrate that is unable to support firm integrin-mediated cell adhesion.
Collapse
Affiliation(s)
- V K Lishko
- Center for Metabolic Biology, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | | |
Collapse
|