1
|
Hu X, Li Y, Cao Y, Shi F, Shang L. The role of nitric oxide synthase/ nitric oxide in infection-related cancers: Beyond antimicrobial activity. Biochim Biophys Acta Rev Cancer 2024; 1879:189156. [PMID: 39032540 DOI: 10.1016/j.bbcan.2024.189156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
As a free radical and endogenous effector molecule, mammalian endogenous nitric oxide (NO) is mainly derived from nitric oxide synthase (NOS) via L-arginine. NO participates in normal physiological reactions and provides immune responses to prevent the invasion of foreign bacteria. However, NO also has complex and contradictory biological effects. Abnormal NO signaling is involved in the progression of many diseases, such as cancer. In the past decades, cancer research has been closely linked with NOS/ NO, and many tumors with poor prognosis are associated with high expression of NOS. In this review, we give a overview of the biological effects of NOS/ NO. Then we focus on the oncogenic role of iNOS/ NO in HPV, HBV, EBV and H. pylori related tumors. In fact, there is growing evidence that iNOS could be used as a potential therapeutic target in cancer therapy. We emphasize that the pro-tumor effect of NOS/ NO is greater than the anti-tumor effect.
Collapse
Affiliation(s)
- Xudong Hu
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Department of Pathology, National Clinical Research Center for Geriatric Disorders/ XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Yueshuo Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Department of Pathology, National Clinical Research Center for Geriatric Disorders/ XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Li Shang
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Department of Pathology, National Clinical Research Center for Geriatric Disorders/ XiangYa Hospital, Central South University, Changsha 410078, China.
| |
Collapse
|
2
|
Edgar KS, Cunning C, Gardiner TA, McDonald DM. BH4 supplementation reduces retinal cell death in ischaemic retinopathy. Sci Rep 2023; 13:21292. [PMID: 38042898 PMCID: PMC10693630 DOI: 10.1038/s41598-023-48167-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023] Open
Abstract
Dysregulation of nitric oxide (NO) production can cause ischaemic retinal injury and result in blindness. How this dysregulation occurs is poorly understood but thought to be due to an impairment in NO synthase function (NOS) and nitro-oxidative stress. Here we investigated the possibility of correcting this defective NOS activity by supplementation with the cofactor tetrahydrobiopterin, BH4. Retinal ischaemia was examined using the oxygen-induced retinopathy model and BH4 deficient Hph-1 mice used to establish the relationship between NOS activity and BH4. Mice were treated with the stable BH4 precursor sepiapterin at the onset of hypoxia and their retinas assessed 48 h later. HPLC analysis confirmed elevated BH4 levels in all sepiapterin supplemented groups and increased NOS activity. Sepiapterin treatment caused a significant decrease in neuronal cell death in the inner nuclear layer that was most notable in WT animals and was associated with significantly diminished superoxide and local peroxynitrite formation. Interestingly, sepiapterin also increased inflammatory cytokine levels but not microglia cell number. BH4 supplementation by sepiapterin improved both redox state and neuronal survival during retinal ischaemia, in spite of a paradoxical increase in inflammatory cytokines. This implicates nitro-oxidative stress in retinal neurones as the cytotoxic element in ischaemia, rather than enhanced pro-inflammatory signalling.
Collapse
Affiliation(s)
- Kevin S Edgar
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, 97 Lisburn Road, BT9 7BL, UK
| | - Ciara Cunning
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, 97 Lisburn Road, BT9 7BL, UK
| | - Tom A Gardiner
- School of Medicine, Dentistry and Biomedical Sciences, Centre for Biomedical Sciences Education, Queen's University Belfast, Belfast, UK
| | - Denise M McDonald
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, 97 Lisburn Road, BT9 7BL, UK.
| |
Collapse
|
3
|
Chennupati R, Solga I, Wischmann P, Dahlmann P, Celik FG, Pacht D, Şahin A, Yogathasan V, Hosen MR, Gerdes N, Kelm M, Jung C. Chronic anemia is associated with systemic endothelial dysfunction. Front Cardiovasc Med 2023; 10:1099069. [PMID: 37234375 PMCID: PMC10205985 DOI: 10.3389/fcvm.2023.1099069] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Background In acute myocardial infarction and heart failure, anemia is associated with adverse clinical outcomes. Endothelial dysfunction (ED) is characterized by attenuated nitric oxide (NO)-mediated relaxation responses which is poorly studied in chronic anemia (CA). We hypothesized that CA is associated with ED due to increased oxidative stress in the endothelium. Methods CA was induced by repeated blood withdrawal in male C57BL/6J mice. Flow-Mediated Dilation (FMD) responses were assessed in CA mice using ultrasound-guided femoral transient ischemia model. Tissue organ bath was used to assess vascular responsiveness of aortic rings from CA mice, and in aortic rings incubated with red blood cells (RBCs) from anemic patients. In the aortic rings from anemic mice, the role of arginases was assessed using either an arginase inhibitor (Nor-NOHA) or genetic ablation of arginase 1 in the endothelium. Inflammatory changes in plasma of CA mice were examined by ELISA. Expression of endothelial NO synthase (eNOS), inducible NO synthase (iNOS), myeloperoxidase (MPO), 3-Nitrotyrosine levels, and 4-Hydroxynonenal (4-HNE) were assessed either by Western blotting or immunohistochemistry. The role of reactive oxygen species (ROS) in ED was assessed in the anemic mice either supplemented with N-Acetyl cysteine (NAC) or by in vitro pharmacological inhibition of MPO. Results The FMD responses were diminished with a correlation to the duration of anemia. Aortic rings from CA mice showed reduced NO-dependent relaxation compared to non-anemic mice. RBCs from anemic patients attenuated NO-dependent relaxation responses in murine aortic rings compared to non-anemic controls. CA results in increased plasma VCAM-1, ICAM-1 levels, and an increased iNOS expression in aortic vascular smooth muscle cells. Arginases inhibition or arginase1 deletion did not improve ED in anemic mice. Increased expression of MPO and 4-HNE observed in endothelial cells of aortic sections from CA mice. NAC supplementation or inhibition of MPO improved relaxation responses in CA mice. Conclusion Chronic anemia is associated with progressive endothelial dysfunction evidenced by activation of the endothelium mediated by systemic inflammation, increased iNOS activity, and ROS production in the arterial wall. ROS scavenger (NAC) supplementation or MPO inhibition are potential therapeutic options to reverse the devastating endothelial dysfunction in chronic anemia.
Collapse
Affiliation(s)
- Ramesh Chennupati
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Isabella Solga
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Patricia Wischmann
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Paul Dahlmann
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Feyza Gül Celik
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Daniela Pacht
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Aslıhan Şahin
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Vithya Yogathasan
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Mohammad Rabiul Hosen
- Department of Internal Medicine II, HeartCenter Bonn, University Hospital Bonn, Bonn, Germany
| | - Norbert Gerdes
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Malte Kelm
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christian Jung
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
4
|
Liu R, Juncos LA, Lu Y, Wei J, Zhang J, Wang L, Lai EY, Carlstrom M, Persson AEG. The Role of Macula Densa Nitric Oxide Synthase 1 Beta Splice Variant in Modulating Tubuloglomerular Feedback. Compr Physiol 2023; 13:4215-4229. [PMID: 36715280 PMCID: PMC9990375 DOI: 10.1002/cphy.c210043] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Abnormalities in renal electrolyte and water excretion may result in inappropriate salt and water retention, which facilitates the development and maintenance of hypertension, as well as acid-base and electrolyte disorders. A key mechanism by which the kidney regulates renal hemodynamics and electrolyte excretion is via tubuloglomerular feedback (TGF), an intrarenal negative feedback between tubules and arterioles. TGF is initiated by an increase of NaCl delivery at the macula densa cells. The increased NaCl activates luminal Na-K-2Cl cotransporter (NKCC2) of the macula densa cells, which leads to activation of several intracellular processes followed by the production of paracrine signals that ultimately result in a constriction of the afferent arteriole and a tonic inhibition of single nephron glomerular filtration rate. Neuronal nitric oxide (NOS1) is highly expressed in the macula densa. NOS1β is the major splice variant and accounts for most of NO generation by the macula densa, which inhibits TGF response. Macula densa NOS1β-mediated modulation of TGF responses plays an essential role in control of sodium excretion, volume and electrolyte hemostasis, and blood pressure. In this article, we describe the mechanisms that regulate macula densa-derived NO and their effect on TGF response in physiologic and pathologic conditions. © 2023 American Physiological Society. Compr Physiol 13:4215-4229, 2023.
Collapse
Affiliation(s)
- Ruisheng Liu
- Department of Molecular Pharmacology & Physiology
- Hypertension and Kidney Research Center, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Luis A. Juncos
- Department of Internal Medicine, Central Arkansas Veterans Healthcare System, Little Rock, AR
| | - Yan Lu
- Division of Nephrology, University of Alabama at Birmingham, Birmingham AL
| | - Jin Wei
- Department of Molecular Pharmacology & Physiology
| | - Jie Zhang
- Department of Molecular Pharmacology & Physiology
| | - Lei Wang
- Department of Molecular Pharmacology & Physiology
| | - En Yin Lai
- Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Mattias Carlstrom
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - A. Erik G Persson
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Zhao Y, Liu Y, Xu Y, Li K, Zhou L, Qiao H, Xu Q, Zhao J. The Role of Ferroptosis in Blood-Brain Barrier Injury. Cell Mol Neurobiol 2023; 43:223-236. [PMID: 35106665 DOI: 10.1007/s10571-022-01197-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/20/2022] [Indexed: 01/07/2023]
Abstract
The blood-brain barrier (BBB) is an important barrier that maintains homeostasis within the central nervous system. Brain microvascular endothelial cells are arranged to form vessel walls and express tight junctional complexes that limit the paracellular pathways of the BBB and therefore play a crucial role in ensuring brain function. These vessel walls tightly regulate the movement of ions, molecules, and cells between the blood and the brain, which protect the neural tissue from toxins and pathogens. Primary damage caused by BBB dysfunction can disrupt the expression of tight junctions, transport proteins and leukocyte adhesion molecules, leading to brain edema, disturbances in ion homeostasis, altered signaling and immune infiltration, which can lead to neuronal cell death. Various neurological diseases are known to cause BBB dysfunction, but the mechanism that causes this disorder is not clear. Recently, ferroptosis has been found to play an important role in BBB dysfunction. Ferroptosis is a new form of regulatory cell death, which is caused by the excessive accumulation of lipid peroxides and iron-dependent reactive oxygen species. This review summarizes the role of ferroptosis in BBB dysfunction and the latest progress of ferroptosis mechanism, and further discusses the influence of various factors of ferroptosis on the severity and prognosis of BBB dysfunction, which may provide better therapeutic targets for BBB dysfunction.
Collapse
Affiliation(s)
- Yao Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Ying Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China. .,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China. .,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China.
| | - Yunfei Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Kexin Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Lin Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Haoduo Qiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Qing Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410008, Hunan, China
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
6
|
Festa J, Singh H, Hussain A, Da Boit M. Elderberries as a potential supplement to improve vascular function in a SARS-CoV-2 environment. J Food Biochem 2022; 46:e14091. [PMID: 35118699 DOI: 10.1111/jfbc.14091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 12/29/2022]
Abstract
Coronavirus disease 2019 (COVID-19) pandemic has been triggered by the severe acute respiratory syndrome coronavirus (SARS-CoV-2). Although recent studies demonstrate that SARS-CoV-2 possibly does not directly infect endothelial cells (EC), the endothelium may be affected as a secondary response due to the damage of neighboring cells, circulating pro-inflammatory cytokines, and/or other mechanisms. Long-term COVID-19 symptoms specifically nonrespiratory symptoms are due to the persistence of endothelial dysfunction (ED). Based on the literature, anthocyanins a major subgroup of flavonoid polyphenols found in berries, have been well researched for their vascular protective properties as well as the prevention of cardiovascular disease (CVD)-related deaths. Elderberries have been previously used as a natural remedy for treating influenza, cold, and consequently cardiovascular health due to a high content of cyanidin-3-glucoside (C3G) a major anthocyanin found in the human diet. The literature reported many studies demonstrating that EE has both antiviral and vascular protective properties that should be further investigated as a nutritional component used against the (in)direct effect of SARS-CoV-2 in vascular function. PRACTICAL APPLICATIONS: While previous work among the literature looks promising and builds a suggestion for investigating elderberry extract (EE) against COVID-19, further in vitro and in vivo research is required to fully evaluate EE mechanisms of action and its use as a supplement to aid current therapies.
Collapse
Affiliation(s)
- Joseph Festa
- Leicester School of Allied Health Sciences, De Montfort University, Leicester, UK
| | - Harprit Singh
- Leicester School of Allied Health Sciences, De Montfort University, Leicester, UK
| | - Aamir Hussain
- Leicester School of Allied Health Sciences, De Montfort University, Leicester, UK.,Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Mariasole Da Boit
- Leicester School of Allied Health Sciences, De Montfort University, Leicester, UK
| |
Collapse
|
7
|
A Comprehensive Analysis and Anti-Cancer Activities of Quercetin in ROS-Mediated Cancer and Cancer Stem Cells. Int J Mol Sci 2022; 23:ijms231911746. [PMID: 36233051 PMCID: PMC9569933 DOI: 10.3390/ijms231911746] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) induce carcinogenesis by causing genetic mutations, activating oncogenes, and increasing oxidative stress, all of which affect cell proliferation, survival, and apoptosis. When compared to normal cells, cancer cells have higher levels of ROS, and they are responsible for the maintenance of the cancer phenotype; this unique feature in cancer cells may, therefore, be exploited for targeted therapy. Quercetin (QC), a plant-derived bioflavonoid, is known for its ROS scavenging properties and was recently discovered to have various antitumor properties in a variety of solid tumors. Adaptive stress responses may be induced by persistent ROS stress, allowing cancer cells to survive with high levels of ROS while maintaining cellular viability. However, large amounts of ROS make cancer cells extremely susceptible to quercetin, one of the most available dietary flavonoids. Because of the molecular and metabolic distinctions between malignant and normal cells, targeting ROS metabolism might help overcome medication resistance and achieve therapeutic selectivity while having little or no effect on normal cells. The powerful bioactivity and modulatory role of quercetin has prompted extensive research into the chemical, which has identified a number of pathways that potentially work together to prevent cancer, alongside, QC has a great number of evidences to use as a therapeutic agent in cancer stem cells. This current study has broadly demonstrated the function-mechanistic relationship of quercetin and how it regulates ROS generation to kill cancer and cancer stem cells. Here, we have revealed the regulation and production of ROS in normal cells and cancer cells with a certain signaling mechanism. We demonstrated the specific molecular mechanisms of quercetin including MAPK/ERK1/2, p53, JAK/STAT and TRAIL, AMPKα1/ASK1/p38, RAGE/PI3K/AKT/mTOR axis, HMGB1 and NF-κB, Nrf2-induced signaling pathways and certain cell cycle arrest in cancer cell death, and how they regulate the specific cancer signaling pathways as long-searched cancer therapeutics.
Collapse
|
8
|
El-Mahdy MA, Ewees MG, Eid MS, Mahgoup EM, Khaleel SA, Zweier JL. Electronic Cigarette Exposure Causes Vascular Endothelial Dysfunction Due to NADPH Oxidase Activation and eNOS Uncoupling. Am J Physiol Heart Circ Physiol 2022; 322:H549-H567. [PMID: 35089811 PMCID: PMC8917923 DOI: 10.1152/ajpheart.00460.2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We recently reported a mouse model of chronic electronic cigarette (e-cig) exposure-induced cardiovascular pathology, where long-term exposure to e-cig vape (ECV) induces cardiac abnormalities, impairment of endothelial function, and systemic hypertension. Here, we delineate the underlying mechanisms of ECV-induced vascular endothelial dysfunction (VED), a central trigger of cardiovascular disease. C57/BL6 male mice were exposed to ECV generated from e-cig liquid containing 0, 6, or 24 mg/ml nicotine for 16 and 60 weeks. Time-dependent elevation in blood pressure and systemic vascular resistance were observed, along with an impairment of acetylcholine-induced aortic relaxation in ECV-exposed mice, compared to air-exposed control. Decreased intravascular nitric oxide (NO) levels and increased superoxide generation with elevated 3-nitrotyrosine levels in the aorta of ECV-exposed mice were observed, indicating that ECV-induced superoxide reacts with NO to generate cytotoxic peroxynitrite. Exposure increased NADPH oxidase expression, supporting its role in ECV-induced superoxide generation. Downregulation of endothelial nitric oxide synthase (eNOS) expression and Akt-dependent eNOS phosphorylation occurred in the aorta of ECV-exposed mice, indicating that exposure inhibited de novo NO synthesis. Following ECV exposure, the critical NOS cofactor tetrahydrobiopterin was decreased, with a concomitant loss of its salvage enzyme, dihydrofolate reductase. NADPH oxidase and NOS inhibitors abrogated ECV-induced superoxide generation in the aorta of ECV exposed mice. Together, our data demonstrate that ECV exposure activates NADPH oxidase and uncouples eNOS, causing a vicious cycle of superoxide generation and vascular oxidant stress that triggers VED and hypertension with predisposition to other cardiovascular disease.
Collapse
Affiliation(s)
- Mohamed A El-Mahdy
- Center for Environmental and Smoking Induced Disease and the Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Mohamed G Ewees
- Center for Environmental and Smoking Induced Disease and the Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Mahmoud S Eid
- Center for Environmental and Smoking Induced Disease and the Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Elsayed M Mahgoup
- Center for Environmental and Smoking Induced Disease and the Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Sahar A Khaleel
- Center for Environmental and Smoking Induced Disease and the Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, United States.,Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Jay L Zweier
- Center for Environmental and Smoking Induced Disease and the Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
9
|
Grachev DI, Shumaev KB, Kosmachevskaya OV, Topunov AF, Ruuge EK. Nitrosyl Comlexes of Hemoglobin in Various Model Systems. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s000635092106004x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
Méndez-Carmona N, Wyss RK, Arnold M, Segiser A, Kalbermatter N, Joachimbauer A, Carrel TP, Longnus SL. Effects of graft preservation conditions on coronary endothelium and cardiac functional recovery in a rat model of donation after circulatory death. J Heart Lung Transplant 2021; 40:1396-1407. [PMID: 34509349 DOI: 10.1016/j.healun.2021.07.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Use of cardiac grafts obtained with donation after circulatory death (DCD) could significantly improve donor heart availability. As DCD hearts undergo potentially deleterious warm ischemia and reperfusion, clinical protocols require optimization to ensure graft quality. Thus, we investigated effects of alternative preservation conditions on endothelial and/or vascular and contractile function in comparison with the current clinical standard. METHODS Using a rat DCD model, we compared currently used graft preservation conditions, St. Thomas n°2 (St. T) at 4°C, with potentially more suitable conditions for DCD hearts, adenosine-lidocaine preservation solution (A-L) at 4°C or 22°C. Following general anesthesia and diaphragm transection, hearts underwent either 0 or 18 min of in-situ warm ischemia, were explanted, flushed and stored for 15 min with either St. T at 4°C or A-L at 4°C or 22°C, and then reperfused under normothermic, aerobic conditions. Endothelial integrity and contractile function were determined. RESULTS Compared to 4°C preservation, 22°C A-L significantly increased endothelial nitric oxide synthase (eNOS) dimerization and reduced oxidative tissue damage (p < 0.05 for all). Furthermore, A-L at 22°C better preserved the endothelial glycocalyx and coronary flow compared with St. T, tended to reduce tissue calcium overload, and stimulated pro-survival signaling. No significant differences were observed in cardiac function among ischemic groups. CONCLUSIONS Twenty-two-degree Celsius A-L solution better preserves the coronary endothelium compared to 4°C St. T, which likely results from greater eNOS dimerization, reduced oxidative stress, and activation of the reperfusion injury salvage kinase (RISK) pathway. Improving heart preservation conditions immediately following warm ischemia constitutes a promising approach for the optimization of clinical protocols in DCD heart transplantation.
Collapse
Affiliation(s)
- Natalia Méndez-Carmona
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Rahel K Wyss
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Maria Arnold
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Adrian Segiser
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Nina Kalbermatter
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Anna Joachimbauer
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Thierry P Carrel
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Sarah L Longnus
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| |
Collapse
|
11
|
Desideri E, Ciccarone F, Ciriolo MR, Fratantonio D. Extracellular vesicles in endothelial cells: from mediators of cell-to-cell communication to cargo delivery tools. Free Radic Biol Med 2021; 172:508-520. [PMID: 34214634 DOI: 10.1016/j.freeradbiomed.2021.06.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 12/19/2022]
Abstract
Extracellular vesicles (EVs) are nanosized vesicles released from most cell types that play a key role in cell-to-cell communication by carrying DNA, non-coding RNAs, proteins and lipids out of cells. The composition of EVs depends on the cell or tissue of origin and changes according to their pathophysiological conditions, making EVs a potential circulating biomarker of disease. Additionally, the natural tropism of EVs for specific organs and cells has raised the interest in their use as delivery vehicles. In this review, we provide an overview of EV biogenesis, isolation and characterization. We also discuss EVs in the context of endothelial pathophysiology, summarizing the current knowledge about their role in cell communication in quiescent and activated endothelial cells. In the last part, we describe the potential use of EVs as delivery vehicles of bioactive compounds and the current strategies to load exogenous cargo and to functionalize EVs to drive them to a specific tissue.
Collapse
Affiliation(s)
- Enrico Desideri
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome
| | - Fabio Ciccarone
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | - Maria Rosa Ciriolo
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome; IRCCS San Raffaele Pisana, Via della Pisana 235, 00163, Rome, Italy.
| | - Deborah Fratantonio
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy.
| |
Collapse
|
12
|
Inserte J, Barrabés JA, Aluja D, Otaegui I, Bañeras J, Castellote L, Sánchez A, Rodríguez-Palomares JF, Pineda V, Miró-Casas E, Milà L, Lidón RM, Sambola A, Valente F, Rafecas A, Ruiz-Meana M, Rodríguez-Sinovas A, Benito B, Buera I, Delgado-Tomás S, Beneítez D, Ferreira-González I. Implications of Iron Deficiency in STEMI Patients and in a Murine Model of Myocardial Infarction. JACC Basic Transl Sci 2021; 6:567-580. [PMID: 34368505 PMCID: PMC8326269 DOI: 10.1016/j.jacbts.2021.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 11/26/2022]
Abstract
In patients with STEMI treated with primary percutaneous coronary intervention, iron deficiency is associated with larger infarcts, more extensive microvascular obstruction, and a higher frequency of adverse left ventricular remodeling. An iron-deficient diet reduces the tolerance to ischemia/reperfusion in mice at least in part by interfering with the cardioprotective pathway eNOS/soluble guanylate cyclase/protein kinase G. An iron-deficient diet reduces eNOS activity by increasing oxidative/nitrosative stress and its proteasome-dependent degradation. Not only iron excess but also iron deficiency may have deleterious effects in the context of acute myocardial ischemia.
In patients with a first anterior ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention, iron deficiency (ID) was associated with larger infarcts, more extensive microvascular obstruction, and higher frequency of adverse left ventricular remodeling as assessed by cardiac magnetic resonance imaging. In mice, an ID diet reduced the activity of the endothelial nitric oxide synthase/soluble guanylate cyclase/protein kinase G pathway in association with oxidative/nitrosative stress and increased infarct size after transient coronary occlusion. Iron supplementation or administration of an sGC activator before ischemia prevented the effects of the ID diet in mice. Not only iron excess, but also ID, may have deleterious effects in the setting of ischemia and reperfusion.
Collapse
Key Words
- CK-MB, creatine kinase-myocardial band
- CMR, cardiac magnetic resonance
- HSP90, heat-shock protein 90
- ID, iron deficiency
- LV, left ventricular
- MVO, microvascular obstruction
- PKG, protein kinase G
- STEMI, ST-segment elevation acute myocardial infarction
- STIR, short tau inversion recovery
- VASP, vasodilator-stimulated phosphoprotein
- acute myocardial infarction
- eNOS, endothelial nitric oxide synthase
- endothelial nitric oxide synthase
- iNOS, inducible nitric oxide synthase
- iron deficiency
- myocardial reperfusion
- sGC, soluble guanylyl cyclase
- soluble guanylate cyclase
Collapse
Affiliation(s)
- Javier Inserte
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - José A Barrabés
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - David Aluja
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Imanol Otaegui
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Jordi Bañeras
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Laura Castellote
- Department of Biochemistry, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Ana Sánchez
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - José F Rodríguez-Palomares
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Víctor Pineda
- Institut de Diagnòstic per la Imatge, Barcelona, Spain
| | - Elisabet Miró-Casas
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Laia Milà
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Rosa-Maria Lidón
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Antonia Sambola
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Filipa Valente
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Agnès Rafecas
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Marisol Ruiz-Meana
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Antonio Rodríguez-Sinovas
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Begoña Benito
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Irene Buera
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Sara Delgado-Tomás
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - David Beneítez
- Department of Hematology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut d'Oncologia (VHIO), Barcelona, Spain
| | - Ignacio Ferreira-González
- Department of Cardiology, Vall d'Hebron Hospital Universitari and Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
13
|
Aortic disease in Marfan syndrome is caused by overactivation of sGC-PRKG signaling by NO. Nat Commun 2021; 12:2628. [PMID: 33976159 PMCID: PMC8113458 DOI: 10.1038/s41467-021-22933-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 04/01/2021] [Indexed: 02/06/2023] Open
Abstract
Thoracic aortic aneurysm, as occurs in Marfan syndrome, is generally asymptomatic until dissection or rupture, requiring surgical intervention as the only available treatment. Here, we show that nitric oxide (NO) signaling dysregulates actin cytoskeleton dynamics in Marfan Syndrome smooth muscle cells and that NO-donors induce Marfan-like aortopathy in wild-type mice, indicating that a marked increase in NO suffices to induce aortopathy. Levels of nitrated proteins are higher in plasma from Marfan patients and mice and in aortic tissue from Marfan mice than in control samples, indicating elevated circulating and tissue NO. Soluble guanylate cyclase and cGMP-dependent protein kinase are both activated in Marfan patients and mice and in wild-type mice treated with NO-donors, as shown by increased plasma cGMP and pVASP-S239 staining in aortic tissue. Marfan aortopathy in mice is reverted by pharmacological inhibition of soluble guanylate cyclase and cGMP-dependent protein kinase and lentiviral-mediated Prkg1 silencing. These findings identify potential biomarkers for monitoring Marfan Syndrome in patients and urge evaluation of cGMP-dependent protein kinase and soluble guanylate cyclase as therapeutic targets. Aortic aneurysm and dissection, the major problem linked to Marfan syndrome (MFS), lacks effective pharmacological treatment. Here, the authors show that the NO pathway is overactivated in MFS and that inhibition of guanylate cyclase and cGMP-dependent protein kinase reverts MFS aortopathy in mice.
Collapse
|
14
|
Moraes RDA, Webb RC, Silva DF. Vascular Dysfunction in Diabetes and Obesity: Focus on TRP Channels. Front Physiol 2021; 12:645109. [PMID: 33716794 PMCID: PMC7952965 DOI: 10.3389/fphys.2021.645109] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/09/2021] [Indexed: 01/22/2023] Open
Abstract
Transient receptor potential (TRP) superfamily consists of a diverse group of non-selective cation channels that has a wide tissue distribution and is involved in many physiological processes including sensory perception, secretion of hormones, vasoconstriction/vasorelaxation, and cell cycle modulation. In the blood vessels, TRP channels are present in endothelial cells, vascular smooth muscle cells, perivascular adipose tissue (PVAT) and perivascular sensory nerves, and these channels have been implicated in the regulation of vascular tone, vascular cell proliferation, vascular wall permeability and angiogenesis. Additionally, dysfunction of TRP channels is associated with cardiometabolic diseases, such as diabetes and obesity. Unfortunately, the prevalence of diabetes and obesity is rising worldwide, becoming an important public health problems. These conditions have been associated, highlighting that obesity is a risk factor for type 2 diabetes. As well, both cardiometabolic diseases have been linked to a common disorder, vascular dysfunction. In this review, we briefly consider general aspects of TRP channels, and we focus the attention on TRPC (canonical or classical), TRPV (vanilloid), TRPM (melastatin), and TRPML (mucolipin), which were shown to be involved in vascular alterations of diabetes and obesity or are potentially linked to vascular dysfunction. Therefore, elucidation of the functional and molecular mechanisms underlying the role of TRP channels in vascular dysfunction in diabetes and obesity is important for the prevention of vascular complications and end-organ damage, providing a further therapeutic target in the treatment of these metabolic diseases.
Collapse
Affiliation(s)
- Raiana Dos Anjos Moraes
- Laboratory of Cardiovascular Physiology and Pharmacology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil.,Postgraduate Course in Biotechnology in Health and Investigative Medicine, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - R Clinton Webb
- Department of Cell Biology and Anatomy and Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| | - Darízy Flávia Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil.,Postgraduate Course in Biotechnology in Health and Investigative Medicine, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| |
Collapse
|
15
|
El-Mahdy MA, Mahgoup EM, Ewees MG, Eid MS, Abdelghany TM, Zweier JL. Long-term electronic cigarette exposure induces cardiovascular dysfunction similar to tobacco cigarettes: role of nicotine and exposure duration. Am J Physiol Heart Circ Physiol 2021; 320:H2112-H2129. [PMID: 33606584 DOI: 10.1152/ajpheart.00997.2020] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electronic cigarette (e-cig) vaping (ECV) has been proposed as a safer alternative to tobacco cigarette smoking (TCS); however, this remains controversial due to a lack of long-term comparative studies. Therefore, we developed a chronic mouse exposure model that mimics human vaping and allows comparison with TCS. Longitudinal studies were performed to evaluate alterations in cardiovascular function with TCS and ECV exposure durations of up to 60 wk. For ECV, e-cig liquid with box-mod were used and for TCS, 3R4F-cigarettes. C57/BL6 male mice were exposed 2 h/day, 5 days/wk to TCS, ECV, or air control. The role of vape nicotine levels was evaluated using e-cig-liquids with 0, 6, or 24 mg/mL nicotine. Following 16-wk exposure, increased constriction to phenylephrine and impaired endothelium-dependent and endothelium-independent vasodilation were observed in aortic segents, paralleling the onset of systemic hypertension, with elevations in systemic vascular resistance. Following 32 wk, TCS and ECV induced cardiac hypertrophy. All of these abnormalities further increased out to 60 wk of exposure, with elevated heart weight and aortic thickness along with increased superoxide production in vessels and cardiac tissues of both ECV and TCS mice. While ECV-induced abnormalities were seen in the absence of nicotine, these occurred earlier and were more severe with higher nicotine exposure. Thus, long-term vaping of e-cig can induce cardiovascular disease similar to TCS, and the severity of this toxicity increases with exposure duration and vape nicotine content.NEW & NOTEWORTHY A chronic mouse exposure model that mimics human e-cigarette vaping and allows comparison with tobacco cigarette smoking was developed and utilized to perform longitudinal studies of alterations in cardiovascular function. E-cigarette exposure led to the onset of cardiovascular disease similar to that with tobacco cigarette smoking. Impaired endothelium-dependent and endothelium-independent vasodilation with increased adrenergic vasoconstriction were observed, paralleling the onset of systemic hypertension and subsequent cardiac hypertrophy. This cardiovascular toxicity was dependent on exposure duration and nicotine dose.
Collapse
Affiliation(s)
- Mohamed A El-Mahdy
- Center for Environmental and Smoking Induced Disease and Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Elsayed M Mahgoup
- Center for Environmental and Smoking Induced Disease and Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio.,Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mohamed G Ewees
- Center for Environmental and Smoking Induced Disease and Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Mahmoud S Eid
- Center for Environmental and Smoking Induced Disease and Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Tamer M Abdelghany
- Center for Environmental and Smoking Induced Disease and Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Jay L Zweier
- Center for Environmental and Smoking Induced Disease and Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
16
|
Oduro PK, Fang J, Niu L, Li Y, Li L, Zhao X, Wang Q. Pharmacological management of vascular endothelial dysfunction in diabetes: TCM and western medicine compared based on biomarkers and biochemical parameters. Pharmacol Res 2020; 158:104893. [PMID: 32434053 DOI: 10.1016/j.phrs.2020.104893] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/18/2020] [Accepted: 05/03/2020] [Indexed: 12/20/2022]
Abstract
Diabetes, a worldwide health concern while burdening significant populace of countries with time due to a hefty increase in both incidence and prevalence rates. Hyperglycemia has been buttressed both in clinical and experimental studies to modulate widespread molecular actions that effect macro and microvascular dysfunctions. Endothelial dysfunction, activation, inflammation, and endothelial barrier leakage are key factors contributing to vascular complications in diabetes, plus the development of diabetes-induced cardiovascular diseases. The recent increase in molecular, transcriptional, and clinical studies has brought a new scope to the understanding of molecular mechanisms and the therapeutic targets for endothelial dysfunction in diabetes. In this review, an attempt made to discuss up to date critical and emerging molecular signaling pathways involved in the pathophysiology of endothelial dysfunction and viable pharmacological management targets. Importantly, we exploit some Traditional Chinese Medicines (TCM)/TCM isolated bioactive compounds modulating effects on endothelial dysfunction in diabetes. Finally, clinical studies data on biomarkers and biochemical parameters involved in the assessment of the efficacy of treatment in vascular endothelial dysfunction in diabetes was compared between clinically used western hypoglycemic drugs and TCM formulas.
Collapse
Affiliation(s)
- Patrick Kwabena Oduro
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China
| | - Jingmei Fang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China
| | - Lu Niu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China
| | - Yuhong Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Lin Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xin Zhao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin 301617, PR China; Tianjin Key Laboratory of Chinese medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
17
|
El-Mahdy MA, Abdelghany TM, Hemann C, Ewees MG, Mahgoup EM, Eid MS, Shalaan MT, Alzarie YA, Zweier JL. Chronic cigarette smoke exposure triggers a vicious cycle of leukocyte and endothelial-mediated oxidant stress that results in vascular dysfunction. Am J Physiol Heart Circ Physiol 2020; 319:H51-H65. [PMID: 32412791 DOI: 10.1152/ajpheart.00657.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although there is a strong association between cigarette smoking exposure (CSE) and vascular endothelial dysfunction (VED), the underlying mechanisms by which CSE triggers VED remain unclear. Therefore, studies were performed to define these mechanisms using a chronic mouse model of cigarette smoking (CS)-induced cardiovascular disease mirroring that in humans. C57BL/6 male mice were subjected to CSE for up to 48 wk. CSE impaired acetylcholine (ACh)-induced relaxation of aortic and mesenteric segments and triggered hypertension, with mean arterial blood pressure at 32 and 48 wk of exposure of 122 ± 6 and 135 ± 5 mmHg compared with 99 ± 4 and 102 ± 6 mmHg, respectively, in air-exposed mice. CSE led to monocyte activation with superoxide generation in blood exiting the pulmonary circulation. Macrophage infiltration with concomitant increase in NADPH oxidase subunits p22phox and gp91phox was seen in aortas of CS-exposed mice at 16 wk, with further increase out to 48 wk. Associated with this, increased superoxide production was detected that decreased with Nox inhibition. Tetrahydrobiopterin was progressively depleted in CS-exposed mice but not in air-exposed controls, resulting in endothelial nitric oxide synthase (eNOS) uncoupling and secondary superoxide generation. CSE led to a time-dependent decrease in eNOS and Akt expression and phosphorylation. Overall, CSE induces vascular monocyte infiltration with increased NADPH oxidase-mediated reactive oxygen species generation and depletes the eNOS cofactor tetrahydrobiopterin, uncoupling eNOS and triggering a vicious cycle of oxidative stress with VED and hypertension. Our study provides important insights toward understanding the process by which smoking contributes to the genesis of cardiovascular disease and identifies biomarkers predictive of disease.NEW & NOTEWORTHY In a chronic model of smoking-induced cardiovascular disease, we define underlying mechanisms of smoking-induced vascular endothelial dysfunction (VED). Smoking exposure triggered VED and hypertension and led to vascular macrophage infiltration with concomitant increase in superoxide and NADPH oxidase levels as early as 16 wk of exposure. This oxidative stress was accompanied by tetrahydrobiopterin depletion, resulting in endothelial nitric oxide synthase uncoupling with further superoxide generation triggering a vicious cycle of oxidative stress and VED.
Collapse
Affiliation(s)
- Mohamed A El-Mahdy
- Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Tamer M Abdelghany
- Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio.,Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Craig Hemann
- Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Mohamed G Ewees
- Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio.,Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Elsayed M Mahgoup
- Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio.,Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mahmoud S Eid
- Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio.,Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mahmoud T Shalaan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio.,Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Yasmin A Alzarie
- Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio.,Department of Pharmacology and Toxicology, College of Pharmacy, Helwan University, National Organization of Drug Control and Research, Cairo, Egypt
| | - Jay L Zweier
- Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
18
|
Łuczak A, Madej M, Kasprzyk A, Doroszko A. Role of the eNOS Uncoupling and the Nitric Oxide Metabolic Pathway in the Pathogenesis of Autoimmune Rheumatic Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1417981. [PMID: 32351667 PMCID: PMC7174952 DOI: 10.1155/2020/1417981] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022]
Abstract
Atherosclerosis and its clinical complications constitute the major healthcare problems of the world population. Due to the central role of endothelium throughout the atherosclerotic disease process, endothelial dysfunction is regarded as a common mechanism for various cardiovascular (CV) disorders. It is well established that patients with rheumatic autoimmune diseases are characterized by significantly increased prevalence of cardiovascular morbidity and mortality compared with the general population. The current European guidelines on cardiovascular disease (CVD) prevention in clinical practice recommend to use a 1,5-factor multiplier for CV risk in rheumatoid arthritis as well as in other autoimmune inflammatory diseases. However, mechanisms of accelerated atherosclerosis in these diseases, especially in the absence of traditional risk factors, still remain unclear. Oxidative stress plays the major role in the endothelial dysfunction and recently is strongly attributed to endothelial NO synthase dysfunction (eNOS uncoupling). Converted to a superoxide-producing enzyme, uncoupled eNOS not only leads to reduction of the nitric oxide (NO) generation but also potentiates the preexisting oxidative stress, which contributes significantly to atherogenesis. However, to date, there are no systemic analyses on the role of eNOS uncoupling in the excess CV mortality linked with autoimmune rheumatic diseases. The current review paper addresses this issue.
Collapse
Affiliation(s)
- Anna Łuczak
- Department of Rheumatology, Wroclaw Medical University, Poland
| | - Marta Madej
- Department of Rheumatology, Wroclaw Medical University, Poland
| | - Agata Kasprzyk
- Department of Rheumatology, Wroclaw Medical University, Poland
| | - Adrian Doroszko
- Department of Internal Medicine, Hypertension and Clinical Oncology, Wroclaw Medical University, Poland
| |
Collapse
|
19
|
Zaabalawi A, Astley C, Renshall L, Beards F, Lightfoot AP, Degens H, Whitehead D, Alexander Y, Harris LK, Azzawi M. Tetramethoxystilbene-Loaded Liposomes Restore Reactive-Oxygen-Species-Mediated Attenuation of Dilator Responses in Rat Aortic Vessels Ex vivo. Molecules 2019; 24:molecules24234360. [PMID: 31795324 PMCID: PMC6930636 DOI: 10.3390/molecules24234360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 01/08/2023] Open
Abstract
The methylated analogue of the polyphenol resveratrol (RV), 2,3′,4,5′-tetramethoxystilbene (TMS) displays potent antioxidant properties and is an effective cytochrome P450 (CYP) 1B1 inhibitor. The bioavailability of TMS is low. Therefore, the use of liposomes for the encapsulation of TMS is a promising delivery modality for enhanced uptake into tissues. We examined the effect of delivery of TMS in liposomes on the restoration of vasodilator responses of isolated aortic vessels after acute tension elevation ex vivo. Aortic vessels from young male Wistar rats were isolated, and endothelial-dependent (acetylcholine, ACh) and -independent (sodium nitroprusside, SNP) responses assessed. Acute tension elevation (1 h) significantly reduced ACh dilator responses, which were restored following incubation with superoxide dismutase or apocynin (an NADPH oxidase inhibitor). Incubation with TMS-loaded liposomes (mean diameter 157 ± 6 nm; PDI 0.097) significantly improved the attenuated dilator responses following tension elevation, which was sustained over a longer period (4 h) when compared to TMS solution. Endothelial denudation or co-incubation with L-NNA (Nω-nitro-l-arginine; nitric oxide synthase inhibitor) resulted in loss of dilator function. Our findings suggest that TMS-loaded liposomes can restore attenuated endothelial-dependent dilator responses induced by an oxidative environment by reducing NADPH-oxidase-derived ROS and potentiating the release of the vasodilator nitric oxide. TMS-loaded liposomes may be a promising therapeutic strategy to restore vasodilator function in vascular disease.
Collapse
Affiliation(s)
- Azziza Zaabalawi
- Centre for Bioscience, Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK; (A.Z.); (C.A.); (Y.A.)
| | - Cai Astley
- Centre for Bioscience, Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK; (A.Z.); (C.A.); (Y.A.)
| | - Lewis Renshall
- Division of Pharmacy and Optometry, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (L.R.); (F.B.); (L.K.H.)
- Maternal and Fetal Health Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9WL, UK
- Maternal and Fetal Health Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, St Mary’s Hospital, Manchester M13 9WL, UK
| | - Frances Beards
- Division of Pharmacy and Optometry, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (L.R.); (F.B.); (L.K.H.)
- Maternal and Fetal Health Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9WL, UK
- Maternal and Fetal Health Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, St Mary’s Hospital, Manchester M13 9WL, UK
| | - Adam P. Lightfoot
- Centre for Musculoskeletal Science and Sports Medicine, Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK; (A.P.L.); (H.D.)
| | - Hans Degens
- Centre for Musculoskeletal Science and Sports Medicine, Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK; (A.P.L.); (H.D.)
- Institute of Sport Science and Innovations, Lithuanian Sports University, LT-44221 Kaunas, Lithuania
| | - Debra Whitehead
- Advances Materials and Surface Engineering Research Centre, Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK;
| | - Yvonne Alexander
- Centre for Bioscience, Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK; (A.Z.); (C.A.); (Y.A.)
| | - Lynda K Harris
- Division of Pharmacy and Optometry, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (L.R.); (F.B.); (L.K.H.)
- Maternal and Fetal Health Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9WL, UK
- Maternal and Fetal Health Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, St Mary’s Hospital, Manchester M13 9WL, UK
| | - May Azzawi
- Centre for Bioscience, Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK; (A.Z.); (C.A.); (Y.A.)
- Correspondence:
| |
Collapse
|
20
|
Do VQ, Park KH, Seo YS, Park JM, Kim B, Kim SK, Sung JH, Lee MY. Inhalation exposure to cigarette smoke induces endothelial nitric oxide synthase uncoupling and enhances vascular collagen deposition in streptozotocin-induced diabetic rats. Food Chem Toxicol 2019; 136:110988. [PMID: 31759066 DOI: 10.1016/j.fct.2019.110988] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 12/22/2022]
Abstract
Smoking is an acknowledged risk factor for vascular disorders, and vascular complication is a main outcome of diabetes. Hence, we investigated the impact of cigarette smoke on blood vessels in diabetes, postulating that smoking might aggravate diabetic vascular impairment. Sprague-Dawley rats were divided into four groups: control, cigarette smoke-exposed, diabetic, and cigarette smoke-exposed diabetic groups. Streptozotocin-induced diabetic rats were exposed to cigarette smoke by inhalation at total particulate matter concentration of 200 μg/L for 4 h/day, 5 day/week for a total of 4 weeks. Diabetes caused structural change of aorta, but additional cigarette smoke exposure did not induce further alteration. Collagen, a marker for fibrosis, was increased in media of diabetic aorta, and this increase was augmented by cigarette smoke. Cigarette smoke induced endothelial nitric oxide synthase (eNOS) uncoupling in the diabetic group. Malondialdehyde was increased and glutathione was decreased in blood from diabetes, but these effects were not exaggerated by cigarette smoke. Cigarette smoke caused NADPH oxidase (NOX) 2 expression in diabetic aorta and enhanced diabetes-induced NOX4 expression in aorta. Taken together, cigarette smoke exposure can aggravate vascular fibrosis and induce eNOS uncoupling in diabetes under experimental condition, suggesting that smoking might exacerbate diabetic vascular impairments.
Collapse
Affiliation(s)
- Van Quan Do
- College of Pharmacy, Dongguk University, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Kwang-Hoon Park
- College of Pharmacy, Dongguk University, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Yoon-Seok Seo
- College of Pharmacy, Dongguk University, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Jung-Min Park
- College of Pharmacy, Dongguk University, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Bumseok Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Sang-Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jae Hyuck Sung
- Bio Technology Division, Korea Conformity Laboratories, Incheon, 21999, Republic of Korea
| | - Moo-Yeol Lee
- College of Pharmacy, Dongguk University, Goyang-si, Gyeonggi-do, 10326, Republic of Korea.
| |
Collapse
|
21
|
Meza CA, La Favor JD, Kim DH, Hickner RC. Endothelial Dysfunction: Is There a Hyperglycemia-Induced Imbalance of NOX and NOS? Int J Mol Sci 2019; 20:ijms20153775. [PMID: 31382355 PMCID: PMC6696313 DOI: 10.3390/ijms20153775] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
NADPH oxidases (NOX) are enzyme complexes that have received much attention as key molecules in the development of vascular dysfunction. NOX have the primary function of generating reactive oxygen species (ROS), and are considered the main source of ROS production in endothelial cells. The endothelium is a thin monolayer that lines the inner surface of blood vessels, acting as a secretory organ to maintain homeostasis of blood flow. The enzymatic production of nitric oxide (NO) by endothelial NO synthase (eNOS) is critical in mediating endothelial function, and oxidative stress can cause dysregulation of eNOS and endothelial dysfunction. Insulin is a stimulus for increases in blood flow and endothelium-dependent vasodilation. However, cardiovascular disease and type 2 diabetes are characterized by poor control of the endothelial cell redox environment, with a shift toward overproduction of ROS by NOX. Studies in models of type 2 diabetes demonstrate that aberrant NOX activation contributes to uncoupling of eNOS and endothelial dysfunction. It is well-established that endothelial dysfunction precedes the onset of cardiovascular disease, therefore NOX are important molecular links between type 2 diabetes and vascular complications. The aim of the current review is to describe the normal, healthy physiological mechanisms involved in endothelial function, and highlight the central role of NOX in mediating endothelial dysfunction when glucose homeostasis is impaired.
Collapse
Affiliation(s)
- Cesar A Meza
- Department of Nutrition, Food & Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Justin D La Favor
- Department of Nutrition, Food & Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Do-Houn Kim
- Department of Nutrition, Food & Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Robert C Hickner
- Department of Nutrition, Food & Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA.
- Institute of Sports Sciences and Medicine, College of Human Sciences, Florida State University, Tallahassee, FL 32306, USA.
- Department of Biokinetics, Exercise and Leisure Sciences, School of Health Sciences, University of KwaZulu-Natal, Westville 4041, South Africa.
| |
Collapse
|
22
|
Gebhart V, Reiß K, Kollau A, Mayer B, Gorren ACF. Site and mechanism of uncoupling of nitric-oxide synthase: Uncoupling by monomerization and other misconceptions. Nitric Oxide 2019; 89:14-21. [PMID: 31022534 DOI: 10.1016/j.niox.2019.04.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/15/2019] [Accepted: 04/15/2019] [Indexed: 01/20/2023]
Abstract
Nitric oxide synthase (NOS) catalyzes the transformation of l-arginine, molecular oxygen (O2), and NADPH-derived electrons to nitric oxide (NO) and l-citrulline. Under some conditions, however, NOS catalyzes the reduction of O2 to superoxide (O2-) instead, a phenomenon that is generally referred to as uncoupling. In principle, both the heme in the oxygenase domain and the flavins in the reductase domain could catalyze O2- formation. In the former case the oxyferrous (Fe(II)O2) complex that is formed as an intermediate during catalysis would dissociate to heme and O2-; in the latter case the reduced flavins would reduce O2 to O2-. The NOS cofactor tetrahydrobiopterin (BH4) is indispensable for coupled catalysis. In the case of uncoupling at the heme this is explained by the essential role of BH4 as an electron donor to the oxyferrous complex; in the case of uncoupling at the flavins it is assumed that the absence of BH4 results in NOS monomerization, with the monomers incapable to sustain NO synthesis but still able to support uncoupled catalysis. In spite of little supporting evidence, uncoupling at the reductase after NOS monomerization appears to be the predominant hypothesis at present. To set the record straight we extended prior studies by determining under which conditions uncoupling of the neuronal and endothelial isoforms (nNOS and eNOS) occurred and if a correlation exists between uncoupling and the monomer/dimer equilibrium. We determined the rates of coupled/uncoupled catalysis by measuring NADPH oxidation spectrophotometrically at 340 nm and citrulline synthesis as the formation of [3H]-citrulline from [3H]-Arg. The monomer/dimer equilibrium was determined by FPLC and, for comparison, by low-temperature polyacrylamide gel electrophoresis. Uncoupling occurred in the absence of Arg and/or BH4, but not in the absence of Ca2+ or calmodulin (CaM). Since omission of Ca2+/CaM will completely block heme reduction while still allowing substantial FMN reduction, this argues against uncoupling by the reductase domain. In the presence of heme-directed NOS inhibitors uncoupling occurred to the extent that these compound allowed heme reduction, again arguing in favor of uncoupling at the heme. The monomer/dimer equilibrium showed no correlation with uncoupling. We conclude that uncoupling by BH4 deficiency takes place exclusively at the heme, with virtually no contribution from the flavins and no role for NOS monomerization.
Collapse
Affiliation(s)
- Verena Gebhart
- Department of Pharmacology and Toxicology Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, A-8010, Graz, Austria
| | - Katja Reiß
- Department of Pharmacology and Toxicology Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, A-8010, Graz, Austria
| | - Alexander Kollau
- Department of Pharmacology and Toxicology Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, A-8010, Graz, Austria
| | - Bernd Mayer
- Department of Pharmacology and Toxicology Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, A-8010, Graz, Austria
| | - Antonius C F Gorren
- Department of Pharmacology and Toxicology Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, A-8010, Graz, Austria.
| |
Collapse
|
23
|
Vasoreactivity of isolated aortic rings from dyslipidemic and insulin resistant inducible nitric oxide synthase knockout mice. Eur J Pharmacol 2019; 855:90-97. [DOI: 10.1016/j.ejphar.2019.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022]
|
24
|
Reckelhoff JF, Romero DG, Yanes Cardozo LL. Sex, Oxidative Stress, and Hypertension: Insights From Animal Models. Physiology (Bethesda) 2019; 34:178-188. [PMID: 30968750 DOI: 10.1152/physiol.00035.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
One of the mechanisms responsible for blood pressure (BP) regulation is thought to be oxidative stress. In this review, we highlight preclinical studies that strongly support a role for oxidative stress in development and maintenance of hypertension in male animals, based on depressor responses to antioxidants, particularly tempol and apocynin. In females, oxidative stress seems to be important in the initial development of hypertension. However, whether maintenance of hypertension in females is mediated by oxidative stress is not clear. In clinical studies, pharmacological intervention to reduce BP with antioxidants has conflicting results, mostly negative. This review will discuss the uncertainties regarding blood pressure control and oxidative stress and potential reasons for these outcomes.
Collapse
Affiliation(s)
- Jane F Reckelhoff
- Departments of Cell and Molecular Biology, University of Mississippi Medical Center , Jackson, Mississippi.,Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center , Jackson, Mississippi.,Women's Health Research Center, University of Mississippi Medical Center , Jackson, Mississippi
| | - Damian G Romero
- Departments of Cell and Molecular Biology, University of Mississippi Medical Center , Jackson, Mississippi.,Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center , Jackson, Mississippi.,Women's Health Research Center, University of Mississippi Medical Center , Jackson, Mississippi
| | - Licy L Yanes Cardozo
- Departments of Cell and Molecular Biology, University of Mississippi Medical Center , Jackson, Mississippi.,Medicine, Endocrinology Division, University of Mississippi Medical Center , Jackson, Mississippi.,Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center , Jackson, Mississippi.,Women's Health Research Center, University of Mississippi Medical Center , Jackson, Mississippi
| |
Collapse
|
25
|
Morris G, Maes M, Berk M, Puri BK. Myalgic encephalomyelitis or chronic fatigue syndrome: how could the illness develop? Metab Brain Dis 2019; 34:385-415. [PMID: 30758706 PMCID: PMC6428797 DOI: 10.1007/s11011-019-0388-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 01/23/2019] [Indexed: 12/19/2022]
Abstract
A model of the development and progression of chronic fatigue syndrome (myalgic encephalomyelitis), the aetiology of which is currently unknown, is put forward, starting with a consideration of the post-infection role of damage-associated molecular patterns and the development of chronic inflammatory, oxidative and nitrosative stress in genetically predisposed individuals. The consequences are detailed, including the role of increased intestinal permeability and the translocation of commensal antigens into the circulation, and the development of dysautonomia, neuroinflammation, and neurocognitive and neuroimaging abnormalities. Increasing levels of such stress and the switch to immune and metabolic downregulation are detailed next in relation to the advent of hypernitrosylation, impaired mitochondrial performance, immune suppression, cellular hibernation, endotoxin tolerance and sirtuin 1 activation. The role of chronic stress and the development of endotoxin tolerance via indoleamine 2,3-dioxygenase upregulation and the characteristics of neutrophils, monocytes, macrophages and T cells, including regulatory T cells, in endotoxin tolerance are detailed next. Finally, it is shown how the immune and metabolic abnormalities of chronic fatigue syndrome can be explained by endotoxin tolerance, thus completing the model.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
- Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia
| | - Basant K Puri
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, England, W12 0HS, UK.
| |
Collapse
|
26
|
Morris G, Fernandes BS, Puri BK, Walker AJ, Carvalho AF, Berk M. Leaky brain in neurological and psychiatric disorders: Drivers and consequences. Aust N Z J Psychiatry 2018; 52:924-948. [PMID: 30231628 DOI: 10.1177/0004867418796955] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The blood-brain barrier acts as a highly regulated interface; its dysfunction may exacerbate, and perhaps initiate, neurological and neuropsychiatric disorders. METHODS In this narrative review, focussing on redox, inflammatory and mitochondrial pathways and their effects on the blood-brain barrier, a model is proposed detailing mechanisms which might explain how increases in blood-brain barrier permeability occur and can be maintained with increasing inflammatory and oxidative and nitrosative stress being the initial drivers. RESULTS Peripheral inflammation, which is causatively implicated in the pathogenesis of major psychiatric disorders, is associated with elevated peripheral pro-inflammatory cytokines, which in turn cause increased blood-brain barrier permeability. Reactive oxygen species, such as superoxide radicals and hydrogen peroxide, and reactive nitrogen species, such as nitric oxide and peroxynitrite, play essential roles in normal brain capillary endothelial cell functioning; however, chronically elevated oxidative and nitrosative stress can lead to mitochondrial dysfunction and damage to the blood-brain barrier. Activated microglia, redox control of which is mediated by nitric oxide synthases and nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, secrete neurotoxic molecules such as reactive oxygen species, nitric oxide, prostaglandin, cyclooxygenase-2, quinolinic acid, several chemokines (including monocyte chemoattractant protein-1 [MCP-1], C-X-C motif chemokine ligand 1 [CXCL-1] and macrophage inflammatory protein 1α [MIP-1α]) and the pro-inflammatory cytokines interleukin-6, tumour necrosis factor-α and interleukin-1β, which can exert a detrimental effect on blood-brain barrier integrity and function. Similarly, reactive astrocytes produce neurotoxic molecules such as prostaglandin E2 and pro-inflammatory cytokines, which can cause a 'leaky brain'. CONCLUSION Chronic inflammatory and oxidative and nitrosative stress is associated with the development of a 'leaky gut'. The following evidence-based approaches, which address the leaky gut and blood-brain barrier dysfunction, are suggested as potential therapeutic interventions for neurological and neuropsychiatric disorders: melatonin, statins, probiotics containing Bifidobacteria and Lactobacilli, N-acetylcysteine, and prebiotics containing fructo-oligosaccharides and galacto-oligosaccharides.
Collapse
Affiliation(s)
- Gerwyn Morris
- 1 IMPACT Strategic Research Centre, Deakin University School of Medicine, and Barwon Health, Geelong, VIC, Australia
| | - Brisa S Fernandes
- 1 IMPACT Strategic Research Centre, Deakin University School of Medicine, and Barwon Health, Geelong, VIC, Australia.,2 Centre for Addiction and Mental Health (CAMH) and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Basant K Puri
- 3 Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Adam J Walker
- 1 IMPACT Strategic Research Centre, Deakin University School of Medicine, and Barwon Health, Geelong, VIC, Australia
| | - Andre F Carvalho
- 2 Centre for Addiction and Mental Health (CAMH) and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Michael Berk
- 1 IMPACT Strategic Research Centre, Deakin University School of Medicine, and Barwon Health, Geelong, VIC, Australia.,4 Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
27
|
Boslett J, Helal M, Chini E, Zweier JL. Genetic deletion of CD38 confers post-ischemic myocardial protection through preserved pyridine nucleotides. J Mol Cell Cardiol 2018; 118:81-94. [PMID: 29476764 PMCID: PMC6699759 DOI: 10.1016/j.yjmcc.2018.02.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/02/2018] [Accepted: 02/20/2018] [Indexed: 12/27/2022]
Abstract
Following the onset of ischemia/reperfusion (I/R), CD38 activation occurs and is associated with depletion of NAD(P)(H) in the heart as well as myocardial injury and endothelial dysfunction. Studies with pharmacological inhibitors suggest that the NADP+-hydrolyzing ability of CD38 can deplete the NAD(P)(H) pools. However, there is a need for more specific studies on the importance of CD38 and its role in the process of endothelial dysfunction and myocardial injury in the post-ischemic heart. Therefore, experiments were performed in hearts of mice with global gene knockout of CD38. Isolated perfused CD38-/- and wild type (WT) mouse hearts were studied to determine the link between CD38 activation, the levels of NADP(H), endothelial dysfunction, and myocardial injury after I/R. Genetic deletion of CD38 preserves the myocardial and endothelial NADP(H) pools compared to WT. Whole heart BH4 levels in CD38-/- hearts were also preserved. Post-ischemic levels of cGMP were greatly depleted in WT hearts, but preserved to near baseline levels in CD38-/- hearts. The preservation of these metabolite pools in CD38-/- hearts was accompanied by near full recovery of NOS-dependent coronary flow, while in WT hearts, severe impairment of endothelial function and NOS uncoupling occurred with decreased NO and enhanced superoxide generation. CD38-/- hearts also exhibited marked protection against I/R with preserved glutathione levels, increased recovery of left ventricular contractile function, decreased myocyte enzyme release, and decreased infarct size. Thus, CD38 activation causes post-ischemic depletion of NADP(H) within the heart, with severe depletion from the endothelium, resulting in endothelial dysfunction and myocardial injury.
Collapse
Affiliation(s)
- James Boslett
- Department of Internal Medicine, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Moustafa Helal
- Department of Internal Medicine, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Eduardo Chini
- Signal Transduction Laboratory, Kogod Aging Center, Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Jay L Zweier
- Department of Internal Medicine, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
28
|
Pickering RJ, Rosado CJ, Sharma A, Buksh S, Tate M, de Haan JB. Recent novel approaches to limit oxidative stress and inflammation in diabetic complications. Clin Transl Immunology 2018; 7:e1016. [PMID: 29713471 PMCID: PMC5905388 DOI: 10.1002/cti2.1016] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 12/25/2022] Open
Abstract
Diabetes is considered a major burden on the healthcare system of Western and non‐Western societies with the disease reaching epidemic proportions globally. Diabetic patients are highly susceptible to developing micro‐ and macrovascular complications, which contribute significantly to morbidity and mortality rates. Over the past decade, a plethora of research has demonstrated that oxidative stress and inflammation are intricately linked and significant drivers of these diabetic complications. Thus, the focus now has been towards specific mechanism‐based strategies that can target both oxidative stress and inflammatory pathways to improve the outcome of disease burden. This review will focus on the mechanisms that drive these diabetic complications and the feasibility of emerging new therapies to combat oxidative stress and inflammation in the diabetic milieu.
Collapse
Affiliation(s)
- Raelene J Pickering
- Department of Diabetes Central Clinical School Monash University Melbourne VIC Australia
| | - Carlos J Rosado
- Department of Diabetes Central Clinical School Monash University Melbourne VIC Australia
| | - Arpeeta Sharma
- Oxidative Stress Laboratory Basic Science Domain Baker Heart and Diabetes Institute Melbourne VIC Australia
| | - Shareefa Buksh
- Oxidative Stress Laboratory Basic Science Domain Baker Heart and Diabetes Institute Melbourne VIC Australia
| | - Mitchel Tate
- Heart Failure Pharmacology Basic Science Domain Baker Heart and Diabetes Institute Melbourne VIC Australia
| | - Judy B de Haan
- Oxidative Stress Laboratory Basic Science Domain Baker Heart and Diabetes Institute Melbourne VIC Australia
| |
Collapse
|
29
|
Ferrer-Sueta G, Campolo N, Trujillo M, Bartesaghi S, Carballal S, Romero N, Alvarez B, Radi R. Biochemistry of Peroxynitrite and Protein Tyrosine Nitration. Chem Rev 2018; 118:1338-1408. [DOI: 10.1021/acs.chemrev.7b00568] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gerardo Ferrer-Sueta
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Nicolás Campolo
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Silvina Bartesaghi
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Sebastián Carballal
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Natalia Romero
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Beatriz Alvarez
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
30
|
Abstract
Nitric oxide (NO) signalling has pleiotropic roles in biology and a crucial function in cardiovascular homeostasis. Tremendous knowledge has been accumulated on the mechanisms of the nitric oxide synthase (NOS)-NO pathway, but how this highly reactive, free radical gas signals to specific targets for precise regulation of cardiovascular function remains the focus of much intense research. In this Review, we summarize the updated paradigms on NOS regulation, NO interaction with reactive oxidant species in specific subcellular compartments, and downstream effects of NO in target cardiovascular tissues, while emphasizing the latest developments of molecular tools and biomarkers to modulate and monitor NO production and bioavailability.
Collapse
Affiliation(s)
- Charlotte Farah
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, UCL-FATH Tour Vésale 5th Floor, 52 Avenue Mounier B1.53.09, 1200 Brussels, Belgium
| | - Lauriane Y M Michel
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, UCL-FATH Tour Vésale 5th Floor, 52 Avenue Mounier B1.53.09, 1200 Brussels, Belgium
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, UCL-FATH Tour Vésale 5th Floor, 52 Avenue Mounier B1.53.09, 1200 Brussels, Belgium
| |
Collapse
|
31
|
Lukaszewicz KM, Paudyal MP, Falck JR, Lombard JH. Role of vascular reactive oxygen species in regulating cytochrome P450-4A enzyme expression in Dahl salt-sensitive rats. Microcirculation 2018; 23:540-548. [PMID: 27537772 DOI: 10.1111/micc.12304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/15/2016] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The potential contribution of CYP4A enzymes to endothelial dysfunction in Dahl salt-sensitive rats was determined by comparison to SS-5BN consomic rats having chromosome 5 carrying CYP4A alleles from the BN rat introgressed into the SS genetic background. METHODS The following experiments were performed in cerebral arteries from HS-fed SS and SS-5BN rats ± the SOD inhibitor DETC and/or the superoxide scavenger Tempol: (i) endothelial function was determined via video microscopy ± acute addition of the CYP4A inhibitor DDMS or Tempol; (ii) vascular oxidative stress was assessed with DHE fluorescence ± acute addition of DDMS, l-NAME, or PEG-SOD; and (iii) CYP4A protein levels were compared by western blotting. RESULTS In DETC-treated SS-5BN and HS-fed SS rats, (i) DDMS or Tempol ameliorated vascular dysfunction, (ii) DDMS reduced vascular oxidative stress to control levels, (iii) chronic Tempol treatment reduced vascular CYP4A protein expression, and (iv) combined treatment with Tempol and l-NAME prevented the reduction in CYP4A protein expression in MCA of HS-fed SS rats. CONCLUSION The CYP4A pathway plays a role in vascular dysfunction in SS rats and there appears to be a direct role of reduced NO availability due to salt-induced oxidant stress in upregulating CYP4A enzyme expression.
Collapse
Affiliation(s)
| | - Mahesh P Paudyal
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Julian H Lombard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
32
|
Affiliation(s)
- Joseph C Galley
- From the Heart, Lung, Blood and Vascular Medicine Institute (J.C.G., A.C.S.) and Department of Pharmacology and Chemical Biology (J.C.G., A.C.S.), University of Pittsburgh, PA
| | - Adam C Straub
- From the Heart, Lung, Blood and Vascular Medicine Institute (J.C.G., A.C.S.) and Department of Pharmacology and Chemical Biology (J.C.G., A.C.S.), University of Pittsburgh, PA.
| |
Collapse
|
33
|
Zhou D, Hemann C, Boslett J, Luo A, Zweier JL, Liu X. Oxygen binding and nitric oxide dioxygenase activity of cytoglobin are altered to different extents by cysteine modification. FEBS Open Bio 2017; 7:845-853. [PMID: 28593139 PMCID: PMC5458454 DOI: 10.1002/2211-5463.12230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/24/2017] [Accepted: 04/05/2017] [Indexed: 12/24/2022] Open
Abstract
Cytoglobin (Cygb), like other members of the globin family, is a nitric oxide (NO) dioxygenase, metabolizing NO in an oxygen (O2)‐dependent manner. We examined the effect of modification of cysteine sulfhydryl groups of Cygb on its O2 binding and NO dioxygenase activity. The two cysteine sulfhydryls of Cygb were modified to form either an intramolecular disulfide bond (Cygb_SS), thioether bonds to N‐ethylmaleimide (NEM; Cygb_SC), or were maintained as free SH groups (Cygb_SH). It was observed that the NO dioxygenase activity of Cygb only slightly changed (~ 25%) while the P50 of O2 binding to Cygb changed over four‐fold with these modifications. Our results suggest that it is possible to separately regulate one Cygb function (such as O2 binding) without largely affecting the other Cygb functions (such as its NO dioxygenase activity).
Collapse
Affiliation(s)
- Danlei Zhou
- Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine Department of Internal Medicine College of Medicine The Ohio State University Columbus OH USA.,School of Life Science Beijing Institute of Technology Haidian District China
| | - Craig Hemann
- Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine Department of Internal Medicine College of Medicine The Ohio State University Columbus OH USA
| | - James Boslett
- Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine Department of Internal Medicine College of Medicine The Ohio State University Columbus OH USA
| | - Aiqin Luo
- School of Life Science Beijing Institute of Technology Haidian District China
| | - Jay L Zweier
- Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine Department of Internal Medicine College of Medicine The Ohio State University Columbus OH USA
| | - Xiaoping Liu
- Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine Department of Internal Medicine College of Medicine The Ohio State University Columbus OH USA
| |
Collapse
|
34
|
Retinal Diseases Associated with Oxidative Stress and the Effects of a Free Radical Scavenger (Edaravone). OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9208489. [PMID: 28194256 PMCID: PMC5286467 DOI: 10.1155/2017/9208489] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/20/2016] [Indexed: 02/07/2023]
Abstract
Oxidative stress plays a pivotal role in developing and accelerating retinal diseases including age-related macular degeneration (AMD), glaucoma, diabetic retinopathy (DR), and retinal vein occlusion (RVO). An excess amount of reactive oxygen species (ROS) can lead to functional and morphological impairments in retinal pigment epithelium (RPE), endothelial cells, and retinal ganglion cells (RGCs). Here we demonstrate that edaravone, a free radical scavenger, decreased apoptotic cell death, oxidative damage to DNA and lipids, and angiogenesis through inhibiting JNK and p38 MAPK pathways in AMD, glaucoma, DR, and RVO animal models. These data suggest that the therapeutic strategy for targeting oxidative stress may be important for the treatment of these ocular diseases, and edaravone may be useful for treating retinal diseases associated with oxidative stress.
Collapse
|
35
|
Najjar S, Pahlajani S, De Sanctis V, Stern JNH, Najjar A, Chong D. Neurovascular Unit Dysfunction and Blood-Brain Barrier Hyperpermeability Contribute to Schizophrenia Neurobiology: A Theoretical Integration of Clinical and Experimental Evidence. Front Psychiatry 2017; 8:83. [PMID: 28588507 PMCID: PMC5440518 DOI: 10.3389/fpsyt.2017.00083] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 04/28/2017] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia is a psychotic disorder characterized by delusions, hallucinations, negative symptoms, as well as behavioral and cognitive dysfunction. It is a pathoetiologically heterogeneous disorder involving complex interrelated mechanisms that include oxidative stress and neuroinflammation. Neurovascular endothelial dysfunction and blood-brain barrier (BBB) hyperpermeability are established mechanisms in neurological disorders with comorbid psychiatric symptoms such as epilepsy, traumatic brain injury, and Alzheimer's disease. Schizophrenia is frequently comorbid with medical conditions associated with peripheral vascular endothelial dysfunction, such as metabolic syndrome, cardiovascular disease, and diabetes mellitus. However, the existence and etiological relevance of neurovascular endothelial dysfunction and BBB hyperpermeability in schizophrenia are still not well recognized. Here, we review the growing clinical and experimental evidence, indicating that neurovascular endotheliopathy and BBB hyperpermeability occur in schizophrenia patients. We present a theoretical integration of human and animal data linking oxidative stress and neuroinflammation to neurovascular endotheliopathy and BBB breakdown in schizophrenia. These abnormalities may contribute to the cognitive and behavioral symptoms of schizophrenia via several mechanisms involving reduced cerebral perfusion and impaired homeostatic processes of cerebral microenvironment. Furthermore, BBB disruption can facilitate interactions between brain innate and peripheral adaptive immunity, thereby perpetuating harmful neuroimmune signals and toxic neuroinflammatory responses, which can also contribute to the symptoms of schizophrenia. Taken together, these findings support the "mild encephalitis" hypothesis of schizophrenia. If neurovascular abnormalities prove to be etiologically relevant to the neurobiology of schizophrenia, then targeting these abnormalities may represent a promising therapeutic strategy.
Collapse
Affiliation(s)
- Souhel Najjar
- Department of Neurology, Hofstra Northwell School of Medicine, New York, NY, USA.,Neuroinflammation Division, Department of Neurology, Lenox Hill Hospital, New York, NY, USA
| | - Silky Pahlajani
- Neuroinflammation Division, Department of Neurology, Lenox Hill Hospital, New York, NY, USA
| | - Virginia De Sanctis
- Neuroinflammation Division, Department of Neurology, Lenox Hill Hospital, New York, NY, USA
| | - Joel N H Stern
- Department of Neurology, Hofstra Northwell School of Medicine, New York, NY, USA.,Neuroinflammation Division, Department of Neurology, Lenox Hill Hospital, New York, NY, USA
| | - Amanda Najjar
- Department of Psychology and Human Development, Peabody College, Vanderbilt University, Nashville, TN, USA
| | - Derek Chong
- Department of Neurology, Hofstra Northwell School of Medicine, New York, NY, USA
| |
Collapse
|
36
|
Gortan Cappellari G, Barazzoni R, Cattin L, Muro AF, Zanetti M. Lack of Fibronectin Extra Domain A Alternative Splicing Exacerbates Endothelial Dysfunction in Diabetes. Sci Rep 2016; 6:37965. [PMID: 27897258 PMCID: PMC5126581 DOI: 10.1038/srep37965] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/01/2016] [Indexed: 01/03/2023] Open
Abstract
Glucose-induced changes of artery anatomy and function account for diabetic vascular complications, which heavily impact disease morbidity and mortality. Since fibronectin containing extra domain A (EDA + FN) is increased in diabetic vessels and participates to vascular remodeling, we wanted to elucidate whether and how EDA + FN is implicated in diabetes-induced endothelial dysfunction using isometric-tension recording in a murine model of diabetes. In thoracic aortas of EDA−/−, EDA+/+ (constitutively lacking and expressing EDA + FN respectively), and of wild-type mice (EDAwt/wt), streptozotocin (STZ)-induced diabetes impaired endothelial vasodilation to acetylcholine, irrespective of genotype. However STZ + EDA−/− mice exhibited increased endothelial dysfunction compared with STZ + EDA+/+ and with STZ + EDAwt/wt. Analysis of the underlying mechanisms revealed that STZ + EDA−/− mice show increased oxidative stress as demonstrated by enhanced aortic superoxide anion, nitrotyrosine levels and expression of NADPH oxidase NOX4 and TGF-β1, the last two being reverted by treatment with the antioxidant n-acetylcysteine. In contrast, NOX1 expression and antioxidant potential were similar in aortas from the three genotypes. Interestingly, reduced eNOS expression in STZ + EDA+/+ vessels is counteracted by increased eNOS coupling and function. Although EDA + FN participates to vascular remodelling, these findings show that it plays a crucial role in limiting diabetic endothelial dysfunction by preventing vascular oxidative stress.
Collapse
Affiliation(s)
| | - Rocco Barazzoni
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Luigi Cattin
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Andrés F Muro
- Mouse Molecular Genetics Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Michela Zanetti
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
37
|
Nguyen MC, Park JT, Jeon YG, Jeon BH, Hoe KL, Kim YM, Lim HK, Ryoo S. Arginase Inhibition Restores Peroxynitrite-Induced Endothelial Dysfunction via L-Arginine-Dependent Endothelial Nitric Oxide Synthase Phosphorylation. Yonsei Med J 2016; 57:1329-38. [PMID: 27593859 PMCID: PMC5011263 DOI: 10.3349/ymj.2016.57.6.1329] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/01/2016] [Accepted: 04/07/2016] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Peroxynitrite plays a critical role in vascular pathophysiology by increasing arginase activity and decreasing endothelial nitric oxide synthase (eNOS) activity. Therefore, the aims of this study were to investigate whether arginase inhibition and L-arginine supplement could restore peroxynitrite-induced endothelial dysfunction and determine the involved mechanism. MATERIALS AND METHODS Human umbilical vein endothelial cells (HUVECs) were treated with SIN-1, a peroxynitrite generator, and arginase activity, nitrite/nitrate production, and expression levels of proteins were measured. eNOS activation was evaluated via Western blot and dimer blot analysis. We also tested nitric oxide (NO) and reactive oxygen species (ROS) production and performed a vascular tension assay. RESULTS SIN-1 treatment increased arginase activity in a time- and dose-dependent manner and reciprocally decreased nitrite/nitrate production that was prevented by peroxynitrite scavenger in HUVECs. Furthermore, SIN-1 induced an increase in the expression level of arginase I and II, though not in eNOS protein. The decreased eNOS phosphorylation at Ser1177 and the increased at Thr495 by SIN-1 were restored with arginase inhibitor and L-arginine. The changed eNOS phosphorylation was consistent in the stability of eNOS dimers. SIN-1 decreased NO production and increased ROS generation in the aortic endothelium, all of which was reversed by arginase inhibitor or L-arginine. N(G)-Nitro-L-arginine methyl ester (L-NAME) prevented SIN-1-induced ROS generation. In the vascular tension assay, SIN-1 enhanced vasoconstrictor responses to U46619 and attenuated vasorelaxant responses to acetylcholine that were reversed by arginase inhibition. CONCLUSION These findings may explain the beneficial effect of arginase inhibition and L-arginine supplement on endothelial dysfunction under redox imbalance-dependent pathophysiological conditions.
Collapse
Affiliation(s)
- Minh Cong Nguyen
- Department of Biology, College of Natural Sciences, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Jong Taek Park
- Department of Anesthesiology and Pain Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Yeong Gwan Jeon
- Department of Anesthesiology and Pain Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Byeong Hwa Jeon
- Infectious Signaling Network Research Center, Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Kwang Lae Hoe
- Department of New Drug Discovery and Development, Chungnam National University, Daejeon, Korea
| | - Young Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Hyun Kyo Lim
- Department of Anesthesiology and Pain Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea.
| | - Sungwoo Ryoo
- Department of Biology, College of Natural Sciences, School of Medicine, Kangwon National University, Chuncheon, Korea.
| |
Collapse
|
38
|
Del Pino-García R, Gerardi G, Rivero-Pérez MD, González-SanJosé ML, García-Lomillo J, Muñiz P. Wine pomace seasoning attenuates hyperglycaemia-induced endothelial dysfunction and oxidative damage in endothelial cells. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
39
|
Tibaut M, Petrovič D. Oxidative Stress Genes, Antioxidants and Coronary Artery Disease in Type 2 Diabetes Mellitus. Cardiovasc Hematol Agents Med Chem 2016; 14:23-38. [PMID: 27052028 PMCID: PMC5425652 DOI: 10.2174/1871525714666160407143416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 03/21/2016] [Accepted: 03/29/2016] [Indexed: 04/16/2023]
Abstract
The worldwide increasing prevalence of obesity and sedentary lifestyle is the main cause of the rising incidence of T2DM. Due to chronic macrovascular and microvascular complications, T2DM represent a huge socioeconomic burden in the world. Oxidative stress is a key pathogenic mechanism implicated in diabetic coronary artery disease (CAD). Polymorphisms of oxidative stress genes are known to influence oxidative stress levels and are therefore thought to impact CAD pathogenesis. Identifying higher risk groups would be rational, since it would allow better sample selection and thus better results in antioxidant trials. In this review, we summarize the evidence of oxidative stress gene polymorphisms related to the pathogenesis of CAD. Moreover, we provide a review of antioxidants tested in subjects with CAD.
Collapse
Affiliation(s)
| | - Daniel Petrovič
- Institute of Histology and Embryology, Faculty of Medicine Ljubljana, University of Ljubljana, Korytkova 2, 1105 Ljubljana, Slovenia.
| |
Collapse
|
40
|
Peng H, Zhuang Y, Chen Y, Rizzo AN, Chen W. The Characteristics and Regulatory Mechanisms of Superoxide Generation from eNOS Reductase Domain. PLoS One 2015; 10:e0140365. [PMID: 26465144 PMCID: PMC4605588 DOI: 10.1371/journal.pone.0140365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/24/2015] [Indexed: 11/21/2022] Open
Abstract
In addition to superoxide (O2.-) generation from nitric oxide synthase (NOS) oxygenase domain, a new O2.- generation site has been identified in the reductase domain of inducible NOS (iNOS) and neuronal NOS (nNOS). Cysteine S-glutathionylation in eNOS reductase domain also induces O2.- generation from eNOS reductase domain. However, the characteristics and regulatory mechanism of the O2.- generation from NOS reductase domain remain unclear. We cloned and purified the wild type bovine eNOS (WT eNOS), a mutant of Serine 1179 replaced with aspartic acid eNOS (S1179D eNOS), which mimics the negative charge caused by phosphorylationand truncated eNOS reductase domain (eNOS RD). Both WT eNOS and S1179D eNOS generated significant amount of O2.- in the absence of BH4 and L-arginine. The capacity of O2.- generation from S1179D eNOS was significantly higher than that of WT eNOS (1.74:1). O2.- generation from both WT eNOS and S1179D eNOS were not completely inhibited by 100nM tetrahydrobiopterin(BH4). This BH4 un-inhibited O2.- generation from eNOS was blocked by 10mM flavoprotein inhibitor, diphenyleneiodonium (DPI). Purified eNOS reductase domain protein confirmed that this BH4 un-inhibited O2.- generation originates at the FMN or FAD/NADPH binding site of eNOS reductase domain. DEPMPO-OOH adduct EPR signals and NADPH consumptions analyses showed that O2.- generation from eNOS reductase domain was regulated by Serine 1179 phosphorylation and DPI, but not by L-arginine, BH4 or calmodulin (CaM). In addition to the heme center of eNOS oxygenase domain, we confirmed another O2.- generation site in the eNOS reductase domain and characterized its regulatory properties.
Collapse
Affiliation(s)
- Hu Peng
- Department of Emergency Medicine, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Yugang Zhuang
- Department of Emergency Medicine, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Yuanzhuo Chen
- Department of Emergency Medicine, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Alicia N. Rizzo
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Weiguo Chen
- Department of Emergency Medicine, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
41
|
Alburquerque-Béjar JJ, Barba I, Inserte J, Miró-Casas E, Ruiz-Meana M, Poncelas M, Vilardosa Ú, Valls-Lacalle L, Rodríguez-Sinovas A, Garcia-Dorado D. Combination therapy with remote ischaemic conditioning and insulin or exenatide enhances infarct size limitation in pigs. Cardiovasc Res 2015; 107:246-54. [PMID: 26045476 DOI: 10.1093/cvr/cvv171] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/23/2015] [Indexed: 12/18/2022] Open
Abstract
AIMS Remote ischaemic conditioning (RIC) has been shown to reduce myocardial infarct size in patients. Our objective was to investigate whether the combination of RIC with either exenatide or glucose-insulin-potassium (GIK) is more effective than RIC alone. METHODS AND RESULTS Pigs were submitted to 40 min of coronary occlusion followed by reperfusion, and received (i) no treatment, (ii) one of the following treatments: RIC (5 min ischemia/5 min reperfusion × 4), GIK, or exenatide (at doses reducing infarct size in clinical trials), or (iii) a combination of two of these treatments (RIC + GIK or RIC + exenatide). After 5 min of reperfusion (n = 4/group), prominent phosphorylation of Akt and endothelial nitric oxide synthase (eNOS) was observed, both in control and reperfused myocardium, in animals receiving GIK, and mitochondria from these hearts showed reduced ADP-stimulated respiration. (1)H NMR-based metabonomics disclosed a shift towards increased glycolysis in GIK and exenatide groups. In contrast, oxidative stress (myocardial nitrotyrosine levels) and eNOS uncoupling were significantly reduced only by RIC. In additional experiments (n = 7-10/group), ANOVA demonstrated a significant effect of the number of treatments after 2 h of reperfusion on infarct size (triphenyltetrazolium, % of the area at risk; 59.21 ± 3.34, 36.64 ± 3.03, and 21.04 ± 2.38% for none, one, and two treatments, respectively), and significant differences between one and two treatments (P = 0.004) but not among individual treatments or between RIC + GIK and RIC + exenatide. CONCLUSIONS GIK and exenatide activate cardioprotective pathways different from those of RIC, and have additive effects with RIC on infarct size reduction in pigs.
Collapse
Affiliation(s)
- Juan José Alburquerque-Béjar
- Laboratory of Experimental Cardiology, Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, Pg. Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Ignasi Barba
- Laboratory of Experimental Cardiology, Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, Pg. Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Javier Inserte
- Laboratory of Experimental Cardiology, Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, Pg. Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Elisabet Miró-Casas
- Laboratory of Experimental Cardiology, Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, Pg. Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Marisol Ruiz-Meana
- Laboratory of Experimental Cardiology, Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, Pg. Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Marcos Poncelas
- Laboratory of Experimental Cardiology, Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, Pg. Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Úrsula Vilardosa
- Laboratory of Experimental Cardiology, Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, Pg. Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Laura Valls-Lacalle
- Laboratory of Experimental Cardiology, Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, Pg. Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Antonio Rodríguez-Sinovas
- Laboratory of Experimental Cardiology, Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, Pg. Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - David Garcia-Dorado
- Laboratory of Experimental Cardiology, Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, Pg. Vall d'Hebron 119-129, 08035 Barcelona, Spain
| |
Collapse
|
42
|
TROELSEN TT, GRANFELDT A, SECHER N, TØNNESEN EK, SIMONSEN U. Impaired NO-mediated vasodilatation in rat coronary arteries after asphyxial cardiac arrest. Acta Anaesthesiol Scand 2015; 59:654-67. [PMID: 25881833 DOI: 10.1111/aas.12482] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 01/06/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cardiovascular dysfunction after cardiac arrest is a common finding. It is unknown whether altered endothelium-mediated vasoreactivity contributes to this dysfunction. We hypothesised that cardiac arrest and resuscitation results in impaired endothelial function. This was addressed by measurements of inflammatory and endothelial plasma markers and of endothelium-dependent vasodilatation in coronary and mesenteric arteries in rats after cardiac arrest and resuscitation. METHODS Male Sprague Dawley rats underwent either asphyxia-induced cardiac arrest for 5 min and subsequent resuscitation (n = 30) or a sham procedure (control animals, n = 39). Animals were euthanised after 30 min or 2 h. Blood was analysed for TNF-α, IL-1β, IL-6, IL-10, sE-selectin, sP-selectin, sVCAM-1, ICAM-1, VEGF-α and vWF. Arterial rings of the left anterior descending coronary artery and mesenteric resistance arteries were mounted in microvascular myographs, and concentration-response curves were constructed. RESULTS The plasma levels of the endothelial markers, sP-selectin and vWF increased following cardiac arrest at both 30 min and 2 h. Acetylcholine-induced endothelium-dependent and mainly nitric oxide (NO)-mediated vasodilatation was impaired in the coronary arteries at 30 min, but not 2 h after resuscitation. Endothelium-derived hyperpolarisation (EDH)-type vasodilatation induced by NS309 and vasodilatation induced by the NO donor sodium nitroprusside was unaltered. In parallel with systemic hypotension, mesenteric arteries exhibited a larger response to NS309 2 h after resuscitation. CONCLUSION The present results show marked endothelial alterations after cardiac arrest and resuscitation reflected by increased endothelial plasma markers, impaired NO-mediated coronary vasodilatation in the early post-resuscitation phase and enhanced EDH-type vasodilatation in mesenteric arteries later in the post-resuscitation phase.
Collapse
Affiliation(s)
- T. T. TROELSEN
- Department of Anaesthesiology; Aarhus University Hospital NBG; Aarhus Denmark
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology; Aarhus University; Aarhus Denmark
- Department of Anaesthesiology; Regional Hospital of Randers; Randers Denmark
| | - A. GRANFELDT
- Department of Anaesthesiology; Aarhus University Hospital NBG; Aarhus Denmark
| | - N. SECHER
- Department of Anaesthesiology; Aarhus University Hospital NBG; Aarhus Denmark
| | - E. K. TØNNESEN
- Department of Anaesthesiology; Aarhus University Hospital NBG; Aarhus Denmark
| | - U. SIMONSEN
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology; Aarhus University; Aarhus Denmark
| |
Collapse
|
43
|
Inserte J, Garcia-Dorado D. The cGMP/PKG pathway as a common mediator of cardioprotection: translatability and mechanism. Br J Pharmacol 2015; 172:1996-2009. [PMID: 25297462 DOI: 10.1111/bph.12959] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/16/2014] [Accepted: 09/26/2014] [Indexed: 12/24/2022] Open
Abstract
Cardiomyocyte cell death occurring during myocardial reperfusion (reperfusion injury) contributes to final infarct size after transient coronary occlusion. Different interrelated mechanisms of reperfusion injury have been identified, including alterations in cytosolic Ca(2+) handling, sarcoplasmic reticulum-mediated Ca(2+) oscillations and hypercontracture, proteolysis secondary to calpain activation and mitochondrial permeability transition. All these mechanisms occur during the initial minutes of reperfusion and are inhibited by intracellular acidosis. The cGMP/PKG pathway modulates the rate of recovery of intracellular pH, but has also direct effect on Ca(2+) oscillations and mitochondrial permeability transition. The cGMP/PKG pathway is depressed in cardiomyocytes by ischaemia/reperfusion and preserved by ischaemic postconditioning, which importantly contributes to postconditioning protection. The present article reviews the mechanisms and consequences of the effect of ischaemic postconditioning on the cGMP/PKG pathway, the different pharmacological strategies aimed to stimulate it during myocardial reperfusion and the evidence, limitations and promise of translation of these strategies to the clinical practice. Overall, the preclinical and clinical evidence suggests that modulation of the cGMP/PKG pathway may be a therapeutic target in the context of myocardial infarction.
Collapse
Affiliation(s)
- Javier Inserte
- Cardiology Department, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | |
Collapse
|
44
|
Kim D, Park GB, Hur DY. Apoptotic signaling through reactive oxygen species in cancer cells. World J Immunol 2014; 4:158-173. [DOI: 10.5411/wji.v4.i3.158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/03/2014] [Accepted: 10/16/2014] [Indexed: 02/05/2023] Open
Abstract
Reactive oxygen species (ROS) take part in diverse biological processes like cell growth, programmed cell death, cell senescence, and maintenance of the transformed state through regulation of signal transduction. Cancer cells adapt to new higher ROS circumstance. Sometimes, ROS induce cancer cell proliferation. Meanwhile, elevated ROS render cancer cells vulnerable to oxidative stress-induced cell death. However, this prominent character of cancer cells allows acquiring a resistance to oxidative stress conditions relative to normal cells. Activated signaling pathways that increase the level of intracellular ROS in cancer cells not only render up-regulation of several genes involved in cellular proliferation and evasion of apoptosis but also cause cancer cells and cancer stem cells to develop a high metabolic rate. In over the past several decades, many studies have indicated that ROS play a critical role as the secondary messenger of tumorigenesis and metastasis in cancer from both in vitro and in vivo. Here we summarize the role of ROS and anti-oxidants in contributing to or preventing cancer. In addition, we review the activated signaling pathways that make cancer cells susceptible to death.
Collapse
|
45
|
van Golen RF, Reiniers MJ, Vrisekoop N, Zuurbier CJ, Olthof PB, van Rheenen J, van Gulik TM, Parsons BJ, Heger M. The mechanisms and physiological relevance of glycocalyx degradation in hepatic ischemia/reperfusion injury. Antioxid Redox Signal 2014; 21:1098-118. [PMID: 24313895 PMCID: PMC4123469 DOI: 10.1089/ars.2013.5751] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE Hepatic ischemia/reperfusion (I/R) injury is an inevitable side effect of major liver surgery that can culminate in liver failure. The bulk of I/R-induced liver injury results from an overproduction of reactive oxygen and nitrogen species (ROS/RNS), which inflict both parenchymal and microcirculatory damage. A structure that is particularly prone to oxidative attack and modification is the glycocalyx (GCX), a meshwork of proteoglycans and glycosaminoglycans (GAGs) that covers the lumenal endothelial surface and safeguards microvascular homeostasis. ROS/RNS-mediated degradation of the GCX may exacerbate I/R injury by, for example, inducing vasoconstriction, facilitating leukocyte adherence, and directly activating innate immune cells. RECENT ADVANCES Preliminary experiments revealed that hepatic sinusoids contain a functional GCX that is damaged during murine hepatic I/R and major liver surgery in patients. There are three ROS that mediate GCX degradation: hydroxyl radicals, carbonate radical anions, and hypochlorous acid (HOCl). HOCl converts GAGs in the GCX to GAG chloramides that become site-specific targets for oxidizing and reducing species and are more efficiently fragmented than the parent molecules. In addition to ROS/RNS, the GAG-degrading enzyme heparanase acts at the endothelial surface to shed the GCX. CRITICAL ISSUES The GCX seems to be degraded during major liver surgery, but the underlying cause remains ill-defined. FUTURE DIRECTIONS The relative contribution of the different ROS and RNS intermediates to GCX degradation in vivo, the immunogenic potential of the shed GCX fragments, and the role of heparanase in liver I/R injury all warrant further investigation.
Collapse
Affiliation(s)
- Rowan F van Golen
- 1 Department of Surgery, Surgical Laboratory, Academic Medical Center, University of Amsterdam , Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Endothelial nitric oxide synthase dimerization is regulated by heat shock protein 90 rather than by phosphorylation. PLoS One 2014; 9:e105479. [PMID: 25153129 PMCID: PMC4143281 DOI: 10.1371/journal.pone.0105479] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 07/23/2014] [Indexed: 11/29/2022] Open
Abstract
Endothelial nitric oxide synthase (eNOS) is a multifunctional enzyme with roles in diverse cellular processes including angiogenesis, tissue remodeling, and the maintenance of vascular tone. Monomeric and dimeric forms of eNOS exist in various tissues. The dimeric form of eNOS is considered the active form and the monomeric form is considered inactive. The activity of eNOS is also regulated by many other mechanisms, including amino acid phosphorylation and interactions with other proteins. However, the precise mechanisms regulating eNOS dimerization, phosphorylation, and activity remain incompletely characterized. We utilized purified eNOS and bovine aorta endothelial cells (BAECs) to investigate the mechanisms regulating eNOS degradation. Both eNOS monomer and dimer existed in purified bovine eNOS. Incubation of purified bovine eNOS with protein phosphatase 2A (PP2A) resulted in dephosphorylation at Serine 1179 (Ser1179) in both dimer and monomer and decrease in eNOS activity. However, the eNOS dimer∶monomer ratio was unchanged. Similarly, protein phosphatase 1 (PP1) induced dephosphorylation of eNOS at Threonine 497 (Thr497), without altering the eNOS dimer∶monomer ratio. Different from purified eNOS, in cultured BAECs eNOS existed predominantly as dimers. However, eNOS monomers accumulated following treatment with the proteasome inhibitor lactacystin. Additionally, treatment of BAECs with vascular endothelial growth factor (VEGF) resulted in phosphorylation of Ser1179 in eNOS dimers without altering the phosphorylation status of Thr497 in either form. Inhibition of heat shock protein 90 (Hsp90) or Hsp90 silencing destabilized eNOS dimers and was accompanied by dephosphorylation both of Ser1179 and Thr497. In conclusion, our study demonstrates that eNOS monomers, but not eNOS dimers, are degraded by ubiquitination. Additionally, the dimeric eNOS structure is the predominant condition for eNOS amino acid modification and activity regulation. Finally, destabilization of eNOS dimers not only results in eNOS degradation, but also causes changes in eNOS amino acid modifications that further affect eNOS activity.
Collapse
|
47
|
Balance of nitric oxide and reactive oxygen species in myocardial reperfusion injury and protection. J Cardiovasc Pharmacol 2014; 62:567-75. [PMID: 23921313 DOI: 10.1097/fjc.0b013e3182a50c45] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Depending on their concentrations, both nitric oxide (NO) and reactive oxygen species (ROS) take part either in myocardial ischemia reperfusion injury or in protection by ischemic and pharmacological preconditioning (Ipre) and postconditioning (Ipost). At the beginning of reperfusion, a transient release of NO is promptly scavenged by ROS to form the highly toxic peroxynitrite, which is responsible for a further increase of ROS through endothelial nitric oxide synthase uncoupling. The protective role of NO has suggested the use of NO donors to mimic Ipre and Ipost. However, NO donors have not always given the expected protection, possibly because they are responsible for the production of different amounts of ROS that depend on the amount of released NO. This review is focused on the role of the balance of NO and ROS in myocardial injury and its prevention by Ipre and Ipost and after the use of NO donors given with or without antioxidant compounds to mimic Ipre and Ipost.
Collapse
|
48
|
Fantinelli J, González Arbeláez LF, Mosca SM. Cardioprotective efficacy against reperfusion injury of EMD-87580: Comparison to ischemic postconditioning. Eur J Pharmacol 2014; 737:125-32. [DOI: 10.1016/j.ejphar.2014.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/05/2014] [Accepted: 05/07/2014] [Indexed: 10/25/2022]
|
49
|
Najjar S, Pearlman DM, Hirsch S, Friedman K, Strange J, Reidy J, Khoukaz M, Ferrell RB, Devinsky O, Najjar A, Zagzag D. Brain biopsy findings link major depressive disorder to neuroinflammation, oxidative stress, and neurovascular dysfunction: a case report. Biol Psychiatry 2014; 75:e23-6. [PMID: 24075735 DOI: 10.1016/j.biopsych.2013.07.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 07/20/2013] [Accepted: 07/24/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Souhel Najjar
- Department of Neurology, New York University School of Medicine; Department of Medicine, Section of Neurology, Staten Island University Hospital, New York, New York.
| | - Daniel M Pearlman
- Department of Neurology, New York University School of Medicine; The Dartmouth Institute for Health Policy and Clinical Practice, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire
| | - Scott Hirsch
- Department of Neurology, New York University School of Medicine
| | - Kent Friedman
- Department of Radiology, Division of Nuclear Medicine, NYU School of Medicine
| | - John Strange
- Department of Medicine, Section of Neurology, Staten Island University Hospital, New York, New York
| | - Jason Reidy
- Electron Microscopy Laboratory, Beth Israel Medical Center, New York, New York
| | - Maya Khoukaz
- Department of Internal Medicine, Yale New Haven Hospital, New Haven, Connecticut
| | - Richard B Ferrell
- Department of Psychiatry, Section of Neuropsychiatry, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire
| | - Orrin Devinsky
- Department of Neurology, New York University School of Medicine
| | | | - David Zagzag
- Department of Pathology, Division of Neuropathology; Department of Neurosurgery, New York University School of Medicine, New York, New York
| |
Collapse
|
50
|
Cassuto J, Dou H, Czikora I, Szabo A, Patel VS, Kamath V, Belin de Chantemele E, Feher A, Romero MJ, Bagi Z. Peroxynitrite disrupts endothelial caveolae leading to eNOS uncoupling and diminished flow-mediated dilation in coronary arterioles of diabetic patients. Diabetes 2014; 63:1381-93. [PMID: 24353182 PMCID: PMC3964507 DOI: 10.2337/db13-0577] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 12/10/2013] [Indexed: 12/18/2022]
Abstract
Peroxynitrite (ONOO(-)) contributes to coronary microvascular dysfunction in diabetes mellitus (DM). We hypothesized that in DM, ONOO(-) interferes with the function of coronary endothelial caveolae, which plays an important role in nitric oxide (NO)-dependent vasomotor regulation. Flow-mediated dilation (FMD) of coronary arterioles was investigated in DM (n = 41) and non-DM (n = 37) patients undergoing heart surgery. NO-mediated coronary FMD was significantly reduced in DM patients, which was restored by ONOO(-) scavenger, iron-(III)-tetrakis(N-methyl-4'pyridyl)porphyrin-pentachloride, or uric acid, whereas exogenous ONOO(-) reduced FMD in non-DM subjects. Immunoelectron microscopy demonstrated an increased 3-nitrotyrosine formation (ONOO(-)-specific protein nitration) in endothelial plasma membrane in DM, which colocalized with caveolin-1 (Cav-1), the key structural protein of caveolae. The membrane-localized Cav-1 was significantly reduced in DM and also in high glucose-exposed coronary endothelial cells. We also found that DM patients exhibited a decreased number of endothelial caveolae, whereas exogenous ONOO(-) reduced caveolae number. Correspondingly, pharmacological (methyl-β-cyclodextrin) or genetic disruption of caveolae (Cav-1 knockout mice) abolished coronary FMD, which was rescued by sepiapterin, the stable precursor of NO synthase (NOS) cofactor, tetrahydrobiopterin. Sepiapterin also restored coronary FMD in DM patients. Thus, we propose that ONOO(-) selectively targets and disrupts endothelial caveolae, which contributes to NOS uncoupling, and, hence, reduced NO-mediated coronary vasodilation in DM patients.
Collapse
Affiliation(s)
- James Cassuto
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA
| | - Huijuan Dou
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA
| | - Istvan Czikora
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA
| | - Andras Szabo
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA
| | - Vijay S. Patel
- Department of Surgery, Medical College of Georgia, Georgia Regents University, Augusta, GA
| | - Vinayak Kamath
- Department of Surgery, Medical College of Georgia, Georgia Regents University, Augusta, GA
| | | | - Attila Feher
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA
| | - Maritza J. Romero
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA
| | - Zsolt Bagi
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA
| |
Collapse
|