1
|
Yang Q, Bai Y, Liu S, Han X, Liu T, Ma D, Mao J. Multicopper Oxidase from Lactobacillus hilgardii: Mechanism of Degradation of Tyramine and Phenylethylamine in Fermented Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17465-17480. [PMID: 39046216 DOI: 10.1021/acs.jafc.4c02319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Elevated levels of biogenic amines (BAs) in fermented food can have negative effects on both the flavor and health. Mining enzymes that degrade BAs is an effective strategy for controlling their content. The study screened a strain of Lactobacillus hilgardii 1614 from fermented food system that can degrade BAs. The multiple copper oxidase genes LHMCO1614 were successfully mined after the whole genome protein sequences of homologous strains were clustered and followed by homology modeling. The enzyme molecules can interact with BAs to stabilize composite structures for catalytic degradation, as shown by molecular docking results. Ingeniously, the kinetic data showed that purified LHMCO1614 was less sensitive to the substrate inhibition of tyramine and phenylethylamine. The degradation rates of tyramine and phenylethylamine in huangjiu (18% vol) after adding LHMCO1614 were 41.35 and 40.21%, respectively. Furthermore, LHMCO1614 demonstrated universality in degrading tyramine and phenylethylamine present in other fermented foods as well. HS-SPME-GC-MS analysis revealed that, except for aldehydes, the addition of enzyme treatment did not significantly alter the levels of major flavor compounds in enzymatically treated fermented foods (p > 0.05). This study presents an enzymatic approach for regulating tyramine and phenylethylamine levels in fermented foods with potential applications both targeted and universal.
Collapse
Affiliation(s)
- Qilin Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Yitao Bai
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Shuangping Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing 312000, Zhejiang, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Xiao Han
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing 312000, Zhejiang, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Tiantian Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing 312000, Zhejiang, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Dongna Ma
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing 312000, Zhejiang, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jian Mao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing 312000, Zhejiang, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| |
Collapse
|
2
|
Zhang S, Lin T, Zhang D, Chen X, Ge Y, Gao Q, Fan J. Use of the selected metal-dependent enzymes for exploring applicability of human annexin A1 as a purification tag. J Biosci Bioeng 2023; 136:423-429. [PMID: 37805288 DOI: 10.1016/j.jbiosc.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 10/09/2023]
Abstract
Several fusion tags have been developed for non-chromatographic fusion protein purification. Previously, we identified that human annexin A1 as a novel N-terminal purification tag was used for purifying the fusion proteins produced in Escherichia coli through precipitation in 10 mM Ca2+ buffer, and redissolution of the precipitate in 15 mM EDTA buffer. In this work, we selected four metal-dependent enzymes including E. coli 5-aminolevulinate dehydratase, yeast 3-hydroxyanthranilate 3,4-dioxygenase, maize serine racemase and copper amine oxidase for investigating the annexin A1 tag applicability. Fusion of the His6-tag or the enzyme changed the behavior of precipitation-redissolution. The relatively high recovery yields of three tagged enzymes with the improved purities were obtained through two rounds of purification, whereas low recovery yield of the annexin A1 tagged maize amine oxidase was prepared. The added EDTA displayed different abilities to redissolve the fusion proteins precipitates in two precipitation-redissolution cycles. It inactivated three enzymes and obviously inhibited the activity of the fused maize serine racemase. Based on current findings, we believe that four enzymes could be applied for evaluating applicability of the proteins or peptides as affinity tags for chromatographic purification in a calcium dependent manner.
Collapse
Affiliation(s)
- Shuncheng Zhang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Tingting Lin
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Di Zhang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Xiaofeng Chen
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Yuanyuan Ge
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Qing Gao
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Jun Fan
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
3
|
Elbaloula MF, Hassan AB. Effect of different salt concentrations on the gamma-aminobutyric-acid content and glutamate decarboxylase activity in germinated sorghum ( Sorghum bicolor L. Moench) grain. Food Sci Nutr 2022; 10:2050-2056. [PMID: 35702284 PMCID: PMC9179167 DOI: 10.1002/fsn3.2821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 11/08/2022] Open
Abstract
This study aimed to estimate the γ-aminobutyric acid (GABA) content and glutamate decarboxylase activity (GAD) in germinated sorghum grain as affected by different concentrations of NaCl, pyridoxal 5-phosphate (PLP), and CaCl2. In general, the obtained results revealed that the addition of low doses of NaCl (40 mmol/L), PLP (90 mmol/L), and CaCl2 (0.5 mmol/L) to the germination culture significantly (p < .05) enhanced the GABA content and subsequently improved the GAD activity in sorghum grains. Moreover, CaCl2 played a dominant role in the extent of enzymolysis, followed by NaCl and PLP. Regarding the GABA content, the optimal concentration of the NaCl, PLP, and CaCl2 was estimated as 41.07 mmol/L, 82.62 μmol/L, and 0.40 mmol/L, respectively. Under this optimal culture medium, the maximum GABA content was 0.336 mg/g. In conclusion, the findings of this work would provide a scientific basis for the industrialized production of GABA-enriched sorghum foods.
Collapse
Affiliation(s)
- Maha F. Elbaloula
- Department of Food Science and TechnologyCollege of Agricultural StudiesSudan University of Science and TechnologyKhartoumSudan
| | - Amro B. Hassan
- Department of Food Science and NutritionFaculty of Food and Agricultural SciencesKing Saud UniversityRiyadhSaudi Arabia
- Environment and Natural Resource Desertification Research Institute (ENDRI)National Center for ResearchKhartoumSudan
| |
Collapse
|
4
|
Shoji M, Murakawa T, Nakanishi S, Boero M, Shigeta Y, Hayashi H, Okajima T. Molecular mechanism of a large conformational change of the quinone cofactor in the semiquinone intermediate of bacterial copper amine oxidase. Chem Sci 2022; 13:10923-10938. [PMID: 36320691 PMCID: PMC9491219 DOI: 10.1039/d2sc01356h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022] Open
Abstract
Copper amine oxidase from Arthrobacter globiformis (AGAO) catalyses the oxidative deamination of primary amines via a large conformational change of a topaquinone (TPQ) cofactor during the semiquinone formation step. This conformational change of TPQ occurs in the presence of strong hydrogen bonds and neighboring bulky amino acids, especially the conserved Asn381, which restricts TPQ conformational changes over the catalytic cycle. Whether such a semiquinone intermediate is catalytically active or inert has been a matter of debate in copper amine oxidases. Here, we show that the reaction rate of the Asn381Ala mutant decreases 160-fold, and the X-ray crystal structures of the mutant reveals a TPQ-flipped conformation in both the oxidized and reduced states, preceding semiquinone formation. Our hybrid quantum mechanics/molecular mechanics (QM/MM) simulations show that the TPQ conformational change is realized through the sequential steps of the TPQ ring-rotation and slide. We determine that the bulky side chain of Asn381 hinders the undesired TPQ ring-rotation in the oxidized form, favoring the TPQ ring-rotation in reduced TPQ by a further stabilization leading to the TPQ semiquinone form. The acquired conformational flexibility of TPQ semiquinone promotes a high reactivity of Cu(i) to O2, suggesting that the semiquinone form is catalytically active for the subsequent oxidative half-reaction in AGAO. The ingenious molecular mechanism exerted by TPQ to achieve the “state-specific” reaction sheds new light on a drastic environmental transformation around the catalytic center. The large conformational change of topaquinone in bacterial copper amine oxidase occurs through the TPQ ring rotation and slide, which are essential to stabilize the semiquinone form.![]()
Collapse
Affiliation(s)
- Mitsuo Shoji
- Center for Computational Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba 305-8577 Ibaraki Japan
- JST-PRESTO 4-1-8 Honcho Kawaguchi 332-0012 Saitama Japan
| | - Takeshi Murakawa
- Department of Biochemistry, Osaka Medical and Pharmaceutical University 2-7 Daigakumachi Takatsuki 569-8686 Osaka Japan
| | - Shota Nakanishi
- Institute of Scientific and Industrial Research, Osaka University 8-1 Mihogaoka Ibaraki 567-0047 Osaka Japan
| | - Mauro Boero
- University of Strasbourg, Institut de Physique et Chimie des Matériaux de Strasbourg, CNRS, UMR 7504 23 rue du Loess F-67034 France
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba 305-8577 Ibaraki Japan
| | - Hideyuki Hayashi
- Department of Chemistry, Osaka Medical and Pharmaceutical University 2-7 Daigakumachi Takatsuki 569-8686 Osaka Japan
| | - Toshihide Okajima
- Institute of Scientific and Industrial Research, Osaka University 8-1 Mihogaoka Ibaraki 567-0047 Osaka Japan
- Department of Chemistry, Osaka Medical and Pharmaceutical University 2-7 Daigakumachi Takatsuki 569-8686 Osaka Japan
| |
Collapse
|
5
|
Stohrer C, Horrell S, Meier S, Sans M, von Stetten D, Hough M, Goldman A, Monteiro DCF, Pearson AR. Homogeneous batch micro-crystallization of proteins from ammonium sulfate. Acta Crystallogr D Struct Biol 2021; 77:194-204. [PMID: 33559608 PMCID: PMC7869895 DOI: 10.1107/s2059798320015454] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/21/2020] [Indexed: 01/19/2023] Open
Abstract
The emergence of X-ray free-electron lasers has led to the development of serial macromolecular crystallography techniques, making it possible to study smaller and more challenging crystal systems and to perform time-resolved studies on fast time scales. For most of these studies the desired crystal size is limited to a few micrometres, and the generation of large amounts of nanocrystals or microcrystals of defined size has become a bottleneck for the wider implementation of these techniques. Despite this, methods to reliably generate microcrystals and fine-tune their size have been poorly explored. Working with three different enzymes, L-aspartate α-decarboxylase, copper nitrite reductase and copper amine oxidase, the precipitating properties of ammonium sulfate were exploited to quickly transition from known vapour-diffusion conditions to reproducible, large-scale batch crystallization, circumventing the tedious determination of phase diagrams. Furthermore, the specific ammonium sulfate concentration was used to fine-tune the crystal size and size distribution. Ammonium sulfate is a common precipitant in protein crystallography, making these findings applicable to many crystallization systems to facilitate the production of large amounts of microcrystals for serial macromolecular crystallography experiments.
Collapse
Affiliation(s)
- Claudia Stohrer
- Biomedical Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Sam Horrell
- Hamburg Centre for Ultrafast Imaging, Institute for Nanostructure and Solid State Physics, Universität Hamburg, CFEL, Building 99, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Susanne Meier
- Hamburg Centre for Ultrafast Imaging, Institute for Nanostructure and Solid State Physics, Universität Hamburg, CFEL, Building 99, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Marta Sans
- Hamburg Centre for Ultrafast Imaging, Institute for Nanostructure and Solid State Physics, Universität Hamburg, CFEL, Building 99, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - David von Stetten
- European Molecular Biology Laboratory (EMBL), Hamburg Unit c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Michael Hough
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Adrian Goldman
- Biomedical Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
- Biological and Environmental Sciences, University of Helsinki, Viikinkaari 5, FIN-00014 Helsinki, Finland
| | - Diana C. F. Monteiro
- Hamburg Centre for Ultrafast Imaging, Institute for Nanostructure and Solid State Physics, Universität Hamburg, CFEL, Building 99, Luruper Chaussee 149, 22761 Hamburg, Germany
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
| | - Arwen R. Pearson
- Hamburg Centre for Ultrafast Imaging, Institute for Nanostructure and Solid State Physics, Universität Hamburg, CFEL, Building 99, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
6
|
Gaule TG, Smith MA, Tych KM, Pirrat P, Trinh CH, Pearson AR, Knowles PF, McPherson MJ. Oxygen Activation Switch in the Copper Amine Oxidase of Escherichia coli. Biochemistry 2018; 57:5301-5314. [PMID: 30110143 PMCID: PMC6136094 DOI: 10.1021/acs.biochem.8b00633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Copper amine oxidases (CuAOs) are metalloenzymes that reduce molecular oxygen to hydrogen peroxide during catalytic turnover of primary amines. In addition to Cu2+ in the active site, two peripheral calcium sites, ∼32 Å from the active site, have roles in Escherichia coli amine oxidase (ECAO). The buried Ca2+ (Asp533, Leu534, Asp535, Asp678, and Ala679) is essential for full-length protein production, while the surface Ca2+ (Glu573, Tyr667, Asp670, and Glu672) modulates biogenesis of the 2,4,5-trihydroxyphenylalanine quinone (TPQ) cofactor. The E573Q mutation at the surface site prevents calcium binding and TPQ biogenesis. However, TPQ biogenesis can be restored by a suppressor mutation (I342F) in the proposed oxygen delivery channel to the active site. While supporting TPQ biogenesis (∼60% WTECAO TPQ), I342F/E573Q has almost no amine oxidase activity (∼4.6% WTECAO activity). To understand how these long-range mutations have major effects on TPQ biogenesis and catalysis, we employed ultraviolet-visible spectroscopy, steady-state kinetics, inhibition assays, and X-ray crystallography. We show that the surface metal site controls the equilibrium (disproportionation) of the Cu2+-substrate reduced TPQ (TPQAMQ) Cu+-TPQ semiquinone (TPQSQ) couple. Removal of the calcium ion from this site by chelation or mutagenesis shifts the equilibrium to Cu2+-TPQAMQ or destabilizes Cu+-TPQSQ. Crystal structure analysis shows that TPQ biogenesis is stalled at deprotonation in the Cu2+-tyrosinate state. Our findings support WTECAO using the inner sphere electron transfer mechanism for oxygen reduction during catalysis, and while a Cu+-tyrosyl radical intermediate is not essential for TPQ biogenesis, it is required for efficient biogenesis.
Collapse
Affiliation(s)
- Thembaninkosi G Gaule
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences , University of Leeds , Leeds LS2 9JT , U.K
| | - Mark A Smith
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences , University of Leeds , Leeds LS2 9JT , U.K
| | - Katarzyna M Tych
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences , University of Leeds , Leeds LS2 9JT , U.K.,Physik-Department, Lehrstuhl für Biophysik E22 , Technische Universität München , D-85748 Garching , Germany
| | - Pascale Pirrat
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences , University of Leeds , Leeds LS2 9JT , U.K
| | - Chi H Trinh
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences , University of Leeds , Leeds LS2 9JT , U.K
| | - Arwen R Pearson
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences , University of Leeds , Leeds LS2 9JT , U.K.,Hamburg Centre of Ultrafast Imaging and Institute for Nanostructure and Solid State Physics , Universität Hamburg , D-22761 Hamburg , Germany
| | - Peter F Knowles
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences , University of Leeds , Leeds LS2 9JT , U.K
| | - Michael J McPherson
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences , University of Leeds , Leeds LS2 9JT , U.K
| |
Collapse
|
7
|
Koh EI, Robinson AE, Bandara N, Rogers BE, Henderson JP. Copper import in Escherichia coli by the yersiniabactin metallophore system. Nat Chem Biol 2017; 13:1016-1021. [PMID: 28759019 PMCID: PMC5562518 DOI: 10.1038/nchembio.2441] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/20/2017] [Indexed: 12/13/2022]
Abstract
Copper plays a dual role as nutrient and toxin during bacterial infections. While uropathogenic Escherichia coli (UPEC) strains can use the copper-binding metallophore yersiniabactin (Ybt) to resist copper toxicity, Ybt also converts bioavailable copper to Cu(II)-Ybt in low copper conditions. Although E. coli have long been considered to lack a copper import pathway, we observed Ybt-mediated copper import in UPEC using canonical Fe(III)-Ybt transport proteins. UPEC removed copper from Cu(II)-Ybt with subsequent re-export of metal-free Ybt to the extracellular space. Copper released through this process became available to an E. coli cuproenzyme (the amine oxidase TynA), linking this import pathway to a nutrient acquisition function. Ybt-expressing E. coli thus engage in nutritional passivation, a strategy of minimizing a metal ion's toxicity while preserving its nutritional availability. Copper acquisition through this process may contribute to the marked virulence defect of Ybt transport-deficient UPEC.
Collapse
Affiliation(s)
- Eun-Ik Koh
- Center for Women's Infectious Diseases Research, Washington University School of Medicine, St. Louis, Missouri, USA.,Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Anne E Robinson
- Center for Women's Infectious Diseases Research, Washington University School of Medicine, St. Louis, Missouri, USA.,Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nilantha Bandara
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Buck E Rogers
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeffrey P Henderson
- Center for Women's Infectious Diseases Research, Washington University School of Medicine, St. Louis, Missouri, USA.,Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
8
|
Nikmaram N, Dar BN, Roohinejad S, Koubaa M, Barba FJ, Greiner R, Johnson SK. Recent advances in γ-aminobutyric acid (GABA) properties in pulses: an overview. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:2681-2689. [PMID: 28230263 DOI: 10.1002/jsfa.8283] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/06/2017] [Accepted: 02/15/2017] [Indexed: 06/06/2023]
Abstract
Beans, peas, and lentils are all types of pulses that are extensively used as foods around the world due to their beneficial effects on human health including their low glycaemic index, cholesterol lowering effects, ability to decrease the risk of heart diseases and their protective effects against some cancers. These health benefits are a result of their components such as bioactive proteins, dietary fibre, slowly digested starches, minerals and vitamins, and bioactive compounds. Among these bioactive compounds, γ-aminobutyric acid (GABA), a non-proteinogenic amino acid with numerous reported health benefits (e.g. anti-diabetic and hypotensive effects, depression and anxiety reduction) is of particular interest. GABA is primarily synthesised in plant tissues by the decarboxylation of l-glutamic acid in the presence of glutamate decarboxylase (GAD). It is widely reported that during various processes including enzymatic treatment, gaseous treatment (e.g. with carbon dioxide), and fermentation (with lactic acid bacteria), GABA content increases in the plant matrix. The objective of this review paper is to highlight the current state of knowledge on the occurrence of GABA in pulses with special focus on mechanisms by which GABA levels are increased and the analytical extraction and estimation methods for this bioactive phytochemical. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nooshin Nikmaram
- Young Researchers and Elite Club, Islamic Azad University, Sabzevar, Iran
| | - B N Dar
- Department of Food Technology, IUST, Awantipora, Jammu and Kashmir, India
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - Shahin Roohinejad
- Department of Food Technology and Bioprocess Engineering, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamed Koubaa
- Département de Génie des Procédés Industriels, Laboratoire Transformations Intégrées de la Matière Renouvelable, Université de Technologie de Compiègne, France
| | - Francisco J Barba
- Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, University of Valencia, Burjassot, València, Spain
| | - Ralf Greiner
- Department of Food Technology and Bioprocess Engineering, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Stuart K Johnson
- School of Public Health, Curtin University, Perth, WA, Australia
| |
Collapse
|
9
|
Muthuramalingam S, Subramaniyan S, Khamrang T, Velusamy M, Mayilmurugan R. Copper(II)-Bioinspired Models for Copper Amine Oxidases: Oxidative Half-Reaction in Water. ChemistrySelect 2017. [DOI: 10.1002/slct.201601786] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sethuraman Muthuramalingam
- Bioinorganic Chemistry Laboratory/Physical Chemistry; School of Chemistry; Madurai Kamaraj University; Madurai 625 021, Tamil Nadu India
| | - Shanmugam Subramaniyan
- Bioinorganic Chemistry Laboratory/Physical Chemistry; School of Chemistry; Madurai Kamaraj University; Madurai 625 021, Tamil Nadu India
| | - Themmila Khamrang
- Department of Chemistry; North Eastern Hill Universuty; Shillong- 793022 India
| | - Marappan Velusamy
- Department of Chemistry; North Eastern Hill Universuty; Shillong- 793022 India
| | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry; School of Chemistry; Madurai Kamaraj University; Madurai 625 021, Tamil Nadu India
| |
Collapse
|
10
|
Yang R, Hui Q, Gu Z. Effects of ABA and CaCl2 on GABA accumulation in fava bean germinating under hypoxia-NaCl stress. Biosci Biotechnol Biochem 2016; 80:540-6. [DOI: 10.1080/09168451.2015.1116923] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Abstract
Effects of exogenous abscisic acid (ABA) and CaCl2 on γ-aminobutyric acid (GABA) accumulation of germinated fava bean under hypoxia-NaCl stress were investigated. Exogenous ABA resulted in the enhancement of glutamate decarboxylase (GAD) and diamine oxidase (DAO) activity as well as GABA content in cotyledon and shoot. CaCl2 increased both enzyme activities in shoot and GABA content in cotyledon and shoot. ABA downregulated GAD expression in cotyledon and radicle, while upregulated that in shoot; it also upregulated DAO expression in each organ. CaCl2 upregulated GAD expression in cotyledon, while downregulated that in radicle. However, it upregulated DAO expression in shoot, downregulated that in radicle. ABA inhibitor fluridon and ethylenediaminetetraacetic acid inhibited GAD and DAO activities significantly so that inhibited GABA accumulation through reducing ABA biosynthesis and chelating Ca2+, respectively. However, they upregulated GAD and DAO expression in varying degrees. These results indicate that ABA and Ca2+ participate in GABA biosynthesis in fava bean during germination under hypoxia-NaCl stress.
Collapse
Affiliation(s)
- Runqiang Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Qianru Hui
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Zhenxin Gu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| |
Collapse
|
11
|
Hirano Y, Chonan K, Murayama K, Sakasegawa SI, Matsumoto H, Sugimori D. Syncephalastrum racemosum amine oxidase with high catalytic efficiency toward ethanolamine and its application in ethanolamine determination. Appl Microbiol Biotechnol 2015; 100:3999-4013. [PMID: 26691518 DOI: 10.1007/s00253-015-7198-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/17/2015] [Accepted: 11/24/2015] [Indexed: 10/22/2022]
Abstract
Our screening study yielded a copper amine oxidase (SrAOX) from Syncephalastrum racemosum, which showed much higher affinity and catalytic efficiency toward ethanolamine (EA) than any other amine oxidase (AOX). Following purification of the enzyme to electrophoretic homogeneity from a cell-free extract, the maximum activity toward EA was detected at pH 7.2-7.5 and 45 °C. The SrAOX complementary DNA (cDNA) was composed of a 2052-bp open reading frame encoding a 683-amino acid protein with a molecular mass of 77,162 Da. The enzyme functions as a homodimer. The deduced amino acid sequence of SrAOX showed 55.3 % identity to Rhizopus delemar AOX and contains two consensus sequences of Cu-AOX, NYDY, and HHQH, suggesting SrAOX is a type 1 Cu-AOX (i.e., a topaquinone enzyme). Structural homology modeling showed that residues (112)ML(113), (141)FADTWG(146) M158, and N318 are unique, and T144 possibly characterizes the substrate specificity of SrAOX. The recombinant enzyme (rSrAOX) was produced using Escherichia coli. Steady-state kinetic analysis of rSrAOX activity toward EA (pH 7.5 and 45 °C) gave K m and k cat values of 0.848 ± 0.009 mM and 9.11 ± 0.13 s(-1), respectively. The standard curves were linear between 0.1 and 2 mM EA, and 10 μg mL(-1)-2.5 mg mL(-1) (15 μM-3.6 mM) phosphatidylethanolamine using Streptomyces chromofuscus phospholipase D, respectively, was sufficiently sensitive for clinical use.
Collapse
Affiliation(s)
- Yoshitaka Hirano
- Department of Symbiotic Systems Science and Technology, Graduate School of Symbiotic Systems Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan
| | - Keisuke Chonan
- Department of Symbiotic Systems Science and Technology, Graduate School of Symbiotic Systems Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan
| | - Kazutaka Murayama
- Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering, Tohoku University, 2-1 Seiryo, Aoba, Sendai, 980-8575, Japan
| | | | - Hideyuki Matsumoto
- Asahi Kasei Pharma Corp, 632-1 Mifuku, Izunokuni, Shizuoka, 410-2321, Japan
| | - Daisuke Sugimori
- Department of Symbiotic Systems Science and Technology, Graduate School of Symbiotic Systems Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan.
| |
Collapse
|
12
|
Shepard EM, Dooley DM. Inhibition and oxygen activation in copper amine oxidases. Acc Chem Res 2015; 48:1218-26. [PMID: 25897668 DOI: 10.1021/ar500460z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Copper-containing amine oxidases (CuAOs) use both copper and 2,4,5-trihydroxyphenylalanine quinone (TPQ) to catalyze the oxidative deamination of primary amines. The CuAO active site is highly conserved and comprised of TPQ and a mononuclear type II copper center that exhibits five-coordinate, distorted square pyramidal coordination geometry with histidine ligands and equatorially and axially bound water in the oxidized, resting state. The active site is buried within the protein, and CuAOs from various sources display remarkable diversity with respect to the composition of the active site channel and cofactor accessibility. Structural and mechanistic factors that influence substrate preference and inhibitor sensitivity and selectivity have been defined. This Account summarizes the strategies used to design selective CuAO inhibitors based on active site channel characteristics, leading to either enhanced steric fits or the trapping of reactive electrophilic products. These findings provide a framework to support the future development of candidate molecules aimed at minimizing the negative side effects associated with drugs containing amine functionalities. This is vital given the existence of human diamine oxidase and vascular adhesion protein-1, which have distinct amine substrate preferences and are associated with different metabolic processes. Inhibition of these enzymes by antifungal or antiprotozoal agents, as well as classic monoamine oxidase (MAO) inhibitors, may contribute to the adverse side effects associated with drug treatment. These observations provide a rationale for the limited clinical value associated with certain amine-containing pharmaceuticals and emphasize the need for more selective AO inhibitors. This Account also discusses the novel roles of copper and TPQ in the chemistry of O2 activation and substrate oxidation. Reduced CuAOs exist in a redox equilibrium between the Cu(II)-TPQAMQ (aminoquinol) and Cu(I)-TPQSQ (semiquinone). Elucidating the roles of Cu(I), TPQSQ, and TPQAMQ in O2 activation, for example, distinguishing inner-sphere versus outer-sphere electron transfer mechanisms, has been actively investigated since the discovery of TPQSQ in 1991 and has only recently been clarified. Kinetics and spectroscopic studies encompassing metal substitution, stopped-flow and temperature-jump relaxation methods, and oxygen kinetic isotope experiments have provided strong support for an inner-sphere electron transfer step from Cu(I) to O2. Data for two enzymes support a mechanism wherein O2 prebinds to a three-coordinate Cu(I) site, yielding a [Cu(II)(η(1)-O2(-1))](+) intermediate, with H2O2 generated from ensuing rate-determining proton coupled electron transfer from TPQSQ. While kinetics data from the cobalt-substituted yeast enzyme indicated that O2 is reduced through an outer-sphere process involving TPQAMQ, new findings with a bacterial CuAO demonstrate that both the Cu(II) and Co(II) forms of the enzyme operate via parallel mechanisms involving metal-superoxide intermediates. Structural observations of a coordinated TPQSQ-Cu(I) complex in two CuAOs supports previous indications that Cu(II)/(I) ligand substitution chemistry may be mechanistically relevant. Substantial evidence indicates that rapid and reversible inner-sphere reduction of O2 at a three-coordinate Cu(I) site occurs, but the existence of a coordinated semiquinone in some AOs suggests that, in these enzymes, an outer-sphere reaction between O2 and TPQSQ may also be possible, since this is expected to be energetically favorable compared with outer-sphere electron transfer from TPQAMQ to O2.
Collapse
Affiliation(s)
- Eric M. Shepard
- Department
of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - David M. Dooley
- Office
of the President, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
13
|
Ca 2+ and aminoguanidine on γ-aminobutyric acid accumulation in germinating soybean under hypoxia-NaCl stress. J Food Drug Anal 2014; 23:287-293. [PMID: 28911384 PMCID: PMC9351771 DOI: 10.1016/j.jfda.2014.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 11/30/2022] Open
Abstract
Gamma-aminobutyric acid (GABA), a nonproteinous amino acid with some benefits on human health, is synthesized by GABA-shunt and the polyamine degradation pathway in plants. The regulation of Ca2+ and aminoguanidine on GABA accumulation in germinating soybean (Glycine max L.) under hypoxia-NaCl stress was investigated in this study. Exogenous Ca2+ increased GABA content significantly by enhancing glutamate decarboxylase gene expression and its activity. Addition of ethylene glycol tetraacetic acid into the culture solution reduced GABA content greatly due to the inhibition of glutamate decarboxylase activity. Aminoguanidine reduced over 85% of diamine oxidase activity, and 33.28% and 36.35% of GABA content in cotyledon and embryo, respectively. Under hypoxia −NaCl stress, the polyamine degradation pathway contributed 31.61–39.43% of the GABA formation in germinating soybean.
Collapse
|
14
|
Klinman JP, Bonnot F. Intrigues and intricacies of the biosynthetic pathways for the enzymatic quinocofactors: PQQ, TTQ, CTQ, TPQ, and LTQ. Chem Rev 2014; 114:4343-65. [PMID: 24350630 PMCID: PMC3999297 DOI: 10.1021/cr400475g] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Judith P. Klinman
- Department of Chemistry University of California, Berkeley, California 94720, U.S.A. Supported by the National Institutes of Health (GM025765) to J.P.K
- Department of Molecular and Cell Biology University of California, Berkeley, California 94720, U.S.A. Supported by the National Institutes of Health (GM025765) to J.P.K
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, U.S.A. Supported by the National Institutes of Health (GM025765) to J.P.K
| | - Florence Bonnot
- Department of Chemistry University of California, Berkeley, California 94720, U.S.A. Supported by the National Institutes of Health (GM025765) to J.P.K
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, U.S.A. Supported by the National Institutes of Health (GM025765) to J.P.K
| |
Collapse
|
15
|
Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L. Copper active sites in biology. Chem Rev 2014; 114:3659-853. [PMID: 24588098 PMCID: PMC4040215 DOI: 10.1021/cr400327t] [Citation(s) in RCA: 1157] [Impact Index Per Article: 115.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - David E. Heppner
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | - Jake W. Ginsbach
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Jordi Cirera
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Munzarin Qayyum
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | | | - Ryan G. Hadt
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Li Tian
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| |
Collapse
|
16
|
Murakawa T, Hayashi H, Sunami T, Kurihara K, Tamada T, Kuroki R, Suzuki M, Tanizawa K, Okajima T. High-resolution crystal structure of copper amine oxidase fromArthrobacter globiformis: assignment of bound diatomic molecules as O2. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2483-94. [DOI: 10.1107/s0907444913023196] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 08/18/2013] [Indexed: 11/10/2022]
Abstract
The crystal structure of a copper amine oxidase fromArthrobacter globiformiswas determined at 1.08 Å resolution with the use of low-molecular-weight polyethylene glycol (LMW PEG; average molecular weight ∼200) as a cryoprotectant. The final crystallographicRfactor andRfreewere 13.0 and 15.0%, respectively. Several molecules of LMW PEG were found to occupy cavities in the protein interior, including the active site, which resulted in a marked reduction in the overallBfactor and consequently led to a subatomic resolution structure for a relatively large protein with a monomer molecular weight of ∼70 000. About 40% of the presumed H atoms were observed as clear electron densities in theFo−Fcdifference map. Multiple minor conformers were also identified for many residues. Anisotropic displacement fluctuations were evaluated in the active site, which contains a post-translationally derived quinone cofactor and a Cu atom. Furthermore, diatomic molecules, most likely to be molecular oxygen, are bound to the protein, one of which is located in a region that had previously been proposed as an entry route for the dioxygen substrate from the central cavity of the dimer interface to the active site.
Collapse
|
17
|
Lee JI, Jang JH, Yu MJ, Kim YW. Construction of a bifunctional enzyme fusion for the combined determination of biogenic amines in foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:9118-24. [PMID: 24001036 DOI: 10.1021/jf403044m] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Biogenic amines (BAs) are a group of low-molecular-mass organic bases derived from free amino acids. Due to the undesirable effects of BAs on human health, amine oxidase-based detection methods for BAs in foods have been developed. Here, we developed a bifunctional enzyme fusion (MAPO) using a Cu(2+)-containing monoamine oxidase (AMAO2) and a flavin adenine dinucleotide-containing putrescine oxidase (APUO) from Arthrobacter aurescens. It was necessary to activate MAPO with supplementary Cu(2+) ions, leading to a 6- to 12-fold improvement in catalytic efficiency (kcat/KM) for monoamines. The optimal temperatures of Cu(2+)-activated MAPO (cMAPO) for both tyramine and putrescine were 50 °C, and the optimal pH values for tyramine and putrescine were pH 7.0 and pH 8.0, respectively, consistent with those of AMAO2 and APUO, respectively. The cMAPO showed relative specific activities of 100, 99, 32, and 32 for 2-phenylethylamine, tyramine, histamine, and putrescine, respectively. The tyramine-equivalent BA contents of fermented soybean pastes by cMAPO were more than 90% of the total BA determined by HPLC. In conclusion, cMAPO is fully bifunctional toward biogenic monoamines and putrescine, allowing the combined determination of multiple BAs in foods. This colorimetric determination method could be useful for point-of-care testing to screen safety-guaranteed products prior to instrumental analyses.
Collapse
Affiliation(s)
- Jae-Ick Lee
- Department of Food and Biotechnology, Korea University , Sejong, 339-700, South Korea
| | | | | | | |
Collapse
|
18
|
Johnson BJ, Yukl ET, Klema VJ, Klinman JP, Wilmot CM. Structural snapshots from the oxidative half-reaction of a copper amine oxidase: implications for O2 activation. J Biol Chem 2013; 288:28409-17. [PMID: 23940035 DOI: 10.1074/jbc.m113.501791] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism of molecular oxygen activation is the subject of controversy in the copper amine oxidase family. At their active sites, copper amine oxidases contain both a mononuclear copper ion and a protein-derived quinone cofactor. Proposals have been made for the activation of molecular oxygen via both a Cu(II)-aminoquinol catalytic intermediate and a Cu(I)-semiquinone intermediate. Using protein crystallographic freeze-trapping methods under low oxygen conditions combined with single-crystal microspectrophotometry, we have determined structures corresponding to the iminoquinone and semiquinone forms of the enzyme. Methylamine reduction at acidic or neutral pH has revealed protonated and deprotonated forms of the iminoquinone that are accompanied by a bound oxygen species that is likely hydrogen peroxide. However, methylamine reduction at pH 8.5 has revealed a copper-ligated cofactor proposed to be the semiquinone form. A copper-ligated orientation, be it the sole identity of the semiquinone or not, blocks the oxygen-binding site, suggesting that accessibility of Cu(I) may be the basis of partitioning O2 activation between the aminoquinol and Cu(I).
Collapse
Affiliation(s)
- Bryan J Johnson
- From the Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455 and
| | | | | | | | | |
Collapse
|
19
|
Liu Y, Mukherjee A, Nahumi N, Ozbil M, Brown D, Angeles-Boza AM, Dooley DM, Prabhakar R, Roth JP. Experimental and Computational Evidence of Metal-O2 Activation and Rate-Limiting Proton-Coupled Electron Transfer in a Copper Amine Oxidase. J Phys Chem B 2012; 117:218-29. [DOI: 10.1021/jp3121484] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yi Liu
- Department of Chemistry, Johns Hopkins University, 3400 North
Charles Street, Baltimore, Maryland 21218, United States
| | - Arnab Mukherjee
- Department of Chemistry, Johns Hopkins University, 3400 North
Charles Street, Baltimore, Maryland 21218, United States
| | - Nadav Nahumi
- Department of Chemistry, Johns Hopkins University, 3400 North
Charles Street, Baltimore, Maryland 21218, United States
| | - Mehmet Ozbil
- Department of Chemistry, University of Miami, 1301 Memorial Drive,
Coral Gables, Florida 33146, United States
| | - Doreen Brown
- Department of Chemistry
and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Alfredo M. Angeles-Boza
- Department of Chemistry, Johns Hopkins University, 3400 North
Charles Street, Baltimore, Maryland 21218, United States
| | - David M. Dooley
- Department of Chemistry
and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, 1301 Memorial Drive,
Coral Gables, Florida 33146, United States
| | - Justine P. Roth
- Department of Chemistry, Johns Hopkins University, 3400 North
Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
20
|
Gamba I, Mutikainen I, Bouwman E, Reedijk J, Bonnet S. Synthesis and Characterization of Copper Complexes of a Tetrapyridyl Ligand, and Their Use in the Catalytic Aerobic Oxidation of Benzyl Alcohol. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201200807] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
The role of protein crystallography in defining the mechanisms of biogenesis and catalysis in copper amine oxidase. Int J Mol Sci 2012; 13:5375-5405. [PMID: 22754303 PMCID: PMC3382800 DOI: 10.3390/ijms13055375] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 04/22/2012] [Accepted: 04/26/2012] [Indexed: 12/22/2022] Open
Abstract
Copper amine oxidases (CAOs) are a ubiquitous group of enzymes that catalyze the conversion of primary amines to aldehydes coupled to the reduction of O2 to H2O2. These enzymes utilize a wide range of substrates from methylamine to polypeptides. Changes in CAO activity are correlated with a variety of human diseases, including diabetes mellitus, Alzheimer’s disease, and inflammatory disorders. CAOs contain a cofactor, 2,4,5-trihydroxyphenylalanine quinone (TPQ), that is required for catalytic activity and synthesized through the post-translational modification of a tyrosine residue within the CAO polypeptide. TPQ generation is a self-processing event only requiring the addition of oxygen and Cu(II) to the apoCAO. Thus, the CAO active site supports two very different reactions: TPQ synthesis, and the two electron oxidation of primary amines. Crystal structures are available from bacterial through to human sources, and have given insight into substrate preference, stereospecificity, and structural changes during biogenesis and catalysis. In particular both these processes have been studied in crystallo through the addition of native substrates. These latter studies enable intermediates during physiological turnover to be directly visualized, and demonstrate the power of this relatively recent development in protein crystallography.
Collapse
|
22
|
Foster A, Barnes N, Speight R, Keane MA. Identification, functional expression and kinetic analysis of two primary amine oxidases from Rhodococcus opacus. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2011.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Yang R, Chen H, Gu Z. Factors influencing diamine oxidase activity and γ-aminobutyric acid content of fava bean (Vicia faba L.) during germination. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:11616-11620. [PMID: 21942768 DOI: 10.1021/jf202645p] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Factors (germination time, spectra, temperature, pH, and chemical inhibitors) influencing diamine oxidase (DAO, EC 1.4.3.6) activity and γ-aminobutyric acid (GABA) content of fava bean (Vicia faba L.) during germination were investigated in this study. DAO activity significantly increased in germinating seeds but varied with different organs. The enzyme activity was higher in shoot than that in cotyledon, hypocotyl, and radicle. When seeds were germinated in the dark, DAO activity was 2.35-, 2.00-, 2.36-, 4.40-, and 1.67-fold of that under white, red, blue, green, and yellow spectra, respectively. The optimum germination temperature and pH value for increasing DAO activity were 30 °C and 3.0, respectively. The DAO activity was inhibited significantly by aminoguanidine and sodium ethylenediamine tetracetate, while it was activated by CuCl(2) and CaCl(2). Germinating at an appropriate temperature and pH, 30% of GABA formation was supplied by DAO. Calcium was related to the regulation of DAO activity and GABA accumulation.
Collapse
Affiliation(s)
- Runqiang Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | | | | |
Collapse
|
24
|
Smith MA, Knowles PF, McPherson MJ, Pearson AR. Dissecting the mechanism of oxygen trafficking in a metalloenzyme. Faraday Discuss 2011; 148:269-82; discussion 299-314. [DOI: 10.1039/c005054g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
25
|
McGrath AP, Caradoc-Davies T, Collyer CA, Guss JM. Correlation of active site metal content in human diamine oxidase with trihydroxyphenylalanine quinone cofactor biogenesis . Biochemistry 2010; 49:8316-24. [PMID: 20722416 DOI: 10.1021/bi1010915] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Copper-containing amine oxidases (CAOs) require a protein-derived topaquinone cofactor (TPQ) for activity. TPQ biogenesis is a self-processing reaction requiring the presence of copper and molecular oxygen. Recombinant human diamine oxidase (hDAO) was heterologously expressed in Drosophila S2 cells, and analysis indicates that the purified hDAO contains substoichiometric amounts of copper and TPQ. The crystal structure of a complex of an inhibitor, aminoguanidine, and hDAO at 2.05 Å resolution shows that the aminoguanidine forms a covalent adduct with the TPQ and that the site is ∼75% occupied. Aminoguanidine is a potent inhibitor of hDAO with an IC(50) of 153 ± 9 nM. The structure indicates that the catalytic metal site, normally occupied by copper, is fully occupied. X-ray diffraction data recorded below the copper edge, between the copper and zinc edges, and above the zinc edge have been used to show that the metal site is occupied approximately 75% by copper and 25% by zinc and the formation of the TPQ cofactor is correlated with copper occupancy.
Collapse
Affiliation(s)
- Aaron P McGrath
- School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | |
Collapse
|