1
|
Jeong MY, Kim S, Kim HR, Jeon J, Won SS, Yang KJ, Park JS, Yang IG, Lee DG, Myung JH, Kim YG, Jin SG, Choi YS, Kim DK, Kang MJ. Dexamethasone nanocrystals-embedded hydroxypropyl methylcellulose hydrogel increases cochlear delivery and attenuates hearing loss following intratympanic injection. Carbohydr Polym 2024; 345:122546. [PMID: 39227091 DOI: 10.1016/j.carbpol.2024.122546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/09/2024] [Accepted: 07/24/2024] [Indexed: 09/05/2024]
Abstract
Herein, dexamethasone (DEX) nanocrystalline suspension (NS)-embedded hydrogel (NS-G) was constructed using a hydroxypropyl methylcellulose (HPMC) polymer to enhance cochlear delivery and attenuate hearing loss following intratympanic (IT) injection. Hydrophobic steroidal nanocrystals were prepared using a bead milling technique and incorporated into a polysaccharide hydrogel. The NS-G system with HPMC (average molecular weight, 86,000 g/mol; 15 mg/mL) was characterized as follows: rod-shaped drug crystalline; particle size <300 nm; and constant complex viscosity ≤1.17 Pa·s. Pulverization of the drug particles into submicron diameters enhanced drug dissolution, while the HPMC matrix increased the residence time in the middle ear cavity, exhibiting a controlled release profile. The IT NS-G system elicited markedly enhanced and prolonged drug delivery (> 9 h) to the cochlear tissue compared with that of DEX sodium phosphate (DEX-SP), a water-soluble prodrug. In mice with kanamycin- and furosemide-induced ototoxicity, NS-G markedly enhanced hearing preservation across all frequencies (8-32 kHz), as revealed by an auditory brainstem response test, compared with both saline and DEX-SP. Moreover, treatment with NS-G showed enhanced anti-inflammatory effects, as evidenced by decreased levels of inflammation-related cytokines. Therefore, the IT administration of DEX NS-loaded HPMC hydrogels is a promising strategy for treating hearing loss.
Collapse
Affiliation(s)
- Min Young Jeong
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, Republic of Korea
| | - Subin Kim
- Department of Otolaryngology, College of Medicine, The Catholic University of Korea. 64 Daeheung-ro, Jung-gu, Daejeon, 34943, Republic of Korea
| | - Hye Rim Kim
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, Republic of Korea
| | - Jiae Jeon
- Department of Otolaryngology, College of Medicine, The Catholic University of Korea. 64 Daeheung-ro, Jung-gu, Daejeon, 34943, Republic of Korea
| | - Seong Su Won
- Department of Otolaryngology, College of Medicine, The Catholic University of Korea. 64 Daeheung-ro, Jung-gu, Daejeon, 34943, Republic of Korea
| | - Keum-Jin Yang
- Department of Otolaryngology, College of Medicine, The Catholic University of Korea. 64 Daeheung-ro, Jung-gu, Daejeon, 34943, Republic of Korea
| | - Jun Soo Park
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, Republic of Korea
| | - In Gyu Yang
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, Republic of Korea
| | - Dong Geon Lee
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, Republic of Korea
| | - Jin Hyuk Myung
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, Republic of Korea
| | - Yoon-Gyoon Kim
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, Republic of Korea
| | - Sung Giu Jin
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, Republic of Korea
| | - Yong Seok Choi
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, Republic of Korea
| | - Dong-Kee Kim
- Department of Otolaryngology, College of Medicine, The Catholic University of Korea. 64 Daeheung-ro, Jung-gu, Daejeon, 34943, Republic of Korea.
| | - Myung Joo Kang
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, Republic of Korea.
| |
Collapse
|
2
|
Mao L, Wei W, Chen J. Biased regulation of glucocorticoid receptors signaling. Biomed Pharmacother 2023; 165:115145. [PMID: 37454592 DOI: 10.1016/j.biopha.2023.115145] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Glucocorticoids (GCs), steroid hormones that depend on glucocorticoid receptor (GR) binding for their action, are essential for regulating numerous homeostatic functions in the body.GR signals are biased, that is, GR signals are various in different tissue cells, disease states and ligands. This biased regulation of GR signaling appears to depend on ligand-induced metameric regulation, protein post-translational modifications, assembly at response elements, context-specific assembly (recruitment of co-regulators) and intercellular differences. Based on the bias regulation of GR, selective GR agonists and modulators (SEGRAMs) were developed to bias therapeutic outcomes toward expected outcomes (e.g., anti-inflammation and immunoregulation) by influencing GR-mediated gene expression. This paper provides a review of the bias regulation and mechanism of GR and the research progress of drugs.
Collapse
Affiliation(s)
- Lijuan Mao
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of Education Ministry, Anhui Cooperative Innovation Center for Anti-inflammatory Immune Drugs, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of Education Ministry, Anhui Cooperative Innovation Center for Anti-inflammatory Immune Drugs, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China.
| | - Jingyu Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of Education Ministry, Anhui Cooperative Innovation Center for Anti-inflammatory Immune Drugs, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
3
|
Moliki JM, Nhundu TJ, Maritz L, Avenant C, Hapgood JP. Glucocorticoids and medroxyprogesterone acetate synergize with inflammatory stimuli to selectively upregulate CCL20 transcription. Mol Cell Endocrinol 2023; 563:111855. [PMID: 36646303 PMCID: PMC9892260 DOI: 10.1016/j.mce.2023.111855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/29/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
The pro-inflammatory cytokine, chemokine (C-C motif) ligand 20 (CCL20), is emerging as a therapeutic target for immune-based therapies. Cooperative regulation of CCL20 by glucocorticoids and progestins used in endocrine therapy and pro-inflammatory mediators could modulate immune function and affect disease outcomes. We show that glucocorticoids as well as medroxyprogesterone acetate (MPA), the progestin widely used in injectable contraception in sub-Saharan Africa, cooperate with pro-inflammatory mediators to upregulate CCL20 protein and/or mRNA in human peripheral blood mononuclear cells (PBMCs) and human cervical cell lines. Changes in CCL20 mRNA levels were shown to be synergistic, as assessed by Chou analysis, cell- and gene-specific and to involve transcriptional regulation, with a requirement for a nuclear factor kappa B (NF-κB) site and glucocorticoid receptor (GR) involvement. The novel results suggest a mechanism whereby MPA, like glucocorticoids, may impact inflammation both systemically and in the genital tract in patients using MPA and/or glucocorticoid therapy.
Collapse
Affiliation(s)
- Johnson M Moliki
- Department of Molecular and Cell Biology, University of Cape Town, South Africa
| | - Tawanda J Nhundu
- Department of Molecular and Cell Biology, University of Cape Town, South Africa
| | - Leo Maritz
- Department of Molecular and Cell Biology, University of Cape Town, South Africa
| | - Chanel Avenant
- Department of Molecular and Cell Biology, University of Cape Town, South Africa
| | - Janet P Hapgood
- Department of Molecular and Cell Biology, University of Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa.
| |
Collapse
|
4
|
Bick AJ, Avenant C, Tomasicchio M, van der Spuy Z, Hapgood JP. Increased HIV-1 infection in PBMCs treated in vitro with menstrual cycle phase hormones or medroxyprogesterone acetate likely occurs via different mechanisms. Am J Reprod Immunol 2022; 88:e13643. [PMID: 36302121 PMCID: PMC9884997 DOI: 10.1111/aji.13643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/15/2022] [Accepted: 10/18/2022] [Indexed: 02/01/2023] Open
Abstract
PROBLEM Both luteal phase progesterone (P4) levels and use of the intramuscular (IM) injectable progestin-only contraceptive depo-medroxyprogesterone acetate (DMPA-IM) have been linked to increased S/HIV acquisition in animal, clinical and in vitro models. Several plausible mechanisms could explain MPA-induced HIV-1 acquisition while those for the luteal phase are underexplored. METHOD OF STUDY Peripheral blood mononuclear cells (PBMCs) were treated with P4 and estrogen at concentrations mimicking the luteal phase, follicular phase or with levels of MPA mimicking peak serum levels in DMPA-IM users. Cells were infected with an R5-tropic infectious molecular clone and HIV-1 infection was measured. A role for the glucocorticoid receptor (GR) was investigated using the GR/PR antagonist RU486. CCR5 protein levels and activation status, assessed by levels of the activation marker CD69, were measured by flow cytometry after treatment in vitro and in PBMCs from naturally-cycling women or DMPA-IM users. RESULTS Both MPA and luteal phase hormones significantly increased HIV-1 infection in vitro. However, MPA but not luteal phase hormones increased the CD4+/CD8+ T cell ratio, CCR5 protein expression on CD4+ T cells and increased expression of the activation marker CD69. The GR is involved in MPA-induced, but not luteal phase hormone-induced increased HIV-1 infection. In DMPA-IM users, the frequency of CCR5-expressing CD3+ and CD8+ cells was higher than for women in the luteal phase. CONCLUSIONS MPA increases HIV-1 infection in a manner different from that of luteal phase hormones, most likely involving the GR and at least in part changes in the frequency and/or expression of CCR5 and CD69.
Collapse
Affiliation(s)
- Alexis J. Bick
- Department of Molecular and Cell Biology, University of Cape, Cape Town, South Africa
| | - Chanel Avenant
- Department of Molecular and Cell Biology, University of Cape, Cape Town, South Africa
| | - Michele Tomasicchio
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine, University of Cape Town and UCT Lung Institute, South Africa.,South African MRC Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
| | - Zephne van der Spuy
- Department of Obstetrics and Gynaecology, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | - Janet P. Hapgood
- Department of Molecular and Cell Biology, University of Cape, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town South Africa.,Corresponding author:
| |
Collapse
|
5
|
Komane M, Avenant C, Louw-du Toit R, Africander DJ, Hapgood JP. Differential off-target glucocorticoid activity of progestins used in endocrine therapy. Steroids 2022; 182:108998. [PMID: 35271867 PMCID: PMC9081821 DOI: 10.1016/j.steroids.2022.108998] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/08/2022] [Accepted: 02/28/2022] [Indexed: 02/02/2023]
Abstract
The glucocorticoid receptor (GR) regulates transcription of genes involved in multiple processes. Medroxyprogesterone acetate (MPA), widely used in the injectable contraceptive Depo-MPA (DMPA), has off-target effects via the GR, which may result in side-effects in endocrine therapy. However, very little is known about the GR activity of other progestins used in endocrine therapy. This study compared GR activities for several progestins, using whole cell binding, dose-response, and GR phosphorylation assays, in both a cell line model and peripheral blood mononuclear cells (PBMCs). MPA, etonogestrel (ETG) and nestorone (NES) exhibit greater relative binding affinities for the GR than levonorgestrel (LNG) and norethisterone/norethindrone (NET) and are partial GR agonists for transactivation but agonists for transrepression on synthetic promoters in COS-1 cells. MPA is a potent agonist for endogenous GR-regulated GILZ and IL6 genes in PBMCs. While ETG and NES also display agonist activity on IL6, they have little effect on GILZ. In contrast, LNG and NET exhibit little to no activity in transactivation models, while both exhibit some transrepressive activity but are generally less potent and/or efficacious than MPA. Antagonist and phosphorylation assays confirmed that MPA and NES act via the GR on endogenous genes in PBMCs. Our results suggest GR-mediated dose-dependent and gene-specific transcriptional side-effects are likely to occur at physiologically relevant concentrations in vivo for MPA, may possibly occur selectively for ETG and NES, but are unlikely to occur for LNG and NET. This suggests that these progestins will exhibit differential side-effects in endocrine therapy via the GR.
Collapse
Affiliation(s)
- Maleshigo Komane
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
| | - Chanel Avenant
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
| | - Renate Louw-du Toit
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Donita J Africander
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Janet P Hapgood
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa.
| |
Collapse
|
6
|
Caramori G, Nucera F, Mumby S, Lo Bello F, Adcock IM. Corticosteroid resistance in asthma: Cellular and molecular mechanisms. Mol Aspects Med 2022; 85:100969. [PMID: 34090658 DOI: 10.1016/j.mam.2021.100969] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022]
Abstract
Inhaled glucocorticoids (GCs) are drugs widely used as treatment for asthma patients. They prevent the recruitment and activation of lung immune and inflammatory cells and, moreover, have profound effects on airway structural cells to reverse the effects of disease on airway inflammation. GCs bind to a specific receptor, the glucocorticoid receptor (GR), which is a member of the nuclear receptor superfamily and modulates pro- and anti-inflammatory gene transcription through a number of distinct and complementary mechanisms. Targets genes include many pro-inflammatory mediators such as chemokines, cytokines, growth factors and their receptors. Inhaled GCs are very effective for most asthma patients with little, if any, systemic side effects depending upon the dose. However, some patients show poor asthma control even after the administration of high doses of topical or even systemic GCs. Several mechanisms relating to inflammation have been considered to be responsible for the onset of the relative GC resistance observed in these patients. In these patients, the side-effect profile of GCs prevent continued use of high doses and new drugs are needed. Targeting the defective pathways associated with GC function in these patients may also reactivate GC responsiveness.
Collapse
Affiliation(s)
- Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy.
| | - Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Sharon Mumby
- National Heart and Lung Institute, Imperial College London and the NIHR Imperial Biomedical Research Centre, London, UK
| | - Federica Lo Bello
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London and the NIHR Imperial Biomedical Research Centre, London, UK.
| |
Collapse
|
7
|
Crosstalk between p38 MAPK and GR Signaling. Int J Mol Sci 2022; 23:ijms23063322. [PMID: 35328742 PMCID: PMC8953609 DOI: 10.3390/ijms23063322] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 12/21/2022] Open
Abstract
The p38 MAPK is a signaling pathway important for cells to respond to environmental and intracellular stress. Upon activation, the p38 kinase phosphorylates downstream effectors, which control the inflammatory response and coordinate fundamental cellular processes such as proliferation, apoptosis, and differentiation. Dysregulation of this signaling pathway has been linked to inflammatory diseases and cancer. Secretion of glucocorticoids (GCs) is a classical endocrine response to stress. The glucocorticoid receptor (GR) is the primary effector of GCs and plays an important role in the regulation of cell metabolism and immune response by influencing gene expression in response to hormone-dependent activation. Its ligands, the GCs or steroids, in natural or synthetic variation, are used as standard therapy for anti-inflammatory treatment, severe asthma, autoimmune diseases, and several types of cancer. Several years ago, the GR was identified as one of the downstream targets of p38, and, at the same time, it was shown that glucocorticoids could influence p38 signaling. In this review, we discuss the role of the crosstalk between the p38 and GR in the regulation of gene expression in response to steroids and comprehend the importance and potential of this interplay in future clinical applications.
Collapse
|
8
|
Martins CS, de Castro M. Generalized and tissue specific glucocorticoid resistance. Mol Cell Endocrinol 2021; 530:111277. [PMID: 33864884 DOI: 10.1016/j.mce.2021.111277] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022]
Abstract
Glucocorticoids (GCs) are steroid hormones that influence several physiologic functions and are among the most frequently prescribed drugs worldwide. Resistance to GCs has been observed in the context of the familial generalized GC resistance (Chrousos' syndrome) or tissue specific GC resistance in chronic inflammatory states. In this review, we have summarized the major factors that influence individual glucocorticoid sensitivity/resistance. The fine-tuning of GC action is determined in a tissue-specific fashion that includes the combination of different GC receptor promoters, translation initiation sites, splice isoforms, interacting proteins, post-translational modifications, and alternative mechanisms of signal transduction.
Collapse
Affiliation(s)
- Clarissa Silva Martins
- Department of Internal Medicine - Ribeirao Preto Medical School - University of Sao Paulo, Ribeirao Preto, SP, Brazil; School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Margaret de Castro
- Department of Internal Medicine - Ribeirao Preto Medical School - University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
9
|
Dlamini S, Kuipa M, Enfield K, Skosana S, Woodland JG, Moliki JM, Bick AJ, van der Spuy Z, Maritz MF, Avenant C, Hapgood JP. Reciprocal Modulation of Antiretroviral Drug and Steroid Receptor Function In Vitro. Antimicrob Agents Chemother 2019; 64:e01890-19. [PMID: 31658973 PMCID: PMC7187592 DOI: 10.1128/aac.01890-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/23/2019] [Indexed: 11/20/2022] Open
Abstract
Millions of women are exposed simultaneously to antiretroviral drugs (ARVs) and progestin-based hormonal contraceptives. Yet the reciprocal modulation by ARVs and progestins of their intracellular functions is relatively unexplored. We investigated the effects of tenofovir disoproxil fumarate (TDF) and dapivirine (DPV), alone and in the presence of select steroids and progestins, on cell viability, steroid-regulated immunomodulatory gene expression, activation of steroid receptors, and anti-HIV-1 activity in vitro Both TDF and DPV modulated the transcriptional efficacy of a glucocorticoid agonist via the glucocorticoid receptor (GR) in the U2OS cell line. In TZM-bl cells, DPV induced the expression of the proinflammatory interleukin 8 (IL-8) gene while TDF significantly increased medroxyprogesterone acetate (MPA)-induced expression of the anti-inflammatory glucocorticoid-induced leucine zipper (GILZ) gene. However, peripheral blood mononuclear cell (PBMC) and ectocervical explant tissue viability and gene expression results, along with TZM-bl HIV-1 infection data, are reassuring and suggest that TDF and DPV, in combination with dexamethasone (DEX) or MPA, do not reciprocally modulate key biological effects in primary cells and tissue. We show for the first time that TDF induces progestogen-independent activation of the progesterone receptor (PR) in a cell line. The ability of TDF and DPV to influence GR and PR activity suggests that their use may be associated with steroid receptor-mediated off-target effects. This, together with cell line and individual donor gene expression responses in the primary models, raises concerns that reciprocal modulation may cause side effects in a cell- and donor-specific manner in vivo.
Collapse
Affiliation(s)
- Sigcinile Dlamini
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Michael Kuipa
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Kim Enfield
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Salndave Skosana
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - John G Woodland
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Johnson Mosoko Moliki
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Alexis J Bick
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Zephne van der Spuy
- Department of Obstetrics and Gynaecology, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | - Michelle F Maritz
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Chanel Avenant
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Janet P Hapgood
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
10
|
Alvarez-Carbonell D, Ye F, Ramanath N, Dobrowolski C, Karn J. The Glucocorticoid Receptor Is a Critical Regulator of HIV Latency in Human Microglial Cells. J Neuroimmune Pharmacol 2019; 14:94-109. [PMID: 29987742 PMCID: PMC6394485 DOI: 10.1007/s11481-018-9798-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/02/2018] [Indexed: 11/27/2022]
Abstract
We have developed models of HIV latency using microglia derived from adult human patient brain cortex and transformed with the SV40 T large and hTERT antigens. Latent clones infected by HIV reporter viruses display high levels of spontaneous HIV reactivation in culture. BrainPhys, a medium highly representative of the CNS extracellular environment, containing low glucose and 1% FBS, reduced, but did not prevent, HIV reactivation. We hypothesized that spontaneous HIV reactivation in culture was due to the expression of pro-inflammatory genes, such as TNF-α, taking place in the absence of the natural inhibitory signals from astrocytes and neurons. Indeed, expression and secretion of TNF-α is strongly reduced in HIV-latently infected microglia compared to the subset of cells that have undergone spontaneous HIV reactivation. Whereas inhibitors of NF-κB or of macrophage activation only had a short-term silencing effect, addition of dexamethasone (DEXA), a glucocorticoid receptor (GR) agonist and mediator of anti-inflammation, silenced the HIV provirus in a long-term, and shRNA-mediated knock-down of GR activated HIV. DEXA also decreased secretion of a number of cytokines, including TNF-α. Chromatin immunoprecipitation analysis revealed that DEXA strongly increased GR occupancy at the HIV promoter, and reduced histone 3 acetylated levels. Moreover, TNF-α expression inhibitors in combination with DEXA induced further HIV silencing and increased the histone 3 lysine 27 tri-methylated epigenetic mark of repression at the HIV promoter region. We conclude that GR is a critical repressor of HIV transcription in microglia, and a novel potential pharmacological target to restrict HIV expression in the CNS.
Collapse
Affiliation(s)
- David Alvarez-Carbonell
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Fengchun Ye
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Nirmala Ramanath
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Curtis Dobrowolski
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106 USA
| |
Collapse
|
11
|
From feedback loop transitions to biomarkers in the psycho-immune-neuroendocrine network: Detecting the critical transition from health to major depression. Neurosci Biobehav Rev 2018. [DOI: 10.1016/j.neubiorev.2018.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
12
|
Rider CF, Altonsy MO, Mostafa MM, Shah SV, Sasse S, Manson ML, Yan D, Kärrman-Mårdh C, Miller-Larsson A, Gerber AN, Giembycz MA, Newton R. Long-Acting β2-Adrenoceptor Agonists Enhance Glucocorticoid Receptor (GR)-Mediated Transcription by Gene-Specific Mechanisms Rather Than Generic Effects via GR. Mol Pharmacol 2018; 94:1031-1046. [PMID: 29959223 DOI: 10.1124/mol.118.112755] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/25/2018] [Indexed: 12/16/2022] Open
Abstract
In asthma, the clinical efficacy of inhaled corticosteroids (ICSs) is enhanced by long-acting β2-adrenoceptor agonists (LABAs). ICSs, or more accurately, glucocorticoids, promote therapeutically relevant changes in gene expression, and, in primary human bronchial epithelial cells (pHBECs) and airway smooth muscle cells, this genomic effect can be enhanced by a LABA. Modeling this interaction in human bronchial airway epithelial BEAS-2B cells transfected with a 2× glucocorticoid response element (2×GRE)-driven luciferase reporter showed glucocorticoid-induced transcription to be enhanced 2- to 3-fold by LABA. This glucocorticoid receptor (GR; NR3C1)-dependent effect occurred rapidly, was insensitive to protein synthesis inhibition, and was maximal when glucocorticoid and LABA were added concurrently. The ability of LABA to enhance GR-mediated transcription was not associated with changes in GR expression, serine (Ser203, Ser211, Ser226) phosphorylation, ligand affinity, or nuclear translocation. Chromatin immunoprecipitation demonstrated that glucocorticoid-induced recruitment of GR to the integrated 2×GRE reporter and multiple gene loci, whose mRNAs were unaffected or enhanced by LABA, was also unchanged by LABA. Transcriptomic analysis revealed glucocorticoid-induced mRNAs were variably enhanced, unaffected, or repressed by LABA. Thus, events leading to GR binding at target genes are not the primary explanation for how LABAs modulate GR-mediated transcription. As many glucocorticoid-induced genes are independently induced by LABA, gene-specific control by GR- and LABA-activated transcription factors may explain these observations. Because LABAs promote similar effects in pHBECs, therapeutic relevance is likely. These data illustrate the need to understand gene function(s), and the mechanisms leading to gene-specific induction, if existing ICS/LABA combination therapies are to be improved.
Collapse
Affiliation(s)
- Christopher F Rider
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada (C.F.R., M.O.A., M.M.M., S.V.S., D.Y., M.A.G., R.N.); Department of Zoology, Sohag University, Sohag, Egypt (M.O.A.); Department of Medicine, National Jewish Health, Denver, Colorado (S.S., A.N.G.); and Bioscience, Respiratory, Inflammation, and Autoimmunity, IMED Biotech Unit (M.L.M., C.K.-M.), and Respiratory GMed (A.M.-L.), AstraZeneca, Gothenburg, Molndal, Sweden
| | - Mohammed O Altonsy
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada (C.F.R., M.O.A., M.M.M., S.V.S., D.Y., M.A.G., R.N.); Department of Zoology, Sohag University, Sohag, Egypt (M.O.A.); Department of Medicine, National Jewish Health, Denver, Colorado (S.S., A.N.G.); and Bioscience, Respiratory, Inflammation, and Autoimmunity, IMED Biotech Unit (M.L.M., C.K.-M.), and Respiratory GMed (A.M.-L.), AstraZeneca, Gothenburg, Molndal, Sweden
| | - Mahmoud M Mostafa
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada (C.F.R., M.O.A., M.M.M., S.V.S., D.Y., M.A.G., R.N.); Department of Zoology, Sohag University, Sohag, Egypt (M.O.A.); Department of Medicine, National Jewish Health, Denver, Colorado (S.S., A.N.G.); and Bioscience, Respiratory, Inflammation, and Autoimmunity, IMED Biotech Unit (M.L.M., C.K.-M.), and Respiratory GMed (A.M.-L.), AstraZeneca, Gothenburg, Molndal, Sweden
| | - Suharsh V Shah
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada (C.F.R., M.O.A., M.M.M., S.V.S., D.Y., M.A.G., R.N.); Department of Zoology, Sohag University, Sohag, Egypt (M.O.A.); Department of Medicine, National Jewish Health, Denver, Colorado (S.S., A.N.G.); and Bioscience, Respiratory, Inflammation, and Autoimmunity, IMED Biotech Unit (M.L.M., C.K.-M.), and Respiratory GMed (A.M.-L.), AstraZeneca, Gothenburg, Molndal, Sweden
| | - Sarah Sasse
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada (C.F.R., M.O.A., M.M.M., S.V.S., D.Y., M.A.G., R.N.); Department of Zoology, Sohag University, Sohag, Egypt (M.O.A.); Department of Medicine, National Jewish Health, Denver, Colorado (S.S., A.N.G.); and Bioscience, Respiratory, Inflammation, and Autoimmunity, IMED Biotech Unit (M.L.M., C.K.-M.), and Respiratory GMed (A.M.-L.), AstraZeneca, Gothenburg, Molndal, Sweden
| | - Martijn L Manson
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada (C.F.R., M.O.A., M.M.M., S.V.S., D.Y., M.A.G., R.N.); Department of Zoology, Sohag University, Sohag, Egypt (M.O.A.); Department of Medicine, National Jewish Health, Denver, Colorado (S.S., A.N.G.); and Bioscience, Respiratory, Inflammation, and Autoimmunity, IMED Biotech Unit (M.L.M., C.K.-M.), and Respiratory GMed (A.M.-L.), AstraZeneca, Gothenburg, Molndal, Sweden
| | - Dong Yan
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada (C.F.R., M.O.A., M.M.M., S.V.S., D.Y., M.A.G., R.N.); Department of Zoology, Sohag University, Sohag, Egypt (M.O.A.); Department of Medicine, National Jewish Health, Denver, Colorado (S.S., A.N.G.); and Bioscience, Respiratory, Inflammation, and Autoimmunity, IMED Biotech Unit (M.L.M., C.K.-M.), and Respiratory GMed (A.M.-L.), AstraZeneca, Gothenburg, Molndal, Sweden
| | - Carina Kärrman-Mårdh
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada (C.F.R., M.O.A., M.M.M., S.V.S., D.Y., M.A.G., R.N.); Department of Zoology, Sohag University, Sohag, Egypt (M.O.A.); Department of Medicine, National Jewish Health, Denver, Colorado (S.S., A.N.G.); and Bioscience, Respiratory, Inflammation, and Autoimmunity, IMED Biotech Unit (M.L.M., C.K.-M.), and Respiratory GMed (A.M.-L.), AstraZeneca, Gothenburg, Molndal, Sweden
| | - Anna Miller-Larsson
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada (C.F.R., M.O.A., M.M.M., S.V.S., D.Y., M.A.G., R.N.); Department of Zoology, Sohag University, Sohag, Egypt (M.O.A.); Department of Medicine, National Jewish Health, Denver, Colorado (S.S., A.N.G.); and Bioscience, Respiratory, Inflammation, and Autoimmunity, IMED Biotech Unit (M.L.M., C.K.-M.), and Respiratory GMed (A.M.-L.), AstraZeneca, Gothenburg, Molndal, Sweden
| | - Anthony N Gerber
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada (C.F.R., M.O.A., M.M.M., S.V.S., D.Y., M.A.G., R.N.); Department of Zoology, Sohag University, Sohag, Egypt (M.O.A.); Department of Medicine, National Jewish Health, Denver, Colorado (S.S., A.N.G.); and Bioscience, Respiratory, Inflammation, and Autoimmunity, IMED Biotech Unit (M.L.M., C.K.-M.), and Respiratory GMed (A.M.-L.), AstraZeneca, Gothenburg, Molndal, Sweden
| | - Mark A Giembycz
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada (C.F.R., M.O.A., M.M.M., S.V.S., D.Y., M.A.G., R.N.); Department of Zoology, Sohag University, Sohag, Egypt (M.O.A.); Department of Medicine, National Jewish Health, Denver, Colorado (S.S., A.N.G.); and Bioscience, Respiratory, Inflammation, and Autoimmunity, IMED Biotech Unit (M.L.M., C.K.-M.), and Respiratory GMed (A.M.-L.), AstraZeneca, Gothenburg, Molndal, Sweden
| | - Robert Newton
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada (C.F.R., M.O.A., M.M.M., S.V.S., D.Y., M.A.G., R.N.); Department of Zoology, Sohag University, Sohag, Egypt (M.O.A.); Department of Medicine, National Jewish Health, Denver, Colorado (S.S., A.N.G.); and Bioscience, Respiratory, Inflammation, and Autoimmunity, IMED Biotech Unit (M.L.M., C.K.-M.), and Respiratory GMed (A.M.-L.), AstraZeneca, Gothenburg, Molndal, Sweden
| |
Collapse
|
13
|
Medroxyprogesterone acetate, unlike norethisterone, increases HIV-1 replication in human peripheral blood mononuclear cells and an indicator cell line, via mechanisms involving the glucocorticoid receptor, increased CD4/CD8 ratios and CCR5 levels. PLoS One 2018; 13:e0196043. [PMID: 29698514 PMCID: PMC5919616 DOI: 10.1371/journal.pone.0196043] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/05/2018] [Indexed: 01/11/2023] Open
Abstract
High usage of progestin-only injectable contraceptives, which include the intramuscular injectables depo-medroxyprogesterone acetate (DMPA-IM, Depo-Provera) and norethisterone (NET) enanthate (NET-EN or Nur-Isterate), correlates worldwide with areas of high HIV-1 prevalence. Epidemiological data show a significant association between usage of DMPA-IM and increased HIV-1 acquisition but no such association from limited data for NET-EN. Whether MPA and NET have similar effects on HIV-1 acquisition and pathogenesis, and the relationship between these effects and the dose of MPA, are critical issues for women's health and access to suitable and safe contraceptives. We show for the first time that MPA, unlike NET, significantly increases HIV-1 replication in peripheral blood mononuclear cells (PBMCs) and a cervical cell line model. The results provide novel evidence for a biological mechanism whereby MPA, acting via the glucocorticoid receptor (GR), increases HIV-1 replication by at least in part increasing expression of the CCR5 HIV-1 coreceptor on target T-lymphocytes. MPA, unlike NET, also increases activation of T-cells and increases the CD4/CD8 ratio, suggesting that multiple mechanisms are involved in the MPA response. Our data offer strong support for different biological mechanisms for MPA versus NET, due to their differential GR activity. The dose-dependence of the MPA response suggests that significant effects are observed within the range of peak serum levels of progestins in DMPA-IM but not NET-EN users. Dose-response results further suggest that effects of contraceptives containing MPA on HIV-1 acquisition and disease progression may be critically dependent on dose, time after injection and intrinsic factors that affect serum concentrations in women.
Collapse
|
14
|
Bury NR. The evolution, structure and function of the ray finned fish (Actinopterygii) glucocorticoid receptors. Gen Comp Endocrinol 2017; 251:4-11. [PMID: 27838382 DOI: 10.1016/j.ygcen.2016.06.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/20/2016] [Accepted: 06/28/2016] [Indexed: 01/31/2023]
Abstract
Basal ray-finned fish (Actinopterygii) possess a single glucocorticoid receptor (GR) and when compared to the lobe-finned vertebrate (Sarcopterygii) GR possess nine additional amino acids between the zinc-finger of the DNA binding domain. A whole genome duplication event which occurred between 320 and 350MYA in the teleost lineage following the split from the basal ray-finned fish resulted in 2 GRs: one GR group, GR1, has retained the 9 amino acids insert whereas the other group, GR2, has not. The exception to this is the zebrafish, that have lost one of the GRs, but they do possess 2 GRs with a splice variant that lacks the C-terminal portion of the GR to form GRβ which acts as a dominant-repressor of the wildtype GR. Another splice variant sees the basal ray-finned GR and teleost GR1 without the 9 amino acids insert. The molecular basis for GRs retention is beginning to be unravelled. In Pantadon buchholzi, rainbow trout, carp, marine and Japanese medaka GR2 is more sensitive to glucocorticoids (GC), thus potentially playing a more significant role in regulating gene expression at basal circulatory GC concentrations. However, this division in GC sensitivity is not seen in other species. The few studies to evaluate the significance of the 9 amino acid insert have shown that it affect maximal transactivational activity the extent to which is dependent on the number of glucocorticoid response elements (GREs) present in the reporter plasmid. The retention of these GRs would suggest there was an evolutionary advantage, which saw the development of a complex regulatory process to mediate the actions of the glucocorticoids.
Collapse
Affiliation(s)
- Nic R Bury
- King's College London, Diabetes and Nutritional Sciences Division, Franklin Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom; University of Suffolk, Faculty of Health and Science, James Hehir Building, University Quays, Ipswich IP3 0AQ, Suffolk, United Kingdom.
| |
Collapse
|
15
|
Abstract
The most effective anti-inflammatory drugs used to treat patients with airways disease are topical glucocorticosteroids (GCs). These act on virtually all cells within the airway to suppress airway inflammation or prevent the recruitment of inflammatory cells into the airway. They also have profound effects on airway structural cells to reverse the effects of disease on their function. Glucorticosteroids act via specific receptors-the glucocorticosteroid receptor (GR)-which are a member of the nuclear receptor family. As such, many of the important actions of GCs are to modulate gene transcription through a number of distinct and complementary mechanisms. Targets genes include most inflammatory mediators such as chemokines, cytokines, growth factors and their receptors. GCs delivered by the inhaled route are very effective for most patients and have few systemic side effects. However, in some patients, even high doses of topical or even systemic GCs fail to control their disease. A number of mechanisms relating to inflammation have been reported to be responsible for the failure of these patients to respond correctly to GCs and these provide insight into GC actions within the airways. In these patients, the side-effect profile of GCs prevent continued use of high doses and new drugs are needed for these patients. Targeting the defective pathways associated with GC function in these patients may also reactivate GC responsiveness.
Collapse
Affiliation(s)
- Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW3 6LY, UK.
| | - Sharon Mumby
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW3 6LY, UK
| |
Collapse
|
16
|
Hapgood JP, Avenant C, Moliki JM. Glucocorticoid-independent modulation of GR activity: Implications for immunotherapy. Pharmacol Ther 2016; 165:93-113. [PMID: 27288728 DOI: 10.1016/j.pharmthera.2016.06.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/16/2016] [Indexed: 12/19/2022]
Abstract
Pharmacological doses of glucocorticoids (GCs), acting via the glucocorticoid receptor (GR) to repress inflammation and immune function, remain the most effective therapy in the treatment of inflammatory and immune diseases. Since many patients on GC therapy exhibit GC resistance and severe side-effects, much research is focused on developing more selective GCs and combination therapies, with greater anti-inflammatory potency. GCs mediate their classical genomic transcriptional effects by binding to the cytoplasmic GR, followed by nuclear translocation and modulation of transcription of target genes by direct DNA binding of the GR or its tethering to other transcription factors. Recent evidence suggests, however, that the responses mediated by the GR are much more complex and involve multiple parallel mechanisms integrating simultaneous signals from other receptors, both in the absence and presence of GCs, to shift the sensitivity of a target cell to GCs. The level of cellular stress, immune activation status, or the cell cycle phase may be crucial for determining GC sensitivity and GC responsiveness as well as subcellular localization of the GR and GR levels. Central to the development of new drugs that target GR signaling alone or as add-on therapies, is an in-depth understanding of the molecular mechanisms of GC-independent GR desensitization, priming and activation of the unliganded GR, as well as synergy and cross-talk with other signaling pathways. This review will discuss the information currently available on these topics and their relevance to immunotherapy, as well as identify unanswered questions and future areas of research.
Collapse
Affiliation(s)
- Janet P Hapgood
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch, 7700, South Africa.
| | - Chanel Avenant
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch, 7700, South Africa
| | - Johnson M Moliki
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch, 7700, South Africa
| |
Collapse
|
17
|
The Interactome of the Glucocorticoid Receptor and Its Influence on the Actions of Glucocorticoids in Combatting Inflammatory and Infectious Diseases. Microbiol Mol Biol Rev 2016; 80:495-522. [PMID: 27169854 DOI: 10.1128/mmbr.00064-15] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoids (GCs) have been widely used for decades as a first-line treatment for inflammatory and autoimmune diseases. However, their use is often hampered by the onset of adverse effects or resistance. GCs mediate their effects via binding to glucocorticoid receptor (GR), a transcription factor belonging to the family of nuclear receptors. An important aspect of GR's actions, including its anti-inflammatory capacity, involves its interactions with various proteins, such as transcription factors, cofactors, and modifying enzymes, which codetermine receptor functionality. In this review, we provide a state-of-the-art overview of the protein-protein interactions (PPIs) of GR that positively or negatively affect its anti-inflammatory properties, along with mechanistic insights, if known. Emphasis is placed on the interactions that affect its anti-inflammatory effects in the presence of inflammatory and microbial diseases.
Collapse
|
18
|
Khorasani N, Baker J, Johnson M, Chung KF, Bhavsar PK. Reversal of corticosteroid insensitivity by p38 MAPK inhibition in peripheral blood mononuclear cells from COPD. Int J Chron Obstruct Pulmon Dis 2015; 10:283-91. [PMID: 25678784 PMCID: PMC4322842 DOI: 10.2147/copd.s72403] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Corticosteroids (CS) have limited efficacy in the treatment of chronic obstructive pulmonary disease (COPD). p38 mitogen-activated protein kinase (MAPK) activation is increased in lung macrophages of COPD. We investigated whether p38 MAPK inhibition can modulate CS insensitivity of peripheral blood mononuclear cells (PBMCs) from patients with COPD. METHODS PBMCs from patients with COPD (n=8) or healthy smokers (n=8) were exposed to lipopolysaccharide (LPS) with a selective p38 MAPK inhibitor (GW856553; 10(-10)-10(-6) M), with dexamethasone (10(-10)-10(-6) M), or with both. Phosphorylated glucocorticoid receptor (GR) was measured by Western blot. RESULTS Baseline (P<0.01) and LPS-induced (P<0.05) CXCL8 release was greater in PBMCs from COPD compared to healthy smokers. Inhibition of LPS-induced CXCL8 release by dexamethasone (10(-6) M) was reduced, and baseline and LPS-induced p38 MAPK activation increased in PBMCs of COPD. GW856553 (10(-9) and 10(-10) M) synergistically increased the inhibitory effect of dexamethasone (10(-8) and 10(-6) M) on LPS-induced CXCL8 release in COPD. Similar results were obtained for IL-6 release. GW856553 inhibited dexamethasone- and LPS-activated phosphorylation of serine 211 on GR. CS insensitivity in COPD PBMCs is reversed by inhibition of p38 MAPK activity, partly by preventing phosphorylation of GR at serine 211. CONCLUSION p38 MAPK inhibition may be beneficial in COPD by restoring CS sensitivity.
Collapse
Affiliation(s)
- Nadia Khorasani
- Experimental Studies, Airway Disease Section, National Heart and Lung Institute, Imperial College and Biomedical Research Unit, Royal Brompton and Harefield NHS Trust Hospital, London, UK
| | - Josephine Baker
- Experimental Studies, Airway Disease Section, National Heart and Lung Institute, Imperial College and Biomedical Research Unit, Royal Brompton and Harefield NHS Trust Hospital, London, UK
| | | | - Kian Fan Chung
- Experimental Studies, Airway Disease Section, National Heart and Lung Institute, Imperial College and Biomedical Research Unit, Royal Brompton and Harefield NHS Trust Hospital, London, UK
| | - Pankaj K Bhavsar
- Experimental Studies, Airway Disease Section, National Heart and Lung Institute, Imperial College and Biomedical Research Unit, Royal Brompton and Harefield NHS Trust Hospital, London, UK
| |
Collapse
|
19
|
Donnenfeld ED. Current trends in postsurgical management of ocular inflammation following cataract surgery. EXPERT REVIEW OF OPHTHALMOLOGY 2015. [DOI: 10.1586/17469899.2015.996548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Louw-du Toit R, Hapgood JP, Africander D. Medroxyprogesterone acetate differentially regulates interleukin (IL)-12 and IL-10 in a human ectocervical epithelial cell line in a glucocorticoid receptor (GR)-dependent manner. J Biol Chem 2014; 289:31136-49. [PMID: 25202013 DOI: 10.1074/jbc.m114.587311] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Medroxyprogesterone acetate (MPA), designed to mimic the actions of the endogenous hormone progesterone (P4), is extensively used by women as a contraceptive and in hormone replacement therapy. However, little is known about the steroid receptor-mediated molecular mechanisms of action of MPA in the female genital tract. In this study, we investigated the regulation of the pro-inflammatory cytokine, interleukin (IL)-12, and the anti-inflammatory cytokine IL-10, by MPA versus P4, in an in vitro cell culture model of the female ectocervical environment. This study shows that P4 and MPA significantly increase the expression of the IL-12p40 and IL-12p35 genes, whereas IL-10 gene expression is suppressed in a dose-dependent manner. Moreover, these effects were abrogated when reducing the glucocorticoid receptor (GR) levels with siRNA. Using a combination of chromatin immunoprecipitation (ChIP), siRNA, and re-ChIP assays, we show that recruitment of the P4- and MPA-bound GR to the IL-12p40 promoter requires CCAAT enhancer-binding protein (C/EBP)-β and nuclear factor κB (NFκB), although recruitment to the IL-10 promoter requires signal transducer and activator of transcription (STAT)-3. These results suggest that both P4 and MPA may modulate inflammation in the ectocervix via this genomic mechanism.
Collapse
Affiliation(s)
- Renate Louw-du Toit
- From the Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7602 and
| | - Janet P Hapgood
- the Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7700, South Africa
| | - Donita Africander
- From the Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7602 and
| |
Collapse
|
21
|
Govender Y, Avenant C, Verhoog NJD, Ray RM, Grantham NJ, Africander D, Hapgood JP. The injectable-only contraceptive medroxyprogesterone acetate, unlike norethisterone acetate and progesterone, regulates inflammatory genes in endocervical cells via the glucocorticoid receptor. PLoS One 2014; 9:e96497. [PMID: 24840644 PMCID: PMC4026143 DOI: 10.1371/journal.pone.0096497] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 04/07/2014] [Indexed: 12/20/2022] Open
Abstract
Clinical studies suggest that the injectable contraceptive medroxyprogesterone acetate (MPA) increases susceptibility to infections such as HIV-1, unlike the injectable contraceptive norethisterone enanthate (NET-EN). We investigated the differential effects, molecular mechanism of action and steroid receptor involvement in gene expression by MPA as compared to NET and progesterone (P4) in the End1/E6E7 cell line model for the endocervical epithelium, a key point of entry for pathogens in the female genital mucosa. MPA, unlike NET-acetate (NET-A) and P4, increases mRNA expression of the anti-inflammatory GILZ and IκBα genes. Similarly, MPA unlike NET-A, decreases mRNA expression of the pro-inflammatory IL-6, IL-8 and RANTES genes, and IL-6 and IL-8 protein levels. The predominant steroid receptor expressed in the End1/E6E7 and primary endocervical epithelial cells is the glucocorticoid receptor (GR), and GR knockdown experiments show that the anti-inflammatory effects of MPA are mediated by the GR. Chromatin-immunoprecipitation results suggest that MPA, unlike NET-A and P4, represses pro-inflammatory cytokine gene expression in cervical epithelial cells via a mechanism involving recruitment of the GR to cytokine gene promoters, like the GR agonist dexamethasone. This is at least in part consistent with direct effects on transcription, without a requirement for new protein synthesis. Dose response analysis shows that MPA has a potency of ∼24 nM for transactivation of the anti-inflammatory GILZ gene and ∼4–20 nM for repression of the pro-inflammatory genes, suggesting that these effects are likely to be relevant at injectable contraceptive doses of MPA. These findings suggest that in the context of the genital mucosa, these GR-mediated glucocorticoid-like effects of MPA in cervical epithelial cells are likely to play a critical role in discriminating between the effects on inflammation caused by different progestins and P4 and hence susceptibility to genital infections, given the predominant expression of the GR in primary endocervical epithelial cells.
Collapse
Affiliation(s)
- Yashini Govender
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Western Province, South Africa
| | - Chanel Avenant
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Western Province, South Africa
| | - Nicolette J. D. Verhoog
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Western Province, South Africa
| | - Roslyn M. Ray
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Western Province, South Africa
| | - Nicholas J. Grantham
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Western Province, South Africa
| | - Donita Africander
- Department of Biochemistry, Stellenbosch University, Stellenbosch, Western Province, South Africa
| | - Janet P. Hapgood
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Western Province, South Africa
- * E-mail:
| |
Collapse
|
22
|
Nayebosadri A, Ji JY. Endothelial nuclear lamina is not required for glucocorticoid receptor nuclear import but does affect receptor-mediated transcription activation. Am J Physiol Cell Physiol 2013; 305:C309-22. [PMID: 23703529 DOI: 10.1152/ajpcell.00293.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The lamina serves to maintain the nuclear structure and stiffness while acting as a scaffold for heterochromatin and many transcriptional proteins. Its role in endothelial mechanotransduction, specifically how nuclear mechanics impact gene regulation under shear stress, is not fully understood. In this study, we successfully silenced lamin A/C in bovine aortic endothelial cells to determine its role in both glucocorticoid receptor (GR) nuclear translocation and glucocorticoid response element (GRE) transcriptional activation in response to dexamethasone and shear stress. Nuclear translocation of GR, an anti-inflammatory nuclear receptor, in response to dexamethasone or shear stress (5, 10, and 25 dyn/cm(2)) was observed via time-lapse cell imaging and quantified using a Bayesian image analysis algorithm. Transcriptional activity of the GRE promoter was assessed using a dual-luciferase reporter plasmid. We found no dependence on nuclear lamina for GR translocation from the cytoplasm into the nucleus. However, the absence of lamin A/C led to significantly increased expression of luciferase under dexamethasone and shear stress induction as well as changes in histone protein function. PCR results for NF-κB inhibitor alpha (NF-κBIA) and dual specificity phosphatase 1 (DUSP1) genes further supported our luciferase data with increased expression in the absence of lamin. Our results suggest that absence of lamin A/C does not hinder passage of GR into the nucleus, but nuclear lamina is important to properly regulate GRE transcription. Nuclear lamina, rather than histone deacetylase (HDAC), is a more significant mediator of shear stress-induced transcriptional activity, while dexamethasone-initiated transcription is more HDAC dependent. Our findings provide more insights into the molecular pathways involved in nuclear mechanotransduction.
Collapse
Affiliation(s)
- Arman Nayebosadri
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA
| | | |
Collapse
|
23
|
Robertson S, Rohwer JM, Hapgood JP, Louw A. Impact of glucocorticoid receptor density on ligand-independent dimerization, cooperative ligand-binding and basal priming of transactivation: a cell culture model. PLoS One 2013; 8:e64831. [PMID: 23717665 PMCID: PMC3661511 DOI: 10.1371/journal.pone.0064831] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 04/18/2013] [Indexed: 11/26/2022] Open
Abstract
Glucocorticoid receptor (GR) levels vary between tissues and individuals and are altered by physiological and pharmacological effectors. However, the effects and implications of differences in GR concentration have not been fully elucidated. Using three statistically different GR concentrations in transiently transfected COS-1 cells, we demonstrate, using co-immunoprecipitation (CoIP) and fluorescent resonance energy transfer (FRET), that high levels of wild type GR (wtGR), but not of dimerization deficient GR (GRdim), display ligand-independent dimerization. Whole-cell saturation ligand-binding experiments furthermore establish that positive cooperative ligand-binding, with a concomitant increased ligand-binding affinity, is facilitated by ligand-independent dimerization at high concentrations of wtGR, but not GRdim. The down-stream consequences of ligand-independent dimerization at high concentrations of wtGR, but not GRdim, are shown to include basal priming of the system as witnessed by ligand-independent transactivation of both a GRE-containing promoter-reporter and the endogenous glucocorticoid (GC)-responsive gene, GILZ, as well as ligand-independent loading of GR onto the GILZ promoter. Pursuant to the basal priming of the system, addition of ligand results in a significantly greater modulation of transactivation potency than would be expected solely from the increase in ligand-binding affinity. Thus ligand-independent dimerization of the GR at high concentrations primes the system, through ligand-independent DNA loading and transactivation, which together with positive cooperative ligand-binding increases the potency of GR agonists and shifts the bio-character of partial GR agonists. Clearly GR-levels are a major factor in determining the sensitivity to GCs and a critical factor regulating transcriptional programs.
Collapse
Affiliation(s)
- Steven Robertson
- Department of Biochemistry, University of Stellenbosch, Matieland, Stellenbosch, Republic of South Africa
| | - Johann M. Rohwer
- Department of Biochemistry, University of Stellenbosch, Matieland, Stellenbosch, Republic of South Africa
| | - Janet P. Hapgood
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, Republic of South Africa
| | - Ann Louw
- Department of Biochemistry, University of Stellenbosch, Matieland, Stellenbosch, Republic of South Africa
| |
Collapse
|
24
|
Nixon M, Andrew R, Chapman KE. It takes two to tango: dimerisation of glucocorticoid receptor and its anti-inflammatory functions. Steroids 2013; 78:59-68. [PMID: 23127816 DOI: 10.1016/j.steroids.2012.09.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/28/2012] [Accepted: 09/07/2012] [Indexed: 01/30/2023]
Abstract
For a number of years, there has been a widespread view that the adverse side-effects of prolonged glucocorticoid (GC) treatment are a result of glucocorticoid receptor (GR)-mediated gene activation, whilst the beneficial anti-inflammatory effects result from GR-mediated 'transrepression'. Since the introduction of the dimerisation-deficient GR mutant, GR(dim), was apparently unable to activate gene transcription, yet still able to repress pro-inflammatory gene transcription, the search for novel GR modulators has centred on the separation of gene activation from repression by prevention of GR dimerisation. However, recent work has questioned the conclusions drawn from these early GR(dim) studies, with evidence that GR(dim) mutants not only activate gene transcription, but that, in direct contradiction to the initial GR(dim) work, are also capable of forming dimers. This review of the current literature highlights the versatility of the GR in forming homodimer interactions, as well as the ability to bind to alternate nuclear receptors, and investigates the potential implications such varying GR dimer conformations may have for the design of GR ligands with a safer side effect profile.
Collapse
Affiliation(s)
- Mark Nixon
- Endocrinology, University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom
| | | | | |
Collapse
|
25
|
Salem S, Harris T, Mok JSL, Li MYS, Keenan CR, Schuliga MJ, Stewart AG. Transforming growth factor-β impairs glucocorticoid activity in the A549 lung adenocarcinoma cell line. Br J Pharmacol 2012; 166:2036-48. [PMID: 22300324 DOI: 10.1111/j.1476-5381.2012.01885.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The lung adenocarcinoma cell line, A549, undergoes epithelial-mesenchymal cell transition (EMT) in response to TGF-β. Glucocorticoids do not prevent the EMT response, but TGF-β induced resistance to the cytokine-regulatory action of glucocorticoids. We sought to characterize the impairment of glucocorticoid response in A549 cells. EXPERIMENTAL APPROACH A549 cells were exposed to TGF-β for up to 96 h before glucocorticoid treatment and challenge with IL-1α to assess glucocorticoid regulation of IL-6 and CXCL8 production. Nuclear localization of the glucocorticoid receptor α (GRα) was ascertained by immunofluorescence and Western blotting. Transactivation of the glucocorticoid response element (GRE) was measured with a transfected GRE-secreted human placental alkaline phosphatase reporter. KEY RESULTS TGF-β (40-400 pM) reduced the maximum inhibitory effect of dexamethasone on IL-1α-induced IL-6 and CXCL8 production. The impaired glucocorticoid response was detected with 4 h of TGF-β (40 pM) exposure (and 4 h IL-1α to induce CXCL8 expression) and therefore was not secondary to EMT, a process that requires longer incubation periods and higher concentrations of TGF-β. TGF-β also impaired dexamethasone regulation of granulocyte-macrophage colony-stimulating factor in thrombin-stimulated BEAS-2B epithelial cells. Impaired regulation of CXCL8 was associated with markedly reduced GRE transactivation and reduced induction of mRNA for IκBα, the glucocorticoid-inducible leucine zipper and the epithelial sodium channel (SCNN1A). The expression, cellular levels and nuclear localization of GRα were reduced by TGF-β. CONCLUSIONS AND IMPLICATIONS We have identified mechanisms underlying the impairment of responses to glucocorticoids by TGF-β in the A549 and BEAS-2B cell lines.
Collapse
Affiliation(s)
- S Salem
- Department of Pharmacology, University of Melbourne, Vic., Australia
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Alcoholism is characterized by a compulsion to seek and ingest alcohol, loss of control over intake, and the emergence of a negative emotional state during abstinence. We hypothesized that sustained activation of neuroendocrine stress systems (e.g., corticosteroid release via the hypothalamic-pituitary-adrenal axis) by alcohol intoxication and withdrawal and consequent alterations in glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) activation drive compulsive alcohol drinking. Our results showed that rats exposed to alcohol vapor to the point of dependence displayed increased alcohol intake, compulsive drinking measured by progressive-ratio responding, and persistent alcohol consumption despite punishment, assessed by adding quinine to the alcohol solution, compared with control rats that were not exposed to alcohol vapor. No group differences were observed in the self-administration of saccharin-sweetened water. Acute alcohol withdrawal was accompanied by downregulated GR mRNA in various stress/reward-related brain regions [i.e., prefrontal cortex, nucleus accumbens (NAc), and bed nucleus of the stria terminalis (BNST)], whereas protracted alcohol abstinence was accompanied by upregulated GR mRNA in the NAc core, ventral BNST, and central nucleus of the amygdala. No significant alterations in MR mRNA levels were found. Chronic GR antagonism with mifepristone (RU38486) prevented the escalation of alcohol intake and compulsive responding induced by chronic, intermittent alcohol vapor exposure. Chronic treatment with mifepristone also blocked escalated alcohol drinking and compulsive responding during protracted abstinence. Thus, the GR system appears to be involved in the development of alcohol dependence and may represent a potential pharmacological target for the treatment of alcoholism.
Collapse
|
27
|
Awasthi S, Simons SS. Separate regions of glucocorticoid receptor, coactivator TIF2, and comodulator STAMP modify different parameters of glucocorticoid-mediated gene induction. Mol Cell Endocrinol 2012; 355:121-34. [PMID: 22342989 PMCID: PMC3312974 DOI: 10.1016/j.mce.2012.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/02/2012] [Indexed: 11/16/2022]
Abstract
Increased specificity in steroid-regulated gene expression is a long-sought goal of endocrinologists. Considerable progress has resulted from the discovery of coactivators, corepressors, and comodulators that adjust the total activity (A(max)) of gene induction. Two less frequently quantitated, but equally potent, means of improving specificity are the concentration of agonist steroid required for half-maximal activity (EC(50)) and the residual or partial agonist activity displayed by most antisteroids (PAA). It is usually assumed that the modulatory activity of transcriptional cofactors coordinately regulates A(max), EC(50), and PAA. Here we examine the hypothesis that these three parameters can be independently modified by separate protein domains. The test system involves three differently sized fragments of each of three factors (glucocorticoid receptor [GR], coactivator TIF2, and comodulator STAMP), which are shown to form a ternary complex and similarly affect the induction properties of transfected and endogenous genes. Twenty-five different fragment combinations of the ternary complex are examined for their ability to modulate the A(max), EC(50), and PAA of a transiently transfected synthetic reporter gene. Different combinations selectively alter one, two, or all three parameters. These results clearly demonstrate that A(max), EC(50), and PAA can be independently regulated under some conditions by different pathways or molecular interactions. This new mechanistic insight suggests that selected activities of individual transcription factors are attractive targets for small molecules, which would have obvious clinical applications for increasing the specificity of steroids during endocrine therapies.
Collapse
Affiliation(s)
- Smita Awasthi
- Steroid Hormones Section, NIDDK/LERB, National Institutes of Health, Bethesda, MD, United States
| | | |
Collapse
|
28
|
Clark AR, Belvisi MG. Maps and legends: the quest for dissociated ligands of the glucocorticoid receptor. Pharmacol Ther 2011; 134:54-67. [PMID: 22212616 DOI: 10.1016/j.pharmthera.2011.12.004] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 12/07/2011] [Indexed: 01/19/2023]
Abstract
Glucocorticoids are steroid hormones that have pleiotropic effects on development, metabolism, cognitive function and other aspects of physiology. Since the demonstration more than sixty years ago of their capacity to suppress inflammation, synthetic glucocorticoids have been extremely widely used in the treatment of inflammatory diseases. However, their clinical use is limited by numerous, unpredictable and potentially serious side effects. Glucocorticoids regulate gene expression both positively and negatively. Both of these effects are mediated by the glucocorticoid receptor, a ligand-dependent transcription factor. It has become widely accepted that anti-inflammatory effects of glucocorticoids are mostly due to inhibition of transcription, whereas the activation of transcription by the glucocorticoid receptor accounts for the majority of side effects. This dogma (which we refer to as the "transrepression hypothesis") predicts the possibility of uncoupling therapeutic, anti-inflammatory effects from side effects by identifying novel, selective ligands of the glucocorticoid receptor, which preferentially mediate inhibition rather than activation of transcription. It is argued that such "dissociated" glucocorticoid receptor ligands should retain anti-inflammatory potency but cause fewer side effects. Here we critically re-examine the history and foundations of the transrepression hypothesis. We argue that it is incompatible with the complexity of gene regulation by glucocorticoids and poorly supported by experimental evidence; that it no longer aids clear thinking about the actions of the glucocorticoid receptor; and that it will not prove a fruitful basis for continued refinement and improvement of anti-inflammatory drugs that target the glucocorticoid receptor.
Collapse
Affiliation(s)
- Andrew R Clark
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, 65 Aspenlea Road, Hammersmith, London W6 8LH, United Kingdom.
| | | |
Collapse
|
29
|
Beck IM, De Bosscher K, Haegeman G. Glucocorticoid receptor mutants: man-made tools for functional research. Trends Endocrinol Metab 2011; 22:295-310. [PMID: 21549614 DOI: 10.1016/j.tem.2011.03.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 03/20/2011] [Accepted: 03/31/2011] [Indexed: 12/18/2022]
Abstract
The glucocorticoid receptor (GR) is a ligand-dependent transcription factor that can bind to glucocorticoids (GCs). Upon ligand binding, GR sheds its cytoplasmic chaperoning complex and translocates to the nucleus, where it can act as a ligand-dependent transcription factor, transactivating or transrepressing specific gene promoters. Often, GR interacts with specific cofactors to implement a variety of gene promoter effects. GR activity and function is further modulated by post-translational modifications. To assess the diverse aspects of GR mechanisms of activation and gene regulation, researchers continue to use a range of artificial GR mutants. In this review we analyze the characteristics of GR mutants with the aim of assisting the design and interpretation of GR mutant-based experiments.
Collapse
Affiliation(s)
- Ilse M Beck
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Department of Physiology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium.
| | | | | |
Collapse
|
30
|
Verhoog NJD, Du Toit A, Avenant C, Hapgood JP. Glucocorticoid-independent repression of tumor necrosis factor (TNF) alpha-stimulated interleukin (IL)-6 expression by the glucocorticoid receptor: a potential mechanism for protection against an excessive inflammatory response. J Biol Chem 2011; 286:19297-310. [PMID: 21474440 PMCID: PMC3103308 DOI: 10.1074/jbc.m110.193672] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 03/30/2011] [Indexed: 01/04/2023] Open
Abstract
TNFα signaling and cytokine levels play a crucial role in cervical immunity and the host response to infections. We investigated the role of liganded and unliganded glucocorticoid receptor (GR) in IL-6 and IL-8 gene regulation in response to TNFα in the End1/E6E7 immortalized human endocervical epithelial cell line. In the absence of glucocorticoids, both decreasing GR protein levels by an siRNA strategy and results with the GR antagonist RU486 suggest a role for the unliganded GR in reduction of TNFα-induced IL-6 and IL-8 mRNA levels in End1/E6E7 cells. Moreover, GR-dependent repression of endogenous IL-6 mRNA as well as a minimal IL-6 promoter-reporter gene is also demonstrated in COS-1 cells in the absence of GR ligand, suggesting a transcriptional mechanism that is not cell-specific. TNFα induced recruitment of both the unliganded GR and GR-interacting protein type 1 (GRIP-1) to the IL-6 promoter. This, together with GRIP-1 overexpression studies, suggests a function for GRIP-1 as a GR co-repressor in this context. TNFα was shown to induce phosphorylation of the unliganded human GR at Ser-226 but not Ser-211, unlike dexamethasone, which induced hyperphosphorylation at both serine residues. Ser-226 is shown to be required for the ligand-independent GR-mediated repression of IL-6 in response to TNFα. Taken together, these results support a model whereby the unliganded GR attenuates TNFα-stimulated IL-6 transcription by a mechanism involving selective phosphorylation and recruitment of the unliganded GR and GRIP-1 to the IL-6 promoter. These findings suggest the presence of a novel autoregulatory mechanism that may prevent overproduction of IL-6 in the endocervix, possibly protecting against negative effects of excessive inflammation.
Collapse
Affiliation(s)
- Nicolette J. D. Verhoog
- From the Department of Molecular and Cell Biology, University of Cape Town at Rondebosch, Rondebosch, 7701 South Africa
| | - Andrea Du Toit
- From the Department of Molecular and Cell Biology, University of Cape Town at Rondebosch, Rondebosch, 7701 South Africa
| | - Chanel Avenant
- From the Department of Molecular and Cell Biology, University of Cape Town at Rondebosch, Rondebosch, 7701 South Africa
| | - Janet P. Hapgood
- From the Department of Molecular and Cell Biology, University of Cape Town at Rondebosch, Rondebosch, 7701 South Africa
| |
Collapse
|
31
|
Kim MA, Kim DS, Sohn YC. Characterization of two functional glucocorticoid receptors in the marine medaka Oryzias dancena. Gen Comp Endocrinol 2011; 171:341-9. [PMID: 21362423 DOI: 10.1016/j.ygcen.2011.02.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 02/03/2011] [Accepted: 02/21/2011] [Indexed: 01/01/2023]
Abstract
The cDNAs that encode the glucocorticoid receptors odGR1 and odGR2 were cloned from a euryhaline teleost, the marine medaka (Oryzias dancena). The open reading frames of odGR1 and odGR2 encode 790 and 783 amino acids, respectively, and show a sequence identity of 46% with each other. When inter- and intra-species comparisons of the GR domains were made, the N-terminal AF-1 (A/B) and hinge (D) domains showed relatively low identities, whereas the DNA-binding (C) domain (DBD) and ligand-binding (E) domain showed relatively high identities. Through phylogenetic analysis, we revealed that odGR1 and odGR2 belong to the teleost GR1 and GR2 groups, respectively. Transfection of odGR1 or odGR2 expression vectors into COS-7 cells along with a reporter vector demonstrated that cortisol and dexamethasone dose-dependently induce transcriptional activity in both GRs. As described in other teleostean fish, the transactivity of odGR2 was more sensitive at far lower concentrations of ligands than the transactivity of odGR1. When treated with aldosterone, the reporter gene was activated in COS-7 cells transfected with odGR2 but not in cells transfected with odGR1. RU486 inhibited transactivation by both GRs, but odGR2 was less sensitive to the inhibitor. Interestingly, alterations in coregulators, GRIP-1 and SMILE, mediated transactivation that was more drastic for odGR2 than odGR1. A nine-amino acid insertion (WRARQNTDG) in the DBD of odGR1 had a weak but significant influence on the transactivity of odGR2 with respect to responsiveness to agonists or coregulators. Taken together, these results indicate that the two odGRs possess distinct features not only for ligand sensitivity but also for preferential coregulator recruitment.
Collapse
Affiliation(s)
- Mi Ae Kim
- Department of Marine Molecular Biotechnology, Gangneung-Wonju National University, Gangneung 210-702, Republic of Korea
| | | | | |
Collapse
|
32
|
Hapgood JP, Tomasicchio M. Modulation of HIV-1 virulence via the host glucocorticoid receptor: towards further understanding the molecular mechanisms of HIV-1 pathogenesis. Arch Virol 2010; 155:1009-19. [PMID: 20446002 DOI: 10.1007/s00705-010-0678-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 03/26/2010] [Indexed: 10/19/2022]
Abstract
The glucocorticoid receptor (GR) is a steroid receptor that regulates diverse functions, which include the immune response. In humans, the GR acts via binding to cortisol, resulting in the transcriptional modulation of key host genes. Several lines of evidence suggest that the host GR could be a key protein exploited by HIV at multiple levels to ensure its pathogenic success. Endogenous and therapeutic glucocorticoids play important roles in patients with HIV due to their well-established effects on immune function. AIDS patients develop glucocorticoid hypersensitivity, consistent with a mechanism involving an HIV-1-induced increase in expression or activity of the GR. Both the HIV-1 accessory protein Vpr and the host GR affect transcription of viral proteins from the long terminal repeat (LTR) region of the HIV-1 promoter. In addition, Vpr modulates host GR function to affect transcription of host genes, most likely via direct interaction with the GR. Vpr appears to regulate GR function by acting as a co-activator for the GR. Since both the GR and Vpr are involved in apoptosis in T cells and dendritic cells, crosstalk between these proteins may also regulate apoptosis in these and other cells. Given that cortisol is not the only ligand that activates the GR, other endogenous as well as synthetic GR ligands such as progestins may also modulate HIV pathogenesis, in particular in the cervicovaginal environment. Investigating the molecular determinants, ligand-selectivity and role in HIV pathogenesis of the GR-Vpr interaction may lead to new strategies for development of anti-HIV drugs.
Collapse
Affiliation(s)
- Janet Patricia Hapgood
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa.
| | | |
Collapse
|