1
|
Shin HE, Pan C, Curran DM, Bateman TJ, Chong DHY, Ng D, Shah M, Moraes TF. Prevalence of Slam-dependent hemophilins in Gram-negative bacteria. J Bacteriol 2024; 206:e0002724. [PMID: 38814789 PMCID: PMC11332172 DOI: 10.1128/jb.00027-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/08/2024] [Indexed: 06/01/2024] Open
Abstract
Iron acquisition systems are crucial for pathogen growth and survival in iron-limiting host environments. To overcome nutritional immunity, bacterial pathogens evolved to use diverse mechanisms to acquire iron. Here, we examine a heme acquisition system that utilizes hemophores called hemophilins which are also referred to as HphAs in several Gram-negative bacteria. In this study, we report three new HphA structures from Stenotrophomonas maltophilia, Vibrio harveyi, and Haemophilus parainfluenzae. Structural determination of HphAs revealed an N-terminal clamp-like domain that binds heme and a C-terminal eight-stranded β-barrel domain that shares the same architecture as the Slam-dependent Neisserial surface lipoproteins. The genetic organization of HphAs consists of genes encoding a Slam homolog and a TonB-dependent receptor (TBDR). We investigated the Slam-HphA system in the native organism or the reconstituted system in Escherichia coli cells and found that the efficient secretion of HphA depends on Slam. The TBDR also played an important role in heme uptake and conferred specificity for its cognate HphA. Furthermore, bioinformatic analysis of HphA homologs revealed that HphAs are conserved in the alpha, beta, and gammaproteobacteria. Together, these results show that the Slam-dependent HphA-type hemophores are prevalent in Gram-negative bacteria and further expand the role of Slams in transporting soluble proteins. IMPORTANCE This paper describes the structure and function of a family of Slam (Type IX secretion System) secreted hemophores that bacteria use to uptake heme (iron) while establishing an infection. Using structure-based bioinformatics analysis to define the diversity and prevalence of this heme acquisition pathway, we discovered that a large portion of gammaproteobacterial harbors this system. As organisms, including Acinetobacter baumannii, utilize this system to facilitate survival during host invasion, the identification of this heme acquisition system in bacteria species is valuable information and may represent a target for antimicrobials.
Collapse
Affiliation(s)
- Hyejin Esther Shin
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Chuxi Pan
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - David M. Curran
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Thomas J. Bateman
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | | | - Dixon Ng
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Megha Shah
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Trevor F. Moraes
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Elsabbagh S, Landau M, Gross H, Schultz A, Schultz JE. Heme b inhibits class III adenylyl cyclases. Cell Signal 2023; 103:110568. [PMID: 36565898 DOI: 10.1016/j.cellsig.2022.110568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Acidic lipid extracts from mouse liver, kidney, heart, brain, and lung inhibited human pseudoheterodimeric adenylyl cyclases (hACs) expressed in HEK293 cells. Using an acidic lipid extract from bovine lung, a combined MS- and bioassay-guided fractionation identified heme b as inhibitor of membrane-bound ACs. IC50 concentrations were 8-12 μM for the hAC isoforms. Hemopexin and bacterial hemophore attenuated heme b inhibition of hAC5. Structurally related compounds, such as hematin, protoporphyrin IX, and biliverdin, were significantly less effective. Monomeric bacterial class III ACs (mycobacterial ACs Rv1625c; Rv3645; Rv1264; cyanobacterial AC CyaG) were inhibited by heme b with similar efficiency. Surprisingly, structurally related chlorophyll a similarly inhibited hAC5. Heme b inhibited isoproterenol-stimulated cAMP accumulation in HEK293 cells. Using cortical membranes from mouse brain hemin efficiently and reversibly inhibited basal and Gsα-stimulated AC activity. The physiological relevance of heme b inhibition of the cAMP generating system in certain pathologies is discussed.
Collapse
Affiliation(s)
- Sherif Elsabbagh
- Pharmazeutisches Institut der Universität Tübingen, Tübingen, Germany
| | - Marius Landau
- Pharmazeutisches Institut der Universität Tübingen, Tübingen, Germany
| | - Harald Gross
- Pharmazeutisches Institut der Universität Tübingen, Tübingen, Germany
| | - Anita Schultz
- Pharmazeutisches Institut der Universität Tübingen, Tübingen, Germany
| | - Joachim E Schultz
- Pharmazeutisches Institut der Universität Tübingen, Tübingen, Germany.
| |
Collapse
|
3
|
Schmitz JM, Wolters JF, Murray NH, Guerra RM, Bingman CA, Hittinger CT, Pagliarini DJ. Aim18p and Aim46p are chalcone isomerase domain-containing mitochondrial hemoproteins in Saccharomyces cerevisiae. J Biol Chem 2023; 299:102981. [PMID: 36739946 PMCID: PMC9996372 DOI: 10.1016/j.jbc.2023.102981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Chalcone isomerases (CHIs) have well-established roles in the biosynthesis of plant flavonoid metabolites. Saccharomyces cerevisiae possesses two predicted CHI-like proteins, Aim18p (encoded by YHR198C) and Aim46p (YHR199C), but it lacks other enzymes of the flavonoid pathway, suggesting that Aim18p and Aim46p employ the CHI fold for distinct purposes. Here, we demonstrate using proteinase K protection assays, sodium carbonate extractions, and crystallography that Aim18p and Aim46p reside on the mitochondrial inner membrane and adopt CHI folds, but they lack select active site residues and possess an extra fungal-specific loop. Consistent with these differences, Aim18p and Aim46p lack CHI activity and also the fatty acid-binding capabilities of other CHI-like proteins, but instead bind heme. We further show that diverse fungal homologs also bind heme and that Aim18p and Aim46p possess structural homology to a bacterial hemoprotein. Collectively, our work reveals a distinct function and cellular localization for two CHI-like proteins, introduces a new variation of a hemoprotein fold, and suggests that ancestral CHI-like proteins were hemoproteins.
Collapse
Affiliation(s)
- Jonathan M Schmitz
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; Morgridge Institute for Research, Madison, Wisconsin, USA
| | - John F Wolters
- Laboratory of Genetics, Center for Genomic Science Innovation, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nathan H Murray
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; Morgridge Institute for Research, Madison, Wisconsin, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Rachel M Guerra
- Morgridge Institute for Research, Madison, Wisconsin, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Craig A Bingman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, Center for Genomic Science Innovation, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David J Pagliarini
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; Morgridge Institute for Research, Madison, Wisconsin, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, USA; Department of Genetics, Washington University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
4
|
Structural basis for heme detoxification by an ATP-binding cassette-type efflux pump in gram-positive pathogenic bacteria. Proc Natl Acad Sci U S A 2022; 119:e2123385119. [PMID: 35767641 PMCID: PMC9271180 DOI: 10.1073/pnas.2123385119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bacterial pathogens acquire heme from the host hemoglobin as an iron nutrient for their virulence and proliferation in blood. Concurrently, they encounter cytotoxic-free heme that escapes the heme-acquisition process. To overcome this toxicity, many gram-positive bacteria employ an ATP-binding cassette heme-dedicated efflux pump, HrtBA in the cytoplasmic membranes. Although genetic analyses have suggested that HrtBA expels heme from the bacterial membranes, the molecular mechanism of heme efflux remains elusive due to the lack of protein studies. Here, we show the biochemical properties and crystal structures of Corynebacterium diphtheriae HrtBA, alone and in complex with heme or an ATP analog, and we reveal how HrtBA extracts heme from the membrane and releases it. HrtBA consists of two cytoplasmic HrtA ATPase subunits and two transmembrane HrtB permease subunits. A heme-binding site is formed in the HrtB dimer and is laterally accessible to heme in the outer leaflet of the membrane. The heme-binding site captures heme from the membrane using a glutamate residue of either subunit as an axial ligand and sequesters the heme within the rearranged transmembrane helix bundle. By ATP-driven HrtA dimerization, the heme-binding site is squeezed to extrude the bound heme. The mechanism sheds light on the detoxification of membrane-bound heme in this bacterium.
Collapse
|
5
|
Opdam LV, Polanco EA, de Regt B, Lambertina N, Bakker C, Bonnet S, Pandit A. A screening method for binding synthetic metallo-complexes to haem proteins. Anal Biochem 2022; 653:114788. [PMID: 35732212 DOI: 10.1016/j.ab.2022.114788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022]
Abstract
The introduction of a second coordination sphere, in the form of a protein scaffold, to synthetic catalysts can be beneficial for their reactivity and substrate selectivity. Here we present semi-native polyacrylamide gel electrophoresis (semi-native PAGE) as a rapid screening method for studying metal complex-protein interactions. Such a screening is generally performed using electron spray ionization mass spectrometry (ESI-MS) and/or UV-Vis spectroscopy. Semi-native PAGE analysis has the advantage that it does not rely on spectral changes of the metal complex upon protein interaction and can be applied for high-throughput screening and optimization of complex binding. In semi-native PAGE non-denatured protein samples are loaded on a gel containing sodium dodecyl sulphate (SDS), leading to separation based on differences in structural stability. Semi-native PAGE gel runs of catalyst-protein mixtures were compared to gel runs obtained with native and denaturing PAGE. ESI-MS was additionally realised to confirm protein-complex binding. The general applicability of semi-native PAGE was investigated by screening the binding of various cobalt- and ruthenium-based compounds to three types of haem proteins.
Collapse
Affiliation(s)
- Laura V Opdam
- SSNMR/BPOC, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Ehider A Polanco
- MCBIM Departments, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Boyd de Regt
- SSNMR/BPOC, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | | | - Cas Bakker
- SSNMR/BPOC, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Sylvestre Bonnet
- MCBIM Departments, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Anjali Pandit
- SSNMR/BPOC, Einsteinweg 55, 2333 CC, Leiden, the Netherlands.
| |
Collapse
|
6
|
Abstract
Although fluorescent proteins have been utilized for a variety of biological applications, they have several optical limitations, namely weak red and near-infrared emission and exceptionally broad (>200 nm) emission profiles. The photophysical properties of fluorescent proteins can be enhanced through the incorporation of novel cofactors with the desired properties into a stable protein scaffold. To this end, a fluorescent phosphorus corrole that is structurally similar to the native heme cofactor is incorporated into two exceptionally stable heme proteins: H-NOX from Caldanaerobacter subterraneus and heme acquisition system protein A (HasA) from Pseudomonas aeruginosa. These yellow-orange emitting protein conjugates are examined by steady-state and time-resolved optical spectroscopy. The HasA conjugate exhibits enhanced fluorescence, whereas emission from the H-NOX conjugate is quenched relative to the free corrole. Despite the low fluorescence quantum yields, these corrole-substituted proteins exhibit more intense fluorescence in a narrower spectral profile than traditional fluorescent proteins that emit in the same spectral window. This study demonstrates that fluorescent corrole complexes are readily incorporated into heme proteins and provides an inroad for the development of novel fluorescent proteins.
Collapse
Affiliation(s)
- Christopher M Lemon
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, California 94720, United States.,Miller Institute for Basic Research in Science, University of California, Berkeley, Berkeley, California 94720, United States
| | - Michael A Marletta
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Binding of HasA by its transmembrane receptor HasR follows a conformational funnel mechanism. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 49:39-57. [PMID: 31802151 PMCID: PMC6981324 DOI: 10.1007/s00249-019-01411-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/07/2019] [Accepted: 11/20/2019] [Indexed: 10/29/2022]
Abstract
HasR in the outer membrane of Serratia marcescens binds secreted, heme-loaded HasA and translocates the heme to the periplasm to satisfy the cell's demand for iron. The previously published crystal structure of the wild-type complex showed HasA in a very specific binding arrangement with HasR, apt to relax the grasp on the heme and assure its directed transfer to the HasR-binding site. Here, we present a new crystal structure of the heme-loaded HasA arranged with a mutant of HasR, called double mutant (DM) in the following that seemed to mimic a precursor stage of the abovementioned final arrangement before heme transfer. To test this, we performed first molecular dynamics (MD) simulations starting at the crystal structure of the complex of HasA with the DM mutant and then targeted MD simulations of the entire binding process beginning with heme-loaded HasA in solution. When the simulation starts with the former complex, the two proteins in most simulations do not dissociate. When the mutations are reverted to the wild-type sequence, dissociation and development toward the wild-type complex occur in most simulations. This indicates that the mutations create or enhance a local energy minimum. In the targeted MD simulations, the first protein contacts depend upon the chosen starting position of HasA in solution. Subsequently, heme-loaded HasA slides on the external surface of HasR on paths that converge toward the specific arrangement apt for heme transfer. The targeted simulations end when HasR starts to relax the grasp on the heme, the subsequent events being in a time regime inaccessible to the available computing power. Interestingly, none of the ten independent simulation paths visits exactly the arrangement of HasA with HasR seen in the crystal structure of the mutant. Two factors which do not exclude each other could explain these observations: the double mutation creates a non-physiologic potential energy minimum between the two proteins and /or the target potential in the simulation pushes the system along paths deviating from the low-energy paths of the native binding processes. Our results support the former view, but do not exclude the latter possibility.
Collapse
|
8
|
Latham RD, Torrado M, Atto B, Walshe JL, Wilson R, Guss JM, Mackay JP, Tristram S, Gell DA. A heme-binding protein produced by Haemophilus haemolyticus inhibits non-typeable Haemophilus influenzae. Mol Microbiol 2019; 113:381-398. [PMID: 31742788 DOI: 10.1111/mmi.14426] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 01/02/2023]
Abstract
Commensal bacteria serve as an important line of defense against colonisation by opportunisitic pathogens, but the underlying molecular mechanisms remain poorly explored. Here, we show that strains of a commensal bacterium, Haemophilus haemolyticus, make hemophilin, a heme-binding protein that inhibits growth of the opportunistic pathogen, non-typeable Haemophilus influenzae (NTHi) in culture. We purified the NTHi-inhibitory protein from H. haemolyticus and identified the hemophilin gene using proteomics and a gene knockout. An x-ray crystal structure of recombinant hemophilin shows that the protein does not belong to any of the known heme-binding protein folds, suggesting that it evolved independently. Biochemical characterisation shows that heme can be captured in the ferrous or ferric state, and with a variety of small heme-ligands bound, suggesting that hemophilin could function under a range of physiological conditions. Hemophilin knockout bacteria show a limited capacity to utilise free heme for growth. Our data suggest that hemophilin is a hemophore and that inhibition of NTHi occurs by heme starvation, raising the possibility that competition from hemophilin-producing H. haemolyticus could antagonise NTHi colonisation in the respiratory tract.
Collapse
Affiliation(s)
- Roger D Latham
- School of Medicine, University of Tasmania, Hobart, Australia
| | - Mario Torrado
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Brianna Atto
- School of Health Sciences, University of Tasmania, Launceston, Australia
| | - James L Walshe
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, Australia
| | - J Mitchell Guss
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Stephen Tristram
- School of Health Sciences, University of Tasmania, Launceston, Australia
| | - David A Gell
- School of Medicine, University of Tasmania, Hobart, Australia
| |
Collapse
|
9
|
Richard KL, Kelley BR, Johnson JG. Heme Uptake and Utilization by Gram-Negative Bacterial Pathogens. Front Cell Infect Microbiol 2019; 9:81. [PMID: 30984629 PMCID: PMC6449446 DOI: 10.3389/fcimb.2019.00081] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
Iron is a transition metal utilized by nearly all forms of life for essential cellular processes, such as DNA synthesis and cellular respiration. During infection by bacterial pathogens, the host utilizes various strategies to sequester iron in a process termed, nutritional immunity. To circumvent these defenses, Gram-negative pathogens have evolved numerous mechanisms to obtain iron from heme. In this review we outline the systems that exist in several Gram-negative pathogens that are associated with heme transport and utilization, beginning with hemolysis and concluding with heme degradation. In addition, Gram-negative pathogens must also closely regulate the intracellular concentrations of iron and heme, since high levels of iron can lead to the generation of toxic reactive oxygen species. As such, we also provide several examples of regulatory pathways that control heme utilization, showing that co-regulation with other cellular processes is complex and often not completely understood.
Collapse
Affiliation(s)
- Kaylie L Richard
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Brittni R Kelley
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Jeremiah G Johnson
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
10
|
Electrochemical characterization of Fe center from hemin binding with Yersinia pestis heme-protein acquisition system. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.12.109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Li X, Ma Y, Liang S, Tian Y, Yin S, Xie S, Xie H. Comparative genomics of 84 Pectobacterium genomes reveals the variations related to a pathogenic lifestyle. BMC Genomics 2018; 19:889. [PMID: 30526490 PMCID: PMC6286560 DOI: 10.1186/s12864-018-5269-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/19/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Pectobacterium spp. are necrotrophic bacterial plant pathogens of the family Pectobacteriaceae, responsible for a wide spectrum of diseases of important crops and ornamental plants including soft rot, blackleg, and stem wilt. P. carotovorum is a genetically heterogeneous species consisting of three valid subspecies, P. carotovorum subsp. brasiliense (Pcb), P. carotovorum subsp. carotovorum (Pcc), and P. carotovorum subsp. odoriferum (Pco). RESULTS Thirty-two P. carotovorum strains had their whole genomes sequenced, including the first complete genome of Pco and another circular genome of Pcb, as well as the high-coverage genome sequences for 30 additional strains covering Pcc, Pcb, and Pco. In combination with 52 other publicly available genome sequences, the comparative genomics study of P. carotovorum and other four closely related species P. polaris, P. parmentieri, P. atrosepticum, and Candidatus P. maceratum was conducted focusing on CRISPR-Cas defense systems and pathogenicity determinants. Our analysis identified two CRISPR-Cas types (I-F and I-E) in Pectobacterium, as well as another I-C type in Dickeya that is not found in Pectobacterium. The core pathogenicity factors (e.g., plant cell wall-degrading enzymes) were highly conserved, whereas some factors (e.g., flagellin, siderophores, polysaccharides, protein secretion systems, and regulatory factors) were varied among these species and/or subspecies. Notably, a novel type of T6SS as well as the sorbitol metabolizing srl operon was identified to be specific to Pco in Pectobacterium. CONCLUSIONS This study not only advances the available knowledge about the genetic differentiation of individual subspecies of P. carotovorum, but also delineates the general genetic features of P. carotovorum by comparison with its four closely related species, thereby substantially enriching the extent of information now available for functional genomic investigations about Pectobacterium.
Collapse
Affiliation(s)
- Xiaoying Li
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 People’s Republic of China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097 People’s Republic of China
| | - Yali Ma
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 People’s Republic of China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097 People’s Republic of China
| | - Shuqing Liang
- Health Time Gene Institute, Shenzhen, Guangdong 518000 People’s Republic of China
| | - Yu Tian
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 People’s Republic of China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097 People’s Republic of China
| | - Sanjun Yin
- Health Time Gene Institute, Shenzhen, Guangdong 518000 People’s Republic of China
| | - Sisi Xie
- Health Time Gene Institute, Shenzhen, Guangdong 518000 People’s Republic of China
| | - Hua Xie
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 People’s Republic of China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097 People’s Republic of China
| |
Collapse
|
12
|
Chao A, Sieminski PJ, Owens CP, Goulding CW. Iron Acquisition in Mycobacterium tuberculosis. Chem Rev 2018; 119:1193-1220. [PMID: 30474981 DOI: 10.1021/acs.chemrev.8b00285] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The highly contagious disease tuberculosis (TB) is caused by the bacterium Mycobacterium tuberculosis (Mtb), which has been evolving drug resistance at an alarming rate. Like all human pathogens, Mtb requires iron for growth and virulence. Consequently, Mtb iron transport is an emerging drug target. However, the development of anti-TB drugs aimed at these metabolic pathways has been restricted by the dearth of information on Mtb iron acquisition. In this Review, we describe the multiple strategies utilized by Mtb to acquire ferric iron and heme iron. Mtb iron uptake is a complex process, requiring biosynthesis and subsequent export of Mtb siderophores, followed by ferric iron scavenging and ferric-siderophore import into Mtb. Additionally, Mtb possesses two possible heme uptake pathways and an Mtb-specific mechanism of heme degradation that yields iron and novel heme-degradation products. We conclude with perspectives for potential therapeutics that could directly target Mtb heme and iron uptake machineries. We also highlight how hijacking Mtb heme and iron acquisition pathways for drug import may facilitate drug transport through the notoriously impregnable Mtb cell wall.
Collapse
Affiliation(s)
| | | | - Cedric P Owens
- Schmid College of Science and Technology , Chapman University , Orange , California 92866 , United States
| | | |
Collapse
|
13
|
Diverse structural approaches to haem appropriation by pathogenic bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:422-433. [PMID: 28130069 DOI: 10.1016/j.bbapap.2017.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/16/2017] [Accepted: 01/23/2017] [Indexed: 11/24/2022]
Abstract
The critical need for iron presents a challenge for pathogenic bacteria that must survive in an environment bereft of accessible iron due to a natural low bioavailability and their host's nutritional immunity. Appropriating haem, either direct from host haemoproteins or by secreting haem-scavenging haemophores, is one way pathogenic bacteria can overcome this challenge. After capturing their target, haem appropriation systems must remove haem from a high-affinity binding site (on the host haemoprotein or bacterial haemophore) and transfer it to a binding site of lower affinity on a bacterial receptor. Structural information is now available to show how, using a combination of induced structural changes and steric clashes, bacteria are able to extract haem from haemophores, haemopexin and haemoglobin. This review focuses on structural descriptions of these bacterial haem acquisition systems, summarising how they bind haem and their target haemoproteins with particularly emphasis on the mechanism of haem extraction.
Collapse
|
14
|
Choo JM, Cheung JK, Wisniewski JA, Steer DL, Bulach DM, Hiscox TJ, Chakravorty A, Smith AI, Gell DA, Rood JI, Awad MM. The NEAT Domain-Containing Proteins of Clostridium perfringens Bind Heme. PLoS One 2016; 11:e0162981. [PMID: 27637108 PMCID: PMC5026354 DOI: 10.1371/journal.pone.0162981] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 08/31/2016] [Indexed: 12/27/2022] Open
Abstract
The ability of a pathogenic bacterium to scavenge iron from its host is important for its growth and survival during an infection. Our studies on C. perfringens gas gangrene strain JIR325, a derivative of strain 13, showed that it is capable of utilizing both human hemoglobin and ferric chloride, but not human holo-transferrin, as an iron source for in vitro growth. Analysis of the C. perfringens strain 13 genome sequence identified a putative heme acquisition system encoded by an iron-regulated surface gene region that we have named the Cht (Clostridium perfringensheme transport) locus. This locus comprises eight genes that are co-transcribed and includes genes that encode NEAT domain-containing proteins (ChtD and ChtE) and a putative sortase (Srt). The ChtD, ChtE and Srt proteins were shown to be expressed in JIR325 cells grown under iron-limited conditions and were localized to the cell envelope. Moreover, the NEAT proteins, ChtD and ChtE, were found to bind heme. Both chtDE and srt mutants were constructed, but these mutants were not defective in hemoglobin or ferric chloride utilization. They were, however, attenuated for virulence when tested in a mouse myonecrosis model, although the virulence phenotype could not be restored via complementation and, as is common with such systems, secondary mutations were identified in these strains. In summary, this study provides evidence for the functional redundancies that occur in the heme transport pathways of this life threatening pathogen.
Collapse
Affiliation(s)
- Jocelyn M. Choo
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Jackie K. Cheung
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Jessica A. Wisniewski
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - David L. Steer
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Dieter M. Bulach
- Victorian Bioinformatics Consortium, Monash University, Clayton, Victoria, Australia
| | - Thomas J. Hiscox
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Anjana Chakravorty
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - A. Ian Smith
- Victorian Bioinformatics Consortium, Monash University, Clayton, Victoria, Australia
| | - David A. Gell
- School of Medicine, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Julian I. Rood
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Milena M. Awad
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
- * E-mail:
| |
Collapse
|
15
|
Piel RB, Shiferaw MT, Vashisht AA, Marcero JR, Praissman JL, Phillips JD, Wohlschlegel JA, Medlock AE. A Novel Role for Progesterone Receptor Membrane Component 1 (PGRMC1): A Partner and Regulator of Ferrochelatase. Biochemistry 2016; 55:5204-17. [PMID: 27599036 DOI: 10.1021/acs.biochem.6b00756] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Heme is an iron-containing cofactor essential for multiple cellular processes and fundamental activities such as oxygen transport. To better understand the means by which heme synthesis is regulated during erythropoiesis, affinity purification coupled with mass spectrometry (MS) was performed to identify putative protein partners interacting with ferrochelatase (FECH), the terminal enzyme in the heme biosynthetic pathway. Both progesterone receptor membrane component 1 (PGRMC1) and progesterone receptor membrane component 2 (PGRMC2) were identified in these experiments. These interactions were validated by reciprocal affinity purification followed by MS analysis and immunoblotting. The interaction between PGRMC1 and FECH was confirmed in vitro and in HEK 293T cells, a non-erythroid cell line. When cells that are recognized models for erythroid differentiation were treated with a small molecule inhibitor of PGRMC1, AG-205, there was an observed decrease in the level of hemoglobinization relative to that of untreated cells. In vitro heme transfer experiments showed that purified PGRMC1 was able to donate heme to apo-cytochrome b5. In the presence of PGRMC1, in vitro measured FECH activity decreased in a dose-dependent manner. Interactions between FECH and PGRMC1 were strongest for the conformation of FECH associated with product release, suggesting that PGRMC1 may regulate FECH activity by controlling heme release. Overall, the data illustrate a role for PGRMC1 in regulating heme synthesis via interactions with FECH and suggest that PGRMC1 may be a heme chaperone or sensor.
Collapse
Affiliation(s)
- Robert B Piel
- Department of Biochemistry and Molecular Biology, Biomedical and Health Sciences Institute, AU/UGA Medical Partnership, University of Georgia , Athens, Georgia 30602, United States
| | - Mesafint T Shiferaw
- Department of Biochemistry and Molecular Biology, Biomedical and Health Sciences Institute, AU/UGA Medical Partnership, University of Georgia , Athens, Georgia 30602, United States
| | - Ajay A Vashisht
- Department of Biological Chemistry, University of California , Los Angeles, California 90095-1737, United States
| | - Jason R Marcero
- Department of Biochemistry and Molecular Biology, Biomedical and Health Sciences Institute, AU/UGA Medical Partnership, University of Georgia , Athens, Georgia 30602, United States
| | - Jeremy L Praissman
- Department of Biochemistry and Molecular Biology, Biomedical and Health Sciences Institute, AU/UGA Medical Partnership, University of Georgia , Athens, Georgia 30602, United States
| | - John D Phillips
- Hematology Division, University of Utah School of Medicine , Salt Lake City, Utah 84132, United States
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California , Los Angeles, California 90095-1737, United States
| | - Amy E Medlock
- Department of Biochemistry and Molecular Biology, Biomedical and Health Sciences Institute, AU/UGA Medical Partnership, University of Georgia , Athens, Georgia 30602, United States
| |
Collapse
|
16
|
Bennett EH, Akbas N, Adrian SA, Lukat-Rodgers GS, Collins DP, Dawson JH, Allen CE, Schmitt MP, Rodgers KR, Dixon DW. Heme Binding by Corynebacterium diphtheriae HmuT: Function and Heme Environment. Biochemistry 2015; 54:6598-609. [PMID: 26478504 PMCID: PMC4943319 DOI: 10.1021/acs.biochem.5b00666] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The heme uptake pathway (hmu) of Corynebacterium diphtheriae utilizes multiple proteins to bind and transport heme into the cell. One of these proteins, HmuT, delivers heme to the ABC transporter HmuUV. In this study, the axial ligation of the heme in ferric HmuT is probed by examination of wild-type (WT) HmuT and a series of conserved heme pocket residue mutants, H136A, Y235A, and M292A. Characterization by UV-visible, resonance Raman, and magnetic circular dichroism spectroscopies indicates that H136 and Y235 are the axial ligands in ferric HmuT. Consistent with this assignment of axial ligands, ferric WT and H136A HmuT are difficult to reduce while Y235A is reduced readily in the presence of dithionite. The FeCO Raman shifts in WT, H136A, and Y235A HmuT-CO complexes provide further evidence of the axial ligand assignments. Additionally, these frequencies provide insight into the nonbonding environment of the heme pocket. Ferrous Y235A and the Y235A-CO complex reveal that the imidazole of H136 exists in two forms, one neutral and one with imidazolate character, consistent with a hydrogen bond acceptor on the H136 side of the heme. The ferric fluoride complex of Y235A reveals the presence of at least one hydrogen bond donor on the Y235 side of the heme. Hemoglobin utilization assays showed that the axial Y235 ligand is required for heme uptake in HmuT.
Collapse
Affiliation(s)
| | - Neval Akbas
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965
| | - Seth A. Adrian
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050
| | - Gudrun S. Lukat-Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050
| | - Daniel P. Collins
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - John H. Dawson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Courtni E. Allen
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation, and Research, Food and Drug Administration, Silver Spring, Maryland 20993
| | - Michael P. Schmitt
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation, and Research, Food and Drug Administration, Silver Spring, Maryland 20993
| | - Kenton R. Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050
| | - Dabney W. Dixon
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965
| |
Collapse
|
17
|
Hameed S, Pal R, Fatima Z. Iron Acquisition Mechanisms: Promising Target Against Mycobacterium tuberculosis. Open Microbiol J 2015; 9:91-7. [PMID: 26464608 PMCID: PMC4598388 DOI: 10.2174/1874285801509010091] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 07/13/2015] [Accepted: 07/13/2015] [Indexed: 02/04/2023] Open
Abstract
Continuous deployment of antitubercular drugs in treating Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB) has led to the emergence of drug resistance resulting in cross-resistance to many unrelated drugs, a phenomenon termed as Multi-Drug Resistance (MDR-TB). Despite reasonable documentation of major factors which contribute to MDR mechanisms, it appears unavoidable to consider novel mechanisms combating MDR. The ability of pathogenic MTB, to sense and become accustomed to changes in the host environment is essential for its survival and confers the basis of their success as dreadful pathogen. One such significant environmental factor that MTB must surmount is iron limitation, since they encounter diverse anatomical sites during the establishment of infection within the host. Considering the importance of MTB, being the second most common cause of mortality, this review focuses on gaining insights of iron acquisition mechanisms in MTB and how it can be exploited as efficient anti-mycobacterial drug target.
Collapse
Affiliation(s)
- Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon (Manesar)-122413, India
| | - Rahul Pal
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon (Manesar)-122413, India
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon (Manesar)-122413, India
| |
Collapse
|
18
|
Delepelaire P, Izadi-Pruneyre N, Delepierre M, Ghigo JM, Schwartz M. A tribute to Cécile Wandersman. Res Microbiol 2015; 166:393-8. [PMID: 26258186 DOI: 10.1016/j.resmic.2015.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Schubert E, Florin N, Duthie F, Henning Brewitz H, Kühl T, Imhof D, Hagelueken G, Schiemann O. Spectroscopic studies on peptides and proteins with cysteine-containing heme regulatory motifs (HRM). J Inorg Biochem 2015; 148:49-56. [DOI: 10.1016/j.jinorgbio.2015.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 05/15/2015] [Accepted: 05/15/2015] [Indexed: 11/16/2022]
|
20
|
Ascenzi P, di Masi A, Leboffe L, Frangipani E, Nardini M, Verde C, Visca P. Structural Biology of Bacterial Haemophores. Adv Microb Physiol 2015; 67:127-76. [PMID: 26616517 DOI: 10.1016/bs.ampbs.2015.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Iron plays a key role in a wide range of metabolic and signalling functions representing an essential nutrient for almost all forms of life. However, the ferric form is hardly soluble, whereas the ferrous form is highly toxic. Thus, in biological fluids, most of the iron is sequestered in iron- or haem-binding proteins and the level of free iron is low, making haem and iron acquisition a challenge for pathogenic bacteria during infections. Although toxic to the host, free haem is a major and readily available source of iron for several pathogenic microorganisms. Both Gram-positive and Gram-negative bacteria have developed several strategies to acquire free haem-Fe and protein-bound haem-Fe. Haemophores are a class of secreted and cell surface-exposed proteins promoting free-haem uptake, haem extraction from host haem proteins, and haem presentation to specific outer-membrane receptors that internalize the metal-porphyrins. Here, structural biology of bacterial haemophores is reviewed focusing on haem acquisition, haem internalization, and haem-degrading systems.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Laboratorio Interdipartimentale di Microscopia Elettronica, Università Roma Tre, Roma, Italy; Istituto di Bioscienze e BioRisorse, Consiglio Nazionale delle Ricerche, Napoli, Italy.
| | | | - Loris Leboffe
- Dipartimento di Scienze, Università Roma Tre, Roma, Italy
| | | | - Marco Nardini
- Dipartimento di Bioscienze, Università di Milano, Milano, Italy
| | - Cinzia Verde
- Istituto di Bioscienze e BioRisorse, Consiglio Nazionale delle Ricerche, Napoli, Italy; Dipartimento di Scienze, Università Roma Tre, Roma, Italy
| | - Paolo Visca
- Dipartimento di Scienze, Università Roma Tre, Roma, Italy
| |
Collapse
|
21
|
Nicoletti FP, Bustamante JP, Droghetti E, Howes BD, Fittipaldi M, Bonamore A, Baiocco P, Feis A, Boffi A, Estrin DA, Smulevich G. Interplay of the H-Bond Donor–Acceptor Role of the Distal Residues in Hydroxyl Ligand Stabilization of Thermobifida fusca Truncated Hemoglobin. Biochemistry 2014; 53:8021-30. [DOI: 10.1021/bi501132a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Francesco P. Nicoletti
- Dipartimento
di Chimica “Ugo Schiff”, Università di Firenze, Via della
Lastruccia 3-13, I-50019 Sesto Fiorentino (FI), Italy
| | | | - Enrica Droghetti
- Dipartimento
di Chimica “Ugo Schiff”, Università di Firenze, Via della
Lastruccia 3-13, I-50019 Sesto Fiorentino (FI), Italy
| | - Barry D. Howes
- Dipartimento
di Chimica “Ugo Schiff”, Università di Firenze, Via della
Lastruccia 3-13, I-50019 Sesto Fiorentino (FI), Italy
| | - Maria Fittipaldi
- INSTM
and Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, via Sansone 1, I-50019 Sesto Fiorentino, Italy
| | - Alessandra Bonamore
- Institute
Pasteur, Fondazione Cenci Bolognetti, Department of Biochemical Sciences
and CNR, Institute of Molecular Biology and Pathology, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Paola Baiocco
- Center of
Life Nano Sciences, Italian Institute of Technology, Viale Regina
Elena 291, I-00161 Rome, Italy
| | - Alessandro Feis
- Dipartimento
di Chimica “Ugo Schiff”, Università di Firenze, Via della
Lastruccia 3-13, I-50019 Sesto Fiorentino (FI), Italy
| | - Alberto Boffi
- Institute
Pasteur, Fondazione Cenci Bolognetti, Department of Biochemical Sciences
and CNR, Institute of Molecular Biology and Pathology, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | | | - Giulietta Smulevich
- Dipartimento
di Chimica “Ugo Schiff”, Università di Firenze, Via della
Lastruccia 3-13, I-50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
22
|
Mokry DZ, Nadia-Albete A, Johnson MK, Lukat-Rodgers GS, Rodgers KR, Lanzilotta WN. Spectroscopic evidence for a 5-coordinate oxygenic ligated high spin ferric heme moiety in the Neisseria meningitidis hemoglobin binding receptor. Biochim Biophys Acta Gen Subj 2014; 1840:3058-66. [PMID: 24968987 DOI: 10.1016/j.bbagen.2014.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 06/13/2014] [Accepted: 06/16/2014] [Indexed: 01/04/2023]
Abstract
BACKGROUND For many pathogenic microorganisms, iron acquisition represents a significant stress during the colonization of a mammalian host. Heme is the single most abundant source of soluble iron in this environment. While the importance of iron assimilation for nearly all organisms is clear, the mechanisms by which heme is acquired and utilized by many bacterial pathogens, even those most commonly found at sites of infection, remain poorly understood. METHODS An alternative protocol for the production and purification of the outer membrane hemoglobin receptor (HmbR) from the pathogen Neisseria meningitidis has facilitated a biophysical characterization of this outer membrane transporter by electronic absorption, circular dichroism, electron paramagnetic resonance, and resonance Raman techniques. RESULTS HmbR co-purifies with 5-coordinate high spin ferric heme bound. The heme binding site accommodates exogenous imidazole as a sixth ligand, which results in a 6-coordinate, low-spin ferric species. Both the 5- and 6-coordinate complexes are reduced by sodium hydrosulfite. Four HmbR variants with a modest decrease in binding efficiency for heme have been identified (H87C, H280A, Y282A, and Y456C). These findings are consistent with an emerging paradigm wherein the ferric iron center of bound heme is coordinated by a tyrosine ligand. CONCLUSION In summary, this study provides the first spectroscopic characterization for any heme or iron transporter in Neisseria meningitidis, and suggests a coordination environment heretofore unobserved in a TonB-dependent hemin transporter. GENERAL SIGNIFICANCE A detailed understanding of the nutrient acquisition pathways in common pathogens such as N. meningitidis provides a foundation for new antimicrobial strategies.
Collapse
Affiliation(s)
- David Z Mokry
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | | | - Michael K Johnson
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Gudrun S Lukat-Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Kenton R Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA
| | - William N Lanzilotta
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
23
|
Insights on how the Mycobacterium tuberculosis heme uptake pathway can be used as a drug target. Future Med Chem 2014; 5:1391-403. [PMID: 23919550 DOI: 10.4155/fmc.13.109] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) acquires non-heme iron through salicylate-derived siderophores termed mycobactins whereas heme iron is obtained through a cascade of heme uptake proteins. Three proteins are proposed to mediate Mtb heme iron uptake, a secreted heme transporter (Rv0203), and MmpL3 and MmpL11, which are potential transmembrane heme transfer proteins. Furthermore, MhuD, a cytoplasmic heme-degrading enzyme, has been identified. Rv0203, MmpL3 and MmpL11 are mycobacteria-specific proteins, making them excellent drug targets. Importantly, MmpL3, a necessary protein, has also been implicated in trehalose monomycolate export. Recent drug-discovery efforts revealed that MmpL3 is the target of several compounds with antimycobacterial activity. Inhibition of the Mtb heme uptake pathway has yet to be explored. We propose that inhibitor design could focus on heme analogs, with the goal of blocking specific steps of this pathway. In addition, heme uptake could be hijacked as a method of importing drugs into the mycobacterial cytosol.
Collapse
|
24
|
Abu Tarboush N, Yukl ET, Shin S, Feng M, Wilmot CM, Davidson VL. Carboxyl group of Glu113 is required for stabilization of the diferrous and bis-Fe(IV) states of MauG. Biochemistry 2013; 52:6358-67. [PMID: 23952537 DOI: 10.1021/bi400905s] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The diheme enzyme MauG catalyzes a six-electron oxidation required for post-translational modification of a precursor of methylamine dehydrogenase (preMADH) to complete the biosynthesis of its protein-derived tryptophan tryptophylquinone (TTQ) cofactor. Crystallographic studies have implicated Glu113 in the formation of the bis-Fe(IV) state of MauG, in which one heme is Fe(IV)═O and the other is Fe(IV) with His-Tyr axial ligation. An E113Q mutation had no effect on the structure of MauG but significantly altered its redox properties. E113Q MauG could not be converted to the diferrous state by reduction with dithionite but was only reduced to a mixed valence Fe(II)/Fe(III) state, which is never observed in wild-type (WT) MauG. Addition of H2O2 to E113Q MauG generated a high valence state that formed more slowly and was less stable than the bis-Fe(IV) state of WT MauG. E113Q MauG exhibited no detectable TTQ biosynthesis activity in a steady-state assay with preMADH as the substrate. It did catalyze the steady-state oxidation of quinol MADH to the quinone, but 1000-fold less efficiently than WT MauG. Addition of H2O2 to a crystal of the E113Q MauG-preMADH complex resulted in partial synthesis of TTQ. Extended exposure of these crystals to H2O2 resulted in hydroxylation of Pro107 in the distal pocket of the high-spin heme. It is concluded that the loss of the carboxylic group of Glu113 disrupts the redox cooperativity between hemes that allows rapid formation of the diferrous state and alters the distribution of high-valence species that participate in charge-resonance stabilization of the bis-Fe(IV) redox state.
Collapse
Affiliation(s)
- Nafez Abu Tarboush
- Biochemistry and Physiology Department, College of Medicine, The University of Jordan , Amman, Jordan 11942
| | | | | | | | | | | |
Collapse
|
25
|
Owens CP, Chim N, Graves AB, Harmston CA, Iniguez A, Contreras H, Liptak MD, Goulding CW. The Mycobacterium tuberculosis secreted protein Rv0203 transfers heme to membrane proteins MmpL3 and MmpL11. J Biol Chem 2013; 288:21714-28. [PMID: 23760277 DOI: 10.1074/jbc.m113.453076] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mycobacterium tuberculosis is the causative agent of tuberculosis, which is becoming an increasingly global public health problem due to the rise of drug-resistant strains. While residing in the human host, M. tuberculosis needs to acquire iron for its survival. M. tuberculosis has two iron uptake mechanisms, one that utilizes non-heme iron and another that taps into the vast host heme-iron pool. To date, proteins known to be involved in mycobacterial heme uptake are Rv0203, MmpL3, and MmpL11. Whereas Rv0203 transports heme across the bacterial periplasm or scavenges heme from host heme proteins, MmpL3 and MmpL11 are thought to transport heme across the membrane. In this work, we characterize the heme-binding properties of the predicted extracellular soluble E1 domains of both MmpL3 and MmpL11 utilizing absorption, electron paramagnetic resonance, and magnetic circular dichroism spectroscopic methods. Furthermore, we demonstrate that Rv0203 transfers heme to both MmpL3-E1 and MmpL11-E1 domains at a rate faster than passive heme dissociation from Rv0203. This work elucidates a key step in the mycobacterial uptake of heme, and it may be useful in the development of anti-tuberculosis drugs targeting this pathway.
Collapse
Affiliation(s)
- Cedric P Owens
- Department of Molecular Biology and Biochemistry, University of California at Irvine, Irvine, California 92697, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
All but a few bacterial species have an absolute need for heme, and most are able to synthesize it via a pathway that is highly conserved among all life domains. Because heme is a rich source for iron, many pathogenic bacteria have also evolved processes for sequestering heme from their hosts. The heme biosynthesis pathways are well understood at the genetic and structural biology levels. In comparison, much less is known about the heme acquisition, trafficking, and degradation processes in bacteria. Gram-positive and Gram-negative bacteria have evolved similar strategies but different tactics for importing and degrading heme, likely as a consequence of their different cellular architectures. The differences are manifested in distinct structures for molecules that perform similar functions. Consequently, the aim of this chapter is to provide an overview of the structural biology of proteins and protein-protein interactions that enable Gram-positive and Gram-negative bacteria to sequester heme from the extracellular milieu, import it to the cytosol, and degrade it to mine iron.
Collapse
Affiliation(s)
- David R Benson
- Department of Chemistry, University of Kansas, Multidisciplinary Research Building, 2030 Becker Dr., Lawrence, KS, 66047, USA,
| | | |
Collapse
|
27
|
Abstract
Haem is the major iron source for bacteria that develop in higher organisms. In these hosts, bacteria have to cope with nutritional immunity imposed by the host, since haem and iron are tightly bound to carrier and storage proteins. Siderophores were the first recognized fighters in the battle for iron between bacteria and host. They are non-proteinaceus organic molecules having an extremely high affinity for Fe(3+) and able to extract it from host proteins. Haemophores, that display functional analogy with siderophores, were more recently discovered. They are a class of secreted proteins with a high affinity for haem; they are able to extract haem from host haemoproteins and deliver it to specific receptors that internalize haem. In the past few years, a wealth of data has accumulated on haem acquisition systems that are dependent on surface exposed/secreted bacterial proteins. They promote haem transfer from its initial source (in most cases, a eukaryotic haem binding protein) to the transporter that carries out the membrane crossing step. Here we review recent discoveries in this field, with particular emphasis on similar and dissimilar mechanisms in haemophores and siderophores, from the initial host source to the binding protein/receptor at the cell surface.
Collapse
Affiliation(s)
- Cécile Wandersman
- Unité des Membranes Bactériennes, Institut Pasteur, Département de Microbiologie, 25-28, rue du Dr. Roux, 75724 Paris Cedex 15, France.
| | | |
Collapse
|
28
|
Tiedemann MT, Stillman MJ. Heme binding to the IsdE(M78A; H229A) double mutant: challenging unidirectional heme transfer in the iron-regulated surface determinant protein heme transfer pathway of Staphylococcus aureus. J Biol Inorg Chem 2012; 17:995-1007. [DOI: 10.1007/s00775-012-0914-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
|
29
|
Caillet-Saguy C, Piccioli M, Turano P, Lukat-Rodgers G, Wolff N, Rodgers KR, Izadi-Pruneyre N, Delepierre M, Lecroisey A. Role of the iron axial ligands of heme carrier HasA in heme uptake and release. J Biol Chem 2012; 287:26932-43. [PMID: 22700962 DOI: 10.1074/jbc.m112.366385] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hemophore protein HasA from Serratia marcescens cycles between two states as follows: the heme-bound holoprotein, which functions as a carrier of the metal cofactor toward the membrane receptor HasR, and the heme-free apoprotein fishing for new porphyrin to be taken up after the heme has been delivered to HasR. Holo- and apo-forms differ for the conformation of the two loops L1 and L2, which provide the axial ligands of the iron through His(32) and Tyr(75), respectively. In the apo-form, loop L1 protrudes toward the solvent far away from loop L2; in the holoprotein, closing of the loops on the heme occurs upon establishment of the two axial coordination bonds. We have established that the two variants obtained via single point mutations of either axial ligand (namely H32A and Y75A) are both in the closed conformation. The presence of the heme and one out of two axial ligands is sufficient to establish a link between L1 and L2, thanks to the presence of coordinating solvent molecules. The latter are stabilized in the iron coordination environment by H-bond interactions with surrounding protein residues. The presence of such a water molecule in both variants is revealed here through a set of different spectroscopic techniques. Previous studies had shown that heme release and uptake processes occur via intermediate states characterized by a Tyr(75)-iron-bound form with open conformation of loop L1. Here, we demonstrate that these states do not naturally occur in the free protein but can only be driven by the interaction with the partner proteins.
Collapse
Affiliation(s)
- Célia Caillet-Saguy
- Unité de RMN des Biomolecules (CNRS URA 2185), Institut Pasteur, 28 Rue du Docteur Roux, 75015 Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ekworomadu MT, Poor CB, Owens CP, Balderas MA, Fabian M, Olson JS, Murphy F, Balkabasi E, Honsa ES, He C, Goulding CW, Maresso AW. Differential function of lip residues in the mechanism and biology of an anthrax hemophore. PLoS Pathog 2012; 8:e1002559. [PMID: 22412371 PMCID: PMC3297588 DOI: 10.1371/journal.ppat.1002559] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 01/16/2012] [Indexed: 11/19/2022] Open
Abstract
To replicate in mammalian hosts, bacterial pathogens must acquire iron. The majority of iron is coordinated to the protoporphyrin ring of heme, which is further bound to hemoglobin. Pathogenic bacteria utilize secreted hemophores to acquire heme from heme sources such as hemoglobin. Bacillus anthracis, the causative agent of anthrax disease, secretes two hemophores, IsdX1 and IsdX2, to acquire heme from host hemoglobin and enhance bacterial replication in iron-starved environments. Both proteins contain NEAr-iron Transporter (NEAT) domains, a conserved protein module that functions in heme acquisition in Gram-positive pathogens. Here, we report the structure of IsdX1, the first of a Gram-positive hemophore, with and without bound heme. Overall, IsdX1 forms an immunoglobin-like fold that contains, similar to other NEAT proteins, a 310-helix near the heme-binding site. Because the mechanistic function of this helix in NEAT proteins is not yet defined, we focused on the contribution of this region to hemophore and NEAT protein activity, both biochemically and biologically in cultured cells. Site-directed mutagenesis of amino acids in and adjacent to the helix identified residues important for heme and hemoglobin association, with some mutations affecting both properties and other mutations affecting only heme stabilization. IsdX1 with mutations that reduced the ability to associate with hemoglobin and bind heme failed to restore the growth of a hemophore-deficient strain of B. anthracis on hemoglobin as the sole iron source. These data indicate that not only is the 310-helix important for NEAT protein biology, but also that the processes of hemoglobin and heme binding can be both separate as well as coupled, the latter function being necessary for maximal heme-scavenging activity. These studies enhance our understanding of NEAT domain and hemophore function and set the stage for structure-based inhibitor design to block NEAT domain interaction with upstream ligands. Pathogenic bacteria need to acquire host iron to replicate during infection. Approximately 80% of mammalian iron is associated with a small molecule termed heme, most of which is bound to circulating hemoglobin and involved in O2 transport in red cells. Bacteria secrete proteins, termed hemophores, to acquire the heme from hemoglobin, a process thought to accelerate delivery of the heme to the bacterial surface for iron import into the cell. The mechanisms by which hemophores extract host heme from hemoglobin are not known. Here, we report that the IsdX1 hemophore from B. anthracis, the causative agent of anthrax disease, uses a conserved structural feature to link hemoglobin association with heme binding and extraction, thereby facilitating bacterial growth in low-iron environments. Such “molecular coupling” suggests that specific inhibition of the hemophore-hemoglobin interaction for this class of proteins may serve as a starting point for new anti-infective therapeutics aimed at short-circuiting iron uptake networks in bacterial pathogens.
Collapse
Affiliation(s)
- MarCia T. Ekworomadu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Catherine B. Poor
- Department of Chemistry, University of Chicago, Chicago, Illinois, United States of America
| | - Cedric P. Owens
- Departments of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, California, United States of America
| | - Miriam A. Balderas
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Marian Fabian
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - John S. Olson
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Frank Murphy
- Northeastern Collaborative Access Team, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - Erol Balkabasi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Erin S. Honsa
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, Illinois, United States of America
| | - Celia W. Goulding
- Departments of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, California, United States of America
| | - Anthony W. Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
31
|
Owens CP, Du J, Dawson JH, Goulding CW. Characterization of heme ligation properties of Rv0203, a secreted heme binding protein involved in Mycobacterium tuberculosis heme uptake. Biochemistry 2012; 51:1518-31. [PMID: 22283334 DOI: 10.1021/bi2018305] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The secreted Mycobacterium tuberculosis (Mtb) heme binding protein Rv0203 has been shown to play a role in Mtb heme uptake. In this work, we use spectroscopic (absorption, electron paramagnetic resonance, and magnetic circular dichrosim) methods to further characterize the heme coordination environments of His-tagged and native protein forms, Rv0203-His and Rv0203-notag, respectively. Rv0203-His binds the heme molecule through bis-His coordination and is low-spin in both ferric and ferrous oxidation states. Rv0203-notag is high-spin in both oxidation states and shares spectroscopic similarity with pentacoordinate oxygen-ligated heme proteins. Mutagenesis experiments determined that residues Tyr59, His63, and His89 are required for Rv0203-notag to efficiently bind heme, reinforcing the hypothesis based on our previous structural and mutagenesis studies of Rv0203-His. While Tyr59, His63, and His89 are required for the binding of heme to Rv0203-notag, comparison of the absorption spectra of the Rv0203-notag mutants suggests the heme ligand may be the hydroxyl group of Tyr59, although an exogenous hydroxide cannot be ruled out. Additionally, we measured the heme affinities of Rv0203-His and Rv0203-notag using stopped flow techniques. The rates for binding of heme to Rv0203-His and Rv0203-notag are similar, 115 and 133 μM(-1) s(-1), respectively. However, the heme off rates differ quite dramatically, whereby Rv0203-His gives biphasic dissociation kinetics with fast and slow rates of 0.0019 and 0.0002 s(-1), respectively, and Rv0203-notag has a single off rate of 0.082 s(-1). The spectral and heme binding affinity differences between Rv0203-His and Rv0203-notag suggest that the His tag interferes with heme binding. Furthermore, these results imply that the His tag has the ability to stabilize heme binding as well as alter heme ligand coordination of Rv0203 by providing an unnatural histidine ligand. Moreover, the heme affinity of Rv0203-notag is comparable to that of other heme transport proteins, implying that Rv0203 may act as an extracellular heme transporter.
Collapse
Affiliation(s)
- Cedric P Owens
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | | | | | | |
Collapse
|
32
|
Discovery and characterization of a unique mycobacterial heme acquisition system. Proc Natl Acad Sci U S A 2011; 108:5051-6. [PMID: 21383189 DOI: 10.1073/pnas.1009516108] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis must import iron from its host for survival, and its siderophore-dependent iron acquisition pathways are well established. Here we demonstrate a newly characterized pathway, whereby M. tuberculosis can use free heme and heme from hemoglobin as an iron source. Significantly, we identified the genomic region, Rv0202c-Rv0207c, responsible for the passage of heme iron across the mycobacterial membrane. Key players of this heme uptake system were characterized including a secreted protein and two transmembrane proteins, all three specific to mycobacteria. Furthermore, the crystal structure of the key heme carrier protein Rv0203 was found to have a unique fold. The discovery of a unique mycobacterial heme acquisition pathway opens new avenues of exploration into mycobacterial therapeutics.
Collapse
|
33
|
Howes BD, Giordano D, Boechi L, Russo R, Mucciacciaro S, Ciaccio C, Sinibaldi F, Fittipaldi M, Martí MA, Estrin DA, di Prisco G, Coletta M, Verde C, Smulevich G. The peculiar heme pocket of the 2/2 hemoglobin of cold-adapted Pseudoalteromonas haloplanktis TAC125. J Biol Inorg Chem 2010; 16:299-311. [PMID: 21076847 DOI: 10.1007/s00775-010-0726-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 10/11/2010] [Indexed: 11/25/2022]
Abstract
The genome of the cold-adapted bacterium Pseudoalteromonas haloplanktis TAC125 contains multiple genes encoding three distinct monomeric hemoglobins exhibiting a 2/2 α-helical fold. In the present work, one of these hemoglobins is studied by resonance Raman, electronic absorption and electronic paramagnetic resonance spectroscopies, kinetic measurements, and different bioinformatic approaches. It is the first cold-adapted bacterial hemoglobin to be characterized. The results indicate that this protein belongs to the 2/2 hemoglobin family, Group II, characterized by the presence of a tryptophanyl residue on the bottom of the heme distal pocket in position G8 and two tyrosyl residues (TyrCD1 and TyrB10). However, unlike other bacterial hemoglobins, the ferric state, in addition to the aquo hexacoordinated high-spin form, shows multiple hexacoordinated low-spin forms, where either TyrCD1 or TyrB10 can likely coordinate the iron. This is the first example in which both TyrCD1 and TyrB10 are proposed to be the residues that are alternatively involved in heme hexacoordination by endogenous ligands.
Collapse
Affiliation(s)
- Barry D Howes
- Dipartimento di Chimica, Università di Firenze, 50019, Sesto Fiorentino (FI), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Harvat EM, Redfield C, Stevens JM, Ferguson SJ. Probing the heme-binding site of the cytochrome c maturation protein CcmE. Biochemistry 2010; 48:1820-8. [PMID: 19178152 DOI: 10.1021/bi801609a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Maturation of c-type cytochromes in many bacterial species and plant mitochondria requires the participation of the heme chaperone CcmE that binds heme covalently via a His residue (H130 in Escherichia coli) before transferring it stereospecifically to the apo form of cytochromes c. Only the structure of the apo form of CcmE is known; the heme-binding site has been modeled on the surface of the protein in the vicinity of H130. We have determined the reduction potential of CcmE, which suggests that heme bound to CcmE is not as exposed to solvent as was initially thought. Alanine insertions in the vicinity of the heme-binding histidine (which we showed by NMR do not perturb the protein fold) strikingly abolish formation of both holo-CcmE and cytochrome c, whereas previously reported point mutations of residues adjacent to H130 gave only a partial attenuation. The heme iron coordinating residue Y134 proved to be strictly required for axial ligation of both ferrous and ferric heme. These results indicate the existence of a conformationally well-defined heme pocket that involves amino acids located in the proximity of H130. However, mutation of Y134 affected neither heme attachment to CcmE nor cytochrome c maturation, suggesting that heme binding and release from CcmE are hydrophobically driven and relatively indifferent to axial ligation.
Collapse
Affiliation(s)
- Edgar M Harvat
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | |
Collapse
|
35
|
Benevides-Matos N, Biville F. The Hem and Has haem uptake systems in Serratia marcescens. Microbiology (Reading) 2010; 156:1749-1757. [DOI: 10.1099/mic.0.034405-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Serratia marcescens, like several other Gram-negative bacteria, possesses two functional haem uptake systems. The first, referred to as the Hem system, can transport haem present at a concentration equal to or above 10−6 M. It requires an active outer-membrane receptor which uses proton-motive force energy transmitted by the inner-membrane TonB protein. The other system, Has, takes up haem at lower concentrations and utilizes a small secreted haem-binding protein (haemophore) and its cognate TonB-dependent outer-membrane receptor HasR. Various combinations of mutations were used to examine haem uptake activity by the two systems in S. marcescens. The Hem uptake system enables S. marcescens to take up haem at a concentration of 10−6 M in the presence of various levels of iron depletion. The Has system, which enables such uptake even in the presence of lower haem concentrations, requires higher iron depletion conditions for function. Has haem uptake requires the presence of HasB, a TonB paralogue encoded by the has operon. These two systems enable S. marcescens to take up haem under various conditions from different sources, reflecting its capacity to confront conditions encountered in natural biotopes.
Collapse
Affiliation(s)
- Najla Benevides-Matos
- Unité des Membranes Bactériennes, Institut Pasteur (CNRS URA 2172), 25 Rue du Dr Roux, Paris CEDEX 15, France
| | - Francis Biville
- Unité des Membranes Bactériennes, Institut Pasteur (CNRS URA 2172), 25 Rue du Dr Roux, Paris CEDEX 15, France
| |
Collapse
|
36
|
Zheng Z, Gunner MR. Analysis of the electrochemistry of hemes with E(m)s spanning 800 mV. Proteins 2009; 75:719-34. [PMID: 19003997 DOI: 10.1002/prot.22282] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The free energy of heme reduction in different proteins is found to vary over more than 18 kcal/mol. It is a challenge to determine how proteins manage to achieve this enormous range of E(m)s with a single type of redox cofactor. Proteins containing 141 unique hemes of a-, b-, and c-type, with bis-His, His-Met, and aquo-His ligation were calculated using Multi-Conformation Continuum Electrostatics (MCCE). The experimental E(m)s range over 800 mV from -350 mV in cytochrome c(3) to 450 mV in cytochrome c peroxidase (vs. SHE). The quantitative analysis of the factors that modulate heme electrochemistry includes the interactions of the heme with its ligands, the solvent, the protein backbone, and sidechains. MCCE calculated E(m)s are in good agreement with measured values. Using no free parameters the slope of the line comparing calculated and experimental E(m)s is 0.73 (R(2) = 0.90), showing the method accounts for 73% of the observed E(m) range. Adding a +160 mV correction to the His-Met c-type hemes yields a slope of 0.97 (R(2) = 0.93). With the correction 65% of the hemes have an absolute error smaller than 60 mV and 92% are within 120 mV. The overview of heme proteins with known structures and E(m)s shows both the lowest and highest potential hemes are c-type, whereas the b-type hemes are found in the middle E(m) range. In solution, bis-His ligation lowers the E(m) by approximately 205 mV relative to hemes with His-Met ligands. The bis-His, aquo-His, and His-Met ligated b-type hemes all cluster about E(m)s which are approximately 200 mV more positive in protein than in water. In contrast, the low potential bis-His c-type hemes are shifted little from in solution, whereas the high potential His-Met c-type hemes are raised by approximately 300 mV from solution. The analysis shows that no single type of interaction can be identified as the most important in setting heme electrochemistry in proteins. For example, the loss of solvation (reaction field) energy, which raises the E(m), has been suggested to be a major factor in tuning in situ E(m)s. However, the calculated solvation energy vs. experimental E(m) shows a slope of 0.2 and R(2) of 0.5 thus correlates weakly with E(m)s. All other individual interactions show even less correlation with E(m). However the sum of these terms does reproduce the range of observed E(m)s. Therefore, different proteins use different aspects of their structures to modulate the in situ heme electrochemistry. This study also shows that the calculated E(m)s are relatively insensitive to different heme partial charges and to the protein dielectric constant used in the simulation.
Collapse
Affiliation(s)
- Zhong Zheng
- Department of Physics, The City College of New York, New York, NY, USA
| | | |
Collapse
|
37
|
Caillet-Saguy C, Piccioli M, Turano P, Izadi-Pruneyre N, Delepierre M, Bertini I, Lecroisey A. Mapping the interaction between the hemophore HasA and its outer membrane receptor HasR using CRINEPT-TROSY NMR spectroscopy. J Am Chem Soc 2009; 131:1736-44. [PMID: 19159260 DOI: 10.1021/ja804783x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first step of heme acquisition by Gram-negative pathogenic bacteria through the so-called heme acquisition system, Has, requires delivery of the heme from the extracellular hemophore protein HasA to a specific outer membrane receptor, HasR. CRINEPT-TROSY NMR experiments in DPC micelles were here used to obtain information on the intermediate HasA-HasR complex in solution. A stable protein-protein adduct is detected both in the presence and in the absence of heme. Structural information on the complexed form of HasA is obtained from chemical shift mapping and statistical analysis of the spectral fingerprint of the protein NMR spectra obtained under different conditions. This approach shows the following: (i) only three different conformations are possible for HasA in solution: one for the isolated apoprotein, one for the isolated holoprotein, and one for the complexed protein, that is independent of the presence of the heme; (ii) the structure of the hemophore in the complex resembles the open conformation of the apoprotein; (iii) the surface contact area between HasA and HasR is independent of the presence of the heme, involving loop L1, loop L2, and the beta2-beta6 strands; (iv) upon complex formation the heme group is transferred from holoHasA to HasR.
Collapse
Affiliation(s)
- Célia Caillet-Saguy
- Unite de RMN des Biomolecules (CNRS URA 2185), Institut Pasteur, Paris, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Heme uptake across the outer membrane as revealed by crystal structures of the receptor-hemophore complex. Proc Natl Acad Sci U S A 2009; 106:1045-50. [PMID: 19144921 DOI: 10.1073/pnas.0809406106] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gram-negative bacteria use specific heme uptake systems, relying on outer membrane receptors and excreted heme-binding proteins (hemophores) to scavenge and actively transport heme. To unravel the unknown molecular details involved, we present 3 structures of the Serratia marcescens receptor HasR in complex with its hemophore HasA. The transfer of heme over a distance of 9 A from its high-affinity site in HasA into a site of lower affinity in HasR is coupled with the exergonic complex formation of the 2 proteins. Upon docking to the receptor, 1 of the 2 axial heme coordinations of the hemophore is initially broken, but the position and orientation of the heme is preserved. Subsequently, steric displacement of heme by a receptor residue ruptures the other axial coordination, leading to heme transfer into the receptor.
Collapse
|
39
|
de Rosny E, de Groot A, Jullian-Binard C, Borel F, Suarez C, Le Pape L, Fontecilla-Camps JC, Jouve HM. DHR51, the Drosophila melanogaster Homologue of the Human Photoreceptor Cell-Specific Nuclear Receptor, Is a Thiolate Heme-Binding Protein. Biochemistry 2008; 47:13252-60. [DOI: 10.1021/bi801691b] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eve de Rosny
- CEA, CNRS, Université Joseph Fourier, UMR 5075, Institut de Biologie Structurale Jean-Pierre Ebel, 38027 Grenoble Cedex 1, France, CEA, CNRS, Université Joseph Fourier, UMR 5249, iRTSV, Laboratoire de Chimie et Biologie des Métaux, 38054 Grenoble, France, CEA, Université Joseph Fourier, UMR-E3, INAC, Laboratoire de Résonances Magnétiques, 38054 Grenoble, France
| | - Arjan de Groot
- CEA, CNRS, Université Joseph Fourier, UMR 5075, Institut de Biologie Structurale Jean-Pierre Ebel, 38027 Grenoble Cedex 1, France, CEA, CNRS, Université Joseph Fourier, UMR 5249, iRTSV, Laboratoire de Chimie et Biologie des Métaux, 38054 Grenoble, France, CEA, Université Joseph Fourier, UMR-E3, INAC, Laboratoire de Résonances Magnétiques, 38054 Grenoble, France
| | - Celine Jullian-Binard
- CEA, CNRS, Université Joseph Fourier, UMR 5075, Institut de Biologie Structurale Jean-Pierre Ebel, 38027 Grenoble Cedex 1, France, CEA, CNRS, Université Joseph Fourier, UMR 5249, iRTSV, Laboratoire de Chimie et Biologie des Métaux, 38054 Grenoble, France, CEA, Université Joseph Fourier, UMR-E3, INAC, Laboratoire de Résonances Magnétiques, 38054 Grenoble, France
| | - Franck Borel
- CEA, CNRS, Université Joseph Fourier, UMR 5075, Institut de Biologie Structurale Jean-Pierre Ebel, 38027 Grenoble Cedex 1, France, CEA, CNRS, Université Joseph Fourier, UMR 5249, iRTSV, Laboratoire de Chimie et Biologie des Métaux, 38054 Grenoble, France, CEA, Université Joseph Fourier, UMR-E3, INAC, Laboratoire de Résonances Magnétiques, 38054 Grenoble, France
| | - Cristian Suarez
- CEA, CNRS, Université Joseph Fourier, UMR 5075, Institut de Biologie Structurale Jean-Pierre Ebel, 38027 Grenoble Cedex 1, France, CEA, CNRS, Université Joseph Fourier, UMR 5249, iRTSV, Laboratoire de Chimie et Biologie des Métaux, 38054 Grenoble, France, CEA, Université Joseph Fourier, UMR-E3, INAC, Laboratoire de Résonances Magnétiques, 38054 Grenoble, France
| | - Laurent Le Pape
- CEA, CNRS, Université Joseph Fourier, UMR 5075, Institut de Biologie Structurale Jean-Pierre Ebel, 38027 Grenoble Cedex 1, France, CEA, CNRS, Université Joseph Fourier, UMR 5249, iRTSV, Laboratoire de Chimie et Biologie des Métaux, 38054 Grenoble, France, CEA, Université Joseph Fourier, UMR-E3, INAC, Laboratoire de Résonances Magnétiques, 38054 Grenoble, France
| | - Juan C. Fontecilla-Camps
- CEA, CNRS, Université Joseph Fourier, UMR 5075, Institut de Biologie Structurale Jean-Pierre Ebel, 38027 Grenoble Cedex 1, France, CEA, CNRS, Université Joseph Fourier, UMR 5249, iRTSV, Laboratoire de Chimie et Biologie des Métaux, 38054 Grenoble, France, CEA, Université Joseph Fourier, UMR-E3, INAC, Laboratoire de Résonances Magnétiques, 38054 Grenoble, France
| | - Hélène M. Jouve
- CEA, CNRS, Université Joseph Fourier, UMR 5075, Institut de Biologie Structurale Jean-Pierre Ebel, 38027 Grenoble Cedex 1, France, CEA, CNRS, Université Joseph Fourier, UMR 5249, iRTSV, Laboratoire de Chimie et Biologie des Métaux, 38054 Grenoble, France, CEA, Université Joseph Fourier, UMR-E3, INAC, Laboratoire de Résonances Magnétiques, 38054 Grenoble, France
| |
Collapse
|
40
|
Tong Y, Guo M. Bacterial heme-transport proteins and their heme-coordination modes. Arch Biochem Biophys 2008; 481:1-15. [PMID: 18977196 DOI: 10.1016/j.abb.2008.10.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 10/07/2008] [Accepted: 10/07/2008] [Indexed: 12/11/2022]
Abstract
Efficient iron acquisition is critical for an invading microbe's survival and virulence. Most of the iron in mammals is incorporated into heme, which can be plundered by certain bacterial pathogens as a nutritional iron source. Utilization of exogenous heme by bacteria involves the binding of heme or hemoproteins to the cell surface receptors, followed by the transport of heme into cells. Once taken into the cytosol, heme is presented to heme oxygenases where the tetrapyrrole ring is cleaved in order to release the iron. Some Gram-negative bacteria also secrete extracellular heme-binding proteins called hemophores, which function to sequester heme from the environment. The heme-transport genes are often genetically linked as gene clusters under Fur (ferric uptake regulator) regulation. This review discusses the gene clusters and proteins involved in bacterial heme acquisition, transport and processing processes, with special focus on the heme-coordination, protein structures and mechanisms underlying heme-transport.
Collapse
Affiliation(s)
- Yong Tong
- Department of Chemistry and Biochemistry, University of Massachusetts, 285 Old Westport Road, Dartmouth, MA 02747-2300, USA
| | | |
Collapse
|
41
|
Cavallaro G, Decaria L, Rosato A. Genome-Based Analysis of Heme Biosynthesis and Uptake in Prokaryotic Systems. J Proteome Res 2008; 7:4946-54. [DOI: 10.1021/pr8004309] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gabriele Cavallaro
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy, and Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Leonardo Decaria
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy, and Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Antonio Rosato
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy, and Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
42
|
Maresso AW, Garufi G, Schneewind O. Bacillus anthracis secretes proteins that mediate heme acquisition from hemoglobin. PLoS Pathog 2008; 4:e1000132. [PMID: 18725935 PMCID: PMC2515342 DOI: 10.1371/journal.ppat.1000132] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 07/22/2008] [Indexed: 01/10/2023] Open
Abstract
Acquisition of iron is necessary for the replication of nearly all bacterial pathogens; however, iron of vertebrate hosts is mostly sequestered by heme and bound to hemoglobin within red blood cells. In Bacillus anthracis, the spore-forming agent of anthrax, the mechanisms of iron scavenging from hemoglobin are unknown. We report here that B. anthracis secretes IsdX1 and IsdX2, two NEAT domain proteins, to remove heme from hemoglobin, thereby retrieving iron for bacterial growth. Unlike other Gram-positive bacteria, which rely on cell wall anchored Isd proteins for heme scavenging, B. anthracis seems to have also evolved NEAT domain proteins in the extracellular milieu and in the bacterial envelope to provide for the passage of heme.
Collapse
Affiliation(s)
- Anthony W. Maresso
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| | - Gabriella Garufi
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
43
|
Modulation by substrates of the interaction between the HasR outer membrane receptor and its specific TonB-like protein, HasB. J Mol Biol 2008; 378:840-51. [PMID: 18402979 DOI: 10.1016/j.jmb.2008.03.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 02/15/2008] [Accepted: 03/21/2008] [Indexed: 11/21/2022]
Abstract
TonB is a cytoplasmic membrane protein required for active transport of various essential substrates such as heme and iron siderophores through the outer membrane receptors of Gram-negative bacteria. This protein spans the periplasm, contacts outer membrane transporters by its C-terminal domain, and transduces energy from the protonmotive force to the transporters. The TonB box, a relatively conserved sequence localized on the periplasmic side of the transporters, has been shown to directly contact TonB. While Serratia marcescens TonB functions with various transporters, HasB, a TonB-like protein, is dedicated to the HasR transporter. HasR acquires heme either freely or via an extracellular heme carrier, the hemophore HasA, that binds to HasR and delivers heme to the transporter. Here, we study the interaction of HasR with a HasB C-terminal domain and compare it with that obtained with a TonB C-terminal fragment. Analysis of the thermodynamic parameters reveals that the interaction mode of HasR with HasB differs from that with TonB, the difference explaining the functional specificity of HasB for HasR. We also demonstrate that the presence of the substrate on the extracellular face of the transporter modifies, via enthalpy-entropy compensation, the interaction with HasB on the periplasmic face. The transmitted signal depends on the nature of the substrate. While the presence of heme on the transporter modifies only slightly the nature of interactions involved between HasR and HasB, hemophore binding on the transporter dramatically changes the interactions and seems to locally stabilize some structural motifs. In both cases, the HasR TonB box is the target for those modifications.
Collapse
|
44
|
Caillet-Saguy C, Turano P, Piccioli M, Lukat-Rodgers GS, Czjzek M, Guigliarelli B, Izadi-Pruneyre N, Rodgers KR, Delepierre M, Lecroisey A. Deciphering the Structural Role of Histidine 83 for Heme Binding in Hemophore HasA. J Biol Chem 2008; 283:5960-70. [DOI: 10.1074/jbc.m703795200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
45
|
Wolff N, Izadi-Pruneyre N, Couprie J, Habeck M, Linge J, Rieping W, Wandersman C, Nilges M, Delepierre M, Lecroisey A. Comparative analysis of structural and dynamic properties of the loaded and unloaded hemophore HasA: functional implications. J Mol Biol 2007; 376:517-25. [PMID: 18164722 DOI: 10.1016/j.jmb.2007.11.072] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 11/14/2007] [Accepted: 11/26/2007] [Indexed: 11/29/2022]
Abstract
A heme-acquisition system present in several Gram-negative bacteria requires the secretion of hemophores. These extracellular carrier proteins capture heme and deliver it to specific outer membrane receptors. The Serratia marcescens HasA hemophore is a monodomain protein that binds heme with a very high affinity. Its alpha/beta structure, as that of its binding pocket, has no common features with other iron- or heme-binding proteins. Heme is held by two loops L1 and L2 and coordinated to iron by an unusual ligand pair, H32/Y75. Two independent regions of the hemophore beta-sheet are involved in HasA-HasR receptor interaction. Here, we report the 3-D NMR structure of apoHasA and the backbone dynamics of both loaded and unloaded hemophore. While the overall structure of HasA is very similar in the apo and holo forms, the hemophore presents a transition from an open to a closed form upon ligand binding, through a large movement, of up to 30 A, of loop L1 bearing H32. Comparison of loaded and unloaded HasA dynamics on different time scales reveals striking flexibility changes in the binding pocket. We propose a mechanism by which these structural and dynamic features provide the dual function of heme binding and release to the HasR receptor.
Collapse
Affiliation(s)
- Nicolas Wolff
- Unité de RMN des Biomolécules, CNRS URA 2185, Département de Biologie Structurale et de Chimie, Institut Pasteur, 75724 Paris Cedex 15, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Flaherty MM, Rish KR, Smith A, Crumbliss AL. An investigation of hemopexin redox properties by spectroelectrochemistry: biological relevance for heme uptake. Biometals 2007; 21:239-48. [PMID: 17712531 DOI: 10.1007/s10534-007-9112-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 07/26/2007] [Indexed: 10/22/2022]
Abstract
Hemopexin (HPX) has two principal roles: it sequesters free heme in vivo for the purpose of preventing the toxic effects of this moiety, which is largely due to heme's ability to catalyze free radical formation, and it transports heme intracellularly thus limiting its availability as an iron source for pathogens. Spectroelectrochemistry was used to determine the redox potential for heme and meso-heme (mH) when bound by HPX. At pH 7.2, the heme-HPX assembly exhibits E (1/2) values in the range 45-90 mV and the mH-HPX assembly in the range 5-55 mV, depending on environmental electrolyte identity. The E (1/2) value exhibits a 100 mV positive shift with a change in pH from 7.2 to 5.5 for mH-HPX, suggesting a single proton dependent equilibrium. The E (1/2) values for heme-HPX are more positive in the presence of NaCl than KCl indicating that Na(+), as well as low pH (5.5) stabilizes ferro-heme-HPX. Furthermore, comparing KCl with K(2)HPO(4), the chloride salt containing system has a lower potential, indicating that heme-HPX is easier to oxidize. These physical properties related to ferri-/ferro-heme reduction are both structurally and biologically relevant for heme release from HPX for transport and regulation of heme oxygenase expression. Consistent with this, when the acidification of endosomes is prevented by bafilomycin then heme oxygenase-1 induction by heme-HPX no longer occurs.
Collapse
Affiliation(s)
- Meghan M Flaherty
- Department of Chemistry, Duke University, Box 90346, Durham, NC 27708-0346, USA
| | | | | | | |
Collapse
|
47
|
Krewulak KD, Vogel HJ. Structural biology of bacterial iron uptake. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:1781-804. [PMID: 17916327 DOI: 10.1016/j.bbamem.2007.07.026] [Citation(s) in RCA: 339] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 07/20/2007] [Accepted: 07/24/2007] [Indexed: 11/19/2022]
Abstract
To fulfill their nutritional requirement for iron, bacteria utilize various iron sources which include the host proteins transferrin and lactoferrin, heme, and low molecular weight iron chelators termed siderophores. The iron sources are transported into the Gram-negative bacterial cell via specific uptake pathways which include an outer membrane receptor, a periplasmic binding protein (PBP), and an inner membrane ATP-binding cassette (ABC) transporter. Over the past two decades, structures for the proteins involved in bacterial iron uptake have not only been solved, but their functions have begun to be understood at the molecular level. However, the elucidation of the three dimensional structures of all components of the iron uptake pathways is currently limited. Despite the low sequence homology between different bacterial species, the available three-dimensional structures of homologous proteins are strikingly similar. Examination of the current three-dimensional structures of the outer membrane receptors, PBPs, and ABC transporters provides an overview of the structural biology of iron uptake in bacteria.
Collapse
Affiliation(s)
- Karla D Krewulak
- Structural Biology Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | | |
Collapse
|
48
|
Barjon C, Wecker K, Izadi-Pruneyre N, Delepelaire P. Mutagenesis and molecular modeling reveal three key extracellular loops of the membrane receptor HasR that are involved in hemophore HasA binding. J Bacteriol 2007; 189:5379-82. [PMID: 17483227 PMCID: PMC1951882 DOI: 10.1128/jb.00251-07] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
On the basis of the three-dimensional model of the heme/hemophore TonB-dependent outer membrane receptor HasR, mutants with six-residue deletions in the 11 putative extracellular loops were generated. Although all mutants continued to be active TonB-dependent heme transporters, mutations in three loops abolished hemophore HasA binding both in vivo and in vitro.
Collapse
Affiliation(s)
- Clément Barjon
- Unité des Membranes Bactériennes, Département de Microbiologie, CNRS URA2172, Institut Pasteur, 25-28 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
49
|
Landfried DA, Vuletich DA, Pond MP, Lecomte JTJ. Structural and thermodynamic consequences of b heme binding for monomeric apoglobins and other apoproteins. Gene 2007; 398:12-28. [PMID: 17550789 PMCID: PMC2394511 DOI: 10.1016/j.gene.2007.02.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 02/05/2007] [Indexed: 01/09/2023]
Abstract
The binding of a cofactor to a protein matrix often involves a reorganization of the polypeptide structure. b Hemoproteins provide multiple examples of this behavior. In this minireview, selected monomeric and single b heme proteins endowed with distinct topological properties are inspected for the extent of induced refolding upon heme binding. To complement the data reported in the literature, original results are presented on a two-on-two globin of cyanobacterial origin (Synechococcus sp. PCC 7002 GlbN) and on the heme-containing module of FixL, an oxygen-sensing protein with the mixed alpha/beta topology of PAS domains. GlbN had a stable apoprotein that was further stabilized and locally refolded by heme binding; in contrast, apoFixLH presented features of a molten globule. Sequence analyses (helicity, disorder, and polarity) and solvent accessibility calculations were performed to identify trends in the architecture of b hemoproteins. In several cases, the primary structure appeared biased toward a partially disordered binding pocket in the absence of the cofactor.
Collapse
Affiliation(s)
- Daniel A Landfried
- The Pennsylvania State University, Department of Chemistry, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
50
|
Tong Y, Guo M. Cloning and characterization of a novel periplasmic heme-transport protein from the human pathogen Pseudomonas aeruginosa. J Biol Inorg Chem 2007; 12:735-50. [PMID: 17387526 DOI: 10.1007/s00775-007-0226-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 02/27/2007] [Indexed: 11/25/2022]
Abstract
Successful iron acquisition plays a crucial role in bacterial virulence. Numerous Gram-negative pathogenic bacteria have developed a novel heme-acquisition system to steal iron from hosts. This system involves a cell-surface heme receptor, a periplasmic heme-transport protein (HTP) and inner-membrane proteins typical for ATP binding cassette transporters. We have cloned the gene encoding a periplasmic HTP from Pseudomonas aeruginosa, overexpressed it in Escherichia coli and purified it as a 33-kDa His-tagged protein. Heme-staining and heme-content assays reveal that the isolated HTP contains approximately 50% heme-bound and apo forms. The heme is noncovalently attached and can be transferred to apomyoglobin in vitro. Electron paramagnetic resonance and UV-vis spectroscopies indicate a five-coordinate, high-spin, ferric heme in HTP. HTP is reduced by dithionite but not by either dithiothreitol or ascorbate. Fluorescence and circular dichroism spectroscopies indicate a well-ordered structure for the HTP and a conformational change upon heme binding to apo-HTP. This was confirmed by limited proteolysis assays. Apo-HTP binds heme or protoporphyrin IX at 1:1 ratio with high affinity (K (d) approximately 1.2 and 14 nM, respectively). A BLASTP search revealed approximately 52 putative bacterial periplasmic heme transporters, which can be grouped into six classes, most of which are associated with pathogenic bacteria. Multiple sequence alignment reveals that these HTPs share low sequence similarity and no conserved common binding motif for heme ligation. However, a tyrosine residue (Y71) is highly conserved in the HTP sequences, which is likely an axial heme ligand in HTPs. Mutagenesis studies support Y71-heme iron ligation in the recombinant HTP.
Collapse
Affiliation(s)
- Yong Tong
- Department of Chemistry and Biochemistry, University of Massachusetts, Dartmouth, MA 02747-2300, USA
| | | |
Collapse
|