1
|
Xu Z, Chen Y, Zhou X, Liu S, Xie J, Dai W, Zhu S, Ding Y. Mechanisms of alkali pH-shifted colour changes in squid (Uroteuthis edulis) subjected to frozen storage. Food Chem 2023; 406:134977. [PMID: 36470083 DOI: 10.1016/j.foodchem.2022.134977] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
The skin discoloration of squid subjected to frozen storage negatively affects market price. In this study, various alkali treatments were investigated for effects on red granules and yellow pigments of squid skin and corresponding mechanisms were investigated at the tissue, cellular and molecular level. A significant colour improvement was observed when subjected to a pH 12 treatment, supported by decreased Δb* and increased Δa* values. Neither lower nor harsher alkali treatments than pH 12 can not obtain such results. HE staining and the UV-vis spectrum suggest that the improved red colour in skin was ascribed to the release of red pigment granules from damaged chromatophores by alkaline treatment and the release of red pigments in alkaline aqueous solutions from granules. However, based on TEM and particle size analysis, an excessive alkali treatment of pH 13 would degrade granules into smaller particles. The degradation of yellowness pigments indicated high sensitivity to alkali environments according to HPLC results. This study provides a valuable reference for improving the colour appearance of squid skin subjected to frozen storage.
Collapse
Affiliation(s)
- Zheng Xu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Yunyun Chen
- China Aquatic Products Zhoushan Marine Fisheries Corporation, Zhoushan 316101, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Shulai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Wangli Dai
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Shichen Zhu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China.
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China.
| |
Collapse
|
2
|
The ligand-mediated affinity of brain-type fatty acid-binding protein for membranes determines the directionality of lipophilic cargo transport. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:158506. [DOI: 10.1016/j.bbalip.2019.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/29/2019] [Accepted: 08/08/2019] [Indexed: 01/22/2023]
|
3
|
Structure and ligand binding of As-p18, an extracellular fatty acid binding protein from the eggs of a parasitic nematode. Biosci Rep 2019; 39:BSR20191292. [PMID: 31273060 PMCID: PMC6646235 DOI: 10.1042/bsr20191292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 02/02/2023] Open
Abstract
Intracellular lipid-binding proteins (iLBPs) of the fatty acid-binding protein (FABP) family of animals transport, mainly fatty acids or retinoids, are confined to the cytosol and have highly similar 3D structures. In contrast, nematodes possess fatty acid-binding proteins (nemFABPs) that are secreted into the perivitelline fluid surrounding their developing embryos. We report structures of As-p18, a nemFABP of the large intestinal roundworm Ascaris suum, with ligand bound, determined using X-ray crystallography and nuclear magnetic resonance spectroscopy. In common with other FABPs, As-p18 comprises a ten β-strand barrel capped by two short α-helices, with the carboxylate head group of oleate tethered in the interior of the protein. However, As-p18 exhibits two distinctive longer loops amongst β-strands not previously seen in a FABP. One of these is adjacent to the presumed ligand entry portal, so it may help to target the protein for efficient loading or unloading of ligand. The second, larger loop is at the opposite end of the molecule and has no equivalent in any iLBP structure yet determined. As-p18 preferentially binds a single 18-carbon fatty acid ligand in its central cavity but in an orientation that differs from iLBPs. The unusual structural features of nemFABPs may relate to resourcing of developing embryos of nematodes.
Collapse
|
4
|
Hao J, Zhang Y, Yan X, Yan F, Sun Y, Zeng J, Waigel S, Yin Y, Fraig MM, Egilmez NK, Suttles J, Kong M, Liu S, Cleary MP, Sauter E, Li B. Circulating Adipose Fatty Acid Binding Protein Is a New Link Underlying Obesity-Associated Breast/Mammary Tumor Development. Cell Metab 2018; 28:689-705.e5. [PMID: 30100196 PMCID: PMC6221972 DOI: 10.1016/j.cmet.2018.07.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/24/2018] [Accepted: 07/11/2018] [Indexed: 12/26/2022]
Abstract
It is clear that obesity increases the risk of many types of cancer, including breast cancer. However, the underlying molecular mechanisms by which obesity is linked to cancer risk remain to be defined. Herein, we report that circulating adipose fatty acid binding protein (A-FABP) promotes obesity-associated breast cancer development. Using clinical samples, we demonstrated that circulating A-FABP levels were significantly increased in obese patients with breast cancer in comparison with those without breast cancer. Circulating A-FABP released by adipose tissue directly targeted mammary tumor cells, enhancing tumor stemness and aggressiveness through activation of the IL-6/STAT3/ALDH1 pathway. Importantly, genetic deletion of A-FABP successfully reduced tumor ALHD1 activation and obesity-associated mammary tumor growth and development in different mouse models. Collectively, these data suggest circulating A-FABP as a new link between obesity and breast cancer risk, thereby revealing A-FABP as a potential new therapeutic target for treatment of obesity-associated cancers.
Collapse
Affiliation(s)
- Jiaqing Hao
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock Street, Louisville, KY 40202, USA
| | - Yuwen Zhang
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock Street, Louisville, KY 40202, USA
| | - Xiaofang Yan
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY, USA
| | - Fei Yan
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Yanwen Sun
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock Street, Louisville, KY 40202, USA
| | - Jun Zeng
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock Street, Louisville, KY 40202, USA; School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Sabine Waigel
- Genomics Facility and Life Tech Supply Center, University of Louisville, Louisville, KY, USA
| | - Yanhui Yin
- Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Mostafa M Fraig
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, USA
| | - Nejat K Egilmez
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock Street, Louisville, KY 40202, USA
| | - Jill Suttles
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock Street, Louisville, KY 40202, USA
| | - Maiying Kong
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY, USA
| | - Shujun Liu
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Margot P Cleary
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Edward Sauter
- Hartford Healthcare Cancer Institute, Hartford, CT, USA
| | - Bing Li
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock Street, Louisville, KY 40202, USA.
| |
Collapse
|
5
|
Urasaki Y, Zhang C, Cheng JX, Le TT. Quantitative Assessment of Liver Steatosis and Affected Pathways with Molecular Imaging and Proteomic Profiling. Sci Rep 2018; 8:3606. [PMID: 29483581 PMCID: PMC5826939 DOI: 10.1038/s41598-018-22082-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/16/2018] [Indexed: 02/08/2023] Open
Abstract
Current assessment of non-alcoholic fatty liver disease (NAFLD) with histology is time-consuming, insensitive to early-stage detection, qualitative, and lacks information on etiology. This study explored alternative methods for fast and quantitative assessment of NAFLD with hyperspectral stimulated Raman scattering (SRS) microscopy and nanofluidic proteomics. Hyperspectral SRS microscopy quantitatively measured liver composition of protein, DNA, and lipid without labeling and sensitively detected early-stage steatosis in a few minutes. On the other hand, nanofluidic proteomics quantitatively measured perturbations to the post-translational modification (PTM) profiles of selective liver proteins to identify affected cellular signaling and metabolic pathways in a few hours. Perturbations to the PTM profiles of Akt, 4EBP1, BID, HMGCS2, FABP1, and FABP5 indicated abnormalities in multiple cellular processes including cell cycle regulation, PI3K/Akt/mTOR signaling cascade, autophagy, ketogenesis, and fatty acid transport. The integrative deployment of hyperspectral SRS microscopy and nanofluidic proteomics provided fast, sensitive, and quantitative assessment of liver steatosis and affected pathways that overcame the limitations of histology.
Collapse
Affiliation(s)
- Yasuyo Urasaki
- Department of Biomedical Sciences, College of Medicine, Roseman University of Health Sciences, 10530 Discovery Drive, Las Vegas, NV, 89135, USA
| | - Chi Zhang
- Departments of Electrical and Computer Engineering & Biomedical Engineering, College of Engineering, Boston University, 8 St. Mary's St, Boston, MA, 02215, USA
| | - Ji-Xin Cheng
- Departments of Electrical and Computer Engineering & Biomedical Engineering, College of Engineering, Boston University, 8 St. Mary's St, Boston, MA, 02215, USA.
| | - Thuc T Le
- Department of Biomedical Sciences, College of Medicine, Roseman University of Health Sciences, 10530 Discovery Drive, Las Vegas, NV, 89135, USA.
| |
Collapse
|
6
|
Protocols and pitfalls in obtaining fatty acid-binding proteins for biophysical studies of ligand-protein and protein-protein interactions. Biochem Biophys Rep 2017; 10:318-324. [PMID: 28955759 PMCID: PMC5614677 DOI: 10.1016/j.bbrep.2017.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/26/2017] [Accepted: 05/03/2017] [Indexed: 01/22/2023] Open
Abstract
Adipocyte fatty acid-binding protein (AFABP: FABP4) is a member of the intracellular lipid-binding protein family that is thought to target long-chain fatty acids to nuclear receptors such as peroxisome proliferator-activated receptor gamma (PPARγ), which in turn plays roles in insulin resistance and obesity. A molecular understanding of AFABP function requires robust isolation of the protein in liganded and free forms as well as characterization of its oligomerization state(s) under physiological conditions. We report development of a protocol to optimize the production of members of this protein family in pure form, including removal of their bound lipids by mixing with hydrophobically functionalized hydroxypropyl dextran beads and validation by two-dimensional NMR spectroscopy. The formation of self-associated or covalently bonded protein dimers was evaluated critically using gel filtration chromatography, revealing conditions that promote or prevent formation of disulfide-linked homodimers. The resulting scheme provides a solid foundation for future investigations of AFABP interactions with key ligand and protein partners involved in lipid metabolism.
Collapse
Key Words
- AFABP, adipose fatty acid-binding protein
- Delipidation
- Disulfide bond
- ESI-MS, Electrospray Ionization Mass Spectrometry
- FABP, fatty acid-binding protein
- Fatty acid-binding protein
- GF, Gel filtration chromatography
- HSQC, [1H–15N] heteronuclear single quantum correlation spectroscopy
- Homodimer
- LCFA, Long-chain fatty acid
- Ligand
- MALDI-TOF, Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
- NMR, Nuclear Magnetic Resonance
- NOESY, 2D nuclear Overhauser spectroscopy
- PPAR, peroxisome proliferator-activated receptor
- Protein
- TCEP, tris(2-carboxyethyl)phosphine
- TEV, Tobacco Etch Virus
- TOCSY, 2D Total correlation spectroscopy
Collapse
|
7
|
Francois-Moutal L, Ouberai MM, Maniti O, Welland ME, Strzelecka-Kiliszek A, Wos M, Pikula S, Bandorowicz-Pikula J, Marcillat O, Granjon T. Two-Step Membrane Binding of NDPK-B Induces Membrane Fluidity Decrease and Changes in Lipid Lateral Organization and Protein Cluster Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12923-12933. [PMID: 27934520 DOI: 10.1021/acs.langmuir.6b03789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nucleoside diphosphate kinases (NDPKs) are crucial elements in a wide array of cellular physiological or pathophysiological processes such as apoptosis, proliferation, or metastasis formation. Among the NDPK isoenzymes, NDPK-B, a cytoplasmic protein, was reported to be associated with several biological membranes such as plasma or endoplasmic reticulum membranes. Using several membrane models (liposomes, lipid monolayers, and supported lipid bilayers) associated with biophysical approaches, we show that lipid membrane binding occurs in a two-step process: first, initiation by a strong electrostatic adsorption process and followed by shallow penetration of the protein within the membrane. The NDPK-B binding leads to a decrease in membrane fluidity and formation of protein patches. The ability of NDPK-B to form microdomains at the membrane level may be related to protein-protein interactions triggered by its association with anionic phospholipids. Such accumulation of NDPK-B would amplify its effects in functional platform formation and protein recruitment at the membrane.
Collapse
Affiliation(s)
- Liberty Francois-Moutal
- Organisation et Dynamique des Membrane Biologiques, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, CNRS UMR 5246 ICBMS , Bâtiment Chevreul, 43 Boulevard du 11 Novembre 1918, Villeurbanne Cedex 69622, France
| | - Myriam M Ouberai
- Nanoscience Centre, University of Cambridge , 11 J.J. Thomson Avenue Cambridge, Cambridge CB3 0FF, U.K
| | - Ofelia Maniti
- Organisation et Dynamique des Membrane Biologiques, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, CNRS UMR 5246 ICBMS , Bâtiment Chevreul, 43 Boulevard du 11 Novembre 1918, Villeurbanne Cedex 69622, France
| | - Mark E Welland
- Nanoscience Centre, University of Cambridge , 11 J.J. Thomson Avenue Cambridge, Cambridge CB3 0FF, U.K
| | - Agnieszka Strzelecka-Kiliszek
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences , 3 Pasteur Street, Warsaw 02-093, Poland
| | - Marcin Wos
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences , 3 Pasteur Street, Warsaw 02-093, Poland
| | - Slawomir Pikula
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences , 3 Pasteur Street, Warsaw 02-093, Poland
| | - Joanna Bandorowicz-Pikula
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences , 3 Pasteur Street, Warsaw 02-093, Poland
| | - Olivier Marcillat
- Organisation et Dynamique des Membrane Biologiques, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, CNRS UMR 5246 ICBMS , Bâtiment Chevreul, 43 Boulevard du 11 Novembre 1918, Villeurbanne Cedex 69622, France
| | - Thierry Granjon
- Organisation et Dynamique des Membrane Biologiques, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, CNRS UMR 5246 ICBMS , Bâtiment Chevreul, 43 Boulevard du 11 Novembre 1918, Villeurbanne Cedex 69622, France
| |
Collapse
|
8
|
Bobroff V, Rubio C, Vigier V, Petibois C. FTIR spectroscopy characterization of fatty-acyl-chain conjugates. Anal Bioanal Chem 2015; 408:319-26. [DOI: 10.1007/s00216-015-9111-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 09/25/2015] [Accepted: 10/09/2015] [Indexed: 11/24/2022]
|
9
|
Abstract
Intracellular and extracellular interactions with proteins enables the functional and mechanistic diversity of lipids. Fatty acid-binding proteins (FABPs) were originally described as intracellular proteins that can affect lipid fluxes, metabolism and signalling within cells. As the functions of this protein family have been further elucidated, it has become evident that they are critical mediators of metabolism and inflammatory processes, both locally and systemically, and therefore are potential therapeutic targets for immunometabolic diseases. In particular, genetic deficiency and small molecule-mediated inhibition of FABP4 (also known as aP2) and FABP5 can potently improve glucose homeostasis and reduce atherosclerosis in mouse models. Further research has shown that in addition to their intracellular roles, some FABPs are found outside the cells, and FABP4 undergoes regulated, vesicular secretion. The circulating form of FABP4 has crucial hormonal functions in systemic metabolism. In this Review we discuss the roles and regulation of both intracellular and extracellular FABP actions, highlighting new insights that might direct drug discovery efforts and opportunities for management of chronic metabolic diseases.
Collapse
Affiliation(s)
- Gökhan S Hotamisligil
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
10
|
Beaugé L, Dipolo R, Bollo M, Cousido A, Berberián G, Podjarny A. Metabolic regulation of the squid nerve Na(+)/Ca (2+) exchanger: recent developments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 961:149-61. [PMID: 23224877 DOI: 10.1007/978-1-4614-4756-6_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
In squid nerves, MgATP modulation of the Na(+)/Ca(2+) exchanger requires the presence of a cytosolic protein which becomes phosphorylated during the process. This factor has been recently identified. Mass spectroscopy and Western blot analysis established that it is a member of the lipocalin superfamily of lipid-binding proteins (LBP or FABP) of 132 amino acids. We called it regulatory protein of squid nerve sodium/calcium exchanger (ReP1-NCXSQ, access to GenBank EU981897).ReP1-NCXSQ was cloned, expressed, and purified. Circular dichroism, far-UV, and infrared spectroscopy suggest a secondary structure, predominantly of beta-sheets. The tertiary structure prediction provides ten beta-sheets and two alpha-helices, characteristic of most of LPB. Functional experiments showed that, to be active, ReP1-NCXSQ must be phosphorylated by MgATP, through the action of a kinase present in the plasma membrane. Moreover, PO4-ReP1-NCXSQ can stimulate the exchanger in the absence of ATP. An additional crucial observation was that, in proteoliposomes containing only the purified Na(+)/Ca(2+) exchanger, PO4-ReP1-NCXSQ promotes activation; therefore, this upregulation has no other requirement than a lipid membrane and the incorporated exchanger protein.Recently, we solved the crystal structure of ReP1-NCXSQ which was as predicted: a "barrel" consisting of ten beta-sheets and two alpha-helices. Inside the barrel is the fatty acid coordinated by hydrogen bonds with Arg126 and Tyr128. Point mutations showed that neither Tyr20Ala, Arg58Val, Ser99Ala, nor Arg126Val is necessary for protein phosphorylation or activity. On the other hand, Tyr128 is essential for activity but not for phosphorylation. We can conclude that (1) for the first time, a role of an LBP is demonstrated in the metabolic regulation of an ion exchanger; (2) phosphorylation of this LBP can be separated from the activation capacity; and (3) Tyr128, a candidate to coordinate lipid binding inside the barrel, is essential for activity.
Collapse
Affiliation(s)
- Luis Beaugé
- Laboratorio de Biofísica, Instituto de Investigación Médica, Córdoba, Argentina.
| | | | | | | | | | | |
Collapse
|
11
|
Francois-Moutal L, Maniti O, Marcillat O, Granjon T. New insights into lipid-Nucleoside Diphosphate Kinase-D interaction mechanism: protein structural changes and membrane reorganisation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:906-15. [PMID: 22974817 DOI: 10.1016/j.bbamem.2012.08.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 08/18/2012] [Accepted: 08/28/2012] [Indexed: 10/27/2022]
Abstract
Nucleoside Diphosphate Kinases (NDPKs) have long been considered merely as housekeeping enzymes. The discovery of the NME1 gene, an anti-metastatic gene coding for NDPK-A, led the scientific community to re-evaluate their role in the cell. It is now well established that the NDPK family is more complex than what was first thought, and despite the increasing amount of evidence suggesting the multifunctional role of nm23/NDPKs, the specific functions of each family member are still elusive. Among these isoforms, NDPK-D is the only one to present a mitochondria-targeting sequence. It has recently been shown that this protein is able to bind and cross-link with mitochondrial membranes, suggesting that NDPK-D can mediate contact sites and contributes to the mitochondrial intermembrane space structuring. To better understand the influence of NDPK-D on mitochondrial lipid organisation, we analysed its behaviour in different lipid environments. We found that NDPK-D not only interacts with CL or anionic lipids, but is also able to bind in a non negligible manner to zwitterionic PC. NDPK-D alters membrane organisation in terms of fluidity, hydration and lipid clustering, effects which depend on lipid structure. Changes in the protein structure after lipid binding were evidenced, both by fluorescence and infrared spectroscopy, regardless of membrane composition. Taking into account all these elements, a putative mechanism of interaction between NDPK-D and zwitterionic or anionic lipids was proposed.
Collapse
Affiliation(s)
- L Francois-Moutal
- Université de Lyon, Université Lyon 1, CNRS, UMR 5246, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, IMBL, 43 Bd du 11 Novembre 1918 F-69622 Villeurbanne, France
| | | | | | | |
Collapse
|
12
|
Berberián G, Podjarny A, DiPolo R, Beaugé L. Metabolic regulation of the squid nerve Na⁺/Ca²⁺ exchanger: recent kinetic, biochemical and structural developments. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 108:47-63. [PMID: 21964458 DOI: 10.1016/j.pbiomolbio.2011.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 08/30/2011] [Accepted: 09/13/2011] [Indexed: 11/25/2022]
Abstract
The Na⁺/Ca²⁺ exchangers are structural membrane proteins, essential for the extrusion of Ca²⁺ from most animal cells. Apart from the transport sites, they have several interacting ionic and metabolic sites located at the intracellular loop of the exchanger protein. One of these, the intracellular Ca²⁺ regulatory sites, are essential and must be occupied by Ca²⁺ to allow any type of ion (Na⁺ or Ca²⁺) translocation. Intracellular protons and Na⁺ are inhibitory by reducing the affinity of the regulatory sites for Ca²⁺; MgATP stimulates by antagonizing H⁺ and Na⁺. We have proposed a kinetic scheme to explain all ionic and metabolic regulation of the squid nerve Na⁺/Ca²⁺ exchanger. This model uniquely accounts for most of the new kinetic data provided here; however, none of the existing models can explain the trans effects of the Ca(i)²⁺-regulatory sites on external cation transport sites; i.e. all models are incomplete. MgATP up-regulation of the squid Na⁺/Ca²⁺ exchanger requires a cytosolic protein, which has been recently identified as a member of the lipocalin super family of Lipid Binding Proteins (LBP or FABP) of 132 amino acids (ReP1-NCXSQ, access to GenBank EU981897). This protein was cloned, expressed and purified. To be active, ReP1-NCXSQ must be phosphorylated from MgATP by a kinase present in the plasma membrane. Phosphorylated ReP1-NCXSQ can stimulate the exchanger in the absence of ATP. Experiments with proteoliposomes proved that this up-regulation can take place just with the lipid membrane and the exchanger protein. The structure of ReP1-NCXSQ predicted from the amino acid sequence has been confirmed by X-ray crystal analysis; it has a "barrel" formed by ten beta sheets and two alpha helices, with a lipid coordinated by hydrogen bonds with Arg 126 and Tyr 128.
Collapse
Affiliation(s)
- Graciela Berberián
- Laboratorio de Biofísica, Instituto de Investigación Médica "Mercedes y Martín Ferreyra" (INIMEC-CONICET), Casilla de Correo 389, 5000 Córdoba, Argentina
| | | | | | | |
Collapse
|
13
|
Abstract
The liver bile acid-binding proteins, L-BABPs, formerly called the liver "basic" fatty acid-binding proteins, are a subfamily of the fatty acid-binding proteins, FABPs. All the members of this protein group share the same fold: a 10 stranded beta barrel in which two short helices are inserted in between the first and the second strand of antiparallel beta sheet. The barrel encloses the ligand binding cavity of the protein while the two helices are believed to be involved in ligand accessibility to the binding site. The L-BABP subfamily has been found to be present in the liver of several vertebrates: fish, amphibians, reptiles, and birds but not in mammals. The members of the FABP family present in mammals that appear to be more closely related to the L-BABPs are the liver FABPs and the ileal BABPs, both very extensively studied. Several L-BABP X-ray structures are available and chicken L-BABP has also been studied using NMR spectroscopy. The stoichiometry of ligand binding for bile acids, first determined by X-ray crystallography for the chicken liver protein, is of two cholates per protein molecule with the only exception of zebrafish L-BABP which, due to the presence of a disulfide bridge, has a stoichiometry of 1:1. The stoichiometry of ligand binding for fatty acids, determined with several different techniques, is 1:1. An unanswered question of great relevance is the identity of the protein that in mammals performs the function that in other vertebrates is carried out by the L-BABPS.
Collapse
Affiliation(s)
- Hugo L Monaco
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy.
| |
Collapse
|
14
|
Berberián G, Bollo M, Montich G, Roberts G, Degiorgis JA, Dipolo R, Beaugé L. A novel lipid binding protein is a factor required for MgATP stimulation of the squid nerve Na+/Ca2+ exchanger. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1255-62. [PMID: 19168028 DOI: 10.1016/j.bbamem.2008.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 12/23/2008] [Accepted: 12/29/2008] [Indexed: 11/26/2022]
Abstract
Here we identify a cytosolic factor essential for MgATP up-regulation of the squid nerve Na(+)/Ca(2+) exchanger. Mass spectroscopy and Western blot analysis established that this factor is a member of the lipocalin super family of lipid binding proteins of 132 amino acids in length. We named it Regulatory protein of the squid nerve sodium calcium exchanger (ReP1-NCXSQ). ReP-1-NCXSQ was cloned, over expressed and purified. Far-UV circular dichroism and infrared spectra suggest a majority of beta-strand in the secondary structure. Moreover, the predicted tertiary structure indicates ten beta-sheets and two short alpha-helices characteristic of most lipid binding proteins. Functional experiments showed that in order to be active ReP1-NCXSQ must become phosphorylated in the presence of MgATP by a kinase that is Staurosporin insensitive. Even more, the phosphorylated ReP1-NCXSQ is able to stimulate the exchanger in the absence of ATP. In addition to the identification of a new member of the lipid binding protein family, this work shows, for the first time, the requirement of a lipid binding protein for metabolic regulation of an ion transporting system.
Collapse
Affiliation(s)
- Graciela Berberián
- Laboratorio de Biofísica, Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET), Casilla de Correo 389, 5000 Córdoba, Argentina
| | | | | | | | | | | | | |
Collapse
|
15
|
Mihajlovic M, Lazaridis T. Modeling fatty acid delivery from intestinal fatty acid binding protein to a membrane. Protein Sci 2007; 16:2042-55. [PMID: 17660261 PMCID: PMC2206986 DOI: 10.1110/ps.072875307] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Intestinal fatty acid binding protein (IFABP) interacts with biological membranes and delivers fatty acid (FA) into them via a collisional mechanism. However, the membrane-bound structure of the protein and the pathway of FA transfer are not precisely known. We used molecular dynamics (MD) simulations with an implicit membrane model to determine the optimal orientation of apo- and holo-IFABP (bound with palmitate) on an anionic membrane. In this orientation, the helical portal region, delimited by the alphaII helix and the betaC-betaD and betaE-betaF turns, is oriented toward the membrane whereas the putative beta-strand portal, delimited by the betaB-betaC, betaF-betaG, betaH-betaI turns and the N terminus, is exposed to solvent. Starting from the MD structure of holo-IFABP in the optimal orientation relative to the membrane, we examined the release of palmitate via both pathways. Although the domains can widen enough to allow the passage of palmitate, fatty acid release through the helical portal region incurs smaller conformational changes and a lower energetic cost.
Collapse
Affiliation(s)
- Maja Mihajlovic
- Department of Chemistry, City College of New York/CUNY, New York, New York 10031, USA
| | | |
Collapse
|
16
|
Decca MB, Perduca M, Monaco HL, Montich GG. Conformational changes of chicken liver bile acid-binding protein bound to anionic lipid membrane are coupled to the lipid phase transitions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1583-91. [PMID: 17466937 DOI: 10.1016/j.bbamem.2007.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 03/06/2007] [Accepted: 03/17/2007] [Indexed: 11/28/2022]
Abstract
Chicken liver bile acid-binding protein (L-BABP) binds to anionic lipid membranes by electrostatic interactions and acquires a partly folded state [Nolan, V., Perduca, M., Monaco, H., Maggio, B. and Montich, G. G. (2003) Biochim. Biophys. Acta 1611, 98-106]. We studied the infrared amide I' band of L-BABP bound to dipalmitoylphosphatidylglycerol (DPPG), dimyristoylphosphatidylglycerol (DMPG) and palmitoyloleoylphosphatidylglycerol (POPG) in the range of 7 to 60 degrees C. Besides, the thermotrophic behaviour of DPPG and DMPG was studied in the absence and in the presence of bound-protein by differential scanning calorimetry (DSC) and infrared spectra of the stretching vibration of methylene and carbonyl groups. When L-BABP was bound to lipid membranes in the liquid-crystalline state (POPG between 7 and 30 degrees C) acquired a more unfolded conformation that in membranes in the gel state (DPPG between 7 and 30 degrees C). Nevertheless, this conformational change of the protein in DMPG did not occur at the temperature of the lipid gel to liquid-crystalline phase transition detected by infrared spectroscopy. Instead, the degree of unfolding in the protein was coincident with a phase transition in DMPG that occurs with heat absorption and without change in the lipid order.
Collapse
Affiliation(s)
- María Belén Decca
- Centro de Investigaciones en Química Biológica de Córdoba, UNC-CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, República Argentina
| | | | | | | |
Collapse
|
17
|
Córsico B. Intracellular lipid transport: structure–function relationships in fatty acid binding proteins. ACTA ACUST UNITED AC 2006. [DOI: 10.2217/17460875.1.5.615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
18
|
Weisiger RA. Cytosolic fatty acid binding proteins catalyze two distinct steps in intracellular transport of their ligands. Mol Cell Biochem 2003. [PMID: 12479566 DOI: 10.1023/a:1020550405578] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cytosolic long-chain fatty acid binding proteins (FABPs) are found in tissues that metabolize fatty acids. Like most lipid binding proteins, their specific functions remain unclear. Two classes have been described. Membrane-active FABPs interact directly with membranes during exchange of fatty acids between the protein binding site and the membrane, while membrane-inactive FABPs bind only to fatty acids that are already in aqueous solution. Despite these binding proteins, most fatty acids in cell cytoplasm appear to be bound to membranes. This paper reviews data suggesting that FABPs catalyze transfer of fatty acids between intracellular membranes, often across considerable intracellular distances. This process occurs in three distinct steps: dissociation of the fatty acid from a 'donor' membrane, diffusion of the fatty acid across the intervening water layer, and binding to an 'acceptor' membrane. Membrane-active FABPs catalyze dissociation of the fatty acid from the donor membrane and binding to the acceptor membrane, while membrane-inactive FABPs catalyze diffusion of fatty acids across the aqueous cytosol. Thus, FABPs catalyze all three steps in intracellular transport. A simple quantitative model has been developed that predicts the rate of intracellular transport as a function of the concentration, affinity and diffusional mobility of the binding protein. Different FABPs may have evolved to match the specific transport requirements of the cell type within which they are found.
Collapse
Affiliation(s)
- Richard A Weisiger
- Department of Medicine and the Liver Center, University of California, San Francisco, CA 94143-0538, USA.
| |
Collapse
|
19
|
Vass E, Hollósi M, Besson F, Buchet R. Vibrational spectroscopic detection of beta- and gamma-turns in synthetic and natural peptides and proteins. Chem Rev 2003; 103:1917-54. [PMID: 12744696 DOI: 10.1021/cr000100n] [Citation(s) in RCA: 246] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elemér Vass
- Department of Organic Chemistry, Eötvös Loránd University, H-1518 Budapest 112, P.O. Box 32, Hungary
| | | | | | | |
Collapse
|
20
|
Nolan V, Perduca M, Monaco HL, Maggio B, Montich GG. Interactions of chicken liver basic fatty acid-binding protein with lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1611:98-106. [PMID: 12659950 DOI: 10.1016/s0005-2736(03)00030-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The interactions of chicken liver basic fatty acid-binding protein (Lb-FABP) with large unilamellar vesicles (LUVs) of palmitoyloleoyl phosphatidylcholine (POPC) and palmitoyloleoyl phosphatidylglycerol (POPG) were studied by binding assays, Fourier transform infrared (FT-IR) spectroscopy, monolayers at air-water interface, and low-angle X-ray diffraction. Lb-FABP binds to POPG LUVs at low ionic strength but not at 0.1 M NaCl. The infrared (IR) spectra of the POPG membrane-bound protein showed a decrease of the band corresponding to beta-structures as compared to the protein in solution. In addition, a cooperative decrease of the beta-edge band above 70 degrees C in solution was also evident, while the transition was less cooperative and took place at lower temperature for the POPG membrane-bound protein. Low- and wide-angle X-ray diffraction experiments with lipid multilayers indicate that binding of the protein produces a rearrangement of the membrane structure, increasing the interlamellar spacing and decreasing the compactness of the lipids.
Collapse
Affiliation(s)
- Verónica Nolan
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba CIQUIBIC (CONICET)-Pabellón Argentina, Ciudad Universitaria Córdoba (5000), Argentina
| | | | | | | | | |
Collapse
|
21
|
Liou HL, Kahn PC, Storch J. Role of the helical domain in fatty acid transfer from adipocyte and heart fatty acid-binding proteins to membranes: analysis of chimeric proteins. J Biol Chem 2002; 277:1806-15. [PMID: 11675390 DOI: 10.1074/jbc.m107987200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The adipocyte and heart fatty acid-binding proteins (A- and HFABP) are members of a lipid-binding protein family with a beta-barrel body capped by a small helix-turn-helix motif. Both proteins are hypothesized to transport fatty acid (FA) to phospholipid membranes through a collisional process. Previously, we suggested that the helical domain is particularly important for the electrostatic interactions involved in this transfer mechanism (Herr, F. M., Aronson, J., and Storch, J. (1996) Biochemistry 35, 1296-1303; and Liou, H.-L., and Storch, J. (2001) Biochemistry 40, 6475-6485). Despite their using qualitatively similar FA transfer mechanisms, differences in absolute transfer rates as well as regulation of transfer from AFABP versus HFABP, prompted us to consider the structural determinants that underlie these functional disparities. To determine the specific elements underlying the functional differences between AFABP and HFABP in FA transfer, two pairs of chimeric proteins were generated. The first and second pairs had the entire helical domain and the first alpha-helix exchanged between A- and HFABP, respectively. The transfer rates of anthroyloxy-labeled fatty acid from proteins to small unilamellar vesicles were compared with the wild type AFABP and HFABP. The results suggest that the alphaII-helix is important in determining the absolute FA transfer rates. Furthermore, the alphaI-helix appears to be particularly important in regulating protein sensitivity to the negative charge of membranes. The alphaI-helix of HFABP and the alphaII-helix of AFABP increased the sensitivity to anionic vesicles; the alphaI-helix of AFABP and alphaII-helix of HFABP decreased the sensitivity. The differential sensitivities to negative charge, as well as differential absolute rates of FA transfer, may help these two proteins to function uniquely in their respective cell types.
Collapse
Affiliation(s)
- Heng-Ling Liou
- Department of Nutritional Sciences, and the Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey 08901-8525, USA
| | | | | |
Collapse
|
22
|
Weisiger RA, Zucker SD. Transfer of fatty acids between intracellular membranes: roles of soluble binding proteins, distance, and time. Am J Physiol Gastrointest Liver Physiol 2002; 282:G105-15. [PMID: 11751163 DOI: 10.1152/ajpgi.00238.2001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Soluble fatty acid binding proteins (FABPs) are thought to facilitate exchange of fatty acids between intracellular membranes. Although many FABP variants have been described, they fall into two general classes. "Membrane-active" FABPs exchange fatty acids with membranes during transient collisions with the membrane surface, whereas "membrane-inactive" FABPs do not. We used modeling of fatty acid transport between two planar membranes to examine the hypothesis that these two classes catalyze different steps in intracellular fatty acid transport. In the absence of FABP, the steady-state flux of fatty acid from the donor to the acceptor membrane depends on membrane separation distance (d) approaching a maximum value (J(max)) as d approaches zero. J(max) is one-half the rate of dissociation of fatty acid from the donor membrane, indicating that newly dissociated fatty acid has a 50% chance of successfully reaching the acceptor membrane before rebinding to the donor membrane. For larger membrane separations, successful transfer becomes less likely as diffusional concentration gradients develop. The mean diffusional excursion of the fatty acid into the water phase (d(m)) defines this transition. For d<<d(m), dissociation from the membrane is rate limiting, whereas for d>>d(m), aqueous diffusion is rate limiting. All forms of FABP increase d(m) by reducing the rate of rebinding to the donor membrane, thus maintaining J(max) over larger membrane separations. Membrane-active FABPs further increase J(max) by catalyzing the rate of dissociation of fatty acids from the donor membrane, although frequent membrane interactions would be expected to reduce their diffusional mobility through a membrane-rich cytoplasm. Individual FABPs may have evolved to match the membrane separations and densities found in specific cell lines.
Collapse
Affiliation(s)
- R A Weisiger
- Department of Medicine and the Liver Center, University of California, San Francisco, California 94143 - 0538, USA.
| | | |
Collapse
|
23
|
van de Weert M, Haris PI, Hennink WE, Crommelin DJ. Fourier transform infrared spectrometric analysis of protein conformation: effect of sampling method and stress factors. Anal Biochem 2001; 297:160-9. [PMID: 11673883 DOI: 10.1006/abio.2001.5337] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Changes in the amide bands in Fourier transform infrared spectra of proteins are generally attributed to alterations in protein secondary structure. In this study spectra of five different globular proteins were compared in the solid and solution states recorded with several sampling techniques. Spectral differences for each protein were observed between the various sampling techniques and physical states, which could not all be explained by a change in protein secondary structure. For example, lyophilization in the absence of lyoprotectants caused spectral changes that could (partially) have been caused by the removal of hydrating water molecules rather than secondary structural changes. Moreover, attenuated total reflectance spectra of proteins in H2O were not directly comparable to transmission spectra due to the anomalous dispersion effect. Our study also revealed that the amide I, II, and III bands differ in their sensitivities to changes in protein conformation: For example, strong bands in the region 1620-1630 and 1685-1695 cm(-1) were seen in the amide I region of aggregated protein spectra. Surprisingly, absorbance of such magnitudes was not observed in the amide II and III region. It appears, therefore, that only the amide I can be used to distinguish between intra- and intermolecular beta-sheet formation. Considering the differing sensitivity of the different amide modes to structural changes, it is advisable to utilize not only the amide I band, but also the amide II and III bands, to determine changes in protein secondary structure. Finally, it is important to realize that changes in these bands may not always correspond to secondary structural changes of the proteins.
Collapse
Affiliation(s)
- M van de Weert
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht, 3508 TB, The Netherlands.
| | | | | | | |
Collapse
|
24
|
Molecular structure and interaction of biopolymers as viewed by Fourier transform infrared spectroscopy: model studies on β-lactoglobulin. Food Hydrocoll 2001. [DOI: 10.1016/s0268-005x(01)00056-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Arrese EL, Gazard JL, Flowers MT, Soulages JL, Wells MA. Diacylglycerol transport in the insect fat body: evidence of involvement of lipid droplets and the cytosolic fraction. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31683-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
26
|
Kido T, Namiki H. Expression of testicular fatty acid-binding protein PERF 15 during germ cell apoptosis. Dev Growth Differ 2000; 42:359-66. [PMID: 10969735 DOI: 10.1046/j.1440-169x.2000.00520.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PERF 15 is a testicular germ cell specific fatty acid-binding protein (FABP) isolated from rat. Indirect immunofluorescent analysis of juvenile rat testis showed that there were some strongly PERF 15-positive spermatocytes. These cells showed unclear nuclear structure and were predicted to undergo apoptosis. Apoptosis in germ cells is an important regulatory event to limit the number of germ cells in the seminiferous epithelium, but the physiological significance and molecular mechanisms of this testicular germ cell apoptosis are poorly understood. To determine whether PERF 15 participates in germ cell apoptosis, juvenile rat testis was examined by immunohistochemical and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) methods. Strongly PERF 15-positive cells and TUNEL-positive cells were co-localized in adjacent sections. Exposure to methoxyacetic acid (MAA), known to induce apoptosis in spermatocytes, increased the number of strongly PERF 15-positive cells in 25-day-old rats' testes. Therefore, it seems that PERF 15 is involved in both spermatogenesis and testicular germ cell apoptosis.
Collapse
Affiliation(s)
- T Kido
- Department of Biology, School of Education, Waseda University, Tokyo, Japan
| | | |
Collapse
|
27
|
Agirre A, Flach C, Goñi FM, Mendelsohn R, Valpuesta JM, Wu F, Nieva JL. Interactions of the HIV-1 fusion peptide with large unilamellar vesicles and monolayers. A cryo-TEM and spectroscopic study. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1467:153-64. [PMID: 10930518 DOI: 10.1016/s0005-2736(00)00214-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have examined the interaction of the human immunodeficiency virustype 1 fusion peptide (23 amino acid residues) and of a Trp-containing analog with vesicles composed of dioleoylphosphatidylcholine, dioleoylphosphatidylethanolamine and cholesterol (molar ratio, 1:1:1). Both the native and the Trp-substituted peptides bound the vesicles to the same extent and induced intervesicular lipid mixing with comparable efficiency. Infrared reflection-absorption spectroscopy data are compatible with the adoption by the peptide of a main beta-sheet structure in a cospread lipid/peptide monolayer. Cryo-transmission electron microscopy observations of peptide-treated vesicles reveal the existence of a peculiar morphology consisting of membrane tubular elongations protruding from single vesicles. Tryptophan fluorescence quenching by brominated phospholipids and by water-soluble acrylamide further indicated that the peptide penetrated into the acyl chain region closer to the interface rather than into the bilayer core. We conclude that the differential partition and shallow penetration of the fusion peptide into the outer monolayer of a surface-constrained bilayer may account for the detected morphological effects. Such single monolayer-restricted interaction and its structural consequences are compatible with specific predictions of current theories on viral fusion.
Collapse
Affiliation(s)
- A Agirre
- Unidad de Biofisica (CSIC-EHU/UPV) y Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | | | | | | | | | | | | |
Collapse
|
28
|
Storch J, Thumser AE. The fatty acid transport function of fatty acid-binding proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1486:28-44. [PMID: 10856711 DOI: 10.1016/s1388-1981(00)00046-9] [Citation(s) in RCA: 338] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The intracellular fatty acid-binding proteins (FABPs) comprise a family of 14-15 kDa proteins which bind long-chain fatty acids. A role for FABPs in fatty acid transport has been hypothesized for several decades, and the accumulated indirect and correlative evidence is largely supportive of this proposed function. In recent years, a number of experimental approaches which more directly examine the transport function of FABPs have been taken. These include molecular level in vitro modeling of fatty acid transfer mechanisms, whole cell studies of fatty acid uptake and intracellular transfer following genetic manipulation of FABP type and amount, and an examination of cells and tissues from animals engineered to lack expression of specific FABPs. Collectively, data from these studies have provided strong support for defining the FABPs as fatty acid transport proteins. Further studies are necessary to elucidate the fundamental mechanisms by which cellular fatty acid trafficking is modulated by the FABPs.
Collapse
Affiliation(s)
- J Storch
- Department of Nutritional Sciences, Cook College, Rutgers University, New Brunswick, NJ 08901-8525,USA.
| | | |
Collapse
|
29
|
Smith ER, Storch J. The adipocyte fatty acid-binding protein binds to membranes by electrostatic interactions. J Biol Chem 1999; 274:35325-30. [PMID: 10585398 DOI: 10.1074/jbc.274.50.35325] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The adipocyte fatty acid-binding protein (AFABP) is believed to transfer unesterified fatty acids (FA) to phospholipid membranes via a collisional mechanism that involves ionic interactions between lysine residues on the protein surface and phospholipid headgroups. This hypothesis is derived largely from kinetic analysis of FA transfer from AFABP to membranes. In this study, we examined directly the binding of AFABP to large unilamellar vesicles (LUV) of differing phospholipid compositions. AFABP bound LUV containing either cardiolipin or phosphatidic acid, and the amount of protein bound depended upon the mol % anionic phospholipid. The K(a) for CL or PA in LUV containing 25 mol % of these anionic phospholipids was approximately 2 x 10(3) M(-1). No detectable binding occurred when AFABP was mixed with zwitterionic membranes, nor when acetylated AFABP in which surface lysines had been chemically neutralized was mixed with anionic membranes. The binding of AFABP to acidic membranes depended upon the ionic strength of the incubation buffer: >/=200 mM NaCl reduced protein-lipid complex formation in parallel with a decrease in the rate of FA transfer from AFABP to negatively charged membranes. It was further found that AFABP, but not acetylated AFABP, prevented cytochrome c, a well characterized peripheral membrane protein, from binding to membranes. These results directly demonstrate that AFABP binds to anionic phospholipid membranes and suggest that, although generally described as a cytosolic protein, AFABP may behave as a peripheral membrane protein to help target fatty acids to and/or from intracellular sites of utilization.
Collapse
Affiliation(s)
- E R Smith
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey 08901-8525, USA
| | | |
Collapse
|
30
|
Reese-Wagoner A, Thompson J, Banaszak L. Structural properties of the adipocyte lipid binding protein. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1441:106-16. [PMID: 10570239 DOI: 10.1016/s1388-1981(99)00154-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The adipocyte lipid binding protein, ALBP (also adipocyte fatty acid binding protein, A-FABP, 422 protein, aP2, and p15 protein), is one of the most studied of the intracellular lipid binding protein family. Here we sequentially compare the different sources of ALBP and describe the idea that one-third of the amino acid side chains near the N-terminal end appear to play a major role in conformational dynamics and in ligand transfer. Crystallographic data for mouse ALBP are summarized and the ligand binding cavity analyzed in terms of the overall surface and conformational dynamics. The region of the proposed ligand portal is described. Amino acid side chains critical to cavity formation and fatty acid interactions are analyzed by comparing known crystal structures containing a series of different hydrophobic ligands. Finally, we address ALBP ligand binding affinity and thermodynamic studies.
Collapse
Affiliation(s)
- A Reese-Wagoner
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
31
|
LiCata VJ, Bernlohr DA. Surface properties of adipocyte lipid-binding protein: Response to lipid binding, and comparison with homologous proteins. Proteins 1998; 33:577-89. [PMID: 9849941 DOI: 10.1002/(sici)1097-0134(19981201)33:4<577::aid-prot10>3.0.co;2-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adipocyte lipid-binding protein (ALBP) is one of a family of intracellular lipid-binding proteins (iLBPs) that bind fatty acids, retinoids, and other hydrophobic ligands. The different members of this family exhibit a highly conserved three-dimensional structure; and where structures have been determined both with (holo) and without (apo) bound lipid, observed conformational changes are extremely small (Banaszak, et al., 1994, Adv. Prot. Chem. 45, 89; Bernlohr, et al., 1997, Annu. Rev. Nutr. 17, 277). We have examined the electrostatic, hydrophobic, and water accessible surfaces of ALBP in the apo form and of holo forms with a variety of bound ligands. These calculations reveal a number of previously unrecognized changes between apo and holo ALBP, including: 1) an increase in the overall protein surface area when ligand binds, 2) expansion of the binding cavity when ligand is bound, 3) clustering of individual residue exposure increases in the area surrounding the proposed ligand entry portal, and 4) ligand-binding dependent variation in the topology of the electrostatic potential in the area surrounding the ligand entry portal. These focused analyses of the crystallographic structures thus reveal a number of subtle but consistent conformational and surface changes that might serve as markers for differential targeting of protein-lipid complexes within the cell. Most changes are consistent from ligand to ligand, however there are some ligand-specific changes. Comparable calculations with intestinal fatty-acid-binding protein and other vertebrate iLBPs show differences in the electrostatic topology, hydrophobic topology, and in localized changes in solvent exposure near the ligand entry portal. These results provide a basis toward understanding the functional and mechanistic differences among these highly structurally homologous proteins. Further, they suggest that iLBPs from different tissues exhibit one of two predominant end-state structural distributions of the ligand entry portal.
Collapse
Affiliation(s)
- V J LiCata
- Department of Biochemistry, University of Minnesota, St. Paul, USA
| | | |
Collapse
|