1
|
Beniamino Y, Cenni V, Piccioli M, Ciurli S, Zambelli B. The Ni(II)-Binding Activity of the Intrinsically Disordered Region of Human NDRG1, a Protein Involved in Cancer Development. Biomolecules 2022; 12:1272. [PMID: 36139110 PMCID: PMC9496542 DOI: 10.3390/biom12091272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Nickel exposure is associated with tumors of the respiratory tract such as lung and nasal cancers, acting through still-uncharacterized mechanisms. Understanding the molecular basis of nickel-induced carcinogenesis requires unraveling the mode and the effects of Ni(II) binding to its intracellular targets. A possible Ni(II)-binding protein and a potential focus for cancer treatment is hNDRG1, a protein induced by Ni(II) through the hypoxia response pathway, whose expression correlates with higher cancer aggressiveness and resistance to chemotherapy in lung tissue. The protein sequence contains a unique C-terminal sequence of 83 residues (hNDRG1*C), featuring a three-times-repeated decapeptide, involved in metal binding, lipid interaction and post-translational phosphorylation. In the present work, the biochemical and biophysical characterization of unmodified hNDRG1*C was performed. Bioinformatic analysis assigned it to the family of the intrinsically disordered regions and the absence of secondary and tertiary structure was experimentally proven by circular dichroism and NMR. Isothermal titration calorimetry revealed the occurrence of a Ni(II)-binding event with micromolar affinity. Detailed information on the Ni(II)-binding site and on the residues involved was obtained in an extensive NMR study, revealing an octahedral paramagnetic metal coordination that does not cause any major change of the protein backbone, which is coherent with CD analysis. hNDRG1*C was found in a monomeric form by light-scattering experiments, while the full-length hNDRG1 monomer was found in equilibrium between the dimer and tetramer, both in solution and in human cell lines. The results are the first essential step for understanding the cellular function of hNDRG1*C at the molecular level, with potential future applications to clarify its role and the role of Ni(II) in cancer development.
Collapse
Affiliation(s)
- Ylenia Beniamino
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale Giuseppe Fanin 40, 40127 Bologna, Italy
| | - Vittoria Cenni
- CNR Institute of Molecular Genetics “Luigi-Luca Cavalli-Sforza” Unit of Bologna, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Mario Piccioli
- Department of Chemistry, Center for Magnetic Resonance, University of Florence, 50121 Florence, Italy
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale Giuseppe Fanin 40, 40127 Bologna, Italy
| | - Barbara Zambelli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale Giuseppe Fanin 40, 40127 Bologna, Italy
| |
Collapse
|
2
|
Miao Q, Nitsche C, Orton H, Overhand M, Otting G, Ubbink M. Paramagnetic Chemical Probes for Studying Biological Macromolecules. Chem Rev 2022; 122:9571-9642. [PMID: 35084831 PMCID: PMC9136935 DOI: 10.1021/acs.chemrev.1c00708] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 12/11/2022]
Abstract
Paramagnetic chemical probes have been used in electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopy for more than four decades. Recent years witnessed a great increase in the variety of probes for the study of biological macromolecules (proteins, nucleic acids, and oligosaccharides). This Review aims to provide a comprehensive overview of the existing paramagnetic chemical probes, including chemical synthetic approaches, functional properties, and selected applications. Recent developments have seen, in particular, a rapid expansion of the range of lanthanoid probes with anisotropic magnetic susceptibilities for the generation of structural restraints based on residual dipolar couplings and pseudocontact shifts in solution and solid state NMR spectroscopy, mostly for protein studies. Also many new isotropic paramagnetic probes, suitable for NMR measurements of paramagnetic relaxation enhancements, as well as EPR spectroscopic studies (in particular double resonance techniques) have been developed and employed to investigate biological macromolecules. Notwithstanding the large number of reported probes, only few have found broad application and further development of probes for dedicated applications is foreseen.
Collapse
Affiliation(s)
- Qing Miao
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
- School
of Chemistry &Chemical Engineering, Shaanxi University of Science & Technology, Xi’an710021, China
| | - Christoph Nitsche
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Henry Orton
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Mark Overhand
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Gottfried Otting
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Marcellus Ubbink
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
3
|
Müntener T, Joss D, Häussinger D, Hiller S. Pseudocontact Shifts in Biomolecular NMR Spectroscopy. Chem Rev 2022; 122:9422-9467. [PMID: 35005884 DOI: 10.1021/acs.chemrev.1c00796] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Paramagnetic centers in biomolecules, such as specific metal ions that are bound to a protein, affect the nuclei in their surrounding in various ways. One of these effects is the pseudocontact shift (PCS), which leads to strong chemical shift perturbations of nuclear spins, with a remarkably long range of 50 Å and beyond. The PCS in solution NMR is an effect originating from the anisotropic part of the dipole-dipole interaction between the magnetic momentum of unpaired electrons and nuclear spins. The PCS contains spatial information that can be exploited in multiple ways to characterize structure, function, and dynamics of biomacromolecules. It can be used to refine structures, magnify effects of dynamics, help resonance assignments, allows for an intermolecular positioning system, and gives structural information in sensitivity-limited situations where all other methods fail. Here, we review applications of the PCS in biomolecular solution NMR spectroscopy, starting from early works on natural metalloproteins, following the development of non-natural tags to chelate and attach lanthanoid ions to any biomolecular target to advanced applications on large biomolecular complexes and inside living cells. We thus hope to not only highlight past applications but also shed light on the tremendous potential the PCS has in structural biology.
Collapse
Affiliation(s)
- Thomas Müntener
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Daniel Joss
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| |
Collapse
|
4
|
Spronk CAEM, Żerko S, Górka M, Koźmiński W, Bardiaux B, Zambelli B, Musiani F, Piccioli M, Basak P, Blum FC, Johnson RC, Hu H, Merrell DS, Maroney M, Ciurli S. Structure and dynamics of Helicobacter pylori nickel-chaperone HypA: an integrated approach using NMR spectroscopy, functional assays and computational tools. J Biol Inorg Chem 2018; 23:1309-1330. [PMID: 30264175 DOI: 10.1007/s00775-018-1616-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/05/2018] [Indexed: 01/03/2023]
Abstract
Helicobacter pylori HypA (HpHypA) is a metallochaperone necessary for maturation of [Ni,Fe]-hydrogenase and urease, the enzymes required for colonization and survival of H. pylori in the gastric mucosa. HpHypA contains a structural Zn(II) site and a unique Ni(II) binding site at the N-terminus. X-ray absorption spectra suggested that the Zn(II) coordination depends on pH and on the presence of Ni(II). This study was performed to investigate the structural properties of HpHypA as a function of pH and Ni(II) binding, using NMR spectroscopy combined with DFT and molecular dynamics calculations. The solution structure of apo,Zn-HpHypA, containing Zn(II) but devoid of Ni(II), was determined using 2D, 3D and 4D NMR spectroscopy. The structure suggests that a Ni-binding and a Zn-binding domain, joined through a short linker, could undergo mutual reorientation. This flexibility has no physiological effect on acid viability or urease maturation in H. pylori. Atomistic molecular dynamics simulations suggest that Ni(II) binding is important for the conformational stability of the N-terminal helix. NMR chemical shift perturbation analysis indicates that no structural changes occur in the Zn-binding domain upon addition of Ni(II) in the pH 6.3-7.2 range. The structure of the Ni(II) binding site was probed using 1H NMR spectroscopy experiments tailored to reveal hyperfine-shifted signals around the paramagnetic metal ion. On this basis, two possible models were derived using quantum-mechanical DFT calculations. The results provide a comprehensive picture of the Ni(II) mode to HpHypA, important to rationalize, at the molecular level, the functional interactions of this chaperone with its protein partners.
Collapse
Affiliation(s)
- Chris A E M Spronk
- JSC Spronk, Vilnius, Lithuania.,Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, UK
| | - Szymon Żerko
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Michał Górka
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland.,Faculty of Physics, Division of Biophysics, Institute of Experimental Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Wiktor Koźmiński
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Benjamin Bardiaux
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France
| | - Barbara Zambelli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, 40127, Bologna, Italy
| | - Francesco Musiani
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, 40127, Bologna, Italy
| | - Mario Piccioli
- Center for Magnetic Resonance, Department of Chemistry, University of Florence, Florence, Italy
| | - Priyanka Basak
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA
| | - Faith C Blum
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Ryan C Johnson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Heidi Hu
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA
| | - D Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Michael Maroney
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, 40127, Bologna, Italy. .,Center for Magnetic Resonance, Department of Chemistry, University of Florence, Florence, Italy.
| |
Collapse
|
5
|
Nitsche C, Otting G. Pseudocontact shifts in biomolecular NMR using paramagnetic metal tags. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 98-99:20-49. [PMID: 28283085 DOI: 10.1016/j.pnmrs.2016.11.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/11/2016] [Accepted: 11/12/2016] [Indexed: 05/14/2023]
Affiliation(s)
- Christoph Nitsche
- Australian National University, Research School of Chemistry, Canberra, ACT 2601, Australia.
| | - Gottfried Otting
- Australian National University, Research School of Chemistry, Canberra, ACT 2601, Australia. http://www.rsc.anu.edu.au/~go/index.html
| |
Collapse
|
6
|
Yang Y, Huang F, Huber T, Su XC. Site-specific tagging proteins with a rigid, small and stable transition metal chelator, 8-hydroxyquinoline, for paramagnetic NMR analysis. JOURNAL OF BIOMOLECULAR NMR 2016; 64:103-113. [PMID: 26732873 DOI: 10.1007/s10858-016-0011-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/01/2016] [Indexed: 06/05/2023]
Abstract
Design of a paramagnetic metal binding motif in a protein is a valuable way for understanding the function, dynamics and interactions of a protein by paramagnetic NMR spectroscopy. Several strategies have been proposed to site-specifically tag proteins with paramagnetic lanthanide ions. Here we report a simple approach of engineering a transition metal binding motif via site-specific labelling of a protein with 2-vinyl-8-hydroxyquinoline (2V-8HQ). The protein-2V-8HQ adduct forms a stable complex with transition metal ions, Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). The paramagnetic effects generated by these transition metal ions were evaluated by NMR spectroscopy. We show that 2V-8HQ is a rigid and stable transition metal binding tag. The coordination of the metal ion can be assisted by protein sidechains. More importantly, tunable paramagnetic tensors are simply obtained in an α-helix that possesses solvent exposed residues in positions i and i + 3, where i is the residue to be mutated to cysteine, i + 3 is Gln or Glu or i - 4 is His. The coordination of a sidechain carboxylate/amide or imidazole to cobalt(II) results in different structural geometries, leading to different paramagnetic tensors as shown by experimental data.
Collapse
Affiliation(s)
- Yin Yang
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Feng Huang
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Canberra, ACT, 0200, Australia
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China.
| |
Collapse
|
7
|
Swarbrick JD, Ung P, Dennis ML, Lee MD, Chhabra S, Graham B. Installation of a Rigid EDTA-Like Motif into a Protein α-Helix for Paramagnetic NMR Spectroscopy with Cobalt(II) Ions. Chemistry 2015; 22:1228-32. [DOI: 10.1002/chem.201503139] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 12/02/2015] [Indexed: 11/06/2022]
Affiliation(s)
- James D. Swarbrick
- Monash Institute of Pharmaceutical Sciences; Monash University; 381 Royal Parade Parkville 3052 Victoria Australia
| | - Phuc Ung
- Monash Institute of Pharmaceutical Sciences; Monash University; 381 Royal Parade Parkville 3052 Victoria Australia
| | - Matthew L. Dennis
- Monash Institute of Pharmaceutical Sciences; Monash University; 381 Royal Parade Parkville 3052 Victoria Australia
| | - Michael D. Lee
- Monash Institute of Pharmaceutical Sciences; Monash University; 381 Royal Parade Parkville 3052 Victoria Australia
| | - Sandeep Chhabra
- Monash Institute of Pharmaceutical Sciences; Monash University; 381 Royal Parade Parkville 3052 Victoria Australia
| | - Bim Graham
- Monash Institute of Pharmaceutical Sciences; Monash University; 381 Royal Parade Parkville 3052 Victoria Australia
| |
Collapse
|
8
|
Manesis AC, Shafaat HS. Electrochemical, Spectroscopic, and Density Functional Theory Characterization of Redox Activity in Nickel-Substituted Azurin: A Model for Acetyl-CoA Synthase. Inorg Chem 2015; 54:7959-67. [PMID: 26234790 DOI: 10.1021/acs.inorgchem.5b01103] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nickel-containing enzymes are key players in global hydrogen, carbon dioxide, and methane cycles. Many of these enzymes rely on Ni(I) oxidation states in critical catalytic intermediates. However, due to the highly reactive nature of these species, their isolation within metalloenzymes has often proved elusive. In this report, we describe and characterize a model biological Ni(I) species that has been generated within the electron transfer protein, azurin. Replacement of the native copper cofactor with nickel is shown to preserve the redox activity of the protein. The Ni(II/I) couple is observed at -590 mV versus NHE, with an interfacial electron transfer rate of 70 s(-1). Chemical reduction of Ni(II)Az generates a stable species with strong absorption features at 350 nm and a highly anisotropic, axial EPR signal with principal g-values of 2.56 and 2.10. Density functional theory calculations provide insight into the electronic and geometric structure of the Ni(I) species, suggesting a trigonal planar coordination environment. The predicted spectroscopic features of this low-coordinate nickel site are in good agreement with the experimental data. Molecular orbital analysis suggests potential for both metal-centered and ligand-centered reactivity, highlighting the covalency of the metal-thiolate bond. Characterization of a stable Ni(I) species within a model protein has implications for understanding the mechanisms of complex enzymes, including acetyl coenzyme A synthase, and developing scaffolds for unique reactivity.
Collapse
|
9
|
Yang H, Aitha M, Marts AR, Hetrick A, Bennett B, Crowder MW, Tierney DL. Spectroscopic and mechanistic studies of heterodimetallic forms of metallo-β-lactamase NDM-1. J Am Chem Soc 2014; 136:7273-85. [PMID: 24754678 PMCID: PMC4046764 DOI: 10.1021/ja410376s] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Indexed: 11/29/2022]
Abstract
In an effort to characterize the roles of each metal ion in metallo-β-lactamase NDM-1, heterodimetallic analogues (CoCo-, ZnCo-, and CoCd-) of the enzyme were generated and characterized. UV-vis, (1)H NMR, EPR, and EXAFS spectroscopies were used to confirm the fidelity of the metal substitutions, including the presence of a homogeneous, heterodimetallic cluster, with a single-atom bridge. This marks the first preparation of a metallo-β-lactamase selectively substituted with a paramagnetic metal ion, Co(II), either in the Zn1 (CoCd-NDM-1) or in the Zn2 site (ZnCo-NDM-1), as well as both (CoCo-NDM-1). We then used these metal-substituted forms of the enzyme to probe the reaction mechanism, using steady-state and stopped-flow kinetics, stopped-flow fluorescence, and rapid-freeze-quench EPR. Both metal sites show significant effects on the kinetic constants, and both paramagnetic variants (CoCd- and ZnCo-NDM-1) showed significant structural changes on reaction with substrate. These changes are discussed in terms of a minimal kinetic mechanism that incorporates all of the data.
Collapse
Affiliation(s)
- Hao Yang
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Mahesh Aitha
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Amy R. Marts
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Alyssa Hetrick
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Brian Bennett
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Michael W. Crowder
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - David L. Tierney
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
10
|
Olijnyk V, Zarychta B, Kinzhybalo V. A crucial role of adamantanoid Cu(II) complexes in the redox systems: CuCl–diallylsulfoxide–O2 and CuCl2–diallylsulfide–O2. Polyhedron 2014. [DOI: 10.1016/j.poly.2013.11.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
McLaughlin MP, Retegan M, Bill E, Payne TM, Shafaat HS, Peña S, Sudhamsu J, Ensign AA, Crane BR, Neese F, Holland PL. Azurin as a protein scaffold for a low-coordinate nonheme iron site with a small-molecule binding pocket. J Am Chem Soc 2012; 134:19746-57. [PMID: 23167247 PMCID: PMC3515693 DOI: 10.1021/ja308346b] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The apoprotein of Pseudomonas aeruginosa azurin binds iron(II) to give a 1:1 complex, which has been characterized by electronic absorption, Mössbauer, and NMR spectroscopies, as well as X-ray crystallography and quantum-chemical computations. Despite potential competition by water and other coordinating residues, iron(II) binds tightly to the low-coordinate site. The iron(II) complex does not react with chemical redox agents to undergo oxidation or reduction. Spectroscopically calibrated quantum-chemical computations show that the complex has high-spin iron(II) in a pseudotetrahedral coordination environment, which features interactions with side chains of two histidines and a cysteine as well as the C═O of Gly45. In the (5)A(1) ground state, the d(z(2)) orbital is doubly occupied. Mutation of Met121 to Ala leaves the metal site in a similar environment but creates a pocket for reversible binding of small anions to the iron(II) center. Specifically, azide forms a high-spin iron(II) complex and cyanide forms a low-spin iron(II) complex.
Collapse
Affiliation(s)
| | - Marius Retegan
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - Thomas M. Payne
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Hannah S. Shafaat
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - Salvador Peña
- Department of Chemistry, University of Rochester, Rochester, New York 14618
| | - Jawahar Sudhamsu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Amy A. Ensign
- Department of Chemistry, University of Rochester, Rochester, New York 14618
| | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - Patrick L. Holland
- Department of Chemistry, University of Rochester, Rochester, New York 14618
| |
Collapse
|
12
|
Swart M, Johansson MP. Density Functional Study on UV/VIS Spectra of Copper-Protein Active Sites: The Effect of Mutations. Chem Biodivers 2012; 9:1728-38. [DOI: 10.1002/cbdv.201200058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
An NMR structural study of nickel-substituted rubredoxin. J Biol Inorg Chem 2009; 15:409-20. [PMID: 19997764 DOI: 10.1007/s00775-009-0613-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022]
Abstract
The Ni(II) and Zn(II) derivatives of Desulfovibrio vulgaris rubredoxin (DvRd) have been studied by NMR spectroscopy to probe the structure at the metal centre. The beta CH(2) proton pairs from the cysteines that bind the Ni(II) atom have been identified using 1D nuclear Overhauser enhancement (NOE) difference spectra and sequence specifically assigned via NOE correlations to neighbouring protons and by comparison with the published X-ray crystal structure of a Ni(II) derivative of Clostridium pasteurianum rubredoxin. The solution structures of DvRd(Zn) and DvRd(Ni) have been determined and the paramagnetic form refined using pseudocontact shifts. The determination of the magnetic susceptibility anisotropy tensor allowed the contact and pseudocontact contributions to the observed chemical shifts to be obtained. Analysis of the pseudocontact and contact chemical shifts of the cysteine H beta protons and backbone protons close to the metal centre allowed conclusions to be drawn as to the geometry and hydrogen-bonding pattern at the metal binding site. The importance of NH-S hydrogen bonds at the metal centre for the delocalization of electron spin density is confirmed for rubredoxins and can be extrapolated to metal centres in Cu proteins: amicyanin, plastocyanin, stellacyanin, azurin and pseudoazurin.
Collapse
|
14
|
Poppe L, Tegley CM, Li V, Lewis J, Zondlo J, Yang E, Kurzeja RJM, Syed R. Different Modes of Inhibitor Binding to Prolyl Hydroxylase by Combined Use of X-ray Crystallography and NMR Spectroscopy of Paramagnetic Complexes. J Am Chem Soc 2009; 131:16654-5. [DOI: 10.1021/ja907933p] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Leszek Poppe
- Department of Molecular Structure, Protein Science, Chemistry Research and Discovery, Amgen, Inc., Thousand Oaks, California 91320
| | - Christopher M. Tegley
- Department of Molecular Structure, Protein Science, Chemistry Research and Discovery, Amgen, Inc., Thousand Oaks, California 91320
| | - Vivian Li
- Department of Molecular Structure, Protein Science, Chemistry Research and Discovery, Amgen, Inc., Thousand Oaks, California 91320
| | - Jeffrey Lewis
- Department of Molecular Structure, Protein Science, Chemistry Research and Discovery, Amgen, Inc., Thousand Oaks, California 91320
| | - James Zondlo
- Department of Molecular Structure, Protein Science, Chemistry Research and Discovery, Amgen, Inc., Thousand Oaks, California 91320
| | - Evelyn Yang
- Department of Molecular Structure, Protein Science, Chemistry Research and Discovery, Amgen, Inc., Thousand Oaks, California 91320
| | - Robert JM Kurzeja
- Department of Molecular Structure, Protein Science, Chemistry Research and Discovery, Amgen, Inc., Thousand Oaks, California 91320
| | - Rashid Syed
- Department of Molecular Structure, Protein Science, Chemistry Research and Discovery, Amgen, Inc., Thousand Oaks, California 91320
| |
Collapse
|
15
|
Rajapandian V, Raman SS, Hakkim V, Parthasarathi R, Subramanian V. Molecular mechanics and molecular dynamics study on azurin using extensible and systematic force field (ESFF). ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.theochem.2009.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Rajapandian V, Hakkim V, Subramanian V. ONIOM Calculation on Azurin: Effect of Metal Ion Substitutions. J Phys Chem A 2009; 113:8615-25. [DOI: 10.1021/jp900451f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- V. Rajapandian
- Chemical Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research, Adyar, Chennai 600 020, India
| | - V. Hakkim
- Chemical Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research, Adyar, Chennai 600 020, India
| | - V. Subramanian
- Chemical Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research, Adyar, Chennai 600 020, India
| |
Collapse
|
17
|
X-ray structure and spectroscopic characterization of divalent dinuclear cobalt complexes containing carboxylate- and phosphodiester- auxiliary bridges. Inorganica Chim Acta 2009. [DOI: 10.1016/j.ica.2009.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Myers WK, Duesler EN, Tierney DL. Integrated paramagnetic resonance of high-spin Co(II) in axial symmetry: chemical separation of dipolar and contact electron-nuclear couplings. Inorg Chem 2008; 47:6701-10. [PMID: 18605690 DOI: 10.1021/ic800245k] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Integrated paramagnetic resonance, utilizing electron paramagnetic resonance (EPR), NMR, and electron-nuclear double resonance (ENDOR), of a series of cobalt bis-trispyrazolylborates, Co(Tp ( x )) 2, are reported. Systematic substitutions at the ring carbons and on the apical boron provide a unique opportunity to separate through-bond and through-space contributions to the NMR hyperfine shifts for the parent, unsubstituted Tp complex. A simple relationship between the chemical shift difference (delta H - delta Me) and the contact shift of the proton in that position is developed. This approach allows independent extraction of the isotropic hyperfine coupling, A iso, for each proton in the molecule. The Co..H contact coupling energies derived from the NMR, together with the known metrics of the compounds, were used to predict the ENDOR couplings at g perpendicular. Proton ENDOR data is presented that shows good agreement with the NMR-derived model. ENDOR signals from all other magnetic nuclei in the complex ( (14)N, coordinating and noncoordinating, (11)B and (13)C) are also reported.
Collapse
Affiliation(s)
- William K Myers
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | |
Collapse
|
19
|
Worrall JAR, Machczynski MC, Keijser BJF, di Rocco G, Ceola S, Ubbink M, Vijgenboom E, Canters GW. Spectroscopic characterization of a high-potential lipo-cupredoxin found in Streptomyces coelicolor. J Am Chem Soc 2007; 128:14579-89. [PMID: 17090042 DOI: 10.1021/ja064112n] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For many streptomycetes, a distinct dependence on the "bioavailability" of copper ions for their morphological development has been reported. Analysis of the Streptomyces coelicolor genome reveals a number of gene products encoding for putative copper-binding proteins. One of these appears as an unusual copper-binding protein with a lipoprotein signal sequence and a cupredoxin-like domain harboring a putative Type-1 copper-binding motif. Cloning of this gene from S. coelicolor and subsequent heterologous expression in Escherichia coli has allowed for a thorough spectroscopic interrogation of this putative copper-binding protein. Optical and electron paramagnetic resonance spectroscopies have confirmed the presence of a "classic" Type-1 copper site with the axial ligand to the copper a methionine. Paramagnetic NMR spectroscopy on both the native Cu(II) form and Co(II)-substituted protein has yielded active-site structural information, which on comparison with that of other cupredoxin active sites reveals metal-ligand interactions most similar to the "classic" Type-1 copper site found in the amicyanin family of cupredoxins. Despite this high structural similarity, the Cu(II)/(I) midpoint potential of the S. coelicolor protein is an unprecedented +605 mV vs normal hydrogen electrode at neutral pH (amicyanin approximately +250 mV), with no active-site protonation of the N-terminal His ligand observed. Suggestions for the physiological role/function of this high-potential cupredoxin are discussed.
Collapse
Affiliation(s)
- Jonathan A R Worrall
- Contribution from the Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Llarrull LI, Tioni MF, Kowalski J, Bennett B, Vila AJ. Evidence for a dinuclear active site in the metallo-beta-lactamase BcII with substoichiometric Co(II). A new model for metal uptake. J Biol Chem 2007; 282:30586-95. [PMID: 17715135 DOI: 10.1074/jbc.m704613200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metallo-beta-lactamases are zinc-dependent enzymes that constitute one of the main resistance mechanisms to beta-lactam antibiotics. Metallo-beta-lactamases have been characterized both in mono- and dimetallic forms. Despite many studies, the role of each metal binding site in substrate binding and catalysis is still unclear. This is mostly due to the difficulties in assessing the metal content and site occupancy in solution. For this reason, Co(II) has been utilized as a useful probe of the active site structure. We have employed UV-visible, EPR, and NMR spectroscopy to study Co(II) binding to the metallo-beta-lactamase BcII from Bacillus cereus. The spectroscopic features were attributed to the two canonical metal binding sites, the 3H (His(116), His(118), and His(196)) and DCH (Asp(120), Cys(221), and His(263)) sites. These data clearly reveal the coexistence of mononuclear and dinuclear Co(II)-loaded forms at Co(II)/enzyme ratios as low as 0.6. This picture is consistent with the macroscopic dissociation constants here determined from competition binding experiments. A spectral feature previously assigned to the DCH site in the dinuclear species corresponds to a third, weakly bound Co(II) site. The present work emphasizes the importance of using different spectroscopic techniques to follow the metal content and localization during metallo-beta-lactamase turnover.
Collapse
Affiliation(s)
- Leticia I Llarrull
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina
| | | | | | | | | |
Collapse
|
21
|
Abstract
Copper-containing nitrite reductases (NiRs) possess type 1 (T1) and type 2 (T2) copper sites and can be either green or blue in color owing to differences at their T1 centers. The active sites of a green and a blue NiR were studied by utilizing their T1CuI/T2CoII and T1CoII/T2CoII-substituted forms. The UV/Vis spectra of these derivatives highlight the similarity of the T2 centers in these enzymes and that T1 site differences are also present in the CoII forms. The paramagnetic NMR spectra of T1CuI/T2CoII enzymes allow hyperfine shifted resonances from the three T2 His ligands to be assigned: these exhibit remarkably similar positions in the spectra of both NiRs, emphasizing the homology of the T2 centers. The addition of nitrite results in subtle alterations in the paramagnetic NMR spectra of the T1CuI/T2CoII forms at pH<7, which indicate a geometry change upon the binding of substrate. Shifted resonances from all of the T1 site ligands have been assigned and the CoII--N(His) interactions are alike, whereas the CbetaH proton resonances of the Cys ligand exhibit subtle chemical shift differences in the blue and green NiRs. The strength of the axial CoII--S(Met) interaction is similar in the two NiRs studied, but the altered conformation of the side chain of this ligand results in a dramatically different chemical shift pattern for the CgammaH protons. This indicates an alteration in the bonding of the axial ligand in these derivatives, which could be influential in the CuII proteins.
Collapse
Affiliation(s)
- Katsuko Sato
- Institute for Cell and Molecular Biosciences, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, NE2 4HH, UK
| | | |
Collapse
|
22
|
Riley EA, Petros AK, Smith KA, Gibney BR, Tierney DL. Frequency-switching inversion-recovery for severely hyperfine-shifted NMR: evidence of asymmetric electron relaxation in high-spin Co(II). Inorg Chem 2007; 45:10016-8. [PMID: 17140197 DOI: 10.1021/ic061207h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new method for reliably measuring longitudinal relaxation rates for severely hyperfine-shifted NMR signals in aqueous solutions is presented. The method is illustrated for a well-defined cobalt tetracysteinate, with relevance to cobalt-substituted metalloproteins. The relaxation measurements are indicative of asymmetric electronic relaxation of the high-spin Co(II) ion.
Collapse
Affiliation(s)
- Erin A Riley
- Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | | | | | |
Collapse
|
23
|
Balayssac S, Jiménez B, Piccioli M. Assignment strategy for fast relaxing signals: complete aminoacid identification in thulium substituted calbindin D 9K. JOURNAL OF BIOMOLECULAR NMR 2006; 34:63-73. [PMID: 16518694 DOI: 10.1007/s10858-005-5359-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Accepted: 11/14/2005] [Indexed: 05/07/2023]
Abstract
Paramagnetic proteins generally contain regions with diverse relaxation properties. Nuclei in regions far from the metal center may behave like those in diamagnetic proteins, but those closer to the metal experience rapid relaxation with accompanying line broadening. We have used a set of NMR experiments optimized to capture data from these various concentric regions in assigning the signals from a paramagnetic Calbindin D 9K derivative in which one of the two calcium ions has been replaced by thulium(III). Normal double- and triple-resonance experiments with 1H detection were used in collecting data from nuclei in the diamagnetic-like region; these approaches identified signals from fewer than 50% of the amino acid residues (those with d > 17.5 A from thulium(III)). Paramagnetism-optimized two-dimensional NMR experiments with 1H detection were used in collecting data from nuclei in the next nearer region (d > 15 A). Standard (d > 14 A) and optimized (d > 9 A) 13C direct-detection experiments were used to capture data from nuclei in the next layer. Finally nuclei closest to the metal were detected by one-dimensional 13C (d > 5 A) and one-dimensional 15N data collection (d > 4.2 A). NMR signals were assigned on the basis of through-bond correlations and, for signals closest to the metal, pseudocontact shifts. The latter were determined from chemical shift differences between assigned signals in thulium(III) and lanthanum(III) derivatives of Calbindin D 9K and they were interpreted on the basis of a structural model for the lanthanide-substituted protein. This approach yielded assignments of at least one resonance per amino acid residue, including those in the thulium(III) coordination sphere.
Collapse
Affiliation(s)
- Stéphane Balayssac
- Department of Chemistry, Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy
| | | | | |
Collapse
|
24
|
|
25
|
Jensen MR, Petersen G, Lauritzen C, Pedersen J, Led JJ. Metal binding sites in proteins: identification and characterization by paramagnetic NMR relaxation. Biochemistry 2005; 44:11014-23. [PMID: 16101285 DOI: 10.1021/bi0508136] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A method is presented that allows the identification and quantitative characterization of metal binding sites in proteins using paramagnetic nuclear magnetic resonance spectroscopy. The method relies on the nonselective longitudinal relaxation rates of the amide protons and their dependence on the paramagnetic metal ion concentration and the pH, and on the three-dimensional structure of the protein. The method is demonstrated using Escherichia coli thioredoxin as a model protein and Ni(2+) as the paramagnetic metal ion. Through a least-squares analysis of the relaxation rates, it is found that Ni(2+) binds to a series of specific sites on the surface of thioredoxin. The strongest binding site is found near the N-terminus of the protein, where the metal ion is coordinated to the free NH(2) group of the N-terminal serine residue and the side chain carboxylate group of the aspartic acid residue in position 2. In addition, Ni(2+) binds specifically but more weakly to the surface-exposed side chain carboxylate groups of residues D10, D20, D47, and E85.
Collapse
Affiliation(s)
- Malene Ringkjøbing Jensen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | | | | | | | | |
Collapse
|
26
|
Abstract
The shortest known type 1 copper binding loop (that of amicyanin, Ami) has been introduced into three different cupredoxin beta-barrel scaffolds. All of the loop-contraction variants possess copper centers with authentic type 1 properties and are redox active. The Cu(II) and Co(II) sites experience only small structural alterations upon loop contraction with the largest changes in the azurin variant (AzAmi), which can be ascribed to the removal of a hydrogen bond to the coordinating thiolate sulfur of the Cys ligand. In all cases, loop contraction leads to an increase in the pK(a) of the His ligand found on the loop in the reduced proteins, and in the pseudoazurin (Paz) and plastocyanin (Pc) variants the values are almost identical to that of Ami ( approximately 6.7). Thus, in Paz, Pc, and Ami, the length of this loop tunes the pK(a) of the His ligand. In the AzAmi variant, the pK(a) is 5.5, which is considerably higher than the estimated value for Az (<2), and other controlling factors, along with loop length, are involved. The reduction potentials of the loop-contraction variants are all lower than those of the wild-type proteins by approximately 30-60 mV, and thus this property of a type 1 copper site is fine-tuned by the C-terminal loop. The electron self-exchange rate constant of Paz is significantly diminished by the introduction of a shorter loop. However, in PcAmi only a 2-fold decrease is observed and in AzAmi there is no effect, and thus in these two cupredoxins loop contraction does not significantly influence electron-transfer reactivity. Loop contraction provides an active site environment in all of the cupredoxins which is preferable for Cu(II), whereas previous loop elongation experiments always favored the cuprous site. Thus, the ligand-containing loop plays an important role in tuning the entatic nature of a type 1 copper center.
Collapse
Affiliation(s)
- Sachiko Yanagisawa
- School of Natural Sciences, Bedson Building, University of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7RU, UK
| | | |
Collapse
|
27
|
Matsunaga Y, Fujisawa K, Ibi N, Miyashita Y, Okamoto KI. Structural and Spectroscopic Characterization of First-Row Transition Metal(II) Substituted Blue Copper Model Complexes with Hydrotris(pyrazolyl)borate. Inorg Chem 2004; 44:325-35. [PMID: 15651879 DOI: 10.1021/ic049814x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[CuL(SC(6)F(5))] (1) (L = hydrotris(3,5-diisopropyl-1-pyrazolyl)borate anion) has been reported as a good model for blue copper proteins [Kitajima, N.; Fujisawa, K.; Tanaka, M.; Moro-oka, Y. J. Am. Chem. Soc. 1992, 114, 9232-9233]. To obtain more structural and spectroscopic insight, the first-row transition metal(II) substituted complexes of Cu(II) (1) to Mn(II) (2), Fe(II) (3), Co(II) (4), Ni(II) (5), and Zn(II) (6) were synthesized and their crystal structures were determined. These model complexes have a distorted tetrahedral geometry arising from the tripodal ligand L. The d value, which is defined by the distance from the N(2)S basal plane to the metal(II) ion, and the bond angles such as N-M-N and S-M-N are good indicators of these structural distortions. The obtained complexes were characterized by UV-vis absorption, EPR, NMR, far-IR, and FT-Raman spectroscopies and electrochemical and magnetic properties. In UV-vis absorption spectra, the sulfur-to-metal(II) CT bands and the d-d transition bands are observed for 1 and 3-5. For 1, the strong sulfur to Cu(II) CT band at 663 nm, which is one of the unique properties of blue copper proteins, is observed. The CT energies of the Fe(II) (3), Co(II) (4), and Ni(II) (5) complexes are shifted to higher energy (308 and 355 nm for 3, 311 and 340 nm for 4, 357 and 434 nm for 5) and are almost the same as the corresponding Co(II)- and Ni(II)-substituted blue copper proteins. In the far-IR spectra, three far-IR absorption bands for 2-6 at ca. 400, ca. 350, and ca. 310 cm(-1) are also observed similar to those for 1. Other properties are consistent with their distorted tetrahedral geometries.
Collapse
Affiliation(s)
- Yuki Matsunaga
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | | | | | | | | |
Collapse
|
28
|
Funk T, Kennepohl P, Di Bilio AJ, Wehbi WA, Young AT, Friedrich S, Arenholz E, Gray HB, Cramer SP. X-ray Magnetic Circular Dichroism of Pseudomonas aeruginosa Nickel(II) Azurin. J Am Chem Soc 2004; 126:5859-66. [PMID: 15125678 DOI: 10.1021/ja036218d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We show that X-ray magnetic circular dichroism (XMCD) can be employed to probe the oxidation states and other electronic structural features of nickel active sites in proteins. As a calibration standard, we have measured XMCD and X-ray absorption (XAS) spectra for the nickel(II) derivative of Pseudomonas aeruginosa azurin (NiAz). Our analysis of these spectra confirms that the electronic ground state of NiAz is high-spin (S = 1); we also find that the L(3)-centroid energy is 853.1(1) eV, the branching ratio is 0.722(4), and the magnetic moment is 1.9(4) mu(B). Density functional theory (DFT) calculations on model NiAz structures establish that orbitals 3d(x2-y2) and 3d(z2) are the two valence holes in the high-spin Ni(II) ground state, and in accord with the experimentally determined orbital magnetic moment, the DFT results also demonstrate that both holes are highly delocalized, with 3d(x2-y2) having much greater ligand character.
Collapse
Affiliation(s)
- Tobias Funk
- Physical Biosciences, LBNL, Cyclotron Road 1, Berkeley, California 94720, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dennison C, Harrison MD. The Active-Site Structure of Umecyanin, the Stellacyanin from Horseradish Roots. J Am Chem Soc 2004; 126:2481-9. [PMID: 14982457 DOI: 10.1021/ja0375378] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The type 1 copper sites of cupredoxins typically have a His(2)Cys equatorial ligand set with a weakly interacting axial Met, giving a distorted tetrahedral geometry. Natural variations to this coordination environment are known, and we have utilized paramagnetic (1)H NMR spectroscopy to study the active-site structure of umecyanin (UMC), a stellacyanin with an axial Gln ligand. The assigned spectra of the Cu(II) UMC and its Ni(II) derivative [Ni(II) UMC] demonstrate that this protein has the typical His(2)Cys equatorial coordination observed in other structurally characterized cupredoxins. The NMR spectrum of the Cu(II) protein does not exhibit any paramagnetically shifted resonances from the axial ligand, showing that this residue does not contribute to the singly occupied molecular orbital (SOMO) in Cu(II) UMC. The assigned paramagnetic (1)H NMR spectrum of Ni(II) UMC demonstrates that the axial Gln ligand coordinates in a monodentate fashion via its side-chain amide oxygen atom. The alkaline transition, a feature common to stellacyanins, influences all of the ligating residues but does not alter the coordination mode of the axial Gln ligand in UMC. The structural features which result in Cu(II) UMC possessing a classic type 1 site as compared to the perturbed type 1 center observed for other stellacyanins do not have a significant influence on the paramagnetic (1)H NMR spectra of the Cu(II) or Ni(II) proteins.
Collapse
Affiliation(s)
- Christopher Dennison
- School of Natural Sciences, Bedson Building, University of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7RU, UK.
| | | |
Collapse
|
30
|
Dennison C, Sato K. Paramagnetic1H NMR Spectrum of the Cobalt(II) Derivative of Spinach Plastocyanin. Inorg Chem 2004; 43:1502-10. [PMID: 14966988 DOI: 10.1021/ic034861v] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The native type 1 copper ion of spinach plastocyanin has been substituted with Co(II). The UV/vis spectrum of this derivative is similar to those for other Co(II)-substituted cupredoxins. The paramagnetic 1H NMR spectrum of Co(II) plastocyanin has been completely assigned. A number of similar studies on Co(II) cupredoxins have been published, but this is the first such analysis of a substituted plastocyanin that possesses the archetypal type 1 active site. A truly representative comparison of the available paramagnetic 1H NMR data for Co(II) cupredoxins is now possible. We demonstrate in this work that there is very little difference in the metal-ligand contacts between the Co(II) derivatives of cupredoxins possessing a type 1 axial site (plastocyanin) and those having perturbed (rhombic) spectroscopic features.
Collapse
Affiliation(s)
- Christopher Dennison
- School of Natural Sciences, Bedson Building, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, UK.
| | | |
Collapse
|
31
|
Banci L, Pierattelli R, Vila AJ. Nuclear magnetic resonance spectroscopy studies on copper proteins. ADVANCES IN PROTEIN CHEMISTRY 2003; 60:397-449. [PMID: 12418182 DOI: 10.1016/s0065-3233(02)60058-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- Lucia Banci
- CERM, University of Florence, 50019 Sesto Fiorentino, Italy
| | | | | |
Collapse
|
32
|
Gelis I, Katsaros N, Luchinat C, Piccioli M, Poggi L. A simple protocol to study blue copper proteins by NMR. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:600-9. [PMID: 12581200 DOI: 10.1046/j.1432-1033.2003.03400.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the case of oxidized plastocyanin from Synechocystis sp. PCC6803, an NMR approach based on classical two and three dimensional experiments for sequential assignment leaves unobserved 14 out of 98 amino acids. A protocol which simply makes use of tailored versions of 2D HSQC and 3D CBCA(CO)NH and CBCANH leads to the identification of nine of the above 14 residues. The proposed protocol differs from previous approaches in that it does not involve the use of unconventional experiments designed specifically for paramagnetic systems, and does not exploit the occurrence of a corresponding diamagnetic species in chemical exchange with the blue copper form. This protocol is expected to extend the popularity of NMR in the structural studies of copper (II) proteins, allowing researchers to increase the amount of information available via NMR on the neighborhood of a paramagnetic center without requiring a specific expertise in the field. The resulting 3D spectra are standard spectra that can be handled by any standard software for protein NMR data analysis.
Collapse
Affiliation(s)
- Ioannis Gelis
- NCSR Demokritos, Institute of Physical Chemistry, Agia Paraskevi Attikis, Greece
| | | | | | | | | |
Collapse
|
33
|
Dennison C, Sato K. Paramagnetic 1H NMR spectrum of nickel(II) pseudoazurin: investigation of the active site structure and the acid and alkaline transitions. Inorg Chem 2002; 41:6662-72. [PMID: 12470061 DOI: 10.1021/ic020303p] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The paramagnetic (1)H NMR spectrum of Ni(II) pseudoazurin [(PA)Ni(II)] possesses a number of resonances exhibiting sizable Fermi-contact shifts. These have been assigned to protons associated with the four ligating amino acids, His40, Cys78, His81, and Met86. The shifts experienced by the C(gamma)H protons of the axial Met86 ligand are unprecedented compared to other Ni(II)- and Co(II)-substituted cupredoxins (the C(gamma)(1)H signal is found at 432.5 ppm at 25 degrees C). The large shift of protons of the axial Met86 ligand highlights a strong Ni(II)-S(Met) interaction in (PA)Ni(II). The paramagnetic (1)H NMR spectrum of (PA)Ni(II) is altered by decreasing and increasing the pH value from 8.0. At acidic pH a number of the hyperfine-shifted resonances undergo limited changes in their chemical shift values. This effect is assigned to the surface His6 residue whose protonation results in a structural modification of the active site. Increasing the pH value from 8.0 has a more significant effect on the paramagnetic (1)H NMR spectrum of (PA)Ni(II), and the alkaline transition can now be assigned to two surface lysine residues close to the active site of the protein. The effect of altering pH on the (1)H NMR spectrum of Ni(II) pseudoazurin is smaller than that previously observed in the Cu(II) protein indicating more limited structural rearrangements at the non-native metal site.
Collapse
|
34
|
Donaire A, Jiménez B, Fernández CO, Pierattelli R, Niizeki T, Moratal JM, Hall JF, Kohzuma T, Hasnain SS, Vila AJ. Metal-ligand interplay in blue copper proteins studied by 1H NMR spectroscopy: Cu(II)-pseudoazurin and Cu(II)-rusticyanin. J Am Chem Soc 2002; 124:13698-708. [PMID: 12431099 DOI: 10.1021/ja0267019] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The blue copper proteins (BCPs), pseudoazurin from Achromobacter cycloclastes and rusticyanin from Thiobacillus ferrooxidans, have been investigated by (1)H NMR at a magnetic field of 18.8 T. Hyperfine shifts of the protons belonging to the coordinated ligands have been identified by exchange spectroscopy, including the indirect detection for those resonances that cannot be directly observed (the beta-CH(2) of the Cys ligand, and the NH amide hydrogen bonded to the S(gamma)(Cys) atom). These data reveal that the Cu(II)-Cys interaction in pseudoazurin and rusticyanin is weakened compared to that in classic blue sites (plastocyanin and azurin). This weakening is not induced by a stronger interaction with the axial ligand, as found in stellacyanin, but might be determined by the protein folding around the metal site. The average chemical shift of the beta-CH(2) Cys ligand in all BCPs can be correlated to geometric factors of the metal site (the Cu-S(gamma)(Cys) distance and the angle between the CuN(His)N(His) plane and the Cu-S(gamma)(Cys) vector). It is concluded that the degree of tetragonal distortion is not necessarily related to the strength of the Cu(II)-S(gamma)(Cys) bond. The copper-His interaction is similar in all BCPs, even for the solvent-exposed His ligand. It is proposed that the copper xy magnetic axes in blue sites are determined by subtle geometrical differences, particularly the orientation of the His ligands. Finally, the observed chemical shifts for beta-CH(2) Cys and Ser NH protons in rusticyanin suggest that a less negative charge at the sulfur atom could contribute to the high redox potential (680 mV) of this protein.
Collapse
Affiliation(s)
- Antonio Donaire
- Biophysics Section and Instituto de Biología Molecular y Celular de Rosario (IBR), University of Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ubbink M, Worrall JAR, Canters GW, Groenen EJJ, Huber M. Paramagnetic resonance of biological metal centers. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2002; 31:393-422. [PMID: 11988476 DOI: 10.1146/annurev.biophys.31.091701.171000] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The review deals with recent advances in magnetic resonance spectroscopy (hf EPR and NMR) of paramagnetic metal centers in biological macromolecules. In the first half of our chapter, we present an overview of recent technical developments in the NMR of paramagnetic bio-macromolecules. These are illustrated by a variety of examples deriving mainly from the spectroscopy of metalloproteins and their complexes. The second half focuses on recent developments in high-frequency EPR spectroscopy and the application of the technique to copper, iron, and manganese proteins. Special attention is given to the work on single crystals of copper proteins.
Collapse
Affiliation(s)
- M Ubbink
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
36
|
van Gastel M, Nagano Y, Zondervan R, Canters GW, Jeuken LJC, Warmerdam GCM, de Waal EC, Groenen EJJ. Hydrogen Bonding in the Blue-Copper Site. Resonance Raman Study. J Phys Chem B 2002. [DOI: 10.1021/jp013839p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M. van Gastel
- Department of Molecular Physics, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands, and Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Y. Nagano
- Department of Molecular Physics, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands, and Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - R. Zondervan
- Department of Molecular Physics, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands, and Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - G. W. Canters
- Department of Molecular Physics, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands, and Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - L. J. C. Jeuken
- Department of Molecular Physics, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands, and Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - G. C. M. Warmerdam
- Department of Molecular Physics, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands, and Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - E. C. de Waal
- Department of Molecular Physics, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands, and Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - E. J. J. Groenen
- Department of Molecular Physics, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands, and Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
37
|
Belle C, Bougault C, Averbuch MT, Durif A, Pierre JL, Latour JM, Le Pape L. Paramagnetic NMR investigations of high-spin nickel(II) complexes. Controlled synthesis, structural, electronic, and magnetic properties of dinuclear vs. mononuclear species. J Am Chem Soc 2001; 123:8053-66. [PMID: 11506562 DOI: 10.1021/ja010342k] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New dissymmetric tertiary amines (N(3)SR) with varying N/S donor sets have been synthesized to provide mono- and dinuclear complexes. Acetate ions are used to complete the octahedral coordination sphere around nickel(II) atom(s). The facile conversion of mononuclear to dinuclear systems can be controlled to produce either mono- or dinuclear complexes from the same ligand. The dinuclear complex a(BPh(4))(2) ([Ni(2)(N(3)SSN(3))(OAc)(2)](BPh(4))(2)) has been characterized in the solid state by X-ray diffraction techniques as solvate: a(BPh(4))(2).(1/2)[5(CH(3)OH).(CH(3)CN).(CH(3)CH(2)OH)]. The two Ni atoms are six-coordinated and bridged by a disulfide group and two bidentate acetates. Magnetic susceptibility reveals a weak ferromagnetic exchange interaction between the two Ni atoms with J = 2.5(7) cm(-1). UV-vis studies suggest that the six-coordinated structure persists in solution. The (1)H NMR spectrum of a(BPh(4))(2) exhibits sharp significantly hyperfine shifted ligand signals. A complete assignment of resonances is accomplished by a combination of methods: 2D-COSY experiments, selective chemical substitution, and analysis of proton relaxation data. Proton isotropic hyperfine shifts are shown to originate mainly from contact interactions and to intrinsically contain a small J-magnetic coupling and/or zero-field splitting contribution. A temperature dependence study of longitudinal relaxation times indicates that a very unusual paramagnetic Curie dipolar mechanism is the dominant relaxation pathway in these weakly ferromagnetically spin-coupled dinickel(II) centers. The mononuclear nickel(II) analogue exhibits extremely broader (1)H NMR signals and only partial analysis could be performed. These data are consistent with a shortening of electronic relaxation times in homodinuclear compounds with respect to the corresponding mononuclear species.
Collapse
Affiliation(s)
- C Belle
- Laboratoire d'Etudes Dynamiques et Structurales de la Sélectivité (LEDSS, UMR CNRS 5616), Université Joseph Fourier, BP 53X, 38041 Grenoble Cedex 9, France.
| | | | | | | | | | | | | |
Collapse
|
38
|
Bertini I, Fernández CO, Karlsson BG, Leckner J, Luchinat C, Malmström BG, Nersissian AM, Pierattelli R, Shipp E, Valentine JS, Vila AJ. Structural Information through NMR Hyperfine Shifts in Blue Copper Proteins. J Am Chem Soc 2000. [DOI: 10.1021/ja992674j] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ivano Bertini
- Contribution from the Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy, LANAIS RMN-300, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina, Department of Molecular Biotechnology, Chalmers University of Technology, P.O. Box 462 SE-405 30 Göteborg, Sweden, Department of Chemistry, Biochemistry and Biophysics, Göteborg University, SE-40530 Göteborg, Sweden, Department of Chemistry and
| | - Claudio O. Fernández
- Contribution from the Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy, LANAIS RMN-300, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina, Department of Molecular Biotechnology, Chalmers University of Technology, P.O. Box 462 SE-405 30 Göteborg, Sweden, Department of Chemistry, Biochemistry and Biophysics, Göteborg University, SE-40530 Göteborg, Sweden, Department of Chemistry and
| | - B. Göran Karlsson
- Contribution from the Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy, LANAIS RMN-300, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina, Department of Molecular Biotechnology, Chalmers University of Technology, P.O. Box 462 SE-405 30 Göteborg, Sweden, Department of Chemistry, Biochemistry and Biophysics, Göteborg University, SE-40530 Göteborg, Sweden, Department of Chemistry and
| | - Johan Leckner
- Contribution from the Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy, LANAIS RMN-300, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina, Department of Molecular Biotechnology, Chalmers University of Technology, P.O. Box 462 SE-405 30 Göteborg, Sweden, Department of Chemistry, Biochemistry and Biophysics, Göteborg University, SE-40530 Göteborg, Sweden, Department of Chemistry and
| | - Claudio Luchinat
- Contribution from the Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy, LANAIS RMN-300, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina, Department of Molecular Biotechnology, Chalmers University of Technology, P.O. Box 462 SE-405 30 Göteborg, Sweden, Department of Chemistry, Biochemistry and Biophysics, Göteborg University, SE-40530 Göteborg, Sweden, Department of Chemistry and
| | - Bo G. Malmström
- Contribution from the Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy, LANAIS RMN-300, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina, Department of Molecular Biotechnology, Chalmers University of Technology, P.O. Box 462 SE-405 30 Göteborg, Sweden, Department of Chemistry, Biochemistry and Biophysics, Göteborg University, SE-40530 Göteborg, Sweden, Department of Chemistry and
| | - Aram M. Nersissian
- Contribution from the Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy, LANAIS RMN-300, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina, Department of Molecular Biotechnology, Chalmers University of Technology, P.O. Box 462 SE-405 30 Göteborg, Sweden, Department of Chemistry, Biochemistry and Biophysics, Göteborg University, SE-40530 Göteborg, Sweden, Department of Chemistry and
| | - Roberta Pierattelli
- Contribution from the Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy, LANAIS RMN-300, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina, Department of Molecular Biotechnology, Chalmers University of Technology, P.O. Box 462 SE-405 30 Göteborg, Sweden, Department of Chemistry, Biochemistry and Biophysics, Göteborg University, SE-40530 Göteborg, Sweden, Department of Chemistry and
| | - Eric Shipp
- Contribution from the Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy, LANAIS RMN-300, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina, Department of Molecular Biotechnology, Chalmers University of Technology, P.O. Box 462 SE-405 30 Göteborg, Sweden, Department of Chemistry, Biochemistry and Biophysics, Göteborg University, SE-40530 Göteborg, Sweden, Department of Chemistry and
| | - Joan S. Valentine
- Contribution from the Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy, LANAIS RMN-300, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina, Department of Molecular Biotechnology, Chalmers University of Technology, P.O. Box 462 SE-405 30 Göteborg, Sweden, Department of Chemistry, Biochemistry and Biophysics, Göteborg University, SE-40530 Göteborg, Sweden, Department of Chemistry and
| | - Alejandro J. Vila
- Contribution from the Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy, LANAIS RMN-300, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina, Department of Molecular Biotechnology, Chalmers University of Technology, P.O. Box 462 SE-405 30 Göteborg, Sweden, Department of Chemistry, Biochemistry and Biophysics, Göteborg University, SE-40530 Göteborg, Sweden, Department of Chemistry and
| |
Collapse
|
39
|
Hannan JP, Whittaker SB, Hemmings AM, James R, Kleanthous C, Moore GR. NMR studies of metal ion binding to the Zn-finger-like HNH motif of colicin E9. J Inorg Biochem 2000; 79:365-70. [PMID: 10830890 DOI: 10.1016/s0162-0134(99)00235-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The 134 amino acid DNase domain of colicin E9 contains a zinc-finger-like HNH motif that binds divalent transition metal ions. We have used 1D 1H and 2D 1H-15N NMR methods to characterise the binding of Co2+, Ni2+ and Zn2+ to this protein. Data for the Co2+-substituted and Ni2+-substituted proteins show that the metal ion is coordinated by three histidine residues; and the NMR characteristics of the Ni2+-substituted protein show that two of the histidines are coordinated through their N(epsilon2) atoms and one via its N(delta1). Furthermore, the NMR spectrum of the Ni2+-substituted protein is perturbed by the presence of phosphate, consistent with an X-ray structure showing that phosphate is coordinated to bound Ni2+, and by a change in pH, consistent with an ionisable group at the metal centre with a pKa of 7.9. Binding of an inhibitor protein to the DNase does not perturb the resonances of the metal site, suggesting there is no substantial conformation change of the DNase HNH motif on inhibitor binding. 1H-15N NMR data for the Zn2+-substituted DNase show that this protein, like the metal-free DNase, exists as two conformers with different 1H-15N correlation NMR spectra, and that the binding of Zn2+ does not significantly perturb the spectra, and hence structures, of these conformers beyond the HNH motif region.
Collapse
Affiliation(s)
- J P Hannan
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | | | | | | | | | | |
Collapse
|
40
|
Kolczak U, Salgado J, Siegal G, Saraste M, Canters GW. Paramagnetic NMR studies of blue and purple copper proteins. BIOSPECTROSCOPY 1999; 5:S19-32. [PMID: 10512535 DOI: 10.1002/(sici)1520-6343(1999)5:5+3.0.co;2-h] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
1H- and 13C-NMR spectroscopy is applied to investigate the CU(A) and type 1 active sites of copper proteins in solution. The analysis of hyperfine shifted 1H resonances allows the comparison of the electron spin density delocalization in the CU(A) site of the wild-type soluble domains of various cytochrome c oxidases (Thermus thermophilus, Paracoccus denitrificans, and Paracoccus versutus) and genetically engineered constructs (soluble domain of quinol oxidase from Escherichia coli and Thiobacillus versutus amicyanin). Comparable spin densities are found on the two terminal His ligands for the wild-type constructs as opposed to the engineered proteins where the spin is more unevenly distributed on the two His residues. A reevaluation of the Cys H(beta) chemical shifts that is in agreement with the data published for both the P. denitrificans and the P. versutus Cu(A) soluble domains confirms the thermal accessibility of the 2B(3u) electronic excited state and indicates the existence of slightly different spin densities on the two bridging Cys ligands. The 13C-NMR spectrum of isotopically enriched oxidized azurin from Pseudomonas aeruginosa reveals six fast relaxing signals, which can be partially identified by 1- and 2-dimensional (1-D, 2-D) direct detection techniques combined with 3-D triple resonance experiments. The observed contact shifts suggest the presence of direct spin density transfer and spin polarization mechanisms for the delocalization of the unpaired electron.
Collapse
Affiliation(s)
- U Kolczak
- Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, The Netherlands
| | | | | | | | | |
Collapse
|
41
|
Bertini I, Ciurli S, Dikiy A, Gasanov R, Luchinat C, Martini G, Safarov N. High-Field NMR Studies of Oxidized Blue Copper Proteins: The Case of Spinach Plastocyanin. J Am Chem Soc 1999. [DOI: 10.1021/ja983833m] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ivano Bertini
- Contribution from the Department of Chemistry, University of Florence, Via Gino Capponi 7/9, 50121 Florence, Italy, Institute of Agricultural Chemistry, University of Bologna, viale Berti Pichat 10, 40120 Bologna, Italy, Institute of Molecular Biology and Biotechnology, Azerbaijan Academy of Sciences, Matbuat pr., 2, 370073, Baku, Azerbaijan, and Department of Soil Science and Plant Nutrition, University of Florence, P.le delle Cascine 28, 50144 Florence, Italy
| | - Stefano Ciurli
- Contribution from the Department of Chemistry, University of Florence, Via Gino Capponi 7/9, 50121 Florence, Italy, Institute of Agricultural Chemistry, University of Bologna, viale Berti Pichat 10, 40120 Bologna, Italy, Institute of Molecular Biology and Biotechnology, Azerbaijan Academy of Sciences, Matbuat pr., 2, 370073, Baku, Azerbaijan, and Department of Soil Science and Plant Nutrition, University of Florence, P.le delle Cascine 28, 50144 Florence, Italy
| | - Alexander Dikiy
- Contribution from the Department of Chemistry, University of Florence, Via Gino Capponi 7/9, 50121 Florence, Italy, Institute of Agricultural Chemistry, University of Bologna, viale Berti Pichat 10, 40120 Bologna, Italy, Institute of Molecular Biology and Biotechnology, Azerbaijan Academy of Sciences, Matbuat pr., 2, 370073, Baku, Azerbaijan, and Department of Soil Science and Plant Nutrition, University of Florence, P.le delle Cascine 28, 50144 Florence, Italy
| | - Ralphreed Gasanov
- Contribution from the Department of Chemistry, University of Florence, Via Gino Capponi 7/9, 50121 Florence, Italy, Institute of Agricultural Chemistry, University of Bologna, viale Berti Pichat 10, 40120 Bologna, Italy, Institute of Molecular Biology and Biotechnology, Azerbaijan Academy of Sciences, Matbuat pr., 2, 370073, Baku, Azerbaijan, and Department of Soil Science and Plant Nutrition, University of Florence, P.le delle Cascine 28, 50144 Florence, Italy
| | - Claudio Luchinat
- Contribution from the Department of Chemistry, University of Florence, Via Gino Capponi 7/9, 50121 Florence, Italy, Institute of Agricultural Chemistry, University of Bologna, viale Berti Pichat 10, 40120 Bologna, Italy, Institute of Molecular Biology and Biotechnology, Azerbaijan Academy of Sciences, Matbuat pr., 2, 370073, Baku, Azerbaijan, and Department of Soil Science and Plant Nutrition, University of Florence, P.le delle Cascine 28, 50144 Florence, Italy
| | - Giacomo Martini
- Contribution from the Department of Chemistry, University of Florence, Via Gino Capponi 7/9, 50121 Florence, Italy, Institute of Agricultural Chemistry, University of Bologna, viale Berti Pichat 10, 40120 Bologna, Italy, Institute of Molecular Biology and Biotechnology, Azerbaijan Academy of Sciences, Matbuat pr., 2, 370073, Baku, Azerbaijan, and Department of Soil Science and Plant Nutrition, University of Florence, P.le delle Cascine 28, 50144 Florence, Italy
| | - Niaz Safarov
- Contribution from the Department of Chemistry, University of Florence, Via Gino Capponi 7/9, 50121 Florence, Italy, Institute of Agricultural Chemistry, University of Bologna, viale Berti Pichat 10, 40120 Bologna, Italy, Institute of Molecular Biology and Biotechnology, Azerbaijan Academy of Sciences, Matbuat pr., 2, 370073, Baku, Azerbaijan, and Department of Soil Science and Plant Nutrition, University of Florence, P.le delle Cascine 28, 50144 Florence, Italy
| |
Collapse
|
42
|
Abstract
1H NMR data applied to the paramagnetic cobalt(II) derivative of azurin from Pseudomonas aeruginosa have made it possible to show that the metal ion is bound to the protein in the unfolded state. The relaxation data as well as the low magnetic anisotropy of the metal ion indicate that the cobalt ion is tetrahedral in the unfolded form. The cobalt ligands have been identified as the residues Gly45, His46, Cys112 and His117. Met121 is not coordinated in the unfolded state. In this state, the metal ion is not constrained to adopt a bipyramidal geometry, as imposed by the protein when it is folded. This is clear confirmation of the rack-induced bonding mechanism previously proposed for the metal ion in azurin.
Collapse
Affiliation(s)
- C Romero
- Departamento de Química Inorgánica, Universitat de Valencia, Burjassot, Spain
| | | | | |
Collapse
|