1
|
Ribovski L, Joshi B, Gao J, Zuhorn I. Breaking free: endocytosis and endosomal escape of extracellular vesicles. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:283-305. [PMID: 39697985 PMCID: PMC11648447 DOI: 10.20517/evcna.2023.26] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/17/2023] [Accepted: 06/25/2023] [Indexed: 12/20/2024]
Abstract
Extracellular vesicles (EVs) are natural micro-/nanoparticles that play an important role in intercellular communication. They are secreted by producer/donor cells and subsequent uptake by recipient/acceptor cells may result in phenotypic changes in these cells due to the delivery of cargo molecules, including lipids, RNA, and proteins. The process of endocytosis is widely described as the main mechanism responsible for cellular uptake of EVs, with endosomal escape of cargo molecules being a necessity for the functional delivery of EV cargo. Equivalent to synthetic micro-/nanoparticles, the properties of EVs, such as size and composition, together with environmental factors such as temperature, pH, and extracellular fluid composition, codetermine the interactions of EVs with cells, from binding to uptake, intracellular trafficking, and cargo release. Innovative assays for detection and quantification of the different steps in the EV formation and EV-mediated cargo delivery process have provided valuable insight into the biogenesis and cellular processing of EVs and their cargo, revealing the occurrence of EV recycling and degradation, next to functional cargo delivery, with the back fusion of the EV with the endosomal membrane standing out as a common cargo release pathway. In view of the significant potential for developing EVs as drug delivery systems, this review discusses the interaction of EVs with biological membranes en route to cargo delivery, highlighting the reported techniques for studying EV internalization and intracellular trafficking, EV-membrane fusion, endosomal permeabilization, and cargo delivery, including functional delivery of RNA cargo.
Collapse
Affiliation(s)
- Laís Ribovski
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, the Netherlands
- Authors contributed equally
| | - Bhagyashree Joshi
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2629 HZ, the Netherlands
- Authors contributed equally
| | - Jie Gao
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, the Netherlands
| | - Inge Zuhorn
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, the Netherlands
| |
Collapse
|
2
|
Meers PR. Membrane Organization Strategies in Vesicular Antibiotic Delivery. J Membr Biol 2022; 255:523-535. [PMID: 35018488 DOI: 10.1007/s00232-021-00210-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/06/2021] [Indexed: 01/08/2023]
Abstract
Small molecule antibiotics are often derived from microorganisms that thrive in competitive environments. Their importance as therapeutics for infectious disease in humans has been established over many years. It has now become clear that antibiotic-producing organisms use packaging and delivery in the form of vesicles in many cases. A similar strategy has evolved in recent decades in the pharmaceutical industry for formulation of antibiotic therapies. The top-down approach that has evolved over millions of years in various micro-organisms has generated complex, efficient delivery systems that we are just now beginning to understand. The bottom-up formulation approach involves simple, safe compositions, which are being continually enhanced by trying to add features of which the natural systems inform us. A comparison is made here of these paradigms. Despite the differences, there are a number of common features in the basic physical and biological requirements that must be satisfied. In this review, illustration and comparison of some of these requirements is given, demonstrating the ongoing challenges in this area of research.
Collapse
Affiliation(s)
- Paul R Meers
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
3
|
Brunger AT, Cipriano DJ, Diao J. Towards reconstitution of membrane fusion mediated by SNAREs and other synaptic proteins. Crit Rev Biochem Mol Biol 2015; 50:231-41. [PMID: 25788028 PMCID: PMC4673598 DOI: 10.3109/10409238.2015.1023252] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Proteoliposomes have been widely used for in vitro studies of membrane fusion mediated by synaptic proteins. Initially, such studies were made with large unsynchronized ensembles of vesicles. Such ensemble assays limited the insights into the SNARE-mediated fusion mechanism that could be obtained from them. Single particle microscopy experiments can alleviate many of these limitations but they pose significant technical challenges. Here we summarize various approaches that have enabled studies of fusion mediated by SNAREs and other synaptic proteins at a single-particle level. Currently available methods are described and their advantages and limitations are discussed.
Collapse
|
4
|
Zick M, Wickner WT. A distinct tethering step is vital for vacuole membrane fusion. eLife 2014; 3:e03251. [PMID: 25255215 PMCID: PMC4200421 DOI: 10.7554/elife.03251] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 09/24/2014] [Indexed: 12/12/2022] Open
Abstract
Past experiments with reconstituted proteoliposomes, employing assays that infer membrane fusion from fluorescent lipid dequenching, have suggested that vacuolar SNAREs alone suffice to catalyze membrane fusion in vitro. While we could replicate these results, we detected very little fusion with the more rigorous assay of lumenal compartment mixing. Exploring the discrepancies between lipid-dequenching and content-mixing assays, we surprisingly found that the disposition of the fluorescent lipids with respect to SNAREs had a striking effect. Without other proteins, the association of SNAREs in trans causes lipid dequenching that cannot be ascribed to fusion or hemifusion. Tethering of the SNARE-bearing proteoliposomes was required for efficient lumenal compartment mixing. While the physiological HOPS tethering complex caused a few-fold increase of trans-SNARE association, the rate of content mixing increased more than 100-fold. Thus tethering has a role in promoting membrane fusion that extends beyond simply increasing the amount of total trans-SNARE complex. DOI:http://dx.doi.org/10.7554/eLife.03251.001 Cells of higher organisms contain compartments called organelles and structures called vesicles that transfer molecules and proteins between these organelles. Each organelle and each vesicle is enclosed within a membrane, and these membranes must fuse together to allow these transfers to take place. A certain group of proteins, called SNAREs, have a central role in these fusion events. Since membrane fusion is difficult to observe directly, many researchers have used a method called ‘fluorescent lipid dequenching’ to study it indirectly. In this approach, one fraction of vesicles is labeled with two fluorescent molecules, with one of these molecules quenching the fluorescence of the other. However, when a labeled vesicle fuses with an unlabeled vesicle, the surface concentrations of the fluorescent molecules are diluted. This reduces the amount of quenching and the resulting increase in fluorescence can be measured. Experiments utilizing this technique had suggested that SNARE proteins are sufficient for fusion to take place, and that no other protein complexes need to be present. However, when a different assay method called ‘lumenal compartment mixing’ was used, little fusion was seen when the only proteins present were the SNAREs. The lumenal compartment mixing approach relies on measuring the degree of mixing between the contents of two vesicles. To address these conflicting results, Zick and Wickner used both methods to study fusion in a yeast-based system. The lumenal compartment mixing approach, which is the more reliable method, revealed that rapid and efficient membrane fusion in fact requires another protein complex, called HOPS, to hold the two membrane vesicles together. Zick and Wickner found that the HOPS complex does not enable fusion by just increasing the amount of interactions between the SNARE proteins. Rather, it seems to facilitate the formation of a particular quality of SNARE interactions. Future work is needed to work out how the SNARE complexes become ‘fusion-competent’, and to explore the mechanism that allows the HOPS complex to assist in the formation of fusion-competent SNARE complexes. DOI:http://dx.doi.org/10.7554/eLife.03251.002
Collapse
Affiliation(s)
- Michael Zick
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - William T Wickner
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, United States
| |
Collapse
|
5
|
Mechler A, Stringer BD, Mubin MSH, Doeven EH, Phillips NW, Rudd-Schmidt J, Hogan CF. Labeling phospholipid membranes with lipid mimetic luminescent metal complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2939-46. [PMID: 25128153 DOI: 10.1016/j.bbamem.2014.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/31/2014] [Accepted: 08/05/2014] [Indexed: 11/30/2022]
Abstract
Lipid-mimetic metallosurfactant based luminophores are promising candidates for labeling phospholipid membranes without altering their biophysical characteristics. The metallosurfactants studied exhibit high structural and physicochemical similarity to phospholipid molecules, designed to incorporate into the membrane structure without the need for covalent attachment to a lipid molecule. In this work, two lipid-mimetic phosphorescent metal complexes are described: [Ru(bpy)2(dn-bpy)](2+) and [Ir(ppy)2(dn-bpy)](+) where bpy is 2,2'-bipyridine, dn-bpy is 4,4'-dinonyl-2,2'-bipyridine and ppy is 2-phenylpyridine. Apart from being lipid-mimetic in size, shape and physical properties, both complexes exhibit intense photoluminescence and enhanced photostability compared with conventional organic fluorophores, allowing for prolonged observation. Moreover, the large Stokes shift and long luminescence lifetime associated with these complexes make them more suitable for spectroscopic studies. The complexes are easily incorporated into dimyristoil-phosphatidyl-choline (DMPC) liposomes by mixing in the organic solvent phase. DLS reveals the labeled membranes form liposomes of similar size to that of neat DMPC membrane. Synchrotron Small-Angle X-ray Scattering (SAXS) measurements confirmed that up to 5% of either complex could be incorporated into DMPC membranes without producing any structural changes in the membrane. Fluorescence microscopy reveals that 0.5% label content is sufficient for imaging. Atomic Force Microscopic imaging confirms that liposomes of the labeled bilayers on a mica surface can fuse into a flat lamellar membrane that is morphologically identical to neat lipid membranes. These results demonstrate the potential of such lipid-mimetic luminescent metal complexes as a new class of labels for imaging lipid membranes.
Collapse
Affiliation(s)
- Adam Mechler
- Department of Chemistry, La Trobe Institute for Molecular Science, La Trobe University, VIC 3086, Australia.
| | - Bradley D Stringer
- Department of Chemistry, La Trobe Institute for Molecular Science, La Trobe University, VIC 3086, Australia
| | - Muhammad S H Mubin
- Department of Chemistry, La Trobe Institute for Molecular Science, La Trobe University, VIC 3086, Australia
| | - Egan H Doeven
- Department of Chemistry, La Trobe Institute for Molecular Science, La Trobe University, VIC 3086, Australia
| | - Nicholas W Phillips
- Department of Chemistry, La Trobe Institute for Molecular Science, La Trobe University, VIC 3086, Australia
| | - Jesse Rudd-Schmidt
- Department of Chemistry, La Trobe Institute for Molecular Science, La Trobe University, VIC 3086, Australia
| | - Conor F Hogan
- Department of Chemistry, La Trobe Institute for Molecular Science, La Trobe University, VIC 3086, Australia
| |
Collapse
|
6
|
Brackmann C, Dahlberg JO, Vrana NE, Lally C, Gatenholm P, Enejder A. Non-linear microscopy of smooth muscle cells in artificial extracellular matrices made of cellulose. JOURNAL OF BIOPHOTONICS 2012; 5:404-414. [PMID: 22461222 DOI: 10.1002/jbio.201100141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Revised: 03/08/2012] [Accepted: 03/08/2012] [Indexed: 05/31/2023]
Abstract
Non-linear microscopy has been used to characterize bovine smooth muscle cells and their proliferation, migration, and differentiation in hydrogel cellulose scaffolds, toward the development of fully functional blood vessel implants. The extracellular matrix (ECM) composed of cellulose and endogenous collagen fibers was imaged using Second Harmonic Generation (SHG) microscopy and the cell morphology by Coherent Anti-Stokes Raman Scattering (CARS) microscopy. Images prove that cells adhere on the cellulose scaffold without additional surface modification and that both contractile and proliferating phenotypes are developed. This work shows that non-linear microscopy contributes with unique insights in cell interactions with (artificial) ECM components and has the potential to become an established characterization method in tissue engineering.
Collapse
Affiliation(s)
- Christian Brackmann
- Molecular Microscopy, Department of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
Dendritic cells (DCs) are the most potent APCs. Whereas immature DCs down-regulate T-cell responses to induce/maintain immunologic tolerance, mature DCs promote immunity. To amplify their functions, DCs communicate with neighboring DCs through soluble mediators, cell-to-cell contact, and vesicle exchange. Transfer of nanovesicles (< 100 nm) derived from the endocytic pathway (termed exosomes) represents a novel mechanism of DC-to-DC communication. The facts that exosomes contain exosome-shuttle miRNAs and DC functions can be regulated by exogenous miRNAs, suggest that DC-to-DC interactions could be mediated through exosome-shuttle miRNAs, a hypothesis that remains to be tested. Importantly, the mechanism of transfer of exosome-shuttle miRNAs from the exosome lumen to the cytosol of target cells is unknown. Here, we demonstrate that DCs release exosomes with different miRNAs depending on the maturation of the DCs. By visualizing spontaneous transfer of exosomes between DCs, we demonstrate that exosomes fused with the target DCs, the latter followed by release of the exosome content into the DC cytosol. Importantly, exosome-shuttle miRNAs are functional, because they repress target mRNAs of acceptor DCs. Our findings unveil a mechanism of transfer of exosome-shuttle miRNAs between DCs and its role as a means of communication and posttranscriptional regulation between DCs.
Collapse
|
8
|
The fusion of synaptic vesicle membranes studied by lipid mixing: the R18 fluorescence assay validity. Chem Phys Lipids 2010; 163:778-86. [DOI: 10.1016/j.chemphyslip.2010.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 09/03/2010] [Accepted: 09/07/2010] [Indexed: 12/27/2022]
|
9
|
Interaction of bacterial surface layer proteins with lipid membranes: Synergysm between surface charge density and chain packing. Colloids Surf B Biointerfaces 2010; 79:191-7. [DOI: 10.1016/j.colsurfb.2010.03.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 03/29/2010] [Accepted: 03/31/2010] [Indexed: 11/20/2022]
|
10
|
Brunger AT, Weninger K, Bowen M, Chu S. Single-molecule studies of the neuronal SNARE fusion machinery. Annu Rev Biochem 2009; 78:903-28. [PMID: 19489736 DOI: 10.1146/annurev.biochem.77.070306.103621] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SNAREs are essential components of the machinery for Ca(2+)-triggered fusion of synaptic vesicles with the plasma membrane, resulting in neurotransmitter release into the synaptic cleft. Although much is known about their biophysical and structural properties and their interactions with accessory proteins such as the Ca(2+) sensor synaptotagmin, their precise role in membrane fusion remains an enigma. Ensemble studies of liposomes with reconstituted SNAREs have demonstrated that SNAREs and accessory proteins can trigger lipid mixing/fusion, but the inability to study individual fusion events has precluded molecular insights into the fusion process. Thus, this field is ripe for studies with single-molecule methodology. In this review, we discuss applications of single-molecule approaches to observe reconstituted SNAREs, their complexes, associated proteins, and their effect on biological membranes. Some of the findings are provocative, such as the possibility of parallel and antiparallel SNARE complexes or of vesicle docking with only syntaxin and synaptobrevin, but have been confirmed by other experiments.
Collapse
Affiliation(s)
- Axel T Brunger
- The Howard Hughes Medical Institute and Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, Structural Biology, and Photon Science, Stanford University, CA 94305, USA.
| | | | | | | |
Collapse
|
11
|
A scissors mechanism for stimulation of SNARE-mediated lipid mixing by cholesterol. Proc Natl Acad Sci U S A 2009; 106:5141-6. [PMID: 19251653 DOI: 10.1073/pnas.0813138106] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Neurotransmitter release at the synapse requires membrane fusion. The SNARE complex, composed of the plasma membrane t-SNAREs syntaxin 1A and SNAP-25 and the vesicle v-SNARE synaptobrevin, mediates the fusion of 2 membranes. Synaptic vesicles contain unusually high cholesterol, but the exact role of cholesterol in fusion is not known. In this study, cholesterol was found to stimulate SNARE-mediated lipid mixing of proteoliposomes by a factor of 5 at a physiological concentration. Surprisingly, however, the stimulatory effect was more pronounced when cholesterol was on the v-SNARE side than when it was on the t-SNARE side. Site-directed spin labeling and both continuous wave (CW) and pulsed EPR revealed that cholesterol induces a conformational change of the v-SNARE transmembrane domain (TMD) from an open scissors-like dimer to a parallel dimer. When the TMD was forced to form a parallel dimer by the disulfide bond, the rate was stimulated 2.3-fold even without cholesterol, supporting the relevance of the open-to-closed conformational change to the fusion activity. The open scissors-like conformation may be unfavorable for fusion and cholesterol may relieve this inhibitory factor.
Collapse
|
12
|
A dansyl fluorescence-based assay for monitoring kinetics of lipid extraction and transfer. Anal Biochem 2008; 382:132-4. [PMID: 18694718 DOI: 10.1016/j.ab.2008.07.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 06/21/2008] [Accepted: 07/15/2008] [Indexed: 11/23/2022]
Abstract
Lipid transfer proteins have important roles in cellular biology, and fluorescence spectroscopy has found wide range use as a facile means for time-resolved monitoring of protein-lipid interactions. Here, we show how the fluorescence emission properties of dansyl-DHPE can be exploited to characterize lipid extraction and lipid transfer kinetics. The GM2 activator protein serves as an example of a lipid transfer protein where the ability to independently characterize lipid extraction from donor vesicles, formation of a protein:lipid complex in solution, and release of lipid from the complex to acceptor liposomes is crucial for full kinetic characterization of lipid transfer.
Collapse
|
13
|
Wessels L, Elting MW, Scimeca D, Weninger K. Rapid membrane fusion of individual virus particles with supported lipid bilayers. Biophys J 2007; 93:526-38. [PMID: 17449662 PMCID: PMC1896232 DOI: 10.1529/biophysj.106.097485] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many enveloped viruses employ low-pH-triggered membrane fusion during cell penetration. Solution-based in vitro assays in which viruses fuse with liposomes have provided much of our current biochemical understanding of low-pH-triggered viral membrane fusion. Here, we extend this in vitro approach by introducing a fluorescence assay using single particle tracking to observe lipid mixing between individual virus particles (influenza or Sindbis) and supported lipid bilayers. Our single-particle experiments reproduce many of the observations of the solution assays. The single-particle approach naturally separates the processes of membrane binding and membrane fusion and therefore allows measurement of details that are not available in the bulk assays. We find that the dynamics of lipid mixing during individual Sindbis fusion events is faster than 30 ms. Although neither virus binds membranes at neutral pH, under acidic conditions, the delay between membrane binding and lipid mixing is less than half a second for nearly all virus-membrane combinations. The delay between binding and lipid mixing lengthened only for Sindbis virus at the lowest pH in a cholesterol-dependent manner, highlighting the complex interaction between lipids, virus proteins, and buffer conditions in membrane fusion.
Collapse
Affiliation(s)
- Laura Wessels
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | |
Collapse
|
14
|
Perlman S, Holmes KV. Fluorescence dequenching assays of coronavirus fusion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 581:241-6. [PMID: 17037536 PMCID: PMC7123510 DOI: 10.1007/978-0-387-33012-9_40] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Affiliation(s)
- Stanley Perlman
- Department of Pediatrics, University of Iowa, 52242 Iowa City, IA USA
| | - Kathryn V. Holmes
- Department of Microbiology, University of Colorado Health Sciences Center at Fitzsimons, 80045-8333 Aurora, CO USA
| |
Collapse
|
15
|
Connolly SA, Lamb RA. Paramyxovirus fusion: real-time measurement of parainfluenza virus 5 virus-cell fusion. Virology 2006; 355:203-12. [PMID: 16916528 DOI: 10.1016/j.virol.2006.07.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 06/30/2006] [Accepted: 07/13/2006] [Indexed: 11/20/2022]
Abstract
Although cell-cell fusion assays are useful surrogate methods for studying virus fusion, differences between cell-cell and virus-cell fusion exist. To examine paramyxovirus fusion in real time, we labeled viruses with fluorescent lipid probes and monitored virus-cell fusion by fluorimetry. Two parainfluenza virus 5 (PIV5) isolates (W3A and SER) and PIV5 containing mutations within the fusion protein (F) were studied. Fusion was specific and temperature-dependent. Compared to many low pH-dependent viruses, the kinetics of PIV5 fusion was slow, approaching completion within several minutes. As predicted from cell-cell fusion assays, virus containing an F protein with an extended cytoplasmic tail (rSV5 F551) had reduced fusion compared to wild-type virus (W3A). In contrast, virus-cell fusion for SER occurred at near wild-type levels, despite the fact that this isolate exhibits a severely reduced cell-cell fusion phenotype. These results support the notion that virus-cell and cell-cell fusion have significant differences.
Collapse
Affiliation(s)
- Sarah A Connolly
- Howard Hughes Medical Institute, Northwestern University, Evanston, IL 60208-3500, USA
| | | |
Collapse
|
16
|
Epand RF, Schlattner U, Wallimann T, Lacombe ML, Epand RM. Novel lipid transfer property of two mitochondrial proteins that bridge the inner and outer membranes. Biophys J 2006; 92:126-37. [PMID: 17028143 PMCID: PMC1697860 DOI: 10.1529/biophysj.106.092353] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study provides evidence of a novel function for mitochondrial creatine kinase (MtCK) and nucleoside diphosphate kinase (NDPK-D). Both are basic peripheral membrane proteins with symmetrical homo-oligomeric structure, which in the case of MtCK was already shown to allow crossbridging of lipid bilayers. Here, different lipid dilution assays clearly demonstrate that both kinases also facilitate lipid transfer from one bilayer to another. Lipid transfer occurs between liposomes mimicking the lipid composition of mitochondrial contact sites, containing 30 mol % cardiolipin, but transfer does not occur when cardiolipin is replaced by phosphatidylglycerol. Ubiquitous MtCK, but not NDPK-D, shows some specificity in the nature of the lipids transferred and it is not active with phosphatidylcholine alone. MtCK can undergo reversible oligomerization between dimeric and octameric forms, but only the octamer can bridge membranes and promote lipid transfer. Cytochrome c, another basic mitochondrial protein known to bind to anionic membranes but not crosslinking them, is also incapable of promoting lipid transfer. The lipid transfer process does not involve vesicle fusion or loss of the internal contents of the liposomes.
Collapse
Affiliation(s)
- Raquel F Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| | | | | | | | | |
Collapse
|
17
|
Trikash IO, Kolchinskaya LI. Fusion of synaptic vesicles and plasma membrane in the presence of synaptosomal soluble proteins. Neurochem Int 2006; 49:270-5. [PMID: 16581156 DOI: 10.1016/j.neuint.2006.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 12/19/2005] [Accepted: 01/24/2006] [Indexed: 12/15/2022]
Abstract
Fusion between synaptic vesicles and plasma membranes isolated from rat brain synaptosomes is regarded as a model of neurosecretion. The main aim of current study is to investigate whether the synaptosomal soluble proteins are essential members of Ca(2+)-triggered fusion examined in this system. Fusion experiments were performed using fluorescent dye octadecylrhodamine B, which was incorporated into synaptic vesicle membranes at self-quenching concentration. The fusion of synaptic vesicles, containing marker octadecylrhodamine B, with plasma membranes was detected by dequenching of the probe fluorescence. Membrane fusion was not found in Ca(2+)-supplemented buffer solution, but was initiated by the addition of the synaptosomal soluble proteins. When soluble proteins were treated with trypsin, they lost completely the fusion activity. These experiments confirmed that soluble proteins of synaptosomes are sensitive to Ca(2+) signal and essential for membrane fusion. The experiments, in which members of fusion process were treated with monoclonal antibodies raised against synaptotagmin and synaptobrevin, have shown that antibodies only partially inhibited fusion of synaptic vesicles and plasma membranes in vitro. These results indicate that other additional component(s), which may or may not be related to synaptobrevin or synaptotagmin, mediate this process. It can be assumed that fusion of synaptic vesicles with plasma membranes in vitro depends upon the complex interaction of a large number of protein factors.
Collapse
Affiliation(s)
- I O Trikash
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Leontovich st. 9, 01601 Kiev, Ukraine.
| | | |
Collapse
|
18
|
Chu VC, McElroy LJ, Chu V, Bauman BE, Whittaker GR. The avian coronavirus infectious bronchitis virus undergoes direct low-pH-dependent fusion activation during entry into host cells. J Virol 2006; 80:3180-8. [PMID: 16537586 PMCID: PMC1440383 DOI: 10.1128/jvi.80.7.3180-3188.2006] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Coronaviruses are the causative agents of respiratory disease in humans and animals, including severe acute respiratory syndrome. Fusion of coronaviruses is generally thought to occur at neutral pH, although there is also evidence for a role of acidic endosomes during entry of a variety of coronaviruses. Therefore, the molecular basis of coronavirus fusion during entry into host cells remains incompletely defined. Here, we examined coronavirus-cell fusion and entry employing the avian coronavirus infectious bronchitis virus (IBV). Virus entry into cells was inhibited by acidotropic bases and by other inhibitors of pH-dependent endocytosis. We carried out fluorescence-dequenching fusion assays of R18-labeled virions and show that for IBV, coronavirus-cell fusion occurs in a low-pH-dependent manner, with a half-maximal rate of fusion occurring at pH 5.5. Fusion was reduced, but still occurred, at lower temperatures (20 degrees C). We observed no effect of inhibitors of endosomal proteases on the fusion event. These data are the first direct measure of virus-cell fusion for any coronavirus and demonstrate that the coronavirus IBV employs a direct, low-pH-dependent virus-cell fusion activation reaction. We further show that IBV was not inactivated, and fusion was unaffected, by prior exposure to pH 5.0 buffer. Virions also showed evidence of reversible conformational changes in their surface proteins, indicating that aspects of the fusion reaction may be reversible in nature.
Collapse
Affiliation(s)
- Victor C Chu
- Dept. of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
19
|
Imai M, Mizuno T, Kawasaki K. Membrane fusion by single influenza hemagglutinin trimers. Kinetic evidence from image analysis of hemagglutinin-reconstituted vesicles. J Biol Chem 2006; 281:12729-35. [PMID: 16505474 DOI: 10.1074/jbc.m600902200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Influenza hemagglutinin, the receptor-binding and membrane fusion protein of the virus, is a prototypic model for studies of biological membrane fusion in general. To elucidate the minimum number of hemagglutinin trimers needed for fusion, the kinetics of fusion induced by reconstituted vesicles of hemagglutinin was studied by using single-vesicle image analysis. The surface density of hemagglutinin fusion-activity sites on the vesicles was varied, while keeping the surface density of receptor-binding activity sites constant, by co-reconstitution of the fusogenic form of hemagglutinin, HA(1,2), and the non-fusogenic form, HA(0), at various HA(1,2):(HA(1,2) + HA(0)) ratios. The rate of fusion between the hemagglutinin vesicles containing a fluorescent lipid probe, octadecylrhodamine B, and red blood cell ghost membranes was estimated from the time distribution of fusion events of single vesicles observed by fluorescence microscopy. The best fit of a log-log plot of fusion rate versus the surface density of HA(1,2) exhibited a slope of 0.85, strongly supporting the hypothesis that single hemagglutinin trimers are sufficient for fusion. When only HA(1,2) (without HA(0)) was reconstituted on vesicles, the dependence of fusion rate on the surface density of HA(1,2) was distinct from that for the HA(1,2)-HA(0) co-reconstitution. The latter result suggested interference with fusion activity by hemagglutinin-receptor binding, without having to assume a fusion mechanism involving multiple hemagglutinin trimers.
Collapse
Affiliation(s)
- Masaki Imai
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan
| | | | | |
Collapse
|
20
|
Trikash IO, Gumenyuk VP, Chernyshov VI. Fusion of isolated synaptic vesicles as a model of the terminal stage of regulated exocytosis. NEUROPHYSIOLOGY+ 2004. [DOI: 10.1007/s11062-005-0014-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Kolokoltsov AA, Davey RA. Rapid and sensitive detection of retrovirus entry by using a novel luciferase-based content-mixing assay. J Virol 2004; 78:5124-32. [PMID: 15113894 PMCID: PMC400325 DOI: 10.1128/jvi.78.10.5124-5132.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe a novel assay that permits measurement of entry of murine leukemia virus and pseudotypes with greater sensitivity and more rapidly than previously possible. To achieve this, we encapsulated a sensitive reporter enzyme, luciferase, directly into fully infectious, intact viral particles. The enzyme is specifically targeted to the viral lumen, as a C-terminal fusion on the viral envelope protein. Only when the incorporated luciferase is released from the viral lumen and gains access to its substrates is light emitted and readily detected. When cells are perfused with luciferin, quantitative measurements of entry can be made in real time on live cells. Uniquely, the amount of cell-bound virus can be determined in the same assay by addition of detergent to expose the luciferase. We demonstrate that virus carrying a mutation in the fusion peptide binds normally to cells but is unable to infect them and gives no entry signal. Using this assay, we show that inhibitors of endosomal acidification inhibit signal from vesicular stomatitis virus pseudotypes but not murine leukemia virus, consistent with a pH-independent mode of entry for the latter virus. Additionally, the fusion kinetics are rapid, with a half-life of 25 min after a delay of 10 to 15 min. The future use of this assay will permit a detailed examination of the entry mechanism of viruses and provide a convenient platform to discover novel entry inhibitors. The design also permits packaging of potential therapeutic protein cargoes into functional virus particles and their specific delivery to cellular targets.
Collapse
Affiliation(s)
- Andrey A Kolokoltsov
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | | |
Collapse
|
22
|
Ohki S, Thacore H, Flanagan TD. Effects of temperature on viral glycoprotein mobility and a possible role of internal "viroskeleton" proteins in Sendai virus fusion. J Membr Biol 2004; 199:73-83. [PMID: 15383918 DOI: 10.1007/s00232-004-0678-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2003] [Revised: 03/22/2004] [Indexed: 10/26/2022]
Abstract
The effect of temperature on fusion of Sendai virus with target membranes and mobility of the viral glycoproteins was studied with fluorescence methods. When intact virus was used, the fusion threshold temperature (20-22 degrees C) was not altered regardless of the different types of target membranes. Viral glycoprotein mobility in the intact virus increased with temperature, particularly sharply at the fusion threshold temperature. This effect was suppressed by the presence of erythrocyte ghosts and/or dextran sulfate in the virus suspension. In these cases also, no change in the fusion threshold temperature was observed. On the other hand, reconstituted viral envelopes (virosomes) bearing viral glycoproteins but lacking matrix proteins were capable of fusing with erythrocyte ghosts even at temperatures lower than the fusion threshold temperature and no fusion threshold temperature was observed over the range of 10-40 degrees C. The mobility of viral glycoproteins on virosomes was much greater and virtually temperature-independent. The intact virus treated with an actin-affector, jasplakinolide, reduced the extent of fusion with erythrocyte ghosts and the mobility of viral glycoproteins, while the treatment of virosomes with the same drug did not affect the extent of fusion of virosomes with erythrocyte ghosts and the mobility of the glycoproteins. These results suggest that viral matrix proteins including actins affect viral glycoprotein mobility and may be responsible for the temperature threshold phenomenon observed in Sendai virus fusion.
Collapse
Affiliation(s)
- S Ohki
- Department of Physiology & Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 3435 Main Street, Buffalo, NY 14214, USA.
| | | | | |
Collapse
|
23
|
Zavorotinskaya T, Qian Z, Franks J, Albritton LM. A point mutation in the binding subunit of a retroviral envelope protein arrests virus entry at hemifusion. J Virol 2004; 78:473-81. [PMID: 14671127 PMCID: PMC303374 DOI: 10.1128/jvi.78.1.473-481.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transmembrane subunits of viral envelope proteins are thought to perform all of the functions required for membrane fusion during entry of enveloped viruses. However, changes in a conserved SPHQ motif near the N terminus of the receptor binding subunit of a murine leukemia virus (MLV) envelope protein block infection and induction of cell-cell fusion but not receptor binding. Here we report evidence that a histidine-to-arginine change at position 8 (H8R) in the SPHQ motif of Moloney MLV blocks infection by arresting virus-cell fusion at the hemifusion state. In cell-cell fusion assays, H8R envelope protein induced mixing of membrane outer leaflet lipids but did not lead to content mixing, a finding indicative of fusion pore formation. Kinetic studies of virus-cell fusion showed that lipid mixing of H8R virus membranes begins much later than for wild-type virus. The length of the delay in lipid mixing decreased upon addition of two second-site changes that increase H8R virus infection to 100-fold less than the wild-type virus. Finally, chlorpromazine, dibucaine, and trifluoperazine, agents that induce pores in an arrested hemifusion state, rescued infection by H8R virus to within 2.5-fold of the level of wild-type virus infection and cell-cell fusion to half that mediated by wild-type envelope protein. We interpret these results to indicate that fusion progressed to the hemifusion intermediate but fusion pore formation was inhibited. These results establish that membrane fusion of Moloney MLV occurs via a hemifusion intermediate. We also interpret these findings as evidence that histidine 8 is a key switch-point residue between the receptor-induced conformation changes that expose fusion peptide and those that lead to six-helix bundle formation.
Collapse
Affiliation(s)
- Tatiana Zavorotinskaya
- Department of Molecular Sciences, University of Tennessee Health Sciences Center, Memphis, Tennessee 38163
| | - Zhaohui Qian
- Department of Molecular Sciences, University of Tennessee Health Sciences Center, Memphis, Tennessee 38163
| | - John Franks
- Department of Molecular Sciences, University of Tennessee Health Sciences Center, Memphis, Tennessee 38163
| | - Lorraine M. Albritton
- Department of Molecular Sciences, University of Tennessee Health Sciences Center, Memphis, Tennessee 38163
- Corresponding author. Mailing address: Department of Molecular Sciences, University of Tennessee Health Sciences Center, 858 Madison Ave., Memphis, TN 38163. Phone: (901) 448-5521. Fax: (901) 448-7360. E-mail:
| |
Collapse
|
24
|
Chattopadhyay S, Sun P, Wang P, Abonyo B, Cross NL, Liu L. Fusion of lamellar body with plasma membrane is driven by the dual action of annexin II tetramer and arachidonic acid. J Biol Chem 2003; 278:39675-83. [PMID: 12902340 DOI: 10.1074/jbc.m212594200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Annexin II has been implicated in membrane fusion during the exocytosis of lamellar bodies from alveolar epithelial type II cells. Most previous studies were based on the fusion assays by using model membranes. In the present study, we investigated annexin II-mediated membrane fusion by using isolated lamellar bodies and plasma membrane as determined by the relief of octadecyl rhodamine B (R18) self-quenching. Immunodepletion of annexin II from type II cell cytosol reduced its fusion activity. Purified annexin II tetramer (AIIt) induced the fusion of lamellar bodies with the plasma membrane in a dose-dependent manner. This fusion is Ca2+-dependent and is highly specific to AIIt because other annexins (I and II monomer, III, IV, V, and VI) were unable to induce the fusion. Modification of the different functional residues of AIIt by N-ethylmaleimide, nitric oxide, or peroxynitrite abolished AIIt-mediated fusion. Arachidonic acid enhanced AIIt-mediated fusion and reduced its Ca2+ requirement to an intracellularly achievable level. This effect is due to membrane-bound arachidonic acid, not free arachidonic acid. Other fatty acids including linolenic acid, palmitoleic acid, myristoleic acid, stearic acid, palmitic acid, and myristic acid had little effect. AIIt-mediated fusion was suppressed by the removal of arachidonic acid from lamellar body and plasma membrane using bovine serum albumin. The addition of arachidonic acid back to the arachidonic acid-depleted membranes restored its fusion activity. Our results suggest that the fusion between lamellar bodies with the plasma membrane is driven by the synergistic action of AIIt and arachidonic acid.
Collapse
Affiliation(s)
- Sandip Chattopadhyay
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Saposin C is a small Trp-free, multifunctional glycoprotein that enhances the hydrolytic activity of acid beta-glucosidase in lysosomes. Saposin C's functions have been shown to include neuritogenic/neuroprotection effects and membrane fusion induction. Here, the mechanism and kinetics of saposin C's fusogenic activity were evaluated by fluorescence spectroscopic methods including dequenching, fluorescence resonance energy transfer, and stopped-flow analyses. Trp or dansyl groups were introduced as fluorescence reporters into selected sites of saposin C to serve as topological probes for protein-protein and protein-membrane interactions. Saposin C induction of liposomal vesicle enlargement was dependent upon anionic phospholipids and acidic pH. The initial fusion burst was completed in the timeframe of a few seconds to minutes and was dependent upon the unsaturated anionic phospholipid content. Two events were associated with saposin C-membrane interaction: membrane insertion of the saposin C terminal helices and reorientation of its central helical region. The latter conformational change likely exposed a binding site for saposins anchored on vesicles. Addition of selected saposin C peptides prior to intact saposin C in reaction mixtures abolished the liposomal fusion. These results indicated that saposin-membrane and saposin-saposin interactions are needed for the fusion process.
Collapse
Affiliation(s)
- Ying Wang
- Division and Program in Human Genetics, Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | | | | |
Collapse
|
26
|
Ohki S, Liu JZ, Schaller J, Welliver RC. The compound DATEM inhibits respiratory syncytial virus fusion activity with epithelial cells. Antiviral Res 2003; 58:115-24. [PMID: 12742571 DOI: 10.1016/s0166-3542(02)00191-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of diacetyltartaric acid esters of mono and diglycerides (DATEM) on fusion of respiratory syncytial virus (RSV) with HEp-2 cells was studied using the R18 fluorescence dequenching fusion assay. At DATEM concentrations less than 2.0 microg/ml, the inhibition of fusion increased with the concentration of DATEM. At 2 microg/ml of DATEM, the fusion was suppressed by 80-90%. Studies examining possible mechanism of fusion-inhibition indicated that DATEM was likely adsorbed onto lipid membranes of both viral envelope and target cell membranes. Quantitative measurements of DATEM adsorption onto membranes were also performed using lipid monolayers and vesicles. The surface pressure of lipid monolayer formed at the air/aqueous interface increased as the concentration of DATEM in the monolayer subphase increased, suggesting that DATEM was inserted into the monolayer. As the concentration of DATEM in vesicle suspensions increased, electrophoretic mobility of initially uncharged lipid vesicles also increased, reflective of increased negative charge at vesicle surfaces. These results strongly suggest that the insertion of DATEM onto membranes inhibited viral fusion. DATEM may prove to be effective in limiting the infectivity of RSV by interference with the fusion of the viral envelope with target cell membranes.
Collapse
Affiliation(s)
- Shinpei Ohki
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
27
|
Arrastua L, San Sebastian E, Quincoces AF, Antony C, Ugalde U. In vitro fusion between Saccharomyces cerevisiae secretory vesicles and cytoplasmic-side-out plasma membrane vesicles. Biochem J 2003; 370:641-9. [PMID: 12435271 PMCID: PMC1223188 DOI: 10.1042/bj20021736] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2002] [Accepted: 11/15/2002] [Indexed: 02/06/2023]
Abstract
The final step in the secretory pathway, which is the fusion event between secretory vesicles and the plasma membrane, was reconstructed using highly purified secretory vesicles and cytoplasmic-side-out plasma membrane vesicles from the yeast Saccharomyces cerevisiae. Both organelle preparations were obtained from a sec 6-4 temperature-sensitive mutant. Fusion was monitored by means of a fluorescence assay based on the dequenching of the lipophilic fluorescent probe octadecylrhodamine B-chloride (R18). The probe was incorporated into the membrane of secretory vesicles, and it diluted in unlabelled cytoplasmic-side-out plasma membrane vesicles as the fusion process took place. The obtained experimental dequenching curves were found by mathematical analysis to consist of two independent but simultaneous processes. Whereas one of them reflected the fusion process between both vesicle populations as confirmed by its dependence on the assay conditions, the other represented a non-specific transfer of the probe. The fusion process may now be examined in detail using the preparation, validation and analytical methods developed in this study.
Collapse
Affiliation(s)
- Lorena Arrastua
- Faculty of Chemistry, Biochemistry II, University of the Basque Country, P.O. Box 1072, E-20080 San Sebastián, Spain
| | | | | | | | | |
Collapse
|
28
|
San Román K, Villar E, Muñoz-Barroso I. Mode of action of two inhibitory peptides from heptad repeat domains of the fusion protein of Newcastle disease virus. Int J Biochem Cell Biol 2002; 34:1207-20. [PMID: 12127571 DOI: 10.1016/s1357-2725(02)00045-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Peptides derived from heptad repeat (HR) sequences of viral fusion proteins from several enveloped viruses have been shown to inhibit virus-mediated membrane fusion but the mechanism remains unknown. To further investigate this, the inhibition mechanism of two HR-derived peptides from the fusion protein of the paramyxovirus Newcastle disease virus (NDV) was investigated. Peptide N24 (residues 145-168) derived from HR1 was found to be 145-fold more inhibitory in a syncytium assay than peptide C24 (residues 474-496), derived from HR2. Both peptides failed to block lipid-mixing between R18-labeled virus and cells. None of the peptides interfered with the binding of hemagglutinin-neuraminidase (HN) protein to the target cells, as demonstrated by hemagglutining assays. When both peptides were mixed at equimolar concentrations, their inhibitory effect was abolished. In addition, both peptides induced the aggregation of negatively charged and zwitterionic phospholipid membranes. The ability of the peptides to interact with each other in solution suggests that these peptides may bind to the opposite HR region on the protein whereas their ability to interact with membranes as well as their failure to block lipid transfer suggest a second binding site. Taken together these results, suggest a mode of action for C24 and N24 in which both peptides have two different targets on the F protein: the opposite HR sequence and their corresponding domains.
Collapse
Affiliation(s)
- K San Román
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab. 109, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| | | | | |
Collapse
|
29
|
Blumenthal R, Gallo SA, Viard M, Raviv Y, Puri A. Fluorescent lipid probes in the study of viral membrane fusion. Chem Phys Lipids 2002; 116:39-55. [PMID: 12093534 DOI: 10.1016/s0009-3084(02)00019-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Fluorescent lipid probes are widely used in the observation of viral membrane fusion, providing a sensitive method to study fusion mechanism(s). Due to the wealth of data concerning liposome fusion, a variety of fusion assays has been designed including fluorescent probe redistribution, fluorescence dequenching, fluorescence resonance energy transfer and photosensitized labeling. These methods can be tailored for different virus fusion assays. For instance, virions can be loaded with membrane dye which dequenches at the moment of membrane merger. This allows for continuous observation of fusion and therefore kinetic information can be acquired. In the case of cells expressing viral envelope proteins, dye redistribution studies of lipidic and water-soluble fluorophores yield information about fusion intermediates. Lipid probes can be metabolically incorporated into cell membranes, allowing observation of membrane fusion in vitro with minimal chance of flip flop, non-specific transfer and formation of microcrystals. Fluorescent lipid probes have been incorporated into liposomes and/or reconstituted viral envelopes, which provide a well-defined membrane environment for fusion to occur. Interactions of the viral fusion machinery with the membrane can be observed through the photosensitized labeling of the interacting segments of envelope proteins with a hydrophobic probe. Thus, fluorescent lipid probes provide a broad repertoire of fusion assays and powerful tools to produce precise, quantitative data in real time required for the elucidation of the complex process of viral fusion.
Collapse
Affiliation(s)
- Robert Blumenthal
- Laboratory of Experimental and Computational Biology, Center for Cancer Research, SAIC, P.O. Box B, Bldg. 469, Rm. 216A, Miller Drive, NCI-Frederick, MD 21702-1201, USA.
| | | | | | | | | |
Collapse
|
30
|
Maier O, Oberle V, Hoekstra D. Fluorescent lipid probes: some properties and applications (a review). Chem Phys Lipids 2002; 116:3-18. [PMID: 12093532 DOI: 10.1016/s0009-3084(02)00017-8] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Odd as it may seem, experimental challenges in lipid research are often hampered by the simplicity of the lipid structure. Since, as in protein research, mutants or overexpression of lipids are not realistic, a considerable amount of lipid research relies on the use of tagged lipid analogues. However, given the size of an average lipid molecule, special care is needed for the selection of probes, since if the size and intramolecular localization of the probe is not specifically taken into account, it may dramatically affect the properties of the lipids. The latter is particularly important in cell biological studies of lipid trafficking and sorting, where the probed lipid should resemble its natural counterpart as closely as possible. On the other hand, for biophysical applications, these considerations may be less critical. Here we provide a brief overview of the application of several lipid probes in cell biological and biophysical research, and critically analyze their validity in the various fields.
Collapse
Affiliation(s)
- Olaf Maier
- Department of Membrane Cell Biology, Faculty of Medical Sciences, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | |
Collapse
|
31
|
Mittal A, Leikina E, Bentz J, Chernomordik LV. Kinetics of influenza hemagglutinin-mediated membrane fusion as a function of technique. Anal Biochem 2002; 303:145-52. [PMID: 11950214 DOI: 10.1006/abio.2002.5590] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reliable techniques are required to evaluate the plausibility of proposed membrane fusion mechanisms. Here we have studied the kinetics of establishing the lipidic connection between hemagglutinin-expressing cells (HA-cells) and red blood cells (RBC) labeled with octadecylrhodamine, R18, using three different experimental approaches: (1) the most common approach of monitoring the rate of the R18 dequenching in a cuvette with a suspension of RBC/HA-cell complexes; (2) video fluorescence microscopy (VFM) to detect the waiting times before the onset of R18 redistribution, not dequenching, for each RBC attached to an adherent HA-cell; and (3) a new approach based on blockage of RBC fusion to an adherent HA-cell at different time points by lysophosphatidylcholine (LPC), so that only the cell pairs which, at the time of LPC application, had fused or were irreversibly committed to fusion contributed to the final extent of lipid mixing. The LPC blockage and VFM gave very similar estimates for the fusion kinetics, with LPC monitoring also those sites committed to the lipid mixing process. In contrast, R18 dequenching in the cuvette was much slower, i.e., it monitors a much later stage of dye redistribution.
Collapse
Affiliation(s)
- Aditya Mittal
- Department of Bioscience & Biotechnology, Drexel University, Philadelphia, Pennsylvania, 19104, USA
| | | | | | | |
Collapse
|
32
|
Duman JG, Singh G, Lee GY, Machen TE, Forte JG. Ca(2+) and Mg(2+)/ATP independently trigger homotypic membrane fusion in gastric secretory membranes. Traffic 2002; 3:203-17. [PMID: 11886591 DOI: 10.1034/j.1600-0854.2002.030306.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Exocytic activation of gastric parietal cells represents a massive transformation. We studied a step in this process, homotypic fusion of H,K-ATPase-containing tubulovesicles, using R18 dequenching. Ca(2+) and Mg(2+)/ATP each caused dramatic dequenching, reflecting a change in R18 distribution from 5% to 65-90% of the assay's membranes in 2.5 min. These stimuli also triggered fusion between tubulovesicles and liposomes. Independent confirmation that dequenching represented membrane fusion was established by separating tubulovesicle-liposome fusion products on density gradients. Only agents that trigger fusion allowed the transmembrane H,K-ATPase to move to low-density fractions along with R18. EC(50) for Ca(2+)-triggered fusion was 150 nm and for Mg(2+)/ATP-triggered fusion 1 mm, the latter having a Hill coefficient of 2.5. ATP-triggered fusion was specific for Mg(2+)/ATP, required ATP hydrolysis, and was insensitive to inhibition of NSF and/or H,K-ATPase. Fusion initiated by either trigger caused tubulovesicles to become resistant to subsequent challenge by either trigger. Ca(2+) and Mg(2+)/ATP-triggered fusion required protein component(s) in tubulovesicles, though this was required in only one of the fusing membranes since tubulovesicles fused well with liposomes containing no proteins. Our data suggest that exocytosis in parietal cells is triggered by separate but interacting pathways and is regulated by self-inhibition.
Collapse
Affiliation(s)
- Joseph G Duman
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720-3200, USA
| | | | | | | | | |
Collapse
|
33
|
Miranda EJ, Hazel JR. The effect of acclimation temperature on the fusion kinetics of lipid vesicles derived from endoplasmic reticulum membranes of rainbow trout (Oncorhynchus mykiss) liver. Comp Biochem Physiol A Mol Integr Physiol 2002; 131:275-86. [PMID: 11818217 DOI: 10.1016/s1095-6433(01)00451-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Membrane fusion is an obligatory step in many vital cellular processes. The well-established enrichment of bilayer-destabilizing lipids in membranes of poikilotherms subjected to growth at low temperatures leads to the prediction that such membranes will possess a greater propensity to undergo fusion. This hypothesis was explicitly tested in the present study by determining the kinetics of fusion between small unilamellar vesicles (SUVs) prepared from endoplasmic reticulum (ER) membranes of thermally-acclimated (to 5 and 20 degrees C) rainbow trout (Oncorhynchus mykiss) liver and bovine brain phosphatidylserine (BBPS). At temperatures above 10 degrees C, ER vesicles from 5 degrees C-acclimated trout, fused more rapidly and to a greater extent with BBPS vesicles (by average factors of 1.25- and 1.45-fold, respectively) than ER vesicles of 20 degrees C-acclimated trout. At temperatures >35 degrees C, apparent fusion rates declined while the extent of fusion increased in both acclimation groups. Fusion kinetics were found to be well correlated with and limited by the physical properties and phase state of the BBPS vesicles. These results indicate that dynamic attributes of biological membranes, such as the propensity to undergo fusion, are of potential regulatory significance and are partially conserved when growth or environmental temperature changes.
Collapse
Affiliation(s)
- Estuardo J Miranda
- Department of Biology, Arizona State University, Tempe, AZ 85287-1501, USA
| | | |
Collapse
|
34
|
|
35
|
San Román K, Villar E, Muñoz-Barroso I. Acidic pH enhancement of the fusion of Newcastle disease virus with cultured cells. Virology 1999; 260:329-41. [PMID: 10417267 DOI: 10.1006/viro.1999.9841] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fusion of the lentogenic strain "Clone 30" of Newcastle disease virus (NDV) with the cell line COS-7 has been studied. Fusion was monitored using the octadecylrhodamine B chloride dequenching assay [Hoekstra, D., de Boer, T., Klappe, K. and Wilschut, J. (1984). Biochemistry 23, 5675-5681]. In the present work, fusion of NDV with COS-7 cells was found to occur in a time- and temperature-dependent fashion. Significant dequenching of the probe occurred at temperatures higher than 28 degrees C. A 20-fold excess of unlabeled virus inhibited fusion by about 53% compared with the control, whereas 62% inhibition of fusion was obtained after digestion of viral glycoproteins with trypsin. The data are discussed in terms of the nonfusion transfer of the probe. In addition, preincubation of cells with 50 mM ammonium chloride or 0.1% sodium azide prevented NDV from fusing with COS-7 cells by about 30% in comparison with the control. The cytopathic effect of NDV infection in cell culture in the presence of ammonium chloride was reduced compared with control. Moreover, viral preincubation at pH 5 yielded a mild inhibition of fusogenic activity. Our results suggest that NDV may use the endocytic pathway as a complementary way of entering cells by direct fusion with the plasma membrane.
Collapse
Affiliation(s)
- K San Román
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab. 109, Salamanca, 37007, Spain
| | | | | |
Collapse
|
36
|
Ulrich AS, Tichelaar W, Förster G, Zschörnig O, Weinkauf S, Meyer HW. Ultrastructural characterization of peptide-induced membrane fusion and peptide self-assembly in the lipid bilayer. Biophys J 1999; 77:829-41. [PMID: 10423429 PMCID: PMC1300375 DOI: 10.1016/s0006-3495(99)76935-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The peptide sequence B18, derived from the membrane-associated sea urchin sperm protein bindin, triggers fusion between lipid vesicles. It exhibits many similarities to viral fusion peptides and may have a corresponding function in fertilization. The lipid-peptide and peptide-peptide interactions of B18 are investigated here at the ultrastructural level by electron microscopy and x-ray diffraction. The histidine-rich peptide is shown to self-associate into two distinctly different supramolecular structures, depending on the presence of Zn(2+), which controls its fusogenic activity. In aqueous buffer the peptide per se assembles into beta-sheet amyloid fibrils, whereas in the presence of Zn(2+) it forms smooth globular clusters. When B18 per se is added to uncharged large unilamellar vesicles, they become visibly disrupted by the fibrils, but no genuine fusion is observed. Only in the presence of Zn(2+) does the peptide induce extensive fusion of vesicles, which is evident from their dramatic increase in size. Besides these morphological changes, we observed distinct fibrillar and particulate structures in the bilayer, which are attributed to B18 in either of its two self-assembled forms. We conclude that membrane fusion involves an alpha-helical peptide conformation, which can oligomerize further in the membrane. The role of Zn(2+) is to promote this local helical structure in B18 and to prevent its inactivation as beta-sheet fibrils.
Collapse
Affiliation(s)
- A S Ulrich
- Institut für Molekularbiologie, Friedrich-Schiller-Universität Jena, 07745 Jena, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Wagner M, Flanagan TD, Ohki S. Effects of anionic and nonionic polymers on fusion and binding of Sendai virus to human erythrocyte ghosts. Antiviral Res 1998; 39:113-27. [PMID: 9806488 DOI: 10.1016/s0166-3542(98)00036-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Effects of various polymers (dextran sulfate, dextran and polyethylene glycol) on binding and fusion of Sendai virus to target cells were studied by use of fluorescence spectroscopy. Direct binding of dextran sulfate but not dextran to Sendai virus was detected. Anionic and nonionic polymers showed definite effects on segmental motions of the viral envelope proteins. Sendai virus binding to human erythrocyte ghost membranes (HEG) was reduced by dextran sulfate and dextran while the fusion temperature dependence remained unaltered at approximately 20 degrees C. Nonionic polymer, polyethylene glycol, caused an increase in extent of fusion of Sendai virus with HEG. Segmental motion of viral envelope proteins, determined in terms of anisotropy of fluorescent probes attached to viral surface proteins, exhibited a temperature dependent transition at 20 degrees C by a sharp change from restricted to less restricted motion. In the presence of each of the polymers, this transition was no longer apparent. Since fusion did occur in the presence of all polymers, the temperature dependent characteristic of Sendai virus target cell fusion can be said not to depend on viral surface protein segmental motion. A reasonable and coherent explanation was given for the apparent disparity between the effects of inhibiting and enhancing polymers on fusion and motion of viral proteins.
Collapse
Affiliation(s)
- M Wagner
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 14214, USA
| | | | | |
Collapse
|