1
|
Stasiuk R, Krucoń T, Matlakowska R. Biosynthesis of Tetrapyrrole Cofactors by Bacterial Community Inhabiting Porphyrine-Containing Shale Rock (Fore-Sudetic Monocline). Molecules 2021; 26:6746. [PMID: 34771152 PMCID: PMC8587615 DOI: 10.3390/molecules26216746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
This study describes for the first time the comprehensive characterization of tetrapyrrole cofactor biosynthetic pathways developed for bacterial community (BC) inhabiting shale rock. Based on the genomic and proteomic metadata, we have detailed the biosynthesis of siroheme, heme, cobalamin, and the major precursor uroporphyrinogen III by a deep BC living on a rock containing sedimentary tetrapyrrole compounds. The obtained results showed the presence of incomplete heme and cobalamin biosynthesis pathways in the studied BC. At the same time, the production of proteins containing these cofactors, such as cytochromes, catalases and sulfite reductase, was observed. The results obtained are crucial for understanding the ecology of bacteria inhabiting shale rock, as well as their metabolism and potential impact on the biogeochemistry of these rocks. Based on the findings, we hypothesize that the bacteria may use primary or modified sedimentary porphyrins and their degradation products as precursors for synthesizing tetrapyrrole cofactors. Experimental testing of this hypothesis is of course necessary, but its evidence would point to an important and unique phenomenon of the tetrapyrrole ring cycle on Earth involving bacteria.
Collapse
Affiliation(s)
- Robert Stasiuk
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
| | - Tomasz Krucoń
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
| | - Renata Matlakowska
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
| |
Collapse
|
2
|
Abstract
Modified tetrapyrroles are large macrocyclic compounds, consisting of diverse conjugation and metal chelation systems and imparting an array of colors to the biological structures that contain them. Tetrapyrroles represent some of the most complex small molecules synthesized by cells and are involved in many essential processes that are fundamental to life on Earth, including photosynthesis, respiration, and catalysis. These molecules are all derived from a common template through a series of enzyme-mediated transformations that alter the oxidation state of the macrocycle and also modify its size, its side-chain composition, and the nature of the centrally chelated metal ion. The different modified tetrapyrroles include chlorophylls, hemes, siroheme, corrins (including vitamin B12), coenzyme F430, heme d1, and bilins. After nearly a century of study, almost all of the more than 90 different enzymes that synthesize this family of compounds are now known, and expression of reconstructed operons in heterologous hosts has confirmed that most pathways are complete. Aside from the highly diverse nature of the chemical reactions catalyzed, an interesting aspect of comparative biochemistry is to see how different enzymes and even entire pathways have evolved to perform alternative chemical reactions to produce the same end products in the presence and absence of oxygen. Although there is still much to learn, our current understanding of tetrapyrrole biogenesis represents a remarkable biochemical milestone that is summarized in this review.
Collapse
Affiliation(s)
- Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| |
Collapse
|
3
|
Abstract
This chapter focuses on transition metals. All transition metal cations are toxic-those that are essential for Escherichia coli and belong to the first transition period of the periodic system of the element and also the "toxic-only" metals with higher atomic numbers. Common themes are visible in the metabolism of these ions. First, there is transport. High-rate but low-affinity uptake systems provide a variety of cations and anions to the cells. Control of the respective systems seems to be mainly through regulation of transport activity (flux control), with control of gene expression playing only a minor role. If these systems do not provide sufficient amounts of a needed ion to the cell, genes for ATP-hydrolyzing high-affinity but low-rate uptake systems are induced, e.g., ABC transport systems or P-type ATPases. On the other hand, if the amount of an ion is in surplus, genes for efflux systems are induced. By combining different kinds of uptake and efflux systems with regulation at the levels of gene expression and transport activity, the concentration of a single ion in the cytoplasm and the composition of the cellular ion "bouquet" can be rapidly adjusted and carefully controlled. The toxicity threshold of an ion is defined by its ability to produce radicals (copper, iron, chromate), to bind to sulfide and thiol groups (copper, zinc, all cations of the second and third transition period), or to interfere with the metabolism of other ions. Iron poses an exceptional metabolic problem due its metabolic importance and the low solubility of Fe(III) compounds, combined with the ability to cause dangerous Fenton reactions. This dilemma for the cells led to the evolution of sophisticated multi-channel iron uptake and storage pathways to prevent the occurrence of unbound iron in the cytoplasm. Toxic metals like Cd2+ bind to thiols and sulfide, preventing assembly of iron complexes and releasing the metal from iron-sulfur clusters. In the unique case of mercury, the cation can be reduced to the volatile metallic form. Interference of nickel and cobalt with iron is prevented by the low abundance of these metals in the cytoplasm and their sequestration by metal chaperones, in the case of nickel, or by B12 and its derivatives, in the case of cobalt. The most dangerous metal, copper, catalyzes Fenton-like reactions, binds to thiol groups, and interferes with iron metabolism. E. coli solves this problem probably by preventing copper uptake, combined with rapid efflux if the metal happens to enter the cytoplasm.
Collapse
|
4
|
Abstract
This review summarizes research performed over the last 23 years on the genetics, enzyme structures and functions, and regulation of the expression of the genes encoding functions involved in adenosylcobalamin (AdoCbl, or coenzyme B12) biosynthesis. It also discusses the role of coenzyme B12 in the physiology of Salmonella enterica serovar Typhimurium LT2 and Escherichia coli. John Roth's seminal contributions to the field of coenzyme B12 biosynthesis research brought the power of classical and molecular genetic, biochemical, and structural approaches to bear on the extremely challenging problem of dissecting the steps of what has turned out to be one of the most complex biosynthetic pathways known. In E. coli and serovar Typhimurium, uro'gen III represents the first branch point in the pathway, where the routes for cobalamin and siroheme synthesis diverge from that for heme synthesis. The cobalamin biosynthetic pathway in P. denitrificans was the first to be elucidated, but it was soon realized that there are at least two routes for cobalamin biosynthesis, representing aerobic and anaerobic variations. The expression of the AdoCbl biosynthetic operon is complex and is modulated at different levels. At the transcriptional level, a sensor response regulator protein activates the transcription of the operon in response to 1,2-Pdl in the environment. Serovar Typhimurium and E. coli use ethanolamine as a source of carbon, nitrogen, and energy. In addition, and unlike E. coli, serovar Typhimurium can also grow on 1,2-Pdl as the sole source of carbon and energy.
Collapse
|
5
|
Elucidation of the anaerobic pathway for the corrin component of cobalamin (vitamin B12). Proc Natl Acad Sci U S A 2013; 110:14906-11. [PMID: 23922391 DOI: 10.1073/pnas.1308098110] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been known for the past 20 years that two pathways exist in nature for the de novo biosynthesis of the coenzyme form of vitamin B12, adenosylcobalamin, representing aerobic and anaerobic routes. In contrast to the aerobic pathway, the anaerobic route has remained enigmatic because many of its intermediates have proven technically challenging to isolate, because of their inherent instability. However, by studying the anaerobic cobalamin biosynthetic pathway in Bacillus megaterium and using homologously overproduced enzymes, it has been possible to isolate all of the intermediates between uroporphyrinogen III and cobyrinic acid. Consequently, it has been possible to detail the activities of purified cobinamide biosynthesis (Cbi) proteins CbiF, CbiG, CbiD, CbiJ, CbiET, and CbiC, as well as show the direct in vitro conversion of 5-aminolevulinic acid into cobyrinic acid using a mixture of 14 purified enzymes. This approach has resulted in the isolation of the long sought intermediates, cobalt-precorrin-6A and -6B and cobalt-precorrin-8. EPR, in particular, has proven an effective technique in following these transformations with the cobalt(II) paramagnetic electron in the dyz orbital, rather than the typical dz2. This result has allowed us to speculate that the metal ion plays an unexpected role in assisting the interconversion of pathway intermediates. By determining a function for all of the pathway enzymes, we complete the tool set for cobalamin biosynthesis and pave the way for not only enhancing cobalamin production, but also design of cobalamin derivatives through their combinatorial use and modification.
Collapse
|
6
|
Moore SJ, Biedendieck R, Lawrence AD, Deery E, Howard MJ, Rigby SEJ, Warren MJ. Characterization of the enzyme CbiH60 involved in anaerobic ring contraction of the cobalamin (vitamin B12) biosynthetic pathway. J Biol Chem 2013; 288:297-305. [PMID: 23155054 PMCID: PMC3537027 DOI: 10.1074/jbc.m112.422535] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 11/12/2012] [Indexed: 11/06/2022] Open
Abstract
The anaerobic pathway for the biosynthesis of cobalamin (vitamin B(12)) has remained poorly characterized because of the sensitivity of the pathway intermediates to oxygen and the low activity of enzymes. One of the major bottlenecks in the anaerobic pathway is the ring contraction step, which has not been observed previously with a purified enzyme system. The Gram-positive aerobic bacterium Bacillus megaterium has a complete anaerobic pathway that contains an unusual ring contraction enzyme, CbiH(60), that harbors a C-terminal extension with sequence similarity to the nitrite/sulfite reductase family. To improve solubility, the enzyme was homologously produced in the host B. megaterium DSM319. CbiH(60) was characterized by electron paramagnetic resonance and shown to contain a [4Fe-4S] center. Assays with purified recombinant CbiH(60) demonstrate that the enzyme converts both cobalt-precorrin-3 and cobalt factor III into the ring-contracted product cobalt-precorrin-4 in high yields, with the latter transformation dependent upon DTT and an intact Fe-S center. Furthermore, the ring contraction process was shown not to involve a change in the oxidation state of the central cobalt ion of the macrocycle.
Collapse
Affiliation(s)
- Simon J. Moore
- From the School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| | - Rebekka Biedendieck
- From the School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
- the Institute of Microbiology, Technische Universität Braunschweig, Braunschweig D-38106, Germany, and
| | - Andrew D. Lawrence
- From the School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| | - Evelyne Deery
- From the School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| | - Mark J. Howard
- From the School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| | - Stephen E. J. Rigby
- the Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Martin J. Warren
- From the School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| |
Collapse
|
7
|
Saga Y, Harada J, Hattori H, Kaihara K, Hirai Y, Oh-oka H, Tamiaki H. Spectroscopic properties and bacteriochlorophyll c isomer composition of extramembranous light-harvesting complexes in the green sulfur photosynthetic bacterium Chlorobium tepidum and its CT0388-deleted mutant under vitamin B12-limited conditions. Photochem Photobiol Sci 2008; 7:1210-5. [PMID: 18846285 DOI: 10.1039/b802354a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of exogenous vitamin B12 on the green sulfur photosynthetic bacterium Chlorobium (Chl.) tepidum were examined. Wild-type cells and mutant cells lacking a gene CT0388 (denoted as VB0388) of Chl.tepidum were grown in liquid cultures containing different concentrations of vitamin B12. The VB0388 cells hardly grew in vitamin B12-limited media, indicating that the product of CT0388 actually played an important role in vitamin B12 biosynthesis in Chl. tepidum. Both wild-type and VB0388 cells in vitamin B12-limited media exhibited absorption bands and CD signals at the Qy region that were shifted to a shorter wavelength than those of cells grown in normal media. BChl c isomers that had S-stereochemistry at the 3(1)-position tended to increase in Chl. tepidum grown in vitamin B12-limited media.
Collapse
Affiliation(s)
- Yoshitaka Saga
- Department of Chemistry, Faculty of Science and Engineering, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan.
| | | | | | | | | | | | | |
Collapse
|
8
|
Duderstadt RE, Tsuie BM, Macha SF, Limbach PA. Investigation of single-site zirconium azaborolinyl complexes by laser desorption ionization time of flight mass spectrometry. Anal Chim Acta 2007; 596:124-31. [PMID: 17616249 DOI: 10.1016/j.aca.2007.05.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 05/24/2007] [Accepted: 05/31/2007] [Indexed: 11/23/2022]
Abstract
Laser desorption ionization mass spectrometry (LDI-MS) was performed on selected azaborolinyl zirconium complexes in order to study them as potential industrial polyolefin catalyst compounds. UV-vis absorption data in conjunction with negative and positive ionization analyses revealed the mechanistic workings of the compounds when such single-site catalysts function in olefin polymerization reactions. Results presented highlight the many benefits of LDI-MS in the study of single-site zirconium azaborolinyl catalyst complexes including minimal sample preparation, the absence of matrix/pH/solvation effects, a lower degree of fragmentation as compared to EI ionization, high sensitivity and the ability to observe interesting and unique gas phase chemistry including ring slippage, and distinctive metal coordination and oxidation states. The extreme lability of the chlorine ligands was apparent, as well as the reactivity of the resulting zirconium metal center as demonstrated by the appearance of numerous similar four-coordinate zirconium species along with di-chloro-bridged dimers. LDI-MS permits analysis at low molecular weights, improving spectral characterization of these zirconium complexes.
Collapse
Affiliation(s)
- Randall E Duderstadt
- Equistar Chemicals, A Lyondell Company, 11530 Northlake Dr., Cincinnati, Ohio 45249, United States.
| | | | | | | |
Collapse
|
9
|
Frank S, Deery E, Brindley AA, Leech HK, Lawrence A, Heathcote P, Schubert HL, Brocklehurst K, Rigby SEJ, Warren MJ, Pickersgill RW. Elucidation of substrate specificity in the cobalamin (vitamin B12) biosynthetic methyltransferases. Structure and function of the C20 methyltransferase (CbiL) from Methanothermobacter thermautotrophicus. J Biol Chem 2007; 282:23957-69. [PMID: 17567575 DOI: 10.1074/jbc.m703827200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ring contraction during cobalamin (vitamin B12) biosynthesis requires a seemingly futile methylation of the C20 position of the tetrapyrrole framework. Along the anaerobic route, this reaction is catalyzed by CbiL, which transfers a methyl group from S-adenosyl-L-methionine to cobalt factor II to generate cobalt factor III. CbiL belongs to the class III methyltransferases and displays similarity to other cobalamin biosynthetic methyltransferases that are responsible for the regiospecific methylation of a number of positions on the tetrapyrrole molecular canvas. In an attempt to understand how CbiL selectively methylates the C20 position, a detailed structure function analysis of the enzyme has been undertaken. In this paper, we demonstrate that the enzyme methylates the C20 position, that its preferred substrate is cobalt factor II, and that the metal ion does not undergo any oxidation change during the course of the reaction. The enzyme was crystallized, and its structure was determined by x-ray crystallography, revealing that the 26-kDa protein has a similar overall topology to other class III enzymes. This helped in the identification of some key amino acid residues (Asp(104), Lys(176), and Tyr(220)). Analysis of mutant variants of these groups has allowed us to suggest potential roles that these side chains may play in substrate binding and catalysis. EPR analysis of binary and ternary complexes indicate that the protein donates a fifth ligand to the cobalt ion via a gated mechanism to prevent transfer of the methyl group to water. The chemical logic underpinning the methylation is discussed.
Collapse
Affiliation(s)
- Stefanie Frank
- Protein Science Group, Department of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wada K, Harada J, Yaeda Y, Tamiaki H, Oh-Oka H, Fukuyama K. Crystal structures of CbiL, a methyltransferase involved in anaerobic vitamin B12 biosynthesis, and CbiL in complex with S-adenosylhomocysteine − implications for the reaction mechanism. FEBS J 2006; 274:563-73. [PMID: 17229157 DOI: 10.1111/j.1742-4658.2006.05611.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
During anaerobic cobalamin (vitamin B12) biosynthesis, CbiL catalyzes methylation at the C-20 position of a cyclic tetrapyrrole ring using S-adenosylmethionine as a methyl group source. This methylation is a key modification for the ring contraction process, by which a porphyrin-type tetrapyrrole ring is converted to a corrin ring through elimination of the modified C-20 and direct bonding of C-1 to C-19. We have determined the crystal structures of Chlorobium tepidum CbiL and CbiL in complex with S-adenosylhomocysteine (the S-demethyl form of S-adenosylmethionine). CbiL forms a dimer in the crystal, and each subunit consists of N-terminal and C-terminal domains. S-Adenosylhomocysteine binds to a cleft between the two domains, where it is specifically recognized by extensive hydrogen bonding and van der Waals interactions. The orientation of the cobalt-factor II substrate was modeled by simulation, and the predicted model suggests that the hydroxy group of Tyr226 is located in close proximity to the C-20 atom as well as the C-1 and C-19 atoms of the tetrapyrrole ring. These configurations allow us to propose a catalytic mechanism: the conserved Tyr226 residue in CbiL catalyzes the direct transfer of a methyl group from S-adenosylmethionine to the substrate through an S(N)2-like mechanism. Furthermore, the structural model of CbiL binding to its substrate suggests the axial residue coordinated to the central cobalt of cobalt-factor II.
Collapse
Affiliation(s)
- Kei Wada
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan.
| | | | | | | | | | | |
Collapse
|
11
|
Frank S, Brindley AA, Deery E, Heathcote P, Lawrence AD, Leech HK, Pickersgill RW, Warren MJ. Anaerobic synthesis of vitamin B12: characterization of the early steps in the pathway. Biochem Soc Trans 2005; 33:811-4. [PMID: 16042604 DOI: 10.1042/bst0330811] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The anaerobic biosynthesis of vitamin B12 is slowly being unravelled. Recent work has shown that the first committed step along the anaerobic route involves the sirohydrochlorin (chelation of cobalt into factor II). The following enzyme in the pathway, CbiL, methylates cobalt-factor II to give cobalt-factor III. Recent progress on the molecular characterization of this enzyme has given a greater insight into its mode of action and specificity. Structural studies are being used to provide insights into how aspects of this highly complex biosynthetic pathway may have evolved. Between cobalt-factor III and cobyrinic acid, only one further intermediate has been identified. A combination of molecular genetics, recombinant DNA technology and bioorganic chemistry has led to some recent advances in assigning functions to the enzymes of the anaerobic pathway.
Collapse
Affiliation(s)
- S Frank
- School of Biological Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Maresca JA, Gomez Maqueo Chew A, Ponsatí MR, Frigaard NU, Ormerod JG, Bryant DA. The bchU gene of Chlorobium tepidum encodes the c-20 methyltransferase in bacteriochlorophyll c biosynthesis. J Bacteriol 2004; 186:2558-66. [PMID: 15090495 PMCID: PMC387796 DOI: 10.1128/jb.186.9.2558-2566.2004] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriochlorophylls (BChls) c and d, two of the major light-harvesting pigments in photosynthetic green sulfur bacteria, differ only by the presence of a methyl group at the C-20 methine bridge position in BChl c. A gene potentially encoding the C-20 methyltransferase, bchU, was identified by comparative analysis of the Chlorobium tepidum and Chloroflexus aurantiacus genome sequences. Homologs of this gene were amplified and sequenced from Chlorobium phaeobacteroides strain 1549, Chlorobium vibrioforme strain 8327d, and C. vibrioforme strain 8327c, which produce BChls e, d, and c, respectively. A single nucleotide insertion in the bchU gene of C. vibrioforme strain 8327d was found to cause a premature, in-frame stop codon and thus the formation of a truncated, nonfunctional gene product. The spontaneous mutant of this strain that produces BChl c (strain 8327c) has a second frameshift mutation that restores the correct reading frame in bchU. The bchU gene was inactivated in C. tepidum, a BChl c-producing species, and the resulting mutant produced only BChl d. Growth rate measurements showed that BChl c- and d-producing strains of the same organism (C. tepidum or C. vibrioforme) have similar growth rates at high and intermediate light intensities but that strains producing BChl c grow faster than those with BChl d at low light intensities. Thus, the bchU gene encodes the C-20 methyltransferase for BChl c biosynthesis in Chlorobium species, and methylation at the C-20 position to produce BChl c rather than BChl d confers a significant competitive advantage to green sulfur bacteria living at limiting red and near-infrared light intensities.
Collapse
Affiliation(s)
- Julia A Maresca
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
13
|
Raux E, Leech HK, Beck R, Schubert HL, Santander PJ, Roessner CA, Scott AI, Martens JH, Jahn D, Thermes C, Rambach A, Warren MJ. Identification and functional analysis of enzymes required for precorrin-2 dehydrogenation and metal ion insertion in the biosynthesis of sirohaem and cobalamin in Bacillus megaterium. Biochem J 2003; 370:505-16. [PMID: 12408752 PMCID: PMC1223173 DOI: 10.1042/bj20021443] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2002] [Revised: 10/21/2002] [Accepted: 10/31/2002] [Indexed: 11/17/2022]
Abstract
In Bacillus megaterium, the hemAXBCDL genes were isolated and were found to be highly similar to the genes from Bacillus subtilis that are required for the conversion of glutamyl-tRNA into uroporphyrinogen III. Overproduction and purification of HemC (porphobilinogen deaminase) and -D (uroporphyrinogen III synthase) allowed these enzymes to be used for the in vitro synthesis of uroporphyrinogen III from porphobilinogen. A second smaller cluster of three genes (termed sirABC) was also isolated and found to encode the enzymes that catalyse the transformation of uroporphyrinogen III into sirohaem on the basis of their ability to complement a defined Escherichia coli (cysG) mutant. The functions of SirC and -B were investigated by direct enzyme assay, where SirC was found to act as a precorrin-2 dehydrogenase, generating sirohydrochlorin, and SirB was found to act as a ferrochelatase responsible for the final step in sirohaem synthesis. CbiX, a protein found encoded within the main B. megaterium cobalamin biosynthetic operon, shares a high degree of similarity with SirB and acts as the cobaltochelatase associated with cobalamin biosynthesis by inserting cobalt into sirohydrochlorin. CbiX contains an unusual histidine-rich region in the C-terminal portion of the protein, which was not found to be essential in the chelation process. Sequence alignments suggest that SirB and CbiX share a similar active site to the cobaltochelatase, CbiK, from Salmonella enterica.
Collapse
Affiliation(s)
- Evelyne Raux
- School of Biological Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Roper JM, Raux E, Brindley AA, Schubert HL, Gharbia SE, Shah HN, Warren MJ. The enigma of cobalamin (Vitamin B12) biosynthesis in Porphyromonas gingivalis. Identification and characterization of a functional corrin pathway. J Biol Chem 2000; 275:40316-23. [PMID: 11007789 DOI: 10.1074/jbc.m007146200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ability of Porphyromonas gingivalis to biosynthesize tetrapyrroles de novo has been investigated. Extracts of the bacterium do not possess activity for 5- aminolevulinic-acid dehydratase or porphobilinogen deaminase, two key enzymes involved in the synthesis of uroporphyrinogen III. Similarly, it was not possible to detect any genetic evidence for these early enzymes with the use of degenerate polymerase chain reaction. However, the bacterium does appear to harbor some of the enzymes for cobalamin biosynthesis since cobyric acid, a pathway intermediate, was converted into cobinamide. Furthermore, degenerate polymerase chain reaction with primers to cbiP, which encodes cobyric-acid synthase, produced a fragment with a high degree of identity to Salmonella typhimurium cbiP. Indeed, the recently released genome sequence data confirmed the presence of cbiP together with 14 other genes of the cobalamin pathway. A number of these genes were cloned and functionally characterized. Although P. gingivalis harbors all the genes necessary to convert precorrin-2 into cobalamin, it is missing the genes for the synthesis of precorrin-2. Either the organism has a novel pathway for the synthesis of precorrin-2, or more likely, it has lost this early part of the pathway. The remainder of the pathway may be being maintained to act as a salvage route for corrin synthesis.
Collapse
Affiliation(s)
- J M Roper
- School of Biological Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
| | | | | | | | | | | | | |
Collapse
|