1
|
The Polyvalent Role of NF90 in RNA Biology. Int J Mol Sci 2022; 23:ijms232113584. [DOI: 10.3390/ijms232113584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
Double-stranded RNA-binding proteins (dsRBPs) are major players in the regulation of gene expression patterns. Among them, Nuclear Factor 90 (NF90) has a plethora of well-known functions in viral infection, transcription, and translation as well as RNA stability and degradation. In addition, NF90 has been identified as a regulator of microRNA (miRNA) maturation by competing with Microprocessor for the binding of pri-miRNAs in the nucleus. NF90 was recently shown to control the biogenesis of a subset of human miRNAs, which ultimately influences, not only the abundance, but also the expression of the host gene and the fate of the mRNA target repertoire. Moreover, recent evidence suggests that NF90 is also involved in RNA-Induced Silencing Complex (RISC)-mediated silencing by binding to target mRNAs and controlling their translation and degradation. Here, we review the many, and growing, functions of NF90 in RNA biology, with a focus on the miRNA pathway and RISC-mediated gene silencing.
Collapse
|
2
|
Wu TH, Shi L, Lowe AW, Nicolls MR, Kao PN. Inducible expression of immediate early genes is regulated through dynamic chromatin association by NF45/ILF2 and NF90/NF110/ILF3. PLoS One 2019; 14:e0216042. [PMID: 31022259 PMCID: PMC6483252 DOI: 10.1371/journal.pone.0216042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 04/14/2019] [Indexed: 12/11/2022] Open
Abstract
Immediate early gene (IEG) transcription is rapidly activated by diverse stimuli. This transcriptional regulation is assumed to involve constitutively expressed nuclear factors that are targets of signaling cascades initiated at the cell membrane. NF45 (encoded by ILF2) and its heterodimeric partner NF90/NF110 (encoded by ILF3) are chromatin-interacting proteins that are constitutively expressed and localized predominantly in the nucleus. Previously, NF90/NF110 chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) in K562 erythroleukemia cells revealed its enriched association with chromatin at active promoters and strong enhancers. NF90/NF110 specifically occupied the promoters of IEGs. Here, ChIP in serum-starved HEK293 cells demonstrated that NF45 and NF90/NF110 pre-exist and specifically occupy the promoters of IEG transcription factors EGR1, FOS and JUN. Cellular stimulation with phorbol myristyl acetate increased NF90/NF110 chromatin association, while decreasing NF45 chromatin association at promoters of EGR1, FOS and JUN. In HEK293 cells stably transfected with doxycycline-inducible shRNA vectors targeting NF90/NF110 or NF45, doxycycline-mediated knockdown of NF90/NF110 or NF45 attenuated the inducible expression of EGR1, FOS, and JUN at the levels of transcription, RNA and protein. Dynamic chromatin association of NF45 and NF90/NF110 at IEG promoters are observed upon stimulation, and NF45 and NF90/NF110 contribute to inducible transcription of IEGs. NF45 and NF90/NF110 operate as chromatin regulators of the immediate early response.
Collapse
Affiliation(s)
- Ting-Hsuan Wu
- Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Biomedical Informatics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Lingfang Shi
- Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Anson W. Lowe
- Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Mark R. Nicolls
- Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Peter N. Kao
- Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
3
|
Nakadai T, Fukuda A, Shimada M, Nishimura K, Hisatake K. The RNA binding complexes NF45-NF90 and NF45-NF110 associate dynamically with the c-fos gene and function as transcriptional coactivators. J Biol Chem 2015; 290:26832-45. [PMID: 26381409 DOI: 10.1074/jbc.m115.688317] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Indexed: 12/13/2022] Open
Abstract
The c-fos gene is rapidly induced to high levels by various extracellular stimuli. We used a defined in vitro transcription system that utilizes the c-fos promoter to purify a coactivator activity in an unbiased manner. We report here that NF45-NF90 and NF45-NF110, which possess archetypical double-stranded RNA binding motifs, have a direct function as transcriptional coactivators. The transcriptional activities of the nuclear factor (NF) complexes (NF45-NF90 and NF45-NF110) are mediated by both the upstream enhancer and core promoter regions of the c-fos gene and do not require their double-stranded RNA binding activities. The NF complexes cooperate with general coactivators, PC4 and Mediator, to elicit a high level of transcription and display multiple interactions with activators and the components of the general transcriptional machinery. Knockdown of the endogenous NF90/NF110 in mouse cells shows an important role for the NF complexes in inducing c-fos transcription. Chromatin immunoprecipitation assays demonstrate that the NF complexes occupy the c-fos enhancer/promoter region before and after serum induction and that their occupancies within the coding region of the c-fos gene increase in parallel to that of RNAPII upon serum induction. In light of their dynamic occupancy on the c-fos gene as well as direct functions in both transcription and posttranscriptional processes, the NF complexes appear to serve as multifunctional coactivators that coordinate different steps of gene expression to facilitate rapid response of inducible genes.
Collapse
Affiliation(s)
- Tomoyoshi Nakadai
- From the Department of Molecular Biology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama 350-0495, Japan and
| | - Aya Fukuda
- Department of Biochemistry, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Miho Shimada
- From the Department of Molecular Biology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama 350-0495, Japan and
| | - Ken Nishimura
- Department of Biochemistry, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Koji Hisatake
- Department of Biochemistry, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
4
|
Castella S, Bernard R, Corno M, Fradin A, Larcher JC. Ilf3 and NF90 functions in RNA biology. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:243-56. [PMID: 25327818 DOI: 10.1002/wrna.1270] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/09/2014] [Accepted: 09/17/2014] [Indexed: 12/24/2022]
Abstract
Double-stranded RNA-binding proteins (DRBPs) are known to regulate many processes of RNA metabolism due, among others, to the presence of double-stranded RNA (dsRNA)-binding motifs (dsRBMs). Among these DRBPs, Interleukin enhancer-binding factor 3 (Ilf3) and Nuclear Factor 90 (NF90) are two ubiquitous proteins generated by mutually exclusive and alternative splicings of the Ilf3 gene. They share common N-terminal and central sequences but display specific C-terminal regions. They present a large heterogeneity generated by several post-transcriptional and post-translational modifications involved in their subcellular localization and biological functions. While Ilf3 and NF90 were first identified as activators of gene expression, they are also implicated in cellular processes unrelated to RNA metabolism such as regulation of the cell cycle or of enzymatic activites. The implication of Ilf3 and NF90 in RNA biology will be discussed with a focus on eukaryote transcription and translation regulation, on viral replication and translation as well as on noncoding RNA field.
Collapse
Affiliation(s)
- Sandrine Castella
- Laboratoire de Biologie du développement, Institut de Biologie Paris-Seine, Sorbonne Universités, UPMC Univ Paris 06, Paris, France; Laboratoire de Biologie du développement, Institut de Biologie Paris-Seine, CNRS, UMR 7622, Paris, France
| | | | | | | | | |
Collapse
|
5
|
NF90 in posttranscriptional gene regulation and microRNA biogenesis. Int J Mol Sci 2013; 14:17111-21. [PMID: 23965975 PMCID: PMC3759954 DOI: 10.3390/ijms140817111] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/05/2013] [Accepted: 08/07/2013] [Indexed: 11/16/2022] Open
Abstract
Gene expression patterns are effectively regulated by turnover and translation regulatory (TTR) RNA-binding proteins (RBPs). The TTR-RBPs control gene expression at posttranscriptional levels, such as pre-mRNA splicing, mRNA cytoplasmic export, turnover, storage, and translation. Double-stranded RNA binding proteins (DSRBPs) are known to regulate many processes of cellular metabolism, including transcriptional control, translational control, mRNA processing and localization. Nuclear factor 90 (NF90), one of the DSRBPs, is abundantly expressed in vertebrate tissue and participates in many aspects of RNA metabolism. NF90 was originally purified as a component of a DNA binding complex which binds to the antigen recognition response element 2 in the interleukin 2 promoter. Recent studies have provided us with interesting insights into its possible physiological roles in RNA metabolism, including transcription, degradation, and translation. In addition, it was shown that NF90 regulates microRNA expression. In this review, we try to focus on the function of NF90 in posttranscriptional gene regulation and microRNA biogenesis.
Collapse
|
6
|
Shamanna RA, Hoque M, Pe'ery T, Mathews MB. Induction of p53, p21 and apoptosis by silencing the NF90/NF45 complex in human papilloma virus-transformed cervical carcinoma cells. Oncogene 2012. [PMID: 23208500 PMCID: PMC4032571 DOI: 10.1038/onc.2012.533] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The heterodimeric nuclear factor 90/nuclear factor 45 complex (NF90/NF45) binds nucleic acids and is a multifunctional regulator of gene expression. Here we report that depletion of NF90/NF45 restores the expression of the p53 and p21 proteins in cervical carcinoma cells infected with high-risk human papillomaviruses (HPV). Knockdown of either NF90 or NF45 by RNA interference led to greatly elevated levels of p53 and p21 proteins in HPV-derived HeLa and SiHa cells, but not in other cancerous or normal cell lines. In HeLa cells, p21 mRNA increased concomitantly but the level of p53 mRNA was unaffected. RNA interference directed against p53 prevented the induction of both proteins. These results indicated that the up-regulation of p21 is due to p53-dependent transcription, whereas p53 is regulated post-transcriptionally. Proteasome-mediated turnover of p53 is accelerated by the HPV E6 and cellular E6AP proteins. We therefore examined the hypothesis that this pathway is regulated by NF90/NF45. Indeed, depletion of NF90 attenuated the expression of E6 RNA and inhibited transcription from the HPV early promoter, revealing a new role for NF90/NF45 in HPV gene expression. The transcription inhibition was largely independent of the reduction of P-TEFb levels caused by NF90 depletion. Consistent with p53 derepression, NF90/NF45-depleted HeLa cells displayed elevated PARP cleavage and susceptibility to camptothecin-induced apoptosis. We conclude that high-risk strains of HPV utilize the cellular NF90/NF45 complex for viral E6 expression in infected cervical carcinoma cell lines. Interference with NF90/NF45 function could assist in controlling cervical carcinoma.
Collapse
Affiliation(s)
- R A Shamanna
- 1] Department of Biochemistry and Molecular Biology, New Jersey Medical School, UMDNJ, Newark, NJ, USA [2] Graduate School of Biomedical Sciences, UMDNJ, Newark, NJ, USA
| | | | | | | |
Collapse
|
7
|
Higuchi T, Sakamoto S, Kakinuma Y, Kai S, Yagyu KI, Todaka H, Chi E, Okada S, Ujihara T, Morisawa K, Ono M, Sugiyama Y, Ishida W, Fukushima A, Tsuda M, Agata Y, Taniguchi T. High expression of nuclear factor 90 (NF90) leads to mitochondrial degradation in skeletal and cardiac muscles. PLoS One 2012; 7:e43340. [PMID: 22912857 PMCID: PMC3422296 DOI: 10.1371/journal.pone.0043340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 07/19/2012] [Indexed: 01/04/2023] Open
Abstract
While NF90 has been known to participate in transcription, translation and microRNA biogenesis, physiological functions of this protein still remain unclear. To uncover this, we generated transgenic (Tg) mice using NF90 cDNA under the control of β-actin promoter. The NF90 Tg mice exhibited a reduction in body weight compared with wild-type mice, and a robust expression of NF90 was detected in skeletal muscle, heart and eye of the Tg mice. To evaluate the NF90 overexpression-induced physiological changes in the tissues, we performed a number of analyses including CT-analysis and hemodynamic test, revealing that the NF90 Tg mice developed skeletal muscular atrophy and heart failure. To explore causes of the abnormalities in the NF90 Tg mice, we performed histological and biochemical analyses for the skeletal and cardiac muscles of the Tg mice. Surprisingly, these analyses demonstrated that mitochondria in those muscular tissues of the Tg mice were degenerated by autophagy. To gain further insight into the cause for the mitochondrial degeneration, we identified NF90-associated factors by peptide mass fingerprinting. Of note, approximately half of the NF90-associated complexes were ribosome-related proteins. Interestingly, protein synthesis rate was significantly suppressed by high-expression of NF90. These observations suggest that NF90 would negatively regulate the function of ribosome via its interaction with the factors involved in the ribosome function. Furthermore, we found that the translations or protein stabilities of PGC-1 and NRF-1, which are critical transcription factors for expression of mitochondrial genes, were significantly depressed in the skeletal muscles of the NF90 Tg mice. Taken together, these findings suggest that the mitochondrial degeneration engaged in the skeletal muscle atrophy and the heart failure in the NF90 Tg mice may be caused by NF90-induced posttranscriptional repression of transcription factors such as PGC-1 and NRF-1 for regulating nuclear-encoded genes relevant to mitochondrial function.
Collapse
Affiliation(s)
- Takuma Higuchi
- Laboratory of Molecular Biology, Science Research Center, Kochi Medical School, Kochi, Japan
| | - Shuji Sakamoto
- Laboratory of Molecular Biology, Science Research Center, Kochi Medical School, Kochi, Japan
- * E-mail:
| | - Yoshihiko Kakinuma
- Department of Cardiovascular Control, Kochi Medical School, Kochi, Japan
| | - Shoko Kai
- Laboratory of Molecular Biology, Science Research Center, Kochi Medical School, Kochi, Japan
| | - Ken-ichi Yagyu
- Laboratory of Molecular Biology, Science Research Center, Kochi Medical School, Kochi, Japan
| | - Hiroshi Todaka
- Laboratory of Molecular Biology, Science Research Center, Kochi Medical School, Kochi, Japan
| | - Eunsup Chi
- Laboratory of Molecular Biology, Science Research Center, Kochi Medical School, Kochi, Japan
| | - Shoshiro Okada
- Department of Pharmacology, Aichi Medical University School of Medicine, Aichi, Japan
| | - Takako Ujihara
- The Facility for Radio-isotope Research, Science Research Center, Kochi Medical School, Kochi, Japan
| | - Keiko Morisawa
- Laboratory of Molecular Biology, Science Research Center, Kochi Medical School, Kochi, Japan
| | - Masafumi Ono
- Department of Gastroenterology and Hepatology, Kochi Medical School, Kochi, Japan
| | - Yasunori Sugiyama
- Laboratory of Molecular Biology, Science Research Center, Kochi Medical School, Kochi, Japan
| | - Waka Ishida
- Department of Ophthalmology, Kochi Medical School, Kochi, Japan
| | | | - Masayuki Tsuda
- The Division of Laboratory Animal Science, Science Research Center, Kochi Medical School, Kochi, Japan
| | - Yasutoshi Agata
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Taketoshi Taniguchi
- Laboratory of Molecular Biology, Science Research Center, Kochi Medical School, Kochi, Japan
| |
Collapse
|
8
|
Corso C, Pisapia L, Citro A, Cicatiello V, Barba P, Cigliano L, Abrescia P, Maffei A, Manco G, Del Pozzo G. EBP1 and DRBP76/NF90 binding proteins are included in the major histocompatibility complex class II RNA operon. Nucleic Acids Res 2011; 39:7263-75. [PMID: 21624892 PMCID: PMC3167597 DOI: 10.1093/nar/gkr278] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Major histocompatibility complex class II mRNAs encode heterodimeric proteins involved in the presentation of exogenous antigens during an immune response. Their 3'UTRs bind a protein complex in which we identified two factors: EBP1, an ErbB3 receptor-binding protein and DRBP76, a double-stranded RNA binding nuclear protein, also known as nuclear factor 90 (NF90). Both are well-characterized regulatory factors of several mRNA molecules processing. Using either EBP1 or DRBP76/NF90-specific knockdown experiments, we established that the two proteins play a role in regulating the expression of HLA-DRA, HLA-DRB1 and HLA-DQA1 mRNAs levels. Our study represents the first indication of the existence of a functional unit that includes different transcripts involved in the adaptive immune response. We propose that the concept of 'RNA operon' may be suitable for our system in which MHCII mRNAs are modulated via interaction of their 3'UTR with same proteins.
Collapse
Affiliation(s)
- Carmela Corso
- Institute of Genetics and Biophysics ‘A. Buzzati Traverso’, CNR, Via Pietro Castellino 111, 80131, Naples, Department of Biological Science, University of Naples Federico II, Via Mezzocannone 8, 80134, Naples and Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Laura Pisapia
- Institute of Genetics and Biophysics ‘A. Buzzati Traverso’, CNR, Via Pietro Castellino 111, 80131, Naples, Department of Biological Science, University of Naples Federico II, Via Mezzocannone 8, 80134, Naples and Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Alessandra Citro
- Institute of Genetics and Biophysics ‘A. Buzzati Traverso’, CNR, Via Pietro Castellino 111, 80131, Naples, Department of Biological Science, University of Naples Federico II, Via Mezzocannone 8, 80134, Naples and Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Valeria Cicatiello
- Institute of Genetics and Biophysics ‘A. Buzzati Traverso’, CNR, Via Pietro Castellino 111, 80131, Naples, Department of Biological Science, University of Naples Federico II, Via Mezzocannone 8, 80134, Naples and Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
- *To whom correspondence should be addressed. Valeria Cicatiello. Tel: +390816132455; Fax: +390816132718;
| | - Pasquale Barba
- Institute of Genetics and Biophysics ‘A. Buzzati Traverso’, CNR, Via Pietro Castellino 111, 80131, Naples, Department of Biological Science, University of Naples Federico II, Via Mezzocannone 8, 80134, Naples and Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Luisa Cigliano
- Institute of Genetics and Biophysics ‘A. Buzzati Traverso’, CNR, Via Pietro Castellino 111, 80131, Naples, Department of Biological Science, University of Naples Federico II, Via Mezzocannone 8, 80134, Naples and Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Paolo Abrescia
- Institute of Genetics and Biophysics ‘A. Buzzati Traverso’, CNR, Via Pietro Castellino 111, 80131, Naples, Department of Biological Science, University of Naples Federico II, Via Mezzocannone 8, 80134, Naples and Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Antonella Maffei
- Institute of Genetics and Biophysics ‘A. Buzzati Traverso’, CNR, Via Pietro Castellino 111, 80131, Naples, Department of Biological Science, University of Naples Federico II, Via Mezzocannone 8, 80134, Naples and Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Giuseppe Manco
- Institute of Genetics and Biophysics ‘A. Buzzati Traverso’, CNR, Via Pietro Castellino 111, 80131, Naples, Department of Biological Science, University of Naples Federico II, Via Mezzocannone 8, 80134, Naples and Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
- *To whom correspondence should be addressed. Valeria Cicatiello. Tel: +390816132455; Fax: +390816132718;
| | - Giovanna Del Pozzo
- Institute of Genetics and Biophysics ‘A. Buzzati Traverso’, CNR, Via Pietro Castellino 111, 80131, Naples, Department of Biological Science, University of Naples Federico II, Via Mezzocannone 8, 80134, Naples and Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| |
Collapse
|
9
|
Smith NL, Miskimins WK. Phosphorylation at serine 482 affects stability of NF90 and its functional role in mitosis. Cell Prolif 2011; 44:147-55. [PMID: 21401756 DOI: 10.1111/j.1365-2184.2011.00742.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES NF90 is a multifunctional double-strand RNA binding protein with documented roles in transcription, mRNA stability, translation, RNA processing and transport, and mitosis. It is a phosphoprotein that interacts with, and is a substrate for, several protein kinases. The study described here was initiated to gain better understanding of specific NF90 phosphorylation sites and their relationship to mechanisms by which NF90 performs its various functions. MATERIALS AND METHODS Phosphoproteomic studies have identified NF90 serine 482 (S482) as a major phosphorylation site in vivo. Site-specific mutations were introduced at this site and the mutated proteins were expressed in MCF7 cells by transfection. Western blotting was used to examine NF90 expression, stability, and responsiveness to protein kinase activators and inhibitors. Flow cytometry was used to examine effects of NF90 mutation on cell cycle progression. RESULTS Non-phosphorylatable mutant S482A was unstable compared to phosphomimetic S482E mutant. NF90-S482A expression was greatly enhanced by inhibiting proteasomal degradation or by activating PKC. Identical treatments had little effect on NF90-S482E. In contrast to WT NF90 or NF90-S482E, cells stably expressing NF90-S482A accumulated in M phase when treated with TPA. CONCLUSIONS Phosphorylation at S482 is important for NF90 stability and in regulating its functional role during mitosis. Based on the sequence surrounding S482, mitotic kinase PLK1 is a strong candidate for the enzyme that phosphorylates NF90 at this site.
Collapse
Affiliation(s)
- N L Smith
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA
| | | |
Collapse
|
10
|
The NF90-NF45 complex functions as a negative regulator in the microRNA processing pathway. Mol Cell Biol 2009; 29:3754-69. [PMID: 19398578 DOI: 10.1128/mcb.01836-08] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The positive regulatory machinery in the microRNA (miRNA) processing pathway is relatively well characterized, but negative regulation of the pathway is largely unknown. Here we show that a complex of nuclear factor 90 (NF90) and NF45 proteins functions as a negative regulator in miRNA biogenesis. Primary miRNA (pri-miRNA) processing into precursor miRNA (pre-miRNA) was inhibited by overexpression of the NF90 and NF45 proteins, and considerable amounts of pri-miRNAs accumulated in cells coexpressing NF90 and NF45. Treatment of cells overexpressing NF90 and NF45 with an RNA polymerase II inhibitor, alpha-amanitin, did not reduce the amounts of pri-miRNAs, suggesting that the accumulation of pri-miRNAs is not due to transcriptional activation. In addition, the NF90 and NF45 complex was not found to interact with the Microprocessor complex, which is a processing factor of pri-miRNAs, but was found to bind endogenous pri-miRNAs. NF90-NF45 exhibited higher binding activity for pri-let-7a than pri-miR-21. Of note, depletion of NF90 caused a reduction of pri-let-7a and an increase of mature let-7a miRNA, which has a potent antiproliferative activity, and caused growth suppression of transformed cells. These findings suggest that the association of the NF90-NF45 complex with pri-miRNAs impairs access of the Microprocessor complex to the pri-miRNAs, resulting in a reduction of mature miRNA production.
Collapse
|
11
|
Nuclear factor 45 (NF45) is a regulatory subunit of complexes with NF90/110 involved in mitotic control. Mol Cell Biol 2008; 28:4629-41. [PMID: 18458058 DOI: 10.1128/mcb.00120-08] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear factor 90 (NF90) and its C-terminally extended isoform, NF110, have been isolated as DNA- and RNA-binding proteins together with the less-studied protein NF45. These complexes have been implicated in gene regulation, but little is known about their cellular roles and whether they are redundant or functionally distinct. We show that heterodimeric core complexes, NF90-NF45 and NF110-NF45, exist within larger complexes that are more labile and contain multiple NF90/110 isoforms and additional proteins. Depletion of the NF45 subunit by RNA interference is accompanied by a dramatic decrease in the levels of NF90 and NF110. Reciprocally, depletion of NF90 but not of NF110 greatly reduces the level of NF45. Coregulation of NF90 and NF45 is a posttranscriptional phenomenon, resulting from protein destabilization in the absence of partners. Depletion of NF90-NF45 complexes retards cell growth by inhibition of DNA synthesis. Giant multinucleated cells containing nuclei attached by constrictions accumulate when either NF45 or NF90, but not NF110, is depleted. This study identified NF45 as an unstable regulatory subunit of NF90-NF45 complexes and uncovered their critical role in normal cell division. Furthermore, the study revealed that NF90 is functionally distinct from NF110 and is more important for cell growth.
Collapse
|
12
|
Langland JO, Kao P, Jacobs BL. Regulation of IL-2 gene expression and nuclear factor-90 translocation in vaccinia virus-infected cells. J Interferon Cytokine Res 2004; 23:489-500. [PMID: 14565858 DOI: 10.1089/10799900360708614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nuclear factor-90 (NF-90) has been described as a regulatory subunit of a complex containing DNA-dependent protein kinase (DNA-PK), Ku, and NF-45, which are capable of binding the interleukin-2 (IL-2) enhancer region and stimulating IL-2 gene expression. Vaccinia virus (VV) infection of Jurkat cells induced a nuclear factor that bound specifically to the IL-2 promoter sequence and led to the expression of the IL-2 transcript. Induction of this IL-2 promoter binding factor occurred concomitantly with the induction of NF-90 and translocation of NF-90 to the nucleus. Electrophoretic mobility supershift analysis using specific anti-NF-90 serum suggested the presence of NF-90 in the IL-2 promoter binding complex. As NF-90 can bind to double-stranded RNA (dsRNA) and be phosphorylated by the dsRNA-dependent protein kinase, PKR, we investigated whether accumulation of dsRNA in VV-infected cells could regulate IL-2 gene expression. Infection of Jurkat cells with a VV mutant that produces free dsRNA led to similar levels of induced NF-90 within the cell, but the protein remained localized within the cytosol. This mutant did not lead to the accumulation of an IL-2 promoter binding complex or to the synthesis of IL-2 mRNA. Other VV mutants that produced excess dsRNA also inhibited protein binding to the IL-2 enhancer, suggesting that the presence of viral dsRNA has a role in retaining NF-90 in the cytosol and regulating IL-2 gene expression.
Collapse
Affiliation(s)
- Jeffrey O Langland
- Department of Microbiology, Arizona State University, Tempe, AZ 85287-2701, USA
| | | | | |
Collapse
|
13
|
Reichman TW, Parrott AM, Fierro-Monti I, Caron DJ, Kao PN, Lee CG, Li H, Mathews MB. Selective regulation of gene expression by nuclear factor 110, a member of the NF90 family of double-stranded RNA-binding proteins. J Mol Biol 2003; 332:85-98. [PMID: 12946349 DOI: 10.1016/s0022-2836(03)00885-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Members of the nuclear factor 90 (NF90) family of double-stranded RNA (dsRNA)-binding proteins have been implicated in several biological processes including the regulation of gene expression. cDNA sequences predict that the proteins have a functional nuclear localization signal and two dsRNA-binding motifs (dsRBMs), and are identical at their N termini. Isoforms are predicted to diverge at their C termini as well as by the insertion of four amino acid residues (NVKQ) between the two dsRBMs. In this study, we verified the expression of four of the isoforms by cDNA cloning and mass spectrometric analysis of proteins isolated from human cells. Cell fractionation studies showed that NF90 and its heteromeric partner, NF45, are predominantly nuclear and largely chromatin-associated. The C-terminally extended NF90 species, NF110, are almost exclusively chromatin-bound. Both NF110 isoforms are more active than NF90 isoforms in stimulating transcription from the proliferating cell nuclear antigen reporter in a transient expression system. NF110b, which carries the NVKQ insert, was identified as the strongest activator. It stimulated transcription of some, but not all, promoters in a fashion that suggested that it functions in concert with other transcription factors. Finally, we demonstrate that NF110b associates with the dsRBM-containing transcriptional co-activator, RNA helicase A, independently of RNA binding.
Collapse
Affiliation(s)
- Trevor W Reichman
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, 185 South Orange Ave., P.O. Box 1709, Newark, NJ 07103-1709, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Rezai-Zadeh N, Zhang X, Namour F, Fejer G, Wen YD, Yao YL, Gyory I, Wright K, Seto E. Targeted recruitment of a histone H4-specific methyltransferase by the transcription factor YY1. Genes Dev 2003; 17:1019-29. [PMID: 12704081 PMCID: PMC196041 DOI: 10.1101/gad.1068003] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Methylation of specific residues within the N-terminal histone tails plays a critical role in regulating eukaryotic gene expression. Although great advances have been made toward identifying histone methyltransferases (HMTs) and elucidating the consequences of histone methylation, little is known about the recruitment of HMTs to regulatory regions of chromatin. Here we report that the sequence-specific DNA-binding transcription factor Yin Yang 1 (YY1) binds to and recruits the histone H4 (Arg 3)-specific methyltransferase, PRMT1, to a YY1-activated promoter. Our data confirm that histone methylation does not occur randomly but rather is a targeted event and provides one mechanism by which HMTs can be recruited to chromatin to activate gene expression.
Collapse
Affiliation(s)
- Natalie Rezai-Zadeh
- H. Lee Moffitt Cancer Center & Research Institute, University of South Florida, Tampa 33612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tian B, Mathews MB. Phylogenetics and Functions of the Double-Stranded RNA-Binding Motif: A Genomic Survey. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY VOLUME 74 2003; 74:123-58. [PMID: 14510075 DOI: 10.1016/s0079-6603(03)01012-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Bin Tian
- Johnson and Johnson Pharmaceutical Research and Development, San Diego, California 92121, USA
| | | |
Collapse
|
16
|
Reichman TW, Muñiz LC, Mathews MB. The RNA binding protein nuclear factor 90 functions as both a positive and negative regulator of gene expression in mammalian cells. Mol Cell Biol 2002; 22:343-56. [PMID: 11739746 PMCID: PMC134226 DOI: 10.1128/mcb.22.1.343-356.2002] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear factor 90 (NF90) was originally isolated in a complex that binds to the antigen recognition response element (ARRE-2) present in the interleukin-2 promoter. To characterize the transcriptional properties of NF90 in mammalian cells, we examined its ability to modulate promoter function in cellular transfection assays. NF90-Gal4 fusion proteins inhibited transcription from the adenovirus major late promoter in a fashion that was dependent on Gal4 targeting. Conversely, NF90 activated the cytomegalovirus immediate-early promoter, to which it was not targeted. These effects required distinct but overlapping domains in the C terminus of NF90, which contains a functional nuclear localization signal and two double-stranded-RNA binding motifs. NF90 is present in cellular complexes together with the NF45 protein. Transfection assays showed that NF45 binds NF90 strongly and stimulates its ability to activate but not to inhibit gene expression. This report characterizes NF90 as both a positive and negative regulator of gene expression, depending on the promoter context, and suggests a role for NF45 as a regulator of NF90.
Collapse
Affiliation(s)
- Trevor W Reichman
- Department of Biochemistry and Molecular Biology, New Jersey Medical School and Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07013-2714, USA
| | | | | |
Collapse
|
17
|
Himes SR, Tagoh H, Goonetilleke N, Sasmono T, Oceandy D, Clark R, Bonifer C, Hume DA. A highly conserved c‐
fms
gene intronic element controls macrophage‐specific and regulated expression. J Leukoc Biol 2001. [DOI: 10.1189/jlb.70.5.812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- S. Roy Himes
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072 and
| | - Hiromi Tagoh
- University of Leeds, Molecular Medicine Unit, St. James University Hospital, Leeds, United Kingdom
| | - Nilukshi Goonetilleke
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072 and
| | - Tedjo Sasmono
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072 and
| | - Delvac Oceandy
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072 and
| | - Richard Clark
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072 and
| | - Constanze Bonifer
- University of Leeds, Molecular Medicine Unit, St. James University Hospital, Leeds, United Kingdom
| | - David A. Hume
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072 and
| |
Collapse
|
18
|
Saunders LR, Perkins DJ, Balachandran S, Michaels R, Ford R, Mayeda A, Barber GN. Characterization of two evolutionarily conserved, alternatively spliced nuclear phosphoproteins, NFAR-1 and -2, that function in mRNA processing and interact with the double-stranded RNA-dependent protein kinase, PKR. J Biol Chem 2001; 276:32300-12. [PMID: 11438536 DOI: 10.1074/jbc.m104207200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report here the isolation and characterization of two proteins, NFAR-1 and -2, which were isolated through their ability to interact with the dsRNA-dependent protein kinase, PKR. The NFAR proteins, of 90 and 110 kDa, are derived from a single gene through alternative splicing and are evolutionarily conserved nuclear phosphoproteins that interact with double-stranded RNA. Both NFAR-1 and -2 are phosphorylated by PKR, reciprocally co-immunoprecipitate with PKR, and colocalize with the kinase in a diffuse nuclear pattern within the cell. Transfection studies indicate that the NFARs regulate gene expression at the level of transcription, probably during the processing of pre-mRNAs, an activity that was increased in fibroblasts lacking PKR. Subsequent functional analyses indicated that amino acids important for NFAR's activity were localized to the C terminus of the protein, a region that was found to specifically interact with FUS and SMN, proteins also known as regulators of RNA processing. Accordingly, both NFARs were found to associate with both pre-mRNAs and spliced mRNAs in post-transcriptional studies, similar to the known splicing factor ASF/SF-2. Collectively, our data indicate that the NFARs may facilitate double-stranded RNA-regulated gene expression at the level of post-transcription and possibly contribute to host defense-related mechanisms in the cell.
Collapse
Affiliation(s)
- L R Saunders
- Department of Microbiology and Immunology and Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Duchange N, Pidoux J, Camus E, Sauvaget D. Alternative splicing in the human interleukin enhancer binding factor 3 (ILF3) gene. Gene 2000; 261:345-53. [PMID: 11167023 DOI: 10.1016/s0378-1119(00)00495-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The Interleukin Enhancer Binding Factor 3 (ILF3) gene has been mapped to chromosome 19 in humans and to chromosome 9 in mice. Several reported double-stranded RNA binding proteins including NF90, ILF3, MPP4 and DRBP76 have been suggested to be isoforms of the ILF3 gene but this has not been clearly established. We isolated several ilf3 transcripts from a melanoma cDNA library and two corresponding genomic fragments, and report alternative splicing and polyadenylation site selection in the human ILF3 gene. We show the existence of an alternative splice site responsible for the sequence divergence in the 3' part of the transcripts. Another alternative splicing event at a site between the two double-stranded RNA binding motifs leads to the additional presence in some cases of a four amino acids NVKQ peptide. We also describe the utilization of three distinct polyadenylation signals and the generation of an ilf3 transcript with a long extended 3' UTR. The expression of the different transcripts was evaluated. We used a GenBank sequence for the part of chromosome 19 corresponding to the ILF3 gene to determine the exon-intron organization of the entire gene which spans 38 kb and is divided into 21 exons.
Collapse
Affiliation(s)
- N Duchange
- Unité d'Expression des Gènes Eucaryotes, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris, 15, Cedex, France.
| | | | | | | |
Collapse
|