1
|
Lénárt K, Pap A, Pórszász R, V. Oláh A, Fésüs L, Mádi A. Transglutaminase 2 Has Metabolic and Vascular Regulatory Functions Revealed by In Vivo Activation of Alpha1-Adrenergic Receptor. Int J Mol Sci 2020; 21:E3865. [PMID: 32485850 PMCID: PMC7312910 DOI: 10.3390/ijms21113865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
The multifunctional tissue transglutaminase has been demonstrated to act as α1-adrenergic receptor-coupled G protein with GTPase activity in several cell types. To explore further the pathophysiological significance of this function we investigated the in vivo effects of the α1-adrenergic receptor agonist phenylephrine comparing responses in wild type and TG2-/- mice. Injection of phenylephrine, but not a beta3-adrenergic agonist (CL-316,243), resulted in the long-term decline of the respiratory exchange ratio and lower lactate concentration in TG2-/- mice indicating they preferred to utilize fatty acids instead of glucose as fuels. Measurement of tail blood pressure revealed that the vasoconstrictive effect of phenylephrine was milder in TG2-/- mice leading to lower levels of lactate dehydrogenase (LDH) isoenzymes in blood. LDH isoenzyme patterns indicated more damage in lung, liver, kidney, skeletal, and cardiac muscle of wild type mice; the latter was confirmed by a higher level of heart-specific CK-MB. Our data suggest that TG2 as an α1-adrenergic receptor-coupled G protein has important regulatory functions in alpha1-adrenergic receptor-mediated metabolic processes and vascular functions.
Collapse
Affiliation(s)
- Kinga Lénárt
- Department of Biochemistry and Molecular Biology, University of Debrecen, H-4032 Debrecen, Hungary; (K.L.); (A.P.); (L.F.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Attila Pap
- Department of Biochemistry and Molecular Biology, University of Debrecen, H-4032 Debrecen, Hungary; (K.L.); (A.P.); (L.F.)
| | - Róbert Pórszász
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Anna V. Oláh
- Department of Laboratory Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
| | - László Fésüs
- Department of Biochemistry and Molecular Biology, University of Debrecen, H-4032 Debrecen, Hungary; (K.L.); (A.P.); (L.F.)
| | - András Mádi
- Department of Biochemistry and Molecular Biology, University of Debrecen, H-4032 Debrecen, Hungary; (K.L.); (A.P.); (L.F.)
| |
Collapse
|
2
|
Abstract
Transglutaminases (TGs) and especially TG2 play important roles in neurotransmitter and receptor signaling pathways. Three different mechanisms by which TG2 interacts with neurotransmitter and receptor signaling systems will be discussed in this review. The first way in which TG2 interacts with receptor signaling is via its function as a guanine nucleotide binding protein (G-protein) coupling to G-protein coupled receptors (GPCRs) to activate down-stream signaling pathways. TG2 can exist in a least two conformations, a closed GTP-bound conformation and an open calcium-bound conformation. In the closed GTP-bound conformation, TG2 is capable of functioning as a G-protein for GPCRs. In the open calcium-bound conformation, TG2 catalyzes a transamidation reaction cross-linking proteins or catalyzing the covalent binding of a mono- or polyamine to a protein. The second mechanism is regulation of the transamidation reaction catalyzed by TG2 via receptor stimulation which can increase local calcium concentrations and thereby increase transamidation reactions. The third way in which TG2 plays a role in neurotransmitter and receptor signaling systems is via its use of monoamine neurotransmitters as a substrate. Monoamine neurotransmitters including serotonin can be substrates for transamidation to a protein often a small G-protein (also known as a small GTPase) resulting in activation of the small G-protein. The transamidation of a monoamine neurotransmitter or serotonin has been designated as monoaminylation or more specifically serotonylation, respectively. Other proteins are also targets for monoaminylation such as fibronectin and cytoskeletal proteins. These receptor and neurotransmitter-regulated reactions by TG2 play roles in physiological and key pathophysiological processes.
Collapse
|
3
|
Ha SH, Kang SK, Choi H, Kwak CH, Abekura F, Park JY, Kwon KM, Chang HW, Lee YC, Ha KT, Hou BK, Chung TW, Kim CH. Induction of GD3/α1-adrenergic receptor/transglutaminase 2-mediated erythroid differentiation in chronic myelogenous leukemic K562 cells. Oncotarget 2017; 8:72205-72219. [PMID: 29069780 PMCID: PMC5641123 DOI: 10.18632/oncotarget.20080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 07/18/2017] [Indexed: 11/25/2022] Open
Abstract
The disialic acid-containing glycosphingolipid GD3 recruited membrane transglutaminase 2 (TG2) as a signaling molecule for erythroid differentiation in human chronic myelogenous leukemia (CML) K562 cells. The α1-adrenergic receptor (α1-AR)/TG2-mediated signaling pathway regulated GD3 functions, including gene expression and production, to differentiate CML K562 cells into erythroid lineage cells. Epinephrine, an AR agonist, increased membrane recruitment as well as GTP-photoaffinity of TG2, inducing GD3 synthase gene expression. Epinephrine activated PI3K/Akt signaling and GTPase downstream of TG2 activated Akt. The coupling of TG2 and GD3 production was specifically suppressed by prazosin (α1-AR antagonist), but not by propranolol (β-AR antagonist) or rauwolscine (α2-AR antagonist), indicating α1-AR specificity. Small interfering RNA (siRNA) experiment results indicated that the α1-AR/TG2-mediated signaling pathway activated PKCs α and δ to induce GD3 synthase gene expression. Transcription factors CREB, AP-1, and NF-κB regulated GD3 synthase gene expression during α1-AR-induced differentiation in CML K562 cells. In addition, GD3 synthase gene expression was upregulated in TG2-transfected cells via α1-AR with expression of erythroid lineage markers and benzidine-positive staining. α1-AR/TG2 signaling pathway-directed GD3 production is a crucial step in erythroid differentiation of K562 cells and GD3 interacts with α1-AR/TG2, inducing GD3/α1-AR/TG2-mediated erythroid differentiation. These results suggest that GD3, which acts as a membrane mediator of erythroid differentiation in CML cells, provides a therapeutic avenue for leukemia treatment.
Collapse
Affiliation(s)
- Sun-Hyung Ha
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo, Jangan-Gu, Kyunggi-Do, Korea
| | - Sung-Koo Kang
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo, Jangan-Gu, Kyunggi-Do, Korea
| | - Hyunju Choi
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo, Jangan-Gu, Kyunggi-Do, Korea
| | - Choong-Hwan Kwak
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo, Jangan-Gu, Kyunggi-Do, Korea
| | - Fukushi Abekura
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo, Jangan-Gu, Kyunggi-Do, Korea
| | - Jun-Young Park
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo, Jangan-Gu, Kyunggi-Do, Korea
| | - Kyung-Min Kwon
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo, Jangan-Gu, Kyunggi-Do, Korea
- Research Institute, Davinch-K Co., Ltd., Geumcheon-gu, Seoul, Korea
| | | | - Young-Choon Lee
- Faculty of Medicinal Biotechnology, Dong-A University, Busan, Korea
| | - Ki-Tae Ha
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan City, Gyeongsangnam-Do, Korea
| | - Bo Kyeng Hou
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Tae-Wook Chung
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan City, Gyeongsangnam-Do, Korea
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoburo, Jangan-Gu, Kyunggi-Do, Korea
- Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
4
|
Browning deficiency and low mobilization of fatty acids in gonadal white adipose tissue leads to decreased cold-tolerance of transglutaminase 2 knock-out mice. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1575-1586. [PMID: 28774822 DOI: 10.1016/j.bbalip.2017.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 07/03/2017] [Accepted: 07/28/2017] [Indexed: 12/12/2022]
Abstract
During cold-exposure 'beige' adipocytes with increased mitochondrial content are activated in white adipose tissue (WAT). These cells, similarly to brown adipose tissue (BAT), dissipate stored chemical energy in the form of heat with the help of uncoupling protein 1 (UCP1). We investigated the effect of tissue transglutaminase (TG2) ablation on the function of ATs in mice. Although TG2+/+ and TG2-/- mice had the same amount of WAT and BAT, we found that TG2+/+ animals could tolerate acute cold exposure for 4h, whereas TG2-/- mice only for 3h. Both TG2-/- and TG2+/+ animals used up half of the triacylglycerol content of subcutaneous WAT (SCAT) after 3h treatment; however, TG2-/- mice still possessed markedly whiter and higher amount of gonadal WAT (GONAT) as reflected in the larger size of adipocytes and lower free fatty acid levels in serum. Furthermore, lower expression of 'beige' marker genes such as UCP1, TBX1 and TNFRFS9 was observed after cold exposure in GONAT of TG2-/- mice, paralleled with a lower level of UCP1 protein and a decreased mitochondrial content. The detected changes in gene expression of Resistin and Adiponectin did not provoke glucose intolerance in the investigated TG2-/- mice, and TG2 deletion did not influence adrenaline, noradrenaline, glucagon and insulin production. Our data suggest that TG2 has a tissue-specific role in GONAT function and browning, which becomes apparent under acute cold exposure.
Collapse
|
5
|
Kanchan K, Fuxreiter M, Fésüs L. Physiological, pathological, and structural implications of non-enzymatic protein-protein interactions of the multifunctional human transglutaminase 2. Cell Mol Life Sci 2015; 72:3009-35. [PMID: 25943306 PMCID: PMC11113818 DOI: 10.1007/s00018-015-1909-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 04/10/2015] [Accepted: 04/13/2015] [Indexed: 12/26/2022]
Abstract
Transglutaminase 2 (TG2) is a ubiquitously expressed member of an enzyme family catalyzing Ca(2+)-dependent transamidation of proteins. It is a multifunctional protein having several well-defined enzymatic (GTP binding and hydrolysis, protein disulfide isomerase, and protein kinase activities) and non-enzymatic (multiple interactions in protein scaffolds) functions. Unlike its enzymatic interactions, the significance of TG2's non-enzymatic regulation of its activities has recently gained importance. In this review, we summarize all the partners that directly interact with TG2 in a non-enzymatic manner and analyze how these interactions could modulate the crosslinking activity and cellular functions of TG2 in different cell compartments. We have found that TG2 mostly acts as a scaffold to bridge various proteins, leading to different functional outcomes. We have also studied how specific structural features, such as intrinsically disordered regions and embedded short linear motifs contribute to multifunctionality of TG2. Conformational diversity of intrinsically disordered regions enables them to interact with multiple partners, which can result in different biological outcomes. Indeed, ID regions in TG2 were identified in functionally relevant locations, indicating that they could facilitate conformational transitions towards the catalytically competent form. We reason that these structural features contribute to modulating the physiological and pathological functions of TG2 and could provide a new direction for detecting unique regulatory partners. Additionally, we have assembled all known anti-TG2 antibodies and have discussed their significance as a toolbox for identifying and confirming novel TG2 regulatory functions.
Collapse
Affiliation(s)
- Kajal Kanchan
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4010 Hungary
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Mónika Fuxreiter
- MTA-DE Momentum Laboratory of Protein Dynamics, University of Debrecen, Debrecen, Hungary
| | - László Fésüs
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4010 Hungary
- MTA-DE Apoptosis, Genomics and Stem Cell Research Group of the Hungarian Academy of Sciences, Debrecen, Hungary
| |
Collapse
|
6
|
Hurley MJ, Brandon B, Gentleman SM, Dexter DT. Parkinson’s disease is associated with altered expression of CaV1 channels and calcium-binding proteins. Brain 2013; 136:2077-97. [DOI: 10.1093/brain/awt134] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
7
|
Russo L, Marsella C, Nardo G, Massignan T, Alessio M, Piermarini E, La Rosa S, Finzi G, Bonetto V, Bertuzzi F, Maechler P, Massa O. Transglutaminase 2 transamidation activity during first-phase insulin secretion: natural substrates in INS-1E. Acta Diabetol 2013; 50:61-72. [PMID: 22382775 DOI: 10.1007/s00592-012-0381-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 02/08/2012] [Indexed: 11/28/2022]
Abstract
Transglutaminase 2 (TG2) is a multifunctional protein with Ca(2+)-dependent transamidating and G protein activity. Previously, we reported that tgm2 -/- mice have an impaired insulin secretion and that naturally occurring TG2 mutations associated with familial, early-onset type 2 diabetes, show a defective transamidating activity. Aim of this study was to get a better insight into the role of TG2 in insulin secretion by identifying substrates of TG2 transamidating activity in the pancreatic beta cell line INS-1E. To this end, we labeled INS-1E that are capable of secreting insulin upon glucose stimulation in the physiologic range, with an artificial acyl acceptor (biotinamido-pentylamine) or donor (biotinylated peptide), in basal condition and after stimulus with glucose for 2, 5, and 8 min. Biotinylated proteins were analyzed by two-dimensional electrophoresis and mass spectrometry. In addition, subcellular localization of TG2 in human endocrine pancreas was studied by electron microscopy. Among several TG2's transamidating substrates in INS-1E, mass spectrometry identified cytoplasmic actin (a result confirmed in human pancreatic islet), tropomyosin, and molecules that participate in insulin granule structure (e.g., GAPDH), glucose metabolism, or [Ca(2+)] sensing (e.g., calreticulin). Physical interaction between TG2 and cytoplasmic actin during glucose-stimulated first-phase insulin secretion was confirmed by co-immunoprecipitation. Electron microscopy revealed that TG2 is localized close to insulin and glucagon granules in human pancreatic islet. We propose that TG2's role in insulin secretion may involve cytoplasmic actin remodeling and may have a regulative action on other proteins during granule movement. A similar role of TG2 in glucagon secretion is also suggested.
Collapse
Affiliation(s)
- Lucia Russo
- Laboratory of Mendelian Diabetes, Bambino Gesù Children's Hospital, Research Institute, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Nurminskaya MV, Belkin AM. Cellular functions of tissue transglutaminase. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 294:1-97. [PMID: 22364871 PMCID: PMC3746560 DOI: 10.1016/b978-0-12-394305-7.00001-x] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transglutaminase 2 (TG2 or tissue transglutaminase) is a highly complex multifunctional protein that acts as transglutaminase, GTPase/ATPase, protein disulfide isomerase, and protein kinase. Moreover, TG2 has many well-documented nonenzymatic functions that are based on its noncovalent interactions with multiple cellular proteins. A vast array of biochemical activities of TG2 accounts for its involvement in a variety of cellular processes, including adhesion, migration, growth, survival, apoptosis, differentiation, and extracellular matrix organization. In turn, the impact of TG2 on these processes implicates this protein in various physiological responses and pathological states, contributing to wound healing, inflammation, autoimmunity, neurodegeneration, vascular remodeling, tumor growth and metastasis, and tissue fibrosis. TG2 is ubiquitously expressed and is particularly abundant in endothelial cells, fibroblasts, osteoblasts, monocytes/macrophages, and smooth muscle cells. The protein is localized in multiple cellular compartments, including the nucleus, cytosol, mitochondria, endolysosomes, plasma membrane, and cell surface and extracellular matrix, where Ca(2+), nucleotides, nitric oxide, reactive oxygen species, membrane lipids, and distinct protein-protein interactions in the local microenvironment jointly regulate its activities. In this review, we discuss the complex biochemical activities and molecular interactions of TG2 in the context of diverse subcellular compartments and evaluate its wide ranging and cell type-specific biological functions and their regulation.
Collapse
Affiliation(s)
- Maria V Nurminskaya
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
9
|
Király R, Demény M, Fésüs L. Protein transamidation by transglutaminase 2 in cells: a disputed Ca2+-dependent action of a multifunctional protein. FEBS J 2011; 278:4717-39. [PMID: 21902809 DOI: 10.1111/j.1742-4658.2011.08345.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Transglutaminase 2 (TG2) is the first described cellular member of an enzyme family catalyzing Ca(2+)-dependent transamidation of proteins. During the last two decades its additional enzymatic (GTP binding and hydrolysis, protein disulfide isomerase, protein kinase) and non-enzymatic (multiple interactions in protein scaffolds) activities, which do not require Ca(2+) , have been recognized. It became a prevailing view that TG2 is silent as a transamidase, except in extreme stress conditions, in the intracellular environment characterized by low Ca(2+) and high GTP concentrations. To counter this presumption a critical review of the experimental evidence supporting the role of this enzymatic activity in cellular processes is provided. It includes the structural basis of TG2 regulation through non-canonical Ca(2+) binding sites, mechanisms making it sensitive to low Ca(2+) concentrations, techniques developed for the detection of protein transamidation in cells and examples of basic cellular phenomena as well as pathological conditions influenced by this irreversible post-translational protein modification.
Collapse
Affiliation(s)
- Róbert Király
- Department of Biochemistry and Molecular Biology, Apoptosis and Genomics Group of the Hungarian Academy of Sciences, University of Debrecen, Debrecen, Hungary
| | | | | |
Collapse
|
10
|
Szondy Z, Korponay-Szabó I, Király R, Fésüs L. Transglutaminase 2 Dysfunctions in the Development of Autoimmune Disorders: Celiac Disease and TG2 −/−Mouse. ADVANCES IN ENZYMOLOGY - AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:295-345. [DOI: 10.1002/9781118105771.ch7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
11
|
Wilhelmus MMM, Verhaar R, Andringa G, Bol JGJM, Cras P, Shan L, Hoozemans JJM, Drukarch B. Presence of tissue transglutaminase in granular endoplasmic reticulum is characteristic of melanized neurons in Parkinson's disease brain. Brain Pathol 2011; 21:130-9. [PMID: 20731657 PMCID: PMC8094245 DOI: 10.1111/j.1750-3639.2010.00429.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 07/09/2010] [Indexed: 01/18/2023] Open
Abstract
Parkinson's disease (PD) is characterized by the accumulation of α-synuclein aggregates and degeneration of melanized neurons. The tissue transglutaminase (tTG) enzyme catalyzes molecular protein cross-linking. In PD brain, tTG-induced cross-links have been identified in α-synuclein monomers, oligomers and α-synuclein aggregates. However, whether tTG and α-synuclein occur together in PD affected neurons remains to be established. Interestingly, using immunohistochemistry, we observed a granular distribution pattern of tTG, characteristic of melanized neurons in PD brain. Apart from tTG, these granules were also positive for typical endoplasmic reticulum (ER)-resident chaperones, that is, protein disulphide isomerase, ERp57 and calreticulin, suggesting a direct link to the ER. Additionally, we observed the presence of phosphorylated pancreatic ER kinase (pPERK), a classical ER stress marker, in tTG granule positive neurons in PD brain, although no subcellular colocalization of tTG and pPERK was found. Our data therefore suggest that tTG localization to granular ER compartments is specific for stressed melanized neurons in PD brain. Moreover, as also α-synuclein aggregates were observed in tTG granule positive neurons, these results provide a clue to the cellular site of interaction between α-synuclein and tTG.
Collapse
Affiliation(s)
- Micha M M Wilhelmus
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Matic I, Sacchi A, Rinaldi A, Melino G, Khosla C, Falasca L, Piacentini M. Characterization of transglutaminase type II role in dendritic cell differentiation and function. J Leukoc Biol 2010; 88:181-8. [PMID: 20371597 DOI: 10.1189/jlb.1009691] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
DCs play an essential role in the endotoxic shock, and their profound depletion occurs in septic patients and septic mice. TG2(-/-) mice are more resistant to the endotoxic shock induced by LPS. Here, we studied the cellular and molecular basis of this effect, analyzing the role of the enzyme in DC maturation and function. We show that TG2 is up-regulated drastically during the final, functional maturation of DCs consequent to LPS treatment. In keeping with this finding, the inhibition of the enzyme cross-linking activity determines the impairment of DC function highlighted by wide phenotypic changes associated with a reduced production of cytokines (IL-10, IL-12) after LPS treatment and a lower ability to induce IFN-gamma production by naïve T cells. The in vivo analysis of DCs obtained from TG2(-/-) mice confirmed that the enzyme ablation leads to an impairment of DC maturation and their reduced responsiveness to LPS treatment. In fact, a marked decrease in DC death, TLR4 down-regulation, and impaired up-regulation of MHCII and CD86 were observed in TG2(-/-) mice. Taken together, these data suggest that TG2 plays an important role in regulating the response of DCs to LPS and could be a candidate target for treating endotoxin-induced sepsis.
Collapse
Affiliation(s)
- Ivana Matic
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
13
|
Lin YF, Yeh TS, Chen SF, Tsai YH, Chou CM, Yang YY, Huang HM. Nonmuscle myosin IIA (myosin heavy polypeptide 9): a novel class of signal transducer mediating the activation of G alpha h/phospholipase C-delta 1 pathway. Endocrinology 2010; 151:876-85. [PMID: 20068007 DOI: 10.1210/en.2009-0722] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The dimeric Gh protein is comprised of alpha (tissue transglutaminase) and beta (Calreticulin) subunits and known to be associated with FSH-, oxytocin-, or epinephrine-receptors/functions in their respective target cells. After establishing the FSH-induced activation of G alpha h/phospholipase C (PLC)-delta 1 pathway in rat Sertoli cells (SCs), we have attempted to identify a possible G alpha h-coupled novel FSH receptor (FSH-R). Remarkably, a protein with approximately 240-kDa molecular mass was coimmunoprecipitated with G alpha h in the fractionated membrane proteins of rat SCs. The protein was identified as myosin heavy polypeptide 9 (MyH9) by mass spectrometric analysis and immunoblotting. In addition, immunoprecipitation analysis reveals that MyH9 is constitutively associated with classical Gs-coupled FSH-R and inactive GDP-bound G alpha h at resting state of rat SCs, but did not interact with FSH directly as judged by Far-Western analysis. Upon the stimulation of higher levels of extracellular FSH (>1000 IU/liter), classical FSH-R induces the phosphorylation of MyH9, the dissociation of active GTP-bound G alpha h from FSH-R:MyH9 complexes, and the elicitation of G alpha h/PLC-delta 1 pathway-dependent Ca(2+)-influx in rat SCs. Furthermore, the specific inhibition of MyH9 ATPase activity with Blebbistatin dose-dependently suppressed FSH-induced G alpha h/PLC-delta 1 signaling and Ca(2+)-influx, but not intracellular cAMP accumulation in rat SCs, implying that MyH9 mediates FSH-induced activation of G alpha h/PLC-delta 1/IP(3)/Ca(2+)-influx pathway in rat SCs. This is the first to demonstrate that the filament protein MyH9 constitutively forms a ternary complex with FSH-R and inactive GDP-bound G alpha h. At higher FSH levels, this ternary complex executes an alternative signaling of classical Gs-coupled FSH-R through activating a Gs/cAMP-independent, G alpha h/PLC-delta 1 pathway in rat SCs.
Collapse
Affiliation(s)
- Yuan-Feng Lin
- School of Pharmacy, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
14
|
Yi SJ, Groffen J, Heisterkamp N. Transglutaminase 2 regulates the GTPase-activating activity of Bcr. J Biol Chem 2010; 284:35645-51. [PMID: 19840940 DOI: 10.1074/jbc.m109.062240] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Transglutaminase 2 (TG2) is a multifunctional protein that has been implicated in numerous pathologies including that of neurodegeneration and celiac disease, but the molecular interactions that mediate its diverse activities are largely unknown. Bcr and the closely related Abr negatively regulate the small G-protein Rac: loss of their combined function in vivo results in increased reactivity of innate immune cells. Bcr and Abr are GTPase-activating proteins that catalyze the hydrolysis of the GTP bound to Rac. However, how the Bcr and Abr GTPase-activating activity is regulated is not precisely understood. We here report a novel mechanism of regulation through direct protein-protein interaction with TG2. TG2 bound to the Rac-binding pocket in the GTPase-activating domains of Bcr and Abr, blocked Bcr activity and, through this mechanism, increased levels of active GTP-bound Rac and EGF-stimulated membrane ruffling. TG2 exists in at least two different conformations. Interestingly, experiments using TG2 mutants showed that Bcr exhibits preferential binding to the non-compacted conformation of TG2, in which its catalytic domain is exposed, but transamidation is not needed for the interaction. Thus, TG2 regulates levels of cellular GTP-bound Rac and actin cytoskeletal reorganization through a new mechanism involving direct inhibition of Bcr GTPase-activating activity.
Collapse
Affiliation(s)
- Sun-Ju Yi
- Section of Molecular Carcinogenesis, Division of Hematology/Oncology, Childrens Hospital Los Angeles and the Saban Research Institute of Childrens Hospital, Los Angeles, California 90027, USA
| | | | | |
Collapse
|
15
|
Elli L, Bergamini CM, Bardella MT, Schuppan D. Transglutaminases in inflammation and fibrosis of the gastrointestinal tract and the liver. Dig Liver Dis 2009; 41:541-50. [PMID: 19195940 DOI: 10.1016/j.dld.2008.12.095] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 11/28/2008] [Accepted: 12/02/2008] [Indexed: 12/11/2022]
Abstract
Transglutaminases are a family of eight currently known calcium-dependent enzymes that catalyze the cross-linking or deamidation of proteins. They are involved in important biological processes such as wound healing, tissue repair, fibrogenesis, apoptosis, inflammation and cell-cycle control. Therefore, they play important roles in the pathomechanisms of autoimmune, inflammatory and degenerative diseases, many of which affect the gastrointestinal system. Transglutaminase 2 is prominent, since it is central to the pathogenesis of celiac disease, and modulates inflammation and fibrosis in inflammatory bowel and chronic liver diseases. This review highlights our present understanding of transglutaminase function in gastrointestinal and liver diseases and therapeutic strategies that target transglutaminase activities.
Collapse
Affiliation(s)
- L Elli
- Center for Prevention and Diagnosis of Celiac Disease, Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, via F. Sforza, Milan, Italy.
| | | | | | | |
Collapse
|
16
|
Siegel M, Khosla C. Transglutaminase 2 inhibitors and their therapeutic role in disease states. Pharmacol Ther 2007; 115:232-45. [PMID: 17582505 PMCID: PMC1975782 DOI: 10.1016/j.pharmthera.2007.05.003] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 05/03/2007] [Indexed: 02/06/2023]
Abstract
Transglutaminase 2 (TG2) is a multi-domain, multi-functional enzyme that post-translationally modifies proteins by catalyzing the formation of intermolecular isopeptide bonds between glutamine and lysine side-chains. It plays a role in diverse biological functions, including extracellular matrix formation, integrin-mediated signaling, and signal transduction involving 7-transmembrane receptors. While some of the roles of TG2 under normal physiological conditions remain obscure, the protein is believed to participate in the pathogenesis of several unrelated diseases, including celiac sprue, neurodegenerative diseases, and certain types of cancer. A variety of small molecule and peptidomimetic inhibitors of the TG2 active site have been identified. Here, we summarize the biochemistry, biology, pharmacology and medicinal chemistry of human TG2.
Collapse
Affiliation(s)
- Matthew Siegel
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | - Chaitan Khosla
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Department of Biochemistry, Stanford University, Stanford, CA 94305
| |
Collapse
|
17
|
Sane DC, Kontos JL, Greenberg CS. Roles of transglutaminases in cardiac and vascular diseases. FRONT BIOSCI-LANDMRK 2007; 12:2530-45. [PMID: 17127261 PMCID: PMC2762549 DOI: 10.2741/2253] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
All transglutaminases share the common enzymatic activity of transamidation, or the cross-linking of glutamine and lysine residues to form N epsilon (gamma-glutamyl) lysyl isopeptide bonds. The plasma proenzyme factor XIII is responsible for stabilizing the fibrin clot against physical and fibrinolytic disruption. Another member of the transglutaminase family, tissue transglutaminase or TG2 is abundantly expressed in cardiomyocytes, vascular cells and macrophages. The transglutaminases have a variety of functions independent of their transamidating activity. For example, TG2 binds and hydrolyzes GTP, thereby fostering signal transduction by several G protein coupled receptors. Accumulating evidence points to novel roles for factor XIII and TG2 in cardiovascular biology including: (a) modulating platelet activity, (b) regulating glucose control, (c) contributing to the development of hypertension, (d) influencing the progression of atherosclerosis, (e) regulating vascular permeability and angiogenesis (f) and contributing to myocardial signaling, contractile activity and ischemia/reperfusion injury. In this review, we summarize the cardiovascular biology of two members of the family of transglutaminases, Factor XIII and TG2.
Collapse
Affiliation(s)
- David C Sane
- Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1045, USA.
| | | | | |
Collapse
|
18
|
Bergamini CM. Effects of ligands on the stability of tissue transglutaminase: studies in vitro suggest possible modulation by ligands of protein turn-over in vivo. Amino Acids 2006; 33:415-21. [PMID: 17086478 DOI: 10.1007/s00726-006-0457-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2006] [Accepted: 10/05/2006] [Indexed: 01/24/2023]
Abstract
Tissue transglutaminase catalyzes irreversible post-translational modification of specific protein substrates by either crosslinkage or incorporation of primary amines into glutamine residues, through glutamyl-amide isopeptide bonds. Modulation in vivo of these reactions (collectively called "transamidation") is brought about by both ligand dependent effects (chiefly, activation by calcium and inhibition by GTP) as well as by variation in enzyme tissue levels by transcriptional effects. Accumulating observations that the enzyme stability in vitro is greatly affected by interaction with ligands led us to postulate that also the turn-over in vivo might be modulated by ligands opening new scenarios on the regulation of the tissue transamidating activity. This proposal is consistent with data obtained in in vitro cell culture systems and has important implications for the expression of activity in vivo.
Collapse
Affiliation(s)
- C M Bergamini
- Department of Biochemistry and Molecular Biology and Interdisciplinary Centre for the Study of Inflammation (ICSI), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
19
|
Abstract
Tissue transglutaminase (tTG) is a multifunctional enzyme that catalyzes both transamidation and GTPase reactions. In cell culture models tTG-mediated transamidation positively regulates many processes that occur in vivo during the mammalian brain growth spurt (BGS), including neuronal differentiation, neurite outgrowth, synaptogenesis and cell death mechanisms. However, little is known about the levels of tTG expression and transglutaminase (TG) activity during mammalian brain development. In this study, C57BL/6 mouse forebrains were collected at embryonic day (E) 12, E14, E17, postnatal day (P) 0, P7 and P56 and analyzed for tTG expression and TG activity. RT-PCR analysis demonstrated that tTG mRNA content increases during mouse forebrain development, whereas immunoblot analysis demonstrated that tTG protein content decreases during this time. TG activity was low in prenatal mouse forebrain but increased fivefold to peak at P0, which corresponds with the beginning of the mouse BGS. Further analysis demonstrated that the lack of temporal correlation between tTG protein content and TG activity is the result of an endogenous inhibitor of tTG that is present in prenatal but not postnatal mouse forebrain. These results demonstrate for the first time that tTG enzymatic activity in the mammalian forebrain is developmentally regulated by post-translational mechanisms.
Collapse
Affiliation(s)
- Craig D C Bailey
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
20
|
Kang SK, Yi KS, Kwon NS, Park KH, Kim UH, Baek KJ, Im MJ. Alpha1B-adrenoceptor signaling and cell motility: GTPase function of Gh/transglutaminase 2 inhibits cell migration through interaction with cytoplasmic tail of integrin alpha subunits. J Biol Chem 2004; 279:36593-600. [PMID: 15220331 DOI: 10.1074/jbc.m402084200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A multifunctional enzyme, G(h), is a GTP-binding protein that couples to the alpha(1B)-adrenoreceptor and stimulates phospholipase C-delta1 but also displays transglutaminase 2 (TG2) activity. G(h)/TG2 has been implicated to play a role in cell motility. In this study we have examined which function of G(h)/TG2 is involved in this cellular response and the molecular basis. Treatment of human aortic smooth muscle cell with epinephrine inhibits migration to fibronectin and vitronectin, and the inhibition is blocked by the alpha(1)-adrenoreceptor antagonist prazosin or chloroethylclonidine. Up-regulation or overexpression of G(h)/TG2 in human aortic smooth muscle cells, DDT1-MF2, or human embryonic kidney cells, HEK 293 cells, results in inhibition of the migratory activity, and stimulation of the alpha(1B)-adrenoreceptor with the alpha(1) agonist further augments the inhibition of migration of human aortic smooth muscle cells and DDT1-MF2. G(h)/TG2 is coimmunoprecipitated by an integrin alpha(5) antibody and binds to the cytoplasmic tail peptide of integrins alpha(5), alpha(v), and alpha(IIb) subunits in the presence of guanosine 5'-3-O-(thio)triphosphate (GTPgammaS). Mutation of Lys-Arg residues in the GFFKR motif, present in the alpha(5)-tail, significantly reduces the binding of GTPgammaS-G(h)/TG2. Moreover, the motif-containing integrin alpha(5)-tail peptides block G(h)/TG2 coimmunoprecipitation and reverse the inhibition of the migratory activity of HEK 293 cells caused by overexpression G(h)/TG2. These results provide evidence that G(h) function initiates the modulation of cell motility via association of GTP-bound G(h)/TG2 with the GFFKR motif located in integrin alpha subunits.
Collapse
Affiliation(s)
- Sung Koo Kang
- Oriental Herbal Research Institute, Dongkuk University, Seoul 156-756, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
21
|
Dupuis M, Lévy A, Mhaouty-Kodja S. Functional coupling of rat myometrial alpha 1-adrenergic receptors to Gh alpha/tissue transglutaminase 2 during pregnancy. J Biol Chem 2004; 279:19257-63. [PMID: 14970202 DOI: 10.1074/jbc.m314299200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gh alpha protein, which exhibits both transglutaminase and GTPase activities, represents a new class of GTP-binding proteins. In the present study, we characterized Gh alpha in rat uterine smooth muscle (myometrium) and followed its expression during pregnancy by reverse transcription-PCR and Western blot. We also measured transglutaminase and GTP binding functions and used a smooth muscle cell line to evaluate the role of Gh alpha in cell proliferation. The results show that pregnancy is associated with an up-regulation of Gh alpha expression at both the mRNA and protein level. Gh alpha induced during pregnancy is preferentially localized to the plasma membrane. This was found associated with an increased ability of plasma membrane preparations to catalyze Ca(2+)-dependent incorporation of [(3)H]putrescine into casein in vitro. In the cytosol, significant changes in the level of immunodetected Gh alpha and transglutaminase activity were seen only at term. Activation of alpha1-adrenergic receptors (alpha1-AR) enhanced photoaffinity labeling of plasma membrane Gh alpha. Moreover, the level of alpha1-AR-coupled Gh alpha increased progressively with pregnancy, which parallels the active period of myometrial cell proliferation. Overexpression of wild type Gh alpha in smooth muscle cell line DDT1-MF2 increased alpha1-AR-induced [(3)H]thymidine incorporation. A similar response was obtained in cells expressing the transglutaminase inactive mutant (C277S) of Gh alpha. Together, these findings underscore the role of Gh alpha as signal transducer of alpha1-AR-induced smooth muscle cell proliferation. In this context, pregnant rat myometrium provides an interesting physiological model to study the mechanisms underlying the regulation of the GTPase function of Gh alpha
Collapse
Affiliation(s)
- Morgan Dupuis
- Laboratoire de Physiologie et Physiopathologie, Unité Mixte de Recherche-CNRS 7079, Paris CEDEX 05, France
| | | | | |
Collapse
|
22
|
Hasegawa G, Suwa M, Ichikawa Y, Ohtsuka T, Kumagai S, Kikuchi M, Sato Y, Saito Y. A novel function of tissue-type transglutaminase: protein disulphide isomerase. Biochem J 2003; 373:793-803. [PMID: 12737632 PMCID: PMC1223550 DOI: 10.1042/bj20021084] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2002] [Revised: 05/02/2003] [Accepted: 05/09/2003] [Indexed: 11/17/2022]
Abstract
We have found that tissue-type transglutaminase (tTG), also called TGc, TGase2 and Galpha(h), has the activity of protein disulphide isomerase (PDI). We have shown that tTG converts completely reduced/denatured inactive RNase A molecule to the native active enzyme. The PDI activity of tTG was strongly inhibited by bacitracin, which is a frequently used inhibitor of conventional PDI activity. It was substantially inhibited by the simultaneous presence of other potential substrate proteins such as completely reduced BSA, but not by native BSA. This activity was especially high in the presence of GSSG, but not GSH. The addition of GSH to the reaction mixture in the presence of GSSG at a fixed concentration up to at least 200-fold excess did not very substantially inhibit the PDI activity. It is possible that tTG can exert PDI activity in a fairly reducing environment like cytosol, where most of tTG is found. It is quite obvious from the following observations that PDI activity of tTG is catalysed by a domain different from that used for the transglutaminase reaction. Although the alkylation of Cys residues in tTG completely abolished the transglutaminase activity, as was expected, it did not affect the PDI activity at all. This PDI activity did not require the presence of Ca(2+). It was not inhibited by nucleotides including GTP at all, unlike the other activity of tTG.
Collapse
Affiliation(s)
- Go Hasegawa
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Lee KH, Lee N, Lim S, Jung H, Ko YG, Park HY, Jang Y, Lee H, Hwang KC. Calreticulin inhibits the MEK1,2-ERK1,2 pathway in alpha 1-adrenergic receptor/Gh-stimulated hypertrophy of neonatal rat cardiomyocytes. J Steroid Biochem Mol Biol 2003; 84:101-7. [PMID: 12648529 DOI: 10.1016/s0960-0760(03)00006-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In cardiac myocytes, stimulation of alpha(1)-adrenoceptor (AR) leads to a hypertrophic phenotype. The G(h) protein (transglutaminase II, TGII) is tissue type transglutaminase and transmits the alpha(1B)-adrenoceptor signal with GTPase activity. Recently, it has been shown that the calreticulin (CRT) down-regulates both GTP binding and transglutaminase activities of TGII. To elucidate whether G(h) mediates norepinephrine-stimulated intracellular signal transductions leading to activation of extracellular signal-regulated kinases (ERKs) and neonatal rat cardiomyocyte hypertrophy, we examined the effects of G(h) on the activation of ERKs and inhibitory effects of CRT on alpha(1)-adrenoceptor/G(h) signaling. In neonatal rat cardiomyocytes, norepinephrine-induced ERKs activation was inhibited by an alpha(1)-adrenoceptor blocker (prazosin), but not by an beta-adrenoceptor blocker (propranolol). Overexpression of the G(h) protein stimulated norepinephrine-induced ERKs activation, which was inhibited by alpha-adrenoceptor blocker (prazosin). Co-overexpression of G(h) and CRT abolished norepinephrine-induced ERKs activation. Taken together, norepinephrine induces hypertrophy in neonatal rat cardiomyocytes through alpha(1)-AR stimulation and G(h) is partly involved in norepinephrine-induced MEK1,2/ERKs activation. Activation of G(h)-mediated MEK1,2/ERKs was completely inhibited by CRT.
Collapse
Affiliation(s)
- Kyung-Hye Lee
- Cardiovascular Research Institute and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Yonsei, Seoul 120-752, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Griffin M, Casadio R, Bergamini CM. Transglutaminases: nature's biological glues. Biochem J 2002; 368:377-96. [PMID: 12366374 PMCID: PMC1223021 DOI: 10.1042/bj20021234] [Citation(s) in RCA: 760] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2002] [Revised: 09/12/2002] [Accepted: 10/04/2002] [Indexed: 12/13/2022]
Abstract
Transglutaminases (Tgases) are a widely distributed group of enzymes that catalyse the post-translational modification of proteins by the formation of isopeptide bonds. This occurs either through protein cross-linking via epsilon-(gamma-glutamyl)lysine bonds or through incorporation of primary amines at selected peptide-bound glutamine residues. The cross-linked products, often of high molecular mass, are highly resistant to mechanical challenge and proteolytic degradation, and their accumulation is found in a number of tissues and processes where such properties are important, including skin, hair, blood clotting and wound healing. However, deregulation of enzyme activity generally associated with major disruptions in cellular homoeostatic mechanisms has resulted in these enzymes contributing to a number of human diseases, including chronic neurodegeneration, neoplastic diseases, autoimmune diseases, diseases involving progressive tissue fibrosis and diseases related to the epidermis of the skin. In the present review we detail the structural and regulatory features important in mammalian Tgases, with particular focus on the ubiquitous type 2 tissue enzyme. Physiological roles and substrates are discussed with a view to increasing and understanding the pathogenesis of the diseases associated with transglutaminases. Moreover the ability of these enzymes to modify proteins and act as biological glues has not gone unnoticed by the commercial sector. As a consequence, we have included some of the present and future biotechnological applications of this increasingly important group of enzymes.
Collapse
Affiliation(s)
- Martin Griffin
- Department of Life Sciences, Nottingham Trent University, Nottingham, U.K
| | | | | |
Collapse
|
25
|
Juan HF, Lin JYC, Chang WH, Wu CY, Pan TL, Tseng MJ, Khoo KH, Chen ST. Biomic study of human myeloid leukemia cells differentiation to macrophages using DNA array, proteomic, and bioinformatic analytical methods. Electrophoresis 2002; 23:2490-504. [PMID: 12210208 DOI: 10.1002/1522-2683(200208)23:15<2490::aid-elps2490>3.0.co;2-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A biomic approach by integrating three independent methods, DNA microarray, proteomics and bioinformatics, is used to study the differentiation of human myeloid leukemia cell line HL-60 into macrophages when induced by 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Analysis of gene expression changes at the RNA level using cDNA against an array of 6033 human genes showed that 5950 (98.6%) of the genes were expressed in the HL-60 cells. A total of 624 genes (10.5%) were found to be regulated during HL-60 cell differentiation. Most of these genes have not been previously associated with HL-60 cells and include genes encoded for secreted proteins as well as genes involved in cell adhesion, signaling transduction, and metabolism. Protein analysis using two-dimensional gel electrophoresis showed a total of 682 distinct protein spots; 136 spots (19.9%) exhibited quantitative changes between HL-60 control and macrophages. These differentially expressed proteins were identified by mass spectrometry. We developed a bioinformatics program, the Bulk Gene Search System (BGSS, http://www.sinica.edu.tw:8900/perl/genequery.pl) to search for the functions of genes and proteins identified by cDNA microarrays and proteomics. The identified regulated proteins and genes were classified into seven groups according to subcellular locations and functions. This powerful holistic biomic approach using cDNA microarray, proteomics coupled to bioinformatics can provide in-depth information on the impact and importance of the regulated genes and proteins for HL-60 differentiation.
Collapse
Affiliation(s)
- Hsueh-Fen Juan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Tucholski J, Johnson GVW. Tissue transglutaminase differentially modulates apoptosis in a stimuli-dependent manner. J Neurochem 2002; 81:780-91. [PMID: 12065637 DOI: 10.1046/j.1471-4159.2002.00859.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tissue transglutaminase is a unique member of the transglutaminase family as it not only catalyzes a transamidating reaction, but also binds and hydrolyzes GTP and ATP. Tissue transglutaminase has been reported to be pro-apoptotic, however, conclusive evidence is still lacking. To elucidate the role of tissue transglutaminase in the apoptotic process human neuroblastoma SH-SY5Y cells were stably transfected with vector only (SH/pcDNA), wild-type tissue transglutaminase (SH/tTG) and tissue transglutaminase that has no transamidating activity but retains its other functions (SH/C277S). In these studies three different apoptotic stimuli were used osmotic stress, staurosporine treatment and heat shock to delineate the role of tissue transglutaminase as a transamidating enzyme in the apoptotic process. In SH/tTG cells, osmotic stress and staurosporine treatments resulted in significantly greater caspase-3 activation and apoptotic nuclear changes then in SH/pcDNA or SH/C277S cells. This potentiation of apoptosis in SH/tTG cells was concomitant with a significant increase in the in situ transamidating activity of tissue transglutaminase. However, in the heat shock paradigm, which did not result in any increase in the transamidating activity in SH/tTG cells, there was a significant attenuation of caspase-3 activity, LDH release and apoptotic chromatin condensation in SH/tTG and SH/C277S cells compared with SH/pcDNA cells. These findings indicate for the first time that the effect of tissue transglutaminase on the apoptotic process is highly dependent on the type of the stimuli and how the transamidating activity of the enzyme is affected. Tissue transglutaminase facilitates apoptosis in response to stressors that result in an increase in the transamidating activity of the enzyme. However, when the stressors do not result in an increase in the transamidating activity of tissue transglutaminase, than tissue transglutaminase can ameliorate the apoptotic response through a mechanism that is independent of its transamidating function. Further, neither the phosphatidylinositol-3-kinase pathway nor the extracellular-regulated kinase pathway is downstream of the modulatory effects of wild-type tissue transglutaminase or C277S-tissue transglutaminase in the apoptotic cascade.
Collapse
Affiliation(s)
- Janusz Tucholski
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 1720 7th Avenue South, SC 1061, Birmingham, AL 35294-0017, USA
| | | |
Collapse
|
27
|
Festoff BW, SantaCruz K, Arnold PM, Sebastian CT, Davies PJA, Citron BA. Injury-induced "switch" from GTP-regulated to novel GTP-independent isoform of tissue transglutaminase in the rat spinal cord. J Neurochem 2002; 81:708-18. [PMID: 12065630 DOI: 10.1046/j.1471-4159.2002.00850.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We recently found that alternative transcripts of tissue transglutaminase (tTG or TG2) were present in hippocampal brain regions of Alzheimer's disease (AD), but not in control, non-demented, age-matched brains. Since antecedent non-severe trauma has been implicated in AD and other neurodegenerative diseases, such as Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS), we were interested in whether alternative transcripts might be detected in a model of neurotrauma, controlled-contusion spinal cord injury (SCI) in the rat. Implicated in diverse roles from growth and differentiation to apoptotic cell death, only bifunctional tTG, of the nine member TG family, has dual catalytic activities: guanine trinucleotide (GTP) hydrolyzing activity (GTPase), as well as protein cross-linking. These functions imply two physiological functions: programmed cell life and death. These may have profound roles in the nervous system since studies in cultured astrocytes found tTG short (S) mRNA transcripts induced by treatment with injury-related cytokines. In the developing rat spinal cord, tTG activity is concentrated in ventral horn alpha motoneurons, but neither studies of spinal cord tTG gene expression, nor evaluation of the GTP-regulated isoforms in tissues, have been reported. We now report increased tTG protein and gene expression occurring rapidly after SCI. In parallel, novel appearance of a second, short form transcript, in addition to the normal long (L) isoform, occurs by 8 h of injury. Up-regulation of tTG message and activity following neural injury. with appearance of a truncated GTP-unregulated S form, may represent new approaches to drug targets in neurotrauma.
Collapse
Affiliation(s)
- Barry W Festoff
- Neurobiology Research Laboratory, Department of Veterans Affairs Medical Center, University of Kansas, 4801 Linwood Blvd., Kansas City, MO 64128, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Esposito C, Mariniello L, Cozzolino A, Amoresano A, Orrù S, Porta R. Rat coagulating gland secretion contains a kinesin heavy chain-like protein acting as a type IV transglutaminase substrate. Biochemistry 2001; 40:4966-71. [PMID: 11305912 DOI: 10.1021/bi001542w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
By a proteomic approach, we demonstrated in rat coagulating gland secretion the presence of a 120 kDa protein which shares at least 80% identity at the amino acid level with the most closely related kinesin heavy chain codified by the kinesin superfamily protein Kif5c gene. In addition, we identified 30 and 66 kDa proteolytic fragments of such a kinesin heavy chain-like protein, corresponding to the 73-299 N-terminal and 300-860 C-terminal regions, respectively. Finally, we demonstrated the occurrence in coagulating gland secretion of a 200 kDa protein probably derived by cross-linking reaction of the kinesin heavy chain-like protein with type IV transglutaminase. In fact, kinesin heavy chain-like protein and its 66 kDa proteolytic fragment were also found to act as effective acyl donor substrates for the enzyme in vitro.
Collapse
Affiliation(s)
- C Esposito
- Department of Chemistry, University of Salerno, 84081 Baronissi (SA), Italy.
| | | | | | | | | | | |
Collapse
|
29
|
The amphipathic peptide mellitin as a tool to study the membrane-dependent activation of tissue transglutaminase. Int J Pept Res Ther 2001. [DOI: 10.1007/bf02443607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Baek KJ, Kang S, Damron D, Im M. Phospholipase Cdelta1 is a guanine nucleotide exchanging factor for transglutaminase II (Galpha h) and promotes alpha 1B-adrenoreceptor-mediated GTP binding and intracellular calcium release. J Biol Chem 2001; 276:5591-7. [PMID: 11087745 DOI: 10.1074/jbc.m008252200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Effectors involved in G protein-coupled receptor signaling modulate activity of GTPases through GTPase-activating protein or guanine nucleotide exchanging factor (GEF). Phospholipase Cdelta1 (PLCdelta1) is an effector in tissue transglutaminase (TGII)-mediated alpha1B-adrenoreceptor (alpha(1B)AR) signaling. We investigated whether PLCdelta1 modulates TGII activity. PLCdelta1 stimulated GDP release from TGII in a concentration-dependent manner, resulting in an increase in GTPgammaS binding to TGII. PLCdelta1 also inhibited GTP hydrolysis by TGII that was independent from the alpha(1B)AR. These results indicate that PLCdelta1 is GEF for TGII and stabilizes the GTP.TGII complex. When GEF function of PLCdelta1 was compared with that of the alpha(1B)AR, the alpha(1B)AR-mediated GTPgammaS binding to TGII was greater than PLCdelta1-mediated binding and was accelerated in the presence of PLCdelta1. Thus, the alpha(1B)AR is the prime GEF for TGII, and GEF activity of PLCdelta1 promotes coupling efficacy of this signaling system. Overexpression of TGII and its mutants with and without PLCdelta1 resulted in an increase in alpha(1B)AR-stimulated Ca2+ release from intracellular stores in a TGII-specific manner. We conclude that PLCdelta1 assists the alpha(1B)AR function through its GEF action and is primarily activated by the coupling of TGII to the cognate receptors.
Collapse
Affiliation(s)
- K J Baek
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | |
Collapse
|
31
|
Aeschlimann D, Thomazy V. Protein crosslinking in assembly and remodelling of extracellular matrices: the role of transglutaminases. Connect Tissue Res 2000; 41:1-27. [PMID: 10826705 DOI: 10.3109/03008200009005638] [Citation(s) in RCA: 246] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Transglutaminases form a family of proteins that have evolved for specialized functions such as protein crosslinking in haemostasis, semen coagulation, or keratinocyte cornified envelope formation. In contrast to the other members of this protein family, tissue transglutaminase is a multifunctional enzyme apparently involved in very disparate biological processes. By virtue of its reciprocal Ca2+-dependent crosslinking activity or GTP-dependent signal transducing activity, tissue transglutaminase exhibits true multifunctionality at the molecular level. The crosslinking activity can subserve disparate biological phenomena depending on the location of the target proteins. Intracellular activation of tissue transglutaminase can give rise to crosslinked protein envelopes in apoptotic cells, whereas extracellular activation contributes to stabilization of the extracellular matrix and promotes cell-substrate interaction. While tissue transglutaminase synthesis and activation is normally part of a protective cellular response contributing to tissue homeostasis, the enzyme has also been implicated in a number of pathological conditions including fibrosis, atherosclerosis, neurodegenerative diseases, celiac disease, and cancer metastasis. This review discusses the role of transglutaminases in extracellular matrix crosslinking with a focus on the multifunctional enzyme tissue transglutaminase.
Collapse
Affiliation(s)
- D Aeschlimann
- Division of Orthopedic Surgery, University of Wisconsin, Clinical Science Center, Madison 53792, USA
| | | |
Collapse
|
32
|
Murthy SN, Lorand L. Nucleotide binding by the erythrocyte transglutaminase/Gh protein, probed with fluorescent analogs of GTP and GDP. Proc Natl Acad Sci U S A 2000; 97:7744-7. [PMID: 10869438 PMCID: PMC16615 DOI: 10.1073/pnas.140210197] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
GTP is known to be a potent inhibitor of the protein crosslinking activity of transglutaminase (TG), probably the most abundant G protein in the human red cell. Nucleotide binding to TG was examined by fluorescence spectroscopy and anisotropy in mixtures of TG with methylanthraniloyl analogs of GTP and GDP. A characteristic feature was the appearance of a major energy transfer band (lambda(exc, max) = 290 nm, lambda(em) = 444 nm) from protein tryptophans to the bound nucleotides. Quenching of the bound fluorophore (lambda(exc) = 360 nm, lambda(em) = 444 nm) by acrylamide was barely different from that of free ligand. However, major changes were observed in anisotropy, which was used to demonstrate a facile exchange between bound and free nucleotides and to evaluate affinity constants for the binding of methylanthraniloyl GTP and GDP to TG.
Collapse
Affiliation(s)
- S N Murthy
- Department of Cell and Molecular Biology, and Feinberg Cardiovascular Research Institute, Northwestern University Medical School, Chicago, IL 60611-3008, USA
| | | |
Collapse
|
33
|
Affiliation(s)
- O Molberg
- Institute of Immunology, University of Oslo, Rikshospitalet, Norway
| | | | | |
Collapse
|