1
|
Baffi TR, Lordén G, Wozniak JM, Feichtner A, Yeung W, Kornev AP, King CC, Del Rio JC, Limaye AJ, Bogomolovas J, Gould CM, Chen J, Kennedy EJ, Kannan N, Gonzalez DJ, Stefan E, Taylor SS, Newton AC. mTORC2 controls the activity of PKC and Akt by phosphorylating a conserved TOR interaction motif. Sci Signal 2021; 14:eabe4509. [PMID: 33850054 PMCID: PMC8208635 DOI: 10.1126/scisignal.abe4509] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The complex mTORC2 is accepted to be the kinase that controls the phosphorylation of the hydrophobic motif, a key regulatory switch for AGC kinases, although whether mTOR directly phosphorylates this motif remains controversial. Here, we identified an mTOR-mediated phosphorylation site that we termed the TOR interaction motif (TIM; F-x3-F-pT), which controls the phosphorylation of the hydrophobic motif of PKC and Akt and the activity of these kinases. The TIM is invariant in mTORC2-dependent AGC kinases, is evolutionarily conserved, and coevolved with mTORC2 components. Mutation of this motif in Akt1 and PKCβII abolished cellular kinase activity by impairing activation loop and hydrophobic motif phosphorylation. mTORC2 directly phosphorylated the PKC TIM in vitro, and this phosphorylation event was detected in mouse brain. Overexpression of PDK1 in mTORC2-deficient cells rescued hydrophobic motif phosphorylation of PKC and Akt by a mechanism dependent on their intrinsic catalytic activity, revealing that mTORC2 facilitates the PDK1 phosphorylation step, which, in turn, enables autophosphorylation. Structural analysis revealed that PKC homodimerization is driven by a TIM-containing helix, and biophysical proximity assays showed that newly synthesized, unphosphorylated PKC dimerizes in cells. Furthermore, disruption of the dimer interface by stapled peptides promoted hydrophobic motif phosphorylation. Our data support a model in which mTORC2 relieves nascent PKC dimerization through TIM phosphorylation, recruiting PDK1 to phosphorylate the activation loop and triggering intramolecular hydrophobic motif autophosphorylation. Identification of TIM phosphorylation and its role in the regulation of PKC provides the basis for AGC kinase regulation by mTORC2.
Collapse
Affiliation(s)
- Timothy R Baffi
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
- Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, CA 92093, USA
| | - Gema Lordén
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Jacob M Wozniak
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
- Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Andreas Feichtner
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck A-6020, Austria
| | - Wayland Yeung
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Alexandr P Kornev
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Charles C King
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Jason C Del Rio
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
- Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, CA 92093, USA
| | - Ameya J Limaye
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Julius Bogomolovas
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Christine M Gould
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
- Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, CA 92093, USA
| | - Ju Chen
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - David J Gonzalez
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck A-6020, Austria
| | - Susan S Taylor
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA
| | - Alexandra C Newton
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
2
|
Morales KA, Yang Y, Cole TR, Igumenova TI. Dynamic Response of the C2 Domain of Protein Kinase Cα to Ca 2+ Binding. Biophys J 2017; 111:1655-1667. [PMID: 27760353 DOI: 10.1016/j.bpj.2016.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/04/2016] [Accepted: 09/07/2016] [Indexed: 11/28/2022] Open
Abstract
Ca2+-dependent conserved-region 2 (C2) domains target their host signaling proteins to anionic membranes. The Ca2+-binding event is a prerequisite for membrane association. Here, we investigate multiscale metal-ion-dependent dynamics of the C2 domain of protein kinase Cα (C2α) using NMR spectroscopy. Interactions with metal ions attenuate microsecond-timescale motions of the loop regions, indicating that preorganization of the metal-binding loops occurs before membrane insertion. Binding of a full complement of Ca2+ ions has a profound effect on the millisecond-timescale dynamics of the N- and C-terminal regions of C2α. We propose that Ca2+ binding allosterically destabilizes the terminal regions of C2α and thereby facilitates the conformational rearrangement necessary for full membrane insertion and activation of protein kinase Cα.
Collapse
Affiliation(s)
- Krystal A Morales
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Yuan Yang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Taylor R Cole
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Tatyana I Igumenova
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas.
| |
Collapse
|
3
|
Sommese RF, Ritt M, Swanson CJ, Sivaramakrishnan S. The Role of Regulatory Domains in Maintaining Autoinhibition in the Multidomain Kinase PKCα. J Biol Chem 2017; 292:2873-2880. [PMID: 28049730 DOI: 10.1074/jbc.m116.768457] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/30/2016] [Indexed: 11/06/2022] Open
Abstract
Resolving the conformational dynamics of large multidomain proteins has proven to be a significant challenge. Here we use a variety of techniques to dissect the roles of individual protein kinase Cα (PKCα) regulatory domains in maintaining catalytic autoinhibition. We find that whereas the pseudosubstrate domain is necessary for autoinhibition it is not sufficient. Instead, each regulatory domain (C1a, C1b, and C2) appears to strengthen the pseudosubstrate-catalytic domain interaction in a nucleotide-dependent manner. The pseudosubstrate and C1a domains, however, are minimally essential for maintaining the inactivated state. Furthermore, disrupting known interactions between the C1a and other regulatory domains releases the autoinhibited interaction and increases basal activity. Modulating this interaction between the catalytic and regulatory domains reveals a direct correlation between autoinhibition and membrane translocation following PKC activation.
Collapse
Affiliation(s)
- Ruth F Sommese
- From the Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455 and
| | - Michael Ritt
- From the Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455 and
| | - Carter J Swanson
- the Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109
| | - Sivaraj Sivaramakrishnan
- From the Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455 and
| |
Collapse
|
4
|
Bonny M, Hui X, Schweizer J, Kaestner L, Zeug A, Kruse K, Lipp P. C2-domain mediated nano-cluster formation increases calcium signaling efficiency. Sci Rep 2016; 6:36028. [PMID: 27808106 PMCID: PMC5093555 DOI: 10.1038/srep36028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 08/18/2016] [Indexed: 01/31/2023] Open
Abstract
Conventional protein kinase Cs (cPKCs) are key signaling proteins for transducing intracellular Ca2+ signals into downstream phosphorylation events. However, the lifetime of individual membrane-bound activated cPKCs is an order of magnitude shorter than the average time needed for target-protein phosphorylation. Here, we employed intermolecular Förster resonance energy transfer (FRET) in living cells combined with computational analysis to study the spatial organization of cPKCs bound to the plasma membrane. We discovered Ca2+-dependent cPKC nano-clusters that significantly extend cPKC’s plasma-membrane residence time. These protein patterns resulted from self-assembly mediated by Ca2+-binding C2-domains, which are widely used for membrane-targeting of Ca2+-sensing proteins. We also established clustering of other unrelated C2-domain containing proteins, suggesting that nano-cluster formation is a key step for efficient cellular Ca2+-signaling.
Collapse
Affiliation(s)
- Mike Bonny
- Theoretical Physics, Saarland University, Saarbrücken, Germany
| | - Xin Hui
- Institute for Molecular Cell Biology, Medical Faculty, Saarland University, Homburg/Saar, Germany
| | - Julia Schweizer
- Institute for Molecular Cell Biology, Medical Faculty, Saarland University, Homburg/Saar, Germany
| | - Lars Kaestner
- Institute for Molecular Cell Biology, Medical Faculty, Saarland University, Homburg/Saar, Germany
| | - André Zeug
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Hannover, Germany
| | - Karsten Kruse
- Theoretical Physics, Saarland University, Saarbrücken, Germany
| | - Peter Lipp
- Institute for Molecular Cell Biology, Medical Faculty, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
5
|
Swanson CJ, Sommese RF, Petersen KJ, Ritt M, Karslake J, Thomas DD, Sivaramakrishnan S. Calcium Stimulates Self-Assembly of Protein Kinase C α In Vitro. PLoS One 2016; 11:e0162331. [PMID: 27706148 PMCID: PMC5051681 DOI: 10.1371/journal.pone.0162331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/22/2016] [Indexed: 11/18/2022] Open
Abstract
Protein kinase C α (PKCα) is a nodal regulator in several intracellular signaling networks. PKCα is composed of modular domains that interact with each other to dynamically regulate spatial-temporal function. We find that PKCα specifically, rapidly and reversibly self-assembles in the presence of calcium in vitro. This phenomenon is dependent on, and can be modulated by an intramolecular interaction between the C1a and C2 protein domains of PKCα. Next, we monitor self-assembly of PKC—mCitrine fusion proteins using time-resolved and steady-state homoFRET. HomoFRET between full-length PKCα molecules is observed when in solution with both calcium and liposomes containing either diacylglycerol (DAG) or phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). Surprisingly, the C2 domain is sufficient to cluster on liposomes containing PI(4,5)P2, indicating the C1a domain is not required for self-assembly in this context. We conclude that three distinct clustered states of PKCα can be formed depending on what combination of cofactors are bound, but Ca2+ is minimally required and sufficient for clustering.
Collapse
Affiliation(s)
- Carter J. Swanson
- Biophysics Program, University of Michigan, Ann Arbor, 48109, United States of America
| | - Ruth F. Sommese
- Dept. of Genetics, Cell Biology and Development, University of Minnesota, Twin Cities, 55455, United States of America
| | - Karl J. Petersen
- Dept. of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, 55455, United States of America
| | - Michael Ritt
- Dept. of Genetics, Cell Biology and Development, University of Minnesota, Twin Cities, 55455, United States of America
| | - Joshua Karslake
- Biophysics Program, University of Michigan, Ann Arbor, 48109, United States of America
| | - David D. Thomas
- Dept. of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, 55455, United States of America
| | - Sivaraj Sivaramakrishnan
- Dept. of Genetics, Cell Biology and Development, University of Minnesota, Twin Cities, 55455, United States of America
- * E-mail:
| |
Collapse
|
6
|
Abstract
Protein kinase C (PKC) is a family of Ser/Thr kinases that regulate a multitude of cellular processes through participation in the phosphoinositide signaling pathway. Significant research efforts have been directed at understanding the structure, function, and regulatory modes of the enzyme since its discovery and identification as the first receptor for tumor-promoting phorbol esters. The activation of PKC involves a transition from the cytosolic autoinhibited latent form to the membrane-associated active form. The membrane recruitment step is accompanied by the conformational rearrangement of the enzyme, which relieves autoinhibitory interactions and thereby allows PKC to phosphorylate its targets. The multidomain structure and intrinsic flexibility of PKC present remarkable challenges and opportunities for the biophysical and structural biology studies of this class of enzymes and their interactions with membranes, the major focus of this Current Topic. I will highlight the recent advances in the field, outline the current challenges, and identify areas where biophysics and structural biology approaches can provide insight into the isoenzyme-specific regulation of PKC activity.
Collapse
|
7
|
Swanson CJ, Ritt M, Wang W, Lang MJ, Narayan A, Tesmer JJ, Westfall M, Sivaramakrishnan S. Conserved modular domains team up to latch-open active protein kinase Cα. J Biol Chem 2014; 289:17812-29. [PMID: 24790081 DOI: 10.1074/jbc.m113.534750] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Signaling proteins comprised of modular domains have evolved along with multicellularity as a method to facilitate increasing intracellular bandwidth. The effects of intramolecular interactions between modular domains within the context of native proteins have been largely unexplored. Here we examine intra- and intermolecular interactions in the multidomain signaling protein, protein kinase Cα (PKCα). We identify three interactions between two activated PKC molecules that synergistically stabilize a nanomolar affinity homodimer. Disruption of the homodimer results in a loss of PKC-mediated ERK1/2 phosphorylation, whereas disruption of the auto-inhibited state promotes the homodimer and prolongs PKC membrane localization. These observations support a novel regulatory mechanism wherein homodimerization dictates the equilibrium between the auto-inhibited and active states of PKC by sequestering auto-inhibitory interactions. Our findings underscore the physiological importance of context-dependent modular domain interactions in cell signaling.
Collapse
Affiliation(s)
| | | | - William Wang
- Department of Cell and Developmental Biology, Department of Cardiac Surgery
| | | | - Arvind Narayan
- Department of Biomedical Engineering, Life Sciences Institute, and
| | - John J Tesmer
- From the Biophysics Program, the Departments of Pharmacology and Biological Sciences, University of Michigan, Ann Arbor, Michigan 48109
| | - Margaret Westfall
- Department of Cardiac Surgery, Department of Biomedical Engineering, Life Sciences Institute, and
| | - Sivaraj Sivaramakrishnan
- From the Biophysics Program, Department of Cell and Developmental Biology, Department of Biomedical Engineering, Life Sciences Institute, and
| |
Collapse
|
8
|
Amyloid-type fiber formation in control of enzyme action: interfacial activation of phospholipase A2. Biophys J 2008; 95:215-24. [PMID: 18339749 DOI: 10.1529/biophysj.108.128710] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The lag-burst behavior in the action of phospholipase A(2) (PLA(2)) on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine was investigated at temperatures slightly offset from the main phase transition temperature T(m) of this lipid, thus slowing down the kinetics of the activation process. Distinct stages leading to maximal activity were resolved using a combination of fluorescence parameters, including Förster resonance energy transfer between donor- and acceptor-labeled enzyme, fluorescence anisotropy, and lifetime, as well as thioflavin T fluorescence enhancement. We showed that the interfacial activation of PLA(2), evident after the preceding lag phase, coincides with the formation of oligomers staining with thioflavin T and subsequently with Congo red. Based on previous studies and our findings here, we propose a novel mechanism for the control of PLA(2), involving amyloid protofibrils with highly augmented enzymatic activity. Subsequently, these protofibrils form "mature" fibrils, devoid of activity. Accordingly, the process of amyloid formation is used as an on-off switch to obtain a transient burst in enzymatic catalysis.
Collapse
|
9
|
Reid EA, Cao Z, Wang Y, Leite Browning ML, Newkirk RF, Chaudhuri G, Townsel JG. Molecular cloning and identification of a putative PKC epsilon cDNA from Limulus polyphemus brain. Life Sci 2003; 72:961-76. [PMID: 12493576 DOI: 10.1016/s0024-3205(02)02343-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The protein kinase C (PKC) family of enzymes is broadly distributed and has been implicated in a diverse array of cellular functions. Recent evidence supporting PKC involvement in the regulation of the Limulus choline cotransporter prompted us to clone PKC from a Limulus central nervous system (CNS) cDNA library. An Aplysia californica calcium independent PKC (Apl II) cDNA probe was used to screen the library and 5' RACE SMART PCR was used to obtain the full-length sequence. The resulting cDNA, which included 5' and 3' nontranslation regions, was 4675 bp. Analysis of the encoded peptide sequence using the Swiss-prot database revealed at least 58% identity to PKC epsilon. A commercial polyclonal antibody against PKC epsilon was used in Western blots to positively label a 30 kDa protein from Limulus CNS and the expressed fusion protein of the encoded sequence. These data support the presence of a newly identified PKC-like homolog in Limulus which likely represents a PKC epsilon equivalent.
Collapse
Affiliation(s)
- Easton A Reid
- Department of Anatomy and Physiology, Meharry Medical College, 1005 D.B. Todd Blvd., Nashville, TN 37208, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Thümen A, Qadri F, Sarkar R, Moser A. GBR-12909 effect on dopamine outflow depends on phosphorylation in the caudate nucleus of the rat. Synapse 2002; 46:72-8. [PMID: 12211084 DOI: 10.1002/syn.10124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Modulation of the dopamine (DA) transporter inhibitor GBR-12909 effect on DA release by protein kinases and protein phosphatases was studied in slices of the rat caudate nucleus measuring DA outflow in the superfusate of static chambers. Activation of protein kinase A and C markedly enhanced the effect of GBR-12909, whereas protein kinase inhibition by H7 reduced the GBR-12909 effect. Inhibition of protein phosphatases (PPP) 1 and 2A by okadaic acid did not modify basal outflow of DA. However, after the addition of okadaic acid a dramatic and biphasic effect was found when DA outflow was enhanced by GBR-12909. Inhibition of PPP 2A enhanced extracellular DA levels, while inhibition of PPP 1 and 2A completely abolished the effect of GBR-12909. In contrast to tetrodotoxin, the voltage-activated calcium channel blocker omega-conotoxin MVIIC inhibited GBR-12909 effects on DA outflow. Additionally, in aCSF devoid of calcium GBR-12909 did not increase DA liberation. These results suggest a complex and strong influence of phosphorylation on GBR-12909 effects on calcium channel-dependent DA outflow at low-affinity piperazine binding sites in slices of the rat caudate nucleus in vitro.
Collapse
Affiliation(s)
- A Thümen
- Neurochemical Research Group, Department of Neurology, Medical University of Lübeck, Lübeck, Germany.
| | | | | | | |
Collapse
|
11
|
Slater SJ, Seiz JL, Cook AC, Buzas CJ, Malinowski SA, Kershner JL, Stagliano BA, Stubbs CD. Regulation of PKC alpha activity by C1-C2 domain interactions. J Biol Chem 2002; 277:15277-85. [PMID: 11850425 DOI: 10.1074/jbc.m112207200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, the role of interdomain interactions involving the C1 and C2 domains in the mechanism of activation of PKC was investigated. Using an in vitro assay containing only purified recombinant proteins and the phorbol ester, 4 beta-12-O-tetradecanoylphorbol-13-acetate (TPA), but lacking lipids, it was found that PKC alpha bound specifically, and with high affinity, to a alpha C1A-C1B fusion protein of the same isozyme. The alpha C1A-C1B domain also potently activated the isozyme in a phorbol ester- and diacylglycerol-dependent manner. The level of this activity was comparable with that resulting from membrane association induced under maximally activating conditions. Furthermore, it was found that alpha C1A-C1B bound to a peptide containing the C2 domain of PKC alpha. The alpha C1A-C1B domain also activated conventional PKC beta I, -beta II, and -gamma isoforms, but not novel PKC delta or -epsilon. PKC delta and -epsilon were each activated by their own C1 domains, whereas PKC alpha, -beta I, -beta II, or -gamma activities were unaffected by the C1 domain of PKC delta and only slightly activated by that of PKC epsilon. PKC zeta activity was unaffected by its own C1 domain and those of the other PKC isozymes. Based on these findings, it is proposed that the activating conformational change in PKC alpha results from the dissociation of intra-molecular interactions between the alpha C1A-C1B domain and the C2 domain. Furthermore, it is shown that PKC alpha forms dimers via inter-molecular interactions between the C1 and C2 domains of two neighboring molecules. These mechanisms may also apply for the activation of the other conventional and novel PKC isozymes.
Collapse
Affiliation(s)
- Simon J Slater
- Department of Pathology, Cell Biology and Anatomy, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Solodukhin AS, Caldwell HL, Sando JJ, Kretsinger RH. Two-dimensional crystal structures of protein kinase C-delta, its regulatory domain, and the enzyme complexed with myelin basic protein. Biophys J 2002; 82:2700-8. [PMID: 11964256 PMCID: PMC1302058 DOI: 10.1016/s0006-3495(02)75611-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Two-dimensional crystals of protein kinase C (PKC) delta, its regulatory domain (RDdelta), and the enzyme complexed with the substrate myelin basic protein have been grown on lipid monolayers composed of phosphatidylcholine: phosphatidylserine: diolein (45:50:5, molar ratio). Images have been reconstructed to 10-A resolution. The unit cells of all three proteins have cell edges a = b and interedge angle gamma = 60 degrees. RDdelta has an edge length of 33 +/- 1 A, and its reconstruction is donut shaped. The three-dimensional reconstructions from the PKCdelta C1b crystal structure () can be accommodated in this two-dimensional projection. Intact PKCdelta has an edge length of 46 +/- 1 A in the presence or absence of a nonhydrolyzable ATP analog, AMP-PnP. Its reconstruction has a similar donut shape, which can accommodate the C1b domain, but the spacing between donuts is greater than that in RDdelta; some additional structure is visible between the donuts. The complex of PKCdelta and myelin basic protein, with or without AMP-PnP, has an edge length of 43 +/- 1 A and a distinct structure. These results indicate that the C1 domains of RDdelta are tightly packed in the plane of the membrane in the two-dimensional crystals, that there is a single molecule of PKCdelta in the unit cell, and that its interaction with myelin basic protein induces a shift in conformation and/or packing of the enzyme.
Collapse
Affiliation(s)
- Alexander S Solodukhin
- Department of Anesthesiology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
13
|
Poussard S, Dulong S, Aragon B, Jacques Brustis J, Veschambre P, Ducastaing A, Cottin P. Evidence for a MARCKS-PKCalpha complex in skeletal muscle. Int J Biochem Cell Biol 2001; 33:711-21. [PMID: 11390279 DOI: 10.1016/s1357-2725(01)00045-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
MARCKS (Myristoylated Alanine Rich C Kinase Substrate) is a protein known to cross-link actin filament and consequently, is very important in the stabilization of the cytoskeletal structure. In addition, it has been recently demonstrated that the phosphorylation rate of this protein changes during myogenesis and that this protein is implicated in fusion events. For a better understanding of the biological function of MARCKS during myogenesis, we have undertaken to identify and purify this protein from rabbit skeletal muscle. Three chromatographic steps including an affinity calmodulin-agarose column were performed. The existence of a complex between the two proteins was confirmed by non-denaturing gel electrophoresis and immunoprecipitation. Two complexes were isolated which present an apparent molecular weight of about 600 kDa. Such interactions suggest that MARCKS is either a very good PKCalpha substrate and/or a regulator of PKC activity. These results are supported by previous studies showing preferential interactions and co-localization of PKC isozyme and MARCKS at focal adhesion sites. This is the first time that MARCKS has been purified from skeletal muscle and our data are consistent with a major role of this actin- and calmodulin-binding protein in cytoskeletal rearrangement or other functions mediated by PKalpha. Our results provide evidence for a tight and specific association of MARCKS and PKCalpha (a major conventional PKC isozyme in skeletal muscle) as indicated by the co-purification of the two proteins.
Collapse
Affiliation(s)
- S Poussard
- Laboratoire de Biochimie et Technologie des Aliments, ISTAB USC-INRA 429, Université Bordeaux I, Avenue des Facultés, 33405, Cedex, Talence, France.
| | | | | | | | | | | | | |
Collapse
|
14
|
Aroca P, Santos E, Kazanietz MG. Recombinant C1b domain of PKCdelta triggers meiotic maturation upon microinjection in Xenopus laevis oocytes. FEBS Lett 2000; 483:27-32. [PMID: 11033350 DOI: 10.1016/s0014-5793(00)02075-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The C1 domains are 50 amino acid sequences present in protein kinase C (PKC) isozymes that are responsible for binding of phorbol esters and the lipid second messenger diacylglycerol (DAG). We found that bacterially expressed C1b domain of PKCdelta induces germinal vesicle breakdown (GVBD) when microinjected into Xenopus laevis oocytes. Injection of the C1b domain of PKCdelta significantly enhanced insulin- but not progesterone-induced maturation. Interestingly, the PKCdelta C1b domain markedly synergized with normal Ras protein to induce oocyte maturation when both proteins were co-injected in oocytes. Our results demonstrate that the purified C1b domain of PKCdelta is sufficient to promote meiotic maturation of X. laevis oocytes probably through activation of components of the insulin/Ras signaling pathway.
Collapse
Affiliation(s)
- P Aroca
- Department of Morphological Sciences, Faculty of Medicine, University of Murcia, E-30100 Murcia, Spain
| | | | | |
Collapse
|