1
|
Multi-Omics Analysis of Multiple Glucose-Sensing Receptor Systems in Yeast. Biomolecules 2022; 12:biom12020175. [PMID: 35204676 PMCID: PMC8961648 DOI: 10.3390/biom12020175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
The yeast Saccharomyces cerevisiae has long been used to produce alcohol from glucose and other sugars. While much is known about glucose metabolism, relatively little is known about the receptors and signaling pathways that indicate glucose availability. Here, we compare the two glucose receptor systems in S. cerevisiae. The first is a heterodimer of transporter-like proteins (transceptors), while the second is a seven-transmembrane receptor coupled to a large G protein (Gpa2) that acts in coordination with two small G proteins (Ras1 and Ras2). Through comprehensive measurements of glucose-dependent transcription and metabolism, we demonstrate that the two receptor systems have distinct roles in glucose signaling: the G-protein-coupled receptor directs carbohydrate and energy metabolism, while the transceptors regulate ancillary processes such as ribosome, amino acids, cofactor and vitamin metabolism. The large G-protein transmits the signal from its cognate receptor, while the small G-protein Ras2 (but not Ras1) integrates responses from both receptor pathways. Collectively, our analysis reveals the molecular basis for glucose detection and the earliest events of glucose-dependent signal transduction in yeast.
Collapse
|
2
|
Myers KS, Riley NM, MacGilvray ME, Sato TK, McGee M, Heilberger J, Coon JJ, Gasch AP. Rewired cellular signaling coordinates sugar and hypoxic responses for anaerobic xylose fermentation in yeast. PLoS Genet 2019; 15:e1008037. [PMID: 30856163 PMCID: PMC6428351 DOI: 10.1371/journal.pgen.1008037] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/21/2019] [Accepted: 02/20/2019] [Indexed: 01/08/2023] Open
Abstract
Microbes can be metabolically engineered to produce biofuels and biochemicals, but rerouting metabolic flux toward products is a major hurdle without a systems-level understanding of how cellular flux is controlled. To understand flux rerouting, we investigated a panel of Saccharomyces cerevisiae strains with progressive improvements in anaerobic fermentation of xylose, a sugar abundant in sustainable plant biomass used for biofuel production. We combined comparative transcriptomics, proteomics, and phosphoproteomics with network analysis to understand the physiology of improved anaerobic xylose fermentation. Our results show that upstream regulatory changes produce a suite of physiological effects that collectively impact the phenotype. Evolved strains show an unusual co-activation of Protein Kinase A (PKA) and Snf1, thus combining responses seen during feast on glucose and famine on non-preferred sugars. Surprisingly, these regulatory changes were required to mount the hypoxic response when cells were grown on xylose, revealing a previously unknown connection between sugar source and anaerobic response. Network analysis identified several downstream transcription factors that play a significant, but on their own minor, role in anaerobic xylose fermentation, consistent with the combinatorial effects of small-impact changes. We also discovered that different routes of PKA activation produce distinct phenotypes: deletion of the RAS/PKA inhibitor IRA2 promotes xylose growth and metabolism, whereas deletion of PKA inhibitor BCY1 decouples growth from metabolism to enable robust fermentation without division. Comparing phosphoproteomic changes across ira2Δ and bcy1Δ strains implicated regulatory changes linked to xylose-dependent growth versus metabolism. Together, our results present a picture of the metabolic logic behind anaerobic xylose flux and suggest that widespread cellular remodeling, rather than individual metabolic changes, is an important goal for metabolic engineering.
Collapse
Affiliation(s)
- Kevin S. Myers
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Nicholas M. Riley
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Matthew E. MacGilvray
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Trey K. Sato
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Mick McGee
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Justin Heilberger
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States of America
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, United States of America
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, United States of America
- Morgridge Institute for Research, Madison, WI, United States of America
| | - Audrey P. Gasch
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, United States of America
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, United States of America
| |
Collapse
|
3
|
MacGilvray ME, Shishkova E, Chasman D, Place M, Gitter A, Coon JJ, Gasch AP. Network inference reveals novel connections in pathways regulating growth and defense in the yeast salt response. PLoS Comput Biol 2018; 13:e1006088. [PMID: 29738528 PMCID: PMC5940180 DOI: 10.1371/journal.pcbi.1006088] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 03/13/2018] [Indexed: 11/18/2022] Open
Abstract
Cells respond to stressful conditions by coordinating a complex, multi-faceted response that spans many levels of physiology. Much of the response is coordinated by changes in protein phosphorylation. Although the regulators of transcriptome changes during stress are well characterized in Saccharomyces cerevisiae, the upstream regulatory network controlling protein phosphorylation is less well dissected. Here, we developed a computational approach to infer the signaling network that regulates phosphorylation changes in response to salt stress. We developed an approach to link predicted regulators to groups of likely co-regulated phospho-peptides responding to stress, thereby creating new edges in a background protein interaction network. We then use integer linear programming (ILP) to integrate wild type and mutant phospho-proteomic data and predict the network controlling stress-activated phospho-proteomic changes. The network we inferred predicted new regulatory connections between stress-activated and growth-regulating pathways and suggested mechanisms coordinating metabolism, cell-cycle progression, and growth during stress. We confirmed several network predictions with co-immunoprecipitations coupled with mass-spectrometry protein identification and mutant phospho-proteomic analysis. Results show that the cAMP-phosphodiesterase Pde2 physically interacts with many stress-regulated transcription factors targeted by PKA, and that reduced phosphorylation of those factors during stress requires the Rck2 kinase that we show physically interacts with Pde2. Together, our work shows how a high-quality computational network model can facilitate discovery of new pathway interactions during osmotic stress. Cells sense and respond to stressful environments by utilizing complex signaling networks that integrate diverse signals to coordinate a multi-faceted physiological response. Much of this response is controlled by post-translational protein phosphorylation. Although many regulators that mediate changes in protein phosphorylation are known, how these regulators inter-connect in a single regulatory network that can transmit cellular signals is not known. It is also unclear how regulators that promote growth and regulators that activate the stress response interconnect to reorganize resource allocation during stress. Here, we developed an integrated experimental and computational workflow to infer the signaling network that regulates phosphorylation changes during osmotic stress in the budding yeast Saccharomyces cerevisiae. The workflow integrates data measuring protein phosphorylation changes in response to osmotic stress with known physical interactions between yeast proteins from large-scale datasets, along with other information about how regulators recognize their targets. The resulting network suggested new signaling connections between regulators and pathways, including those involved in regulating growth and defense, and predicted new regulators involved in stress defense. Our work highlights the power of using network inference to deliver new insight on how cells coordinate a diverse adaptive strategy to stress.
Collapse
Affiliation(s)
- Matthew E. MacGilvray
- Laboratory of Genetics, University of Wisconsin—Madison, Madison, WI, United States of America
| | - Evgenia Shishkova
- Department of Biomolecular Chemistry, University of Wisconsin—Madison, Madison, WI, United States of America
| | - Deborah Chasman
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Michael Place
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Anthony Gitter
- Department of Biostatistics and Medical Informatics, University of Wisconsin -Madison, Madison, WI, United States of America
- Morgridge Institute for Research, Madison, WI, United States of America
| | - Joshua J. Coon
- Department of Biomolecular Chemistry, University of Wisconsin—Madison, Madison, WI, United States of America
- Morgridge Institute for Research, Madison, WI, United States of America
- Department of Chemistry, University of Wisconsin -Madison, Madison, WI, United States of America
- Genome Center of Wisconsin, Madison, WI, United States of America
| | - Audrey P. Gasch
- Laboratory of Genetics, University of Wisconsin—Madison, Madison, WI, United States of America
- Department of Chemistry, University of Wisconsin -Madison, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
4
|
Isom DG, Page SC, Collins LB, Kapolka NJ, Taghon GJ, Dohlman HG. Coordinated regulation of intracellular pH by two glucose-sensing pathways in yeast. J Biol Chem 2017; 293:2318-2329. [PMID: 29284676 DOI: 10.1074/jbc.ra117.000422] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/22/2017] [Indexed: 12/19/2022] Open
Abstract
The yeast Saccharomyces cerevisiae employs multiple pathways to coordinate sugar availability and metabolism. Glucose and other sugars are detected by a G protein-coupled receptor, Gpr1, as well as a pair of transporter-like proteins, Rgt2 and Snf3. When glucose is limiting, however, an ATP-driven proton pump (Pma1) is inactivated, leading to a marked decrease in cytoplasmic pH. Here we determine the relative contribution of the two sugar-sensing pathways to pH regulation. Whereas cytoplasmic pH is strongly dependent on glucose abundance and is regulated by both glucose-sensing pathways, ATP is largely unaffected and therefore cannot account for the changes in Pma1 activity. These data suggest that the pH is a second messenger of the glucose-sensing pathways. We show further that different sugars differ in their ability to control cellular acidification, in the manner of inverse agonists. We conclude that the sugar-sensing pathways act via Pma1 to invoke coordinated changes in cellular pH and metabolism. More broadly, our findings support the emerging view that cellular systems have evolved the use of pH signals as a means of adapting to environmental stresses such as those caused by hypoxia, ischemia, and diabetes.
Collapse
Affiliation(s)
- Daniel G Isom
- From the Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599-7365, .,the Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136, and
| | - Stephani C Page
- From the Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599-7365
| | - Leonard B Collins
- the Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599-7432
| | - Nicholas J Kapolka
- the Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136, and
| | - Geoffrey J Taghon
- the Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136, and
| | - Henrik G Dohlman
- From the Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599-7365,
| |
Collapse
|
5
|
Bavli-Kertselli I, Melamed D, Bar-Ziv L, Volf H, Arava Y. Overexpression of eukaryotic initiation factor 5 rescues the translational defect of tpk1w in a manner that necessitates a novel phosphorylation site. FEBS J 2014; 282:504-20. [PMID: 25417541 DOI: 10.1111/febs.13158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 11/11/2014] [Accepted: 11/20/2014] [Indexed: 02/04/2023]
Abstract
Cells respond to changes in their environment through mechanisms that often necessitate reprogramming of the translation machinery. The fastest and strongest of all tested responses is the translation inhibition observed following abrupt depletion of glucose from the media of yeast cells. The speed of the response suggests a post-translational modification of a key component of the translation machinery. This translation factor is as yet unknown. A cAMP-dependent protein kinase mutant yeast strain (tpk1(w)) that does not respond properly to glucose depletion and maintains translation was described previously. We hypothesized that the inability of tpk1(w) to arrest translation results from abnormal expression of key translation mediators. Genome-wide analysis of steady-state mRNA levels in tpk1(w) revealed underexpression of several candidates. Elevating the cellular levels of eukaryotic initiation factor (eIF) 5 by overexpression rescued the translational defect of tpk1(w). Restoring ribosomal dissociation by eIF5 necessitated an active GAP domain and multiple regions throughout this protein. Phosphoproteomics analysis of wild-type cells overexpressing eIF5 revealed increased phosphorylation in a novel site (Thr191) upon glucose depletion. Mutating this residue and introducing it into tpk1(w) abolished the ability of eIF5 to rescue the translational defect. Intriguingly, introducing this mutation into the wild-type strain did not hamper its translational response. We further show that Thr191 is phosphorylated in vitro by Casein Kinase II (CKII), and yeast cells with a mutated CKII have a reduced response to glucose depletion. These results implicate phosphorylation of eIF5 at Thr191 by CKII as one of the pathways for regulating translation upon glucose depletion.
Collapse
Affiliation(s)
- Ira Bavli-Kertselli
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | | | | | | | | |
Collapse
|
6
|
Engelberg D, Perlman R, Levitzki A. Transmembrane signaling in Saccharomyces cerevisiae as a model for signaling in metazoans: state of the art after 25 years. Cell Signal 2014; 26:2865-78. [PMID: 25218923 DOI: 10.1016/j.cellsig.2014.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 09/02/2014] [Indexed: 02/07/2023]
Abstract
In the very first article that appeared in Cellular Signalling, published in its inaugural issue in October 1989, we reviewed signal transduction pathways in Saccharomyces cerevisiae. Although this yeast was already a powerful model organism for the study of cellular processes, it was not yet a valuable instrument for the investigation of signaling cascades. In 1989, therefore, we discussed only two pathways, the Ras/cAMP and the mating (Fus3) signaling cascades. The pivotal findings concerning those pathways undoubtedly contributed to the realization that yeast is a relevant model for understanding signal transduction in higher eukaryotes. Consequently, the last 25 years have witnessed the discovery of many signal transduction pathways in S. cerevisiae, including the high osmotic glycerol (Hog1), Stl2/Mpk1 and Smk1 mitogen-activated protein (MAP) kinase pathways, the TOR, AMPK/Snf1, SPS, PLC1 and Pkr/Gcn2 cascades, and systems that sense and respond to various types of stress. For many cascades, orthologous pathways were identified in mammals following their discovery in yeast. Here we review advances in the understanding of signaling in S. cerevisiae over the last 25 years. When all pathways are analyzed together, some prominent themes emerge. First, wiring of signaling cascades may not be identical in all S. cerevisiae strains, but is probably specific to each genetic background. This situation complicates attempts to decipher and generalize these webs of reactions. Secondly, the Ras/cAMP and the TOR cascades are pivotal pathways that affect all processes of the life of the yeast cell, whereas the yeast MAP kinase pathways are not essential. Yeast cells deficient in all MAP kinases proliferate normally. Another theme is the existence of central molecular hubs, either as single proteins (e.g., Msn2/4, Flo11) or as multisubunit complexes (e.g., TORC1/2), which are controlled by numerous pathways and in turn determine the fate of the cell. It is also apparent that lipid signaling is less developed in yeast than in higher eukaryotes. Finally, feedback regulatory mechanisms seem to be at least as important and powerful as the pathways themselves. In the final chapter of this essay we dare to imagine the essence of our next review on signaling in yeast, to be published on the 50th anniversary of Cellular Signalling in 2039.
Collapse
Affiliation(s)
- David Engelberg
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel; CREATE-NUS-HUJ, Cellular & Molecular Mechanisms of Inflammation Programme, National University of Singapore, 1 CREATE Way, Innovation Wing, #03-09, Singapore 138602, Singapore.
| | - Riki Perlman
- Hematology Division, Hadassah Hebrew University Medical Center, POB 12000, 91120 Jerusalem, Israel
| | - Alexander Levitzki
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| |
Collapse
|
7
|
Abstract
For centuries yeast species have been popular hosts for classical biotechnology processes, such as baking, brewing, and wine making, and more recently for recombinant proteins production, thanks to the advantages of unicellular organisms (i.e., ease of genetic manipulation and rapid growth) together with the ability to perform eukaryotic posttranslational modifications. Moreover, yeast cells have been used for few decades as a tool for identifying the genes and pathways involved in basic cellular processes such as the cell cycle, aging, and stress response. In the budding yeast S. cerevisiae the Ras/cAMP/PKA pathway is directly involved in the regulation of metabolism, cell growth, stress resistance, and proliferation in response to the availability of nutrients and in the adaptation to glucose, controlling cytosolic cAMP levels and consequently the cAMP-dependent protein kinase (PKA) activity. Moreover, Ras signalling has been identified in several pathogenic yeasts as a key controller for virulence, due to its involvement in yeast morphogenesis. Nowadays, yeasts are still useful for Ras-like proteins investigation, both as model organisms and as a test tube to study variants of heterologous Ras-like proteins.
Collapse
Affiliation(s)
- Renata Tisi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | | | |
Collapse
|
8
|
Gonzales K, Kayıkçı O, Schaeffer DG, Magwene PM. Modeling mutant phenotypes and oscillatory dynamics in the Saccharomyces cerevisiae cAMP-PKA pathway. BMC SYSTEMS BIOLOGY 2013; 7:40. [PMID: 23680078 PMCID: PMC3679983 DOI: 10.1186/1752-0509-7-40] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 05/06/2013] [Indexed: 11/10/2022]
Abstract
Background The cyclic AMP-Protein Kinase A (cAMP-PKA) pathway is an evolutionarily conserved signal transduction mechanism that regulates cellular growth and differentiation in animals and fungi. We present a mathematical model that recapitulates the short-term and long-term dynamics of this pathway in the budding yeast, Saccharomyces cerevisiae. Our model is aimed at recapitulating the dynamics of cAMP signaling for wild-type cells as well as single (pde1Δ and pde2Δ) and double (pde1Δpde2Δ) phosphodiesterase mutants. Results Our model focuses on PKA-mediated negative feedback on the activity of phosphodiesterases and the Ras branch of the cAMP-PKA pathway. We show that both of these types of negative feedback are required to reproduce the wild-type signaling behavior that occurs on both short and long time scales, as well as the the observed responses of phosphodiesterase mutants. A novel feature of our model is that, for a wide range of parameters, it predicts that intracellular cAMP concentrations should exhibit decaying oscillatory dynamics in their approach to steady state following glucose stimulation. Experimental measurements of cAMP levels in two genetic backgrounds of S. cerevisiae confirmed the presence of decaying cAMP oscillations as predicted by the model. Conclusions Our model of the cAMP-PKA pathway provides new insights into how yeast respond to alterations in their nutrient environment. Because the model has both predictive and explanatory power it will serve as a foundation for future mathematical and experimental studies of this important signaling network.
Collapse
Affiliation(s)
- Kevin Gonzales
- Department of Mathematics, Duke University, Durham, NC 27708, USA
| | | | | | | |
Collapse
|
9
|
|
10
|
Belotti F, Tisi R, Paiardi C, Groppi S, Martegani E. PKA-dependent regulation of Cdc25 RasGEF localization in budding yeast. FEBS Lett 2011; 585:3914-20. [PMID: 22036786 DOI: 10.1016/j.febslet.2011.10.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/23/2011] [Accepted: 10/14/2011] [Indexed: 11/18/2022]
Abstract
In Saccharomyces cerevisiae the Cdc25/Ras/cAMP pathway is involved in cell growth and proliferation regulation. Ras proteins are regulated by Ira1/2 GTPase activating proteins (GAPs) and Cdc25/Sdc25 guanine nucleotide exchange factors (GEFs). Most of cytosolic Cdc25 protein was found on internal membranes in exponentially growing cells, while upon incubation in a buffer with no nutrients it is re-localized to plasma membrane. The overexpression of Tpk1 PKA catalytic subunit also induces Cdc25 export from the nucleus, involving two serine residues near the Nuclear Localization Site (NLS): mutation of Ser(825) and Ser(826) to glutamate is sufficient to exclude physiologically expressed Cdc25 from the nucleus, mimicking Tpk1 overproduction effect. Mutation of these Ser residues to Ala abolishes the effect of nuclear export induced by Tpk1 overexpression on a Cdc25eGFP fusion. Moreover, mutation of these residues affects PKA-related phenotypes such as heat shock resistance, glycogen content and cell volume.
Collapse
Affiliation(s)
- Fiorella Belotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | | | | | | | |
Collapse
|
11
|
Dechant R, Binda M, Lee SS, Pelet S, Winderickx J, Peter M. Cytosolic pH is a second messenger for glucose and regulates the PKA pathway through V-ATPase. EMBO J 2010; 29:2515-26. [PMID: 20581803 DOI: 10.1038/emboj.2010.138] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 05/28/2010] [Indexed: 01/04/2023] Open
Abstract
Glucose is the preferred carbon source for most cell types and a major determinant of cell growth. In yeast and certain mammalian cells, glucose activates the cAMP-dependent protein kinase A (PKA), but the mechanisms of PKA activation remain unknown. Here, we identify cytosolic pH as a second messenger for glucose that mediates activation of the PKA pathway in yeast. We find that cytosolic pH is rapidly and reversibly regulated by glucose metabolism and identify the vacuolar ATPase (V-ATPase), a proton pump required for the acidification of vacuoles, as a sensor of cytosolic pH. V-ATPase assembly is regulated by cytosolic pH and is required for full activation of the PKA pathway in response to glucose, suggesting that it mediates, at least in part, the pH signal to PKA. Finally, V-ATPase is also regulated by glucose in the Min6 beta-cell line and contributes to PKA activation and insulin secretion. Thus, these data suggest a novel and potentially conserved glucose-sensing pathway and identify a mechanism how cytosolic pH can act as a signal to promote cell growth.
Collapse
|
12
|
Tisi R, Belotti F, Paiardi C, Brunetti F, Martegani E. The budding yeast RasGEF Cdc25 reveals an unexpected nuclear localization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2363-74. [DOI: 10.1016/j.bbamcr.2008.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 09/10/2008] [Accepted: 09/10/2008] [Indexed: 11/26/2022]
|
13
|
Harashima T, Anderson S, Yates JR, Heitman J. The kelch proteins Gpb1 and Gpb2 inhibit Ras activity via association with the yeast RasGAP neurofibromin homologs Ira1 and Ira2. Mol Cell 2006; 22:819-830. [PMID: 16793550 DOI: 10.1016/j.molcel.2006.05.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2005] [Revised: 03/14/2006] [Accepted: 05/08/2006] [Indexed: 11/26/2022]
Abstract
The G protein-coupled receptor Gpr1 and associated Galpha subunit Gpa2 govern dimorphic transitions in response to extracellular nutrients by signaling coordinately with Ras to activate adenylyl cyclase in the yeast Saccharomyces cerevisiae. Gpa2 forms a protein complex with the kelch Gbeta mimic subunits Gpb1/2, and previous studies demonstrate that Gpb1/2 negatively control cAMP-PKA signaling via Gpa2 and an unknown second target. Here, we define these targets of Gpb1/2 as the yeast neurofibromin homologs Ira1 and Ira2, which function as GTPase activating proteins of Ras. Gpb1/2 bind to a conserved C-terminal domain of Ira1/2, and loss of Gpb1/2 results in a destabilization of Ira1 and Ira2, leading to elevated levels of Ras2-GTP and unbridled cAMP-PKA signaling. Because the Gpb1/2 binding domain on Ira1/2 is conserved in the human neurofibromin protein, an analogous signaling network may contribute to the neoplastic development of neurofibromatosis type 1.
Collapse
Affiliation(s)
- Toshiaki Harashima
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Scott Anderson
- The Scripps Research Institute, La Jolla, California 92037
| | - John R Yates
- The Scripps Research Institute, La Jolla, California 92037
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710.
| |
Collapse
|
14
|
Belotti F, Tisi R, Martegani E. The N-terminal region of the Saccharomyces cerevisiae RasGEF Cdc25 is required for nutrient-dependent cell-size regulation. MICROBIOLOGY-SGM 2006; 152:1231-1242. [PMID: 16549685 DOI: 10.1099/mic.0.28683-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the yeast Saccharomyces cerevisiae, the Cdc25/Ras/cAMP/protein kinase A (PKA) pathway plays a major role in the control of metabolism, stress resistance and proliferation, in relation to the available nutrients and conditions. The budding yeast RasGEF Cdc25 was the first RasGEF to be identified in any organism, but very little is known about its activity regulation. Recently, it was suggested that the dispensable N-terminal domain of Cdc25 could negatively control the catalytic activity of the protein. In order to investigate the role of this domain, strains were constructed that produced two different versions of the C-terminal domain of Cdc25 (aa 907-1589 and 1147-1589). The carbon-source-dependent cell size control mechanism present in the wild type was found in the first of these mutants, but was lost in the second mutant, for which the cell size, determined as protein content, was the same during exponential growth in both ethanol- and glucose-containing media. A biparametric analysis demonstrated that this effect was essentially due to the inability of the mutant producing the shorter sequence to modify its protein content at budding. A similar phenotype was observed in strains that lacked CDC25, but which possessed a mammalian GEF catalytic domain. Taken together, these results suggest that Cdc25 is involved in the regulation of cell size in the presence of different carbon sources. Moreover, production of the aa 876-1100 fragment increased heat-stress resistance in the wild-type strain, and rescued heat-shock sensitivity in the ira1Delta background. Further work will aim to clarify the role of this region in Cdc25 activity and Ras/cAMP pathway regulation.
Collapse
Affiliation(s)
- Fiorella Belotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Renata Tisi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Enzo Martegani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
15
|
Bieganowski P, Shilinski K, Tsichlis PN, Brenner C. Cdc123 and checkpoint forkhead associated with RING proteins control the cell cycle by controlling eIF2gamma abundance. J Biol Chem 2004; 279:44656-66. [PMID: 15319434 DOI: 10.1074/jbc.m406151200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic initiation factor 2 (eIF2) is a central regulator of translational initiation in times of growth and times of stress. Here we discovered three new conserved regulators of eIF2 in Saccharomyces cerevisiae. cdc123, homolog of mammalian D123, is a new cell division cycle mutant with a G2 delay at permissive temperature and a terminal, mating-proficient G1 arrest point. Cdc123 protein is regulated by nutrient availability. CHF1 and CHF2, homologs of mammalian checkpoint forkhead associated with RING genes, are required for G2 delay and G1 arrest of cdc123-4 and promote G1 delay when over-expressed. Cell cycle delaying activity and the natural instability of Chf1 and Chf2 depend on the integrity of both domains and association with Cdc123. Genetic analysis maps the Chf1 forkhead associated domain-binding site to the conserved Thr-274 of Cdc123, suggesting that mammalian D123 is a key target of Chfr. Gcd11, the gamma subunit of eIF2, is an additional Cdc123-interacting protein that is an essential target of the Cdc123 cell cycle promoting and Chf cell cycle arresting activity whose abundance is regulated by Cdc123, Chf1, and Chf2. Loss of cdc123 activity promotes Chf1 and Chf2 accumulation and Gcd11 depletion, accounting for the essentiality of Cdc123. The data establish the Cdc123-Chf-Gcd11 axis as an essential pathway for nutritional control of START that runs parallel to the Tor-Gcn2-Sui2 system of translational control.
Collapse
Affiliation(s)
- Pawel Bieganowski
- Departments of Genetics and Biochemistry and the Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA
| | | | | | | |
Collapse
|
16
|
Jeffries TW, Jin YS. Ethanol and thermotolerance in the bioconversion of xylose by yeasts. ADVANCES IN APPLIED MICROBIOLOGY 2003; 47:221-68. [PMID: 12876799 DOI: 10.1016/s0065-2164(00)47006-1] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The mechanisms underlying ethanol and heat tolerance are complex. Many different genes are involved, and the exact basis is not fully understood. The integrity of cytoplasmic and mitochondrial membranes is critical to maintain proton gradients for metabolic energy and nutrient uptake. Heat and ethanol stress adversely affect membrane integrity. These factors are particularly detrimental to xylose-fermenting yeasts because they require oxygen for biosynthesis of essential cell membrane and nucleic acid constituents, and they depend on respiration for the generation of ATP. Physiological responses to ethanol and heat shock have been studied most extensively in S. cerevisiae. However, comparative biochemical studies with other organisms suggest that similar mechanisms will be important in xylose-fermenting yeasts. The composition of a cell's membrane lipids shifts with temperature, ethanol concentration, and stage of cultivation. Levels of unsaturated fatty acids and ergosterol increase in response to temperature and ethanol stress. Inositol is involved in phospholipid biosynthesis, and it can increase ethanol tolerance when provided as a supplement. Membrane integrity determines the cell's ability to maintain proton gradients for nutrient uptake. Plasma membrane ATPase generates the proton gradient, and the biochemical characteristics of this enzyme contribute to ethanol tolerance. Organisms with higher ethanol tolerance have ATPase activities with low pH optima and high affinity for ATP. Likewise, organisms with ATPase activities that resist ethanol inhibition also function better at high ethanol concentrations. ATPase consumes a significant fraction of the total cellular ATP, and under stress conditions when membrane gradients are compromised the activity of ATPase is regulated. In xylose-fermenting yeasts, the carbon source used for growth affects both ATPase activity and ethanol tolerance. Cells can adapt to heat and ethanol stress by synthesizing trehalose and heat-shock proteins, which stabilize and repair denatured proteins. The capacity of cells to produce trehalose and induce HSPs correlate with their thermotolerance. Both heat and ethanol increase the frequency of petite mutations and kill cells. This might be attributable to membrane effects, but it could also arise from oxidative damage. Cytoplasmic and mitochondrial superoxide dismutases can destroy oxidative radicals and thereby maintain cell viability. Improved knowledge of the mechanisms underlying ethanol and thermotolerance in S. cerevisiae should enable the genetic engineering of these traits in xylose-fermenting yeasts.
Collapse
Affiliation(s)
- T W Jeffries
- Institute for Microbial and Biochemical Technology, Forest Service, Forest Products Laboratory, United States Department of Agriculture, Department of Bacteriology, University of Wisconsin, Madison, Madison, Wisconsin, USA
| | | |
Collapse
|
17
|
Papadaki P, Pizon V, Onken B, Chang EC. Two ras pathways in fission yeast are differentially regulated by two ras guanine nucleotide exchange factors. Mol Cell Biol 2002; 22:4598-606. [PMID: 12052869 PMCID: PMC133927 DOI: 10.1128/mcb.22.13.4598-4606.2002] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
How a given Ras prreotein coordinates multiple signaling inputs and outputs is a fundamental issue of signaling specificity. Schizosaccharomyces pombe contains one Ras, Ras1, that has two distinct outputs. Ras1 activates Scd1, a presumptive guanine nucleotide exchange factor (GEF) for Cdc42, to control morphogenesis and chromosome segregation, and Byr2, a component of a mitogen-activated protein kinase cascade, to control mating. So far there is only one established Ras1 GEF, Ste6. Paradoxically, ste6 null (ste6 Delta) mutants are sterile but normal in cell morphology. This suggests that Ste6 specifically activates the Ras1-Byr2 pathway and that there is another GEF capable of activating the Scd1 pathway. We thereby characterized a potential GEF, Efc25. Genetic data place Efc25 upstream of the Ras1-Scd1, but not the Ras1-Byr2, pathway. Like ras1 Delta and scd1 Delta, efc25 Delta is synthetically lethal with a deletion in tea1, a critical element for cell polarity control. Using truncated proteins, we showed that the C-terminal GEF domain of Efc25 is essential for function and regulated by the N terminus. We conclude that Efc25 acts as a Ras1 GEF specific for the Scd1 pathway. While ste6 expression is induced during mating, efc25 expression is constitutive. Moreover, Efc25 overexpression renders cells hyperelongated and sterile; the latter can be rescued by activated Ras1. This suggests that Efc25 can recruit Ras1 to selectively activate Scd1 at the expense of Byr2. Reciprocally, Ste6 overexpression can block Scd1 activation. We propose that external signals can partly segregate two Ras1 pathways by modulating GEF expression and that GEFs can influence how Ras is coupled to specific effectors.
Collapse
Affiliation(s)
- Piyi Papadaki
- Biology Department, New York University, New York, New York 10003-6688, USA
| | | | | | | |
Collapse
|