1
|
Németh BZ, Kiss B, Sahin-Tóth M, Magyar C, Pál G. The High-Affinity Chymotrypsin Inhibitor Eglin C Poorly Inhibits Human Chymotrypsin-Like Protease: Gln192 and Lys218 Are Key Determinants. Proteins 2025; 93:543-554. [PMID: 39301701 DOI: 10.1002/prot.26750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/17/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
Eglin C, a small protein from the medicinal leech, has been long considered a general high-affinity inhibitor of chymotrypsins and elastases. Here, we demonstrate that eglin C inhibits human chymotrypsin-like protease (CTRL) weaker by several orders of magnitude than other chymotrypsins. In order to identify the underlying structural aspects of this unique deviation, we performed comparative molecular dynamics simulations on experimental and AlphaFold model structures of bovine CTRA and human CTRL. Our results indicate that in CTRL, the primary determinants of the observed weak inhibition are amino-acid positions 192 and 218 (using conventional chymotrypsin numbering), which participate in shaping the S1 substrate-binding pocket and thereby affect the stability of the protease-inhibitor complexes.
Collapse
Affiliation(s)
- Bálint Zoltán Németh
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
- Institute of Molecular Life Sciences, Protein Bioinformatics Research Group, Hungarian Research Network, Budapest, Hungary
| | - Bence Kiss
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Miklós Sahin-Tóth
- Department of Surgery, University of California Los Angeles, California, Los Angeles, USA
| | - Csaba Magyar
- Institute of Molecular Life Sciences, Protein Bioinformatics Research Group, Hungarian Research Network, Budapest, Hungary
| | - Gábor Pál
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
2
|
Nagel F, Palm GJ, Geist N, McDonnell TCR, Susemihl A, Girbardt B, Mayerle J, Lerch MM, Lammers M, Delcea M. Structural and Biophysical Insights into SPINK1 Bound to Human Cationic Trypsin. Int J Mol Sci 2022; 23:ijms23073468. [PMID: 35408828 PMCID: PMC8998336 DOI: 10.3390/ijms23073468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/01/2023] Open
Abstract
(1) The serine protease inhibitor Kazal type 1 (SPINK1) inhibits trypsin activity in zymogen granules of pancreatic acinar cells. Several mutations in the SPINK1 gene are associated with acute recurrent pancreatitis (ARP) and chronic pancreatitis (CP). The most common variant is SPINK1 p.N34S. Although this mutation was identified two decades ago, the mechanism of action has remained elusive. (2) SPINK1 and human cationic trypsin (TRY1) were expressed in E. coli, and inhibitory activities were determined. Crystals of SPINK1-TRY1 complexes were grown by using the hanging-drop method, and phases were solved by molecular replacement. (3) Both SPINK1 variants show similar inhibitory behavior toward TRY1. The crystal structures are almost identical, with minor differences in the mutated loop. Both complexes show an unexpected rotamer conformation of the His63 residue in TRY1, which is a member of the catalytic triad. (4) The SPINK1 p.N34S mutation does not affect the inhibitory behavior or the overall structure of the protein. Therefore, the pathophysiological mechanism of action of the p.N34S variant cannot be explained mechanistically or structurally at the protein level. The observed histidine conformation is part of a mechanism for SPINK1 that can explain the exceptional proteolytic stability of this inhibitor.
Collapse
Affiliation(s)
- Felix Nagel
- Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, 17489 Greifswald, Germany; (F.N.); (N.G.); (A.S.)
| | - Gottfried J. Palm
- Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489 Greifswald, Germany; (G.J.P.); (B.G.); (M.L.)
| | - Norman Geist
- Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, 17489 Greifswald, Germany; (F.N.); (N.G.); (A.S.)
| | - Thomas C. R. McDonnell
- Biochemical Engineering Department, University College London, Bernard Katz, London WC1E 6BT, UK;
| | - Anne Susemihl
- Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, 17489 Greifswald, Germany; (F.N.); (N.G.); (A.S.)
- Department of Hematology and Oncology, Internal Medicine C, University of Greifswald, 17489 Greifswald, Germany
| | - Britta Girbardt
- Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489 Greifswald, Germany; (G.J.P.); (B.G.); (M.L.)
| | - Julia Mayerle
- Department of Medicine II, University Hospital Munich, Ludwig-Maximillian University Munich, 81377 Munich, Germany;
| | - Markus M. Lerch
- Department of Medicine A, University Medicine Greifswald, 17489 Greifswald, Germany;
| | - Michael Lammers
- Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489 Greifswald, Germany; (G.J.P.); (B.G.); (M.L.)
| | - Mihaela Delcea
- Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, 17489 Greifswald, Germany; (F.N.); (N.G.); (A.S.)
- Correspondence:
| |
Collapse
|
3
|
Feng C, Huang Y, He W, Cheng X, Liu H, Huang Y, Ma B, Zhang W, Liao C, Wu W, Shao Y, Xu D, Su Z, Lu W. Tanshinones: First-in-Class Inhibitors of the Biogenesis of the Type 3 Secretion System Needle of Pseudomonas aeruginosa for Antibiotic Therapy. ACS CENTRAL SCIENCE 2019; 5:1278-1288. [PMID: 31403076 PMCID: PMC6662154 DOI: 10.1021/acscentsci.9b00452] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Indexed: 05/17/2023]
Abstract
The type 3 secretion system (T3SS) found as cell-surface appendages of many pathogenic Gram-negative bacteria, although nonessential for bacterial survival, is an important therapeutic target for drug discovery and development aimed at inhibiting bacterial virulence without inducing antibiotic resistance. We designed a fluorescence-polarization-based assay for high-throughput screening as a mechanistically well-defined general strategy for antibiotic discovery targeting the T3SS and made a serendipitous discovery of a subset of tanshinones-natural herbal compounds in traditional Chinese medicine widely used for the treatment of cardiovascular and cerebrovascular diseases-as effective inhibitors of the biogenesis of the T3SS needle of multi-drug-resistant Pseudomonas aeruginosa. By inhibiting the T3SS needle assembly and, thus, cytotoxicity and pathogenicity, selected tanshinones reduced the secretion of bacterial virulence factors toxic to macrophages in vitro, and rescued experimental animals challenged with lethal doses of Pseudomonas aeruginosa in a murine model of acute pneumonia. As first-in-class inhibitors with a demonstrable safety profile in humans, tanshinones may be used directly to alleviate Pseudomonas-aeruginosa-associated pulmonary infections without inducing antibiotic resistance. Since the T3SS is highly conserved among Gram-negative bacteria, this antivirulence strategy may be applicable to the discovery and development of novel classes of antibiotics refractory to existing resistance mechanisms for the treatment of many bacterial infections.
Collapse
Affiliation(s)
- Chao Feng
- Center
for Translational Medicine, Frontier Institute of Science
and Technology, Shaanxi Institute of Pediatric Diseases, Affiliated Children’s
Hospital, and Key Laboratory of Biomedical Information Engineering of the Ministry
of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - Yinong Huang
- Center
for Translational Medicine, Frontier Institute of Science
and Technology, Shaanxi Institute of Pediatric Diseases, Affiliated Children’s
Hospital, and Key Laboratory of Biomedical Information Engineering of the Ministry
of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - Wangxiao He
- Center
for Translational Medicine, Frontier Institute of Science
and Technology, Shaanxi Institute of Pediatric Diseases, Affiliated Children’s
Hospital, and Key Laboratory of Biomedical Information Engineering of the Ministry
of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - Xiyao Cheng
- Department
of Biological and Food Engineering, Hubei
University of Technology, Wuhan 430068, China
| | - Huili Liu
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese
Academy of Sciences, Wuhan 430071, China
| | - Yongqi Huang
- Department
of Biological and Food Engineering, Hubei
University of Technology, Wuhan 430068, China
| | - Bohan Ma
- Center
for Translational Medicine, Frontier Institute of Science
and Technology, Shaanxi Institute of Pediatric Diseases, Affiliated Children’s
Hospital, and Key Laboratory of Biomedical Information Engineering of the Ministry
of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - Wei Zhang
- Center
for Translational Medicine, Frontier Institute of Science
and Technology, Shaanxi Institute of Pediatric Diseases, Affiliated Children’s
Hospital, and Key Laboratory of Biomedical Information Engineering of the Ministry
of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - Chongbing Liao
- Center
for Translational Medicine, Frontier Institute of Science
and Technology, Shaanxi Institute of Pediatric Diseases, Affiliated Children’s
Hospital, and Key Laboratory of Biomedical Information Engineering of the Ministry
of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - Weihui Wu
- State Key
Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular
Microbiology and Technology of the Ministry of Education, Department
of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yongping Shao
- Center
for Translational Medicine, Frontier Institute of Science
and Technology, Shaanxi Institute of Pediatric Diseases, Affiliated Children’s
Hospital, and Key Laboratory of Biomedical Information Engineering of the Ministry
of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - Dan Xu
- Center
for Translational Medicine, Frontier Institute of Science
and Technology, Shaanxi Institute of Pediatric Diseases, Affiliated Children’s
Hospital, and Key Laboratory of Biomedical Information Engineering of the Ministry
of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - Zhengding Su
- Department
of Biological and Food Engineering, Hubei
University of Technology, Wuhan 430068, China
| | - Wuyuan Lu
- Institute
of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| |
Collapse
|
4
|
He W, Mazzuca P, Yuan W, Varney K, Bugatti A, Cagnotto A, Giagulli C, Rusnati M, Marsico S, Diomede L, Salmona M, Caruso A, Lu W, Caccuri F. Identification of amino acid residues critical for the B cell growth-promoting activity of HIV-1 matrix protein p17 variants. Biochim Biophys Acta Gen Subj 2018; 1863:13-24. [PMID: 30248376 DOI: 10.1016/j.bbagen.2018.09.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND HIV-1 matrix protein p17 variants (vp17s) detected in HIV-1-infected patients with non-Hodgkin's lymphoma (HIV-NHL) display, differently from the wild-type protein (refp17), B cell growth-promoting activity. Biophysical analysis revealed that vp17s are destabilized as compared to refp17, motivating us to explore structure-function relationships. METHODS We used: biophysical techniques (circular dichroism (CD), nuclear magnetic resonance (NMR) and thermal/GuHCL denaturation) to study protein conformation and stability; Surface plasmon resonance (SPR) to study interactions; Western blot to investigate signaling pathways; and Colony Formation and Soft Agar assays to study B cell proliferation and clonogenicity. RESULTS By forcing the formation of a disulfide bridge between Cys residues at positions 57 and 87 we obtained a destabilized p17 capable of promoting B cell proliferation. This finding prompted us to dissect refp17 to identify the functional epitope. A synthetic peptide (F1) spanning from amino acid (aa) 2 to 21 was found to activate Akt and promote B cell proliferation and clonogenicity. Three positively charged aa (Arg15, Lys18 and Arg20) proved critical for sustaining the proliferative activity of both F1 and HIV-NHL-derived vp17s. Lack of any interaction of F1 with the known refp17 receptors suggests an alternate one involved in cell proliferation. CONCLUSIONS The molecular reasons for the proliferative activity of vp17s, compared to refp17, relies on the exposure of a functional epitope capable of activating Akt. GENERAL SIGNIFICANCE Our findings pave the way for identifying the receptor(s) responsible for B cell proliferation and offer new opportunities to identify novel treatment strategies in combating HIV-related NHL.
Collapse
Affiliation(s)
- Wangxiao He
- Center for Translational Medicine, Xi'an Jiaotong University School of Life Science and Technology, Xi'an, China.
| | - Pietro Mazzuca
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy.
| | - Weirong Yuan
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA.
| | - Kristen Varney
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, USA.
| | - Antonella Bugatti
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy.
| | - Alfredo Cagnotto
- IRCCS Istituto Ricerche Farmacologiche "Mario Negri", Milan, Italy.
| | - Cinzia Giagulli
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy.
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy.
| | - Stefania Marsico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy.
| | - Luisa Diomede
- IRCCS Istituto Ricerche Farmacologiche "Mario Negri", Milan, Italy.
| | - Mario Salmona
- IRCCS Istituto Ricerche Farmacologiche "Mario Negri", Milan, Italy.
| | - Arnaldo Caruso
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy.
| | - Wuyuan Lu
- Center for Translational Medicine, Xi'an Jiaotong University School of Life Science and Technology, Xi'an, China; Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, USA.
| | - Francesca Caccuri
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy.
| |
Collapse
|
5
|
Malins LR, Mitchell NJ, McGowan S, Payne RJ. Oxidative Deselenization of Selenocysteine: Applications for Programmed Ligation at Serine. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504639] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Malins LR, Mitchell NJ, McGowan S, Payne RJ. Oxidative Deselenization of Selenocysteine: Applications for Programmed Ligation at Serine. Angew Chem Int Ed Engl 2015; 54:12716-21. [DOI: 10.1002/anie.201504639] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/08/2015] [Indexed: 12/22/2022]
|
7
|
Reimann O, Smet‐Nocca C, Hackenberger CPR. Spurlose Aufreinigung und Desulfurierung von Ligationsprodukten des Tau‐Proteins. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408674] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Oliver Reimann
- Leibniz‐Institut für Molekulare Pharmakologie (FMP), Robert‐Rössle‐Straße 10, 13125 Berlin (Deutschland)
- Humboldt Universität zu Berlin, Department Chemie, Brook‐Taylor‐Straße 2, 12489 Berlin (Deutschland)
- Freie Universität Berlin, Institut für Chemie und Biochemie, Takustraße 3, 14195 Berlin (Deutschland)
| | - Caroline Smet‐Nocca
- UMR CNRS 8576, Lille 1 Science and Technology University, 59655 Villeneuve d'Ascq Cedex (Frankreich)
| | - Christian P. R. Hackenberger
- Leibniz‐Institut für Molekulare Pharmakologie (FMP), Robert‐Rössle‐Straße 10, 13125 Berlin (Deutschland)
- Humboldt Universität zu Berlin, Department Chemie, Brook‐Taylor‐Straße 2, 12489 Berlin (Deutschland)
- Freie Universität Berlin, Institut für Chemie und Biochemie, Takustraße 3, 14195 Berlin (Deutschland)
| |
Collapse
|
8
|
Reimann O, Smet‐Nocca C, Hackenberger CPR. Traceless Purification and Desulfurization of Tau Protein Ligation Products. Angew Chem Int Ed Engl 2014; 54:306-10. [DOI: 10.1002/anie.201408674] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Oliver Reimann
- Leibniz‐Institut für Molekulare Pharmakologie (FMP), Robert‐Rössle‐Strasse 10, 13125 Berlin (Germany)
- Humboldt Universität zu Berlin, Department Chemie, Brook‐Taylor‐Strasse 2, 12489 Berlin (Germany)
- Freie Universität Berlin, Institut für Chemie und Biochemie, Takustrasse 3, 14195 Berlin (Germany)
| | - Caroline Smet‐Nocca
- UMR CNRS 8576—Lille 1 Science and Technology University, 59655 Villeneuve d'Ascq Cedex (France)
| | - Christian P. R. Hackenberger
- Leibniz‐Institut für Molekulare Pharmakologie (FMP), Robert‐Rössle‐Strasse 10, 13125 Berlin (Germany)
- Humboldt Universität zu Berlin, Department Chemie, Brook‐Taylor‐Strasse 2, 12489 Berlin (Germany)
- Freie Universität Berlin, Institut für Chemie und Biochemie, Takustrasse 3, 14195 Berlin (Germany)
| |
Collapse
|
9
|
Batra J, Szabó A, Caulfield TR, Soares AS, Sahin-Tóth M, Radisky ES. Long-range electrostatic complementarity governs substrate recognition by human chymotrypsin C, a key regulator of digestive enzyme activation. J Biol Chem 2013; 288:9848-9859. [PMID: 23430245 DOI: 10.1074/jbc.m113.457382] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Human chymotrypsin C (CTRC) is a pancreatic serine protease that regulates activation and degradation of trypsinogens and procarboxypeptidases by targeting specific cleavage sites within their zymogen precursors. In cleaving these regulatory sites, which are characterized by multiple flanking acidic residues, CTRC shows substrate specificity that is distinct from that of other isoforms of chymotrypsin and elastase. Here, we report the first crystal structure of active CTRC, determined at 1.9-Å resolution, revealing the structural basis for binding specificity. The structure shows human CTRC bound to the small protein protease inhibitor eglin c, which binds in a substrate-like manner filling the S6-S5' subsites of the substrate binding cleft. Significant binding affinity derives from burial of preferred hydrophobic residues at the P1, P4, and P2' positions of CTRC, although acidic P2' residues can also be accommodated by formation of an interfacial salt bridge. Acidic residues may also be specifically accommodated in the P6 position. The most unique structural feature of CTRC is a ring of intense positive electrostatic surface potential surrounding the primarily hydrophobic substrate binding site. Our results indicate that long-range electrostatic attraction toward substrates of concentrated negative charge governs substrate discrimination, which explains CTRC selectivity in regulating active digestive enzyme levels.
Collapse
Affiliation(s)
- Jyotica Batra
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, Florida 32224
| | - András Szabó
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts 02118
| | - Thomas R Caulfield
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, Florida 32224; Department of Neuroscience, Mayo Clinic Cancer Center, Jacksonville, Florida 32224
| | - Alexei S Soares
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Miklós Sahin-Tóth
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts 02118.
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, Florida 32224.
| |
Collapse
|
10
|
Zhan C, Varney K, Yuan W, Zhao L, Lu W. Interrogation of MDM2 phosphorylation in p53 activation using native chemical ligation: the functional role of Ser17 phosphorylation in MDM2 reexamined. J Am Chem Soc 2012; 134:6855-64. [PMID: 22444248 DOI: 10.1021/ja301255n] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The E3 ubiquitin ligase MDM2 functions as a crucial negative regulator of the p53 tumor suppressor protein by antagonizing p53 transactivation activity and targeting p53 for degradation. Cellular stress activates p53 by alleviating MDM2-mediated functional inhibition, even though the molecular mechanisms of stress-induced p53 activation still remain poorly understood. Two opposing models have been proposed to describe the functional and structural role in p53 activation of Ser17 phosphorylation in the N-terminal "lid" (residues 1-24) of MDM2. Using the native chemical ligation technique, we synthesized the p53-binding domain (1-109)MDM2 and its Ser17-phosphorylated analogue (1-109)MDM2 pS17 as well as (1-109)MDM2 S17D and (25-109)MDM2, and comparatively characterized their interactions with a panel of p53-derived peptide ligands using surface plasmon resonance, fluorescence polarization, and NMR and CD spectroscopic techniques. We found that the lid is partially structured in apo-MDM2 and occludes p53 peptide binding in a ligand size-dependent manner. Binding of (1-109)MDM2 by the (15-29)p53 peptide fully displaces the lid and renders it completely disordered in the peptide-protein complex. Importantly, neither Ser17 phosphorylation nor the phospho-mimetic mutation S17D has any functional impact on p53 peptide binding to MDM2. Although Ser17 phosphorylation or its mutation to Asp contributes marginally to the stability of the lid conformation in apo-MDM2, neither modification stabilizes apo-MDM2 globally or the displaced lid locally. Our findings demonstrate that Ser17 phosphorylation is functionally neutral with respect to p53 binding, suggesting that MDM2 phosphorylation at a single site is unlikely to play a dominant role in stress-induced p53 activation.
Collapse
Affiliation(s)
- Changyou Zhan
- Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|
11
|
Structure of a serine protease poised to resynthesize a peptide bond. Proc Natl Acad Sci U S A 2009; 106:11034-9. [PMID: 19549826 DOI: 10.1073/pnas.0902463106] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The serine proteases are among the most thoroughly studied enzymes, and numerous crystal structures representing the enzyme-substrate complex and intermediates in the hydrolysis reactions have been reported. Some aspects of the catalytic mechanism remain controversial, however, especially the role of conformational changes in the reaction. We describe here a high-resolution (1.46 A) crystal structure of a complex formed between a cleaved form of bovine pancreatic trypsin inhibitor (BPTI) and a catalytically inactive trypsin variant with the BPTI cleavage site ideally positioned in the active site for resynthesis of the peptide bond. This structure defines the positions of the newly generated amino and carboxyl groups following the 2 steps in the hydrolytic reaction. Comparison of this structure with those representing other intermediates in the reaction demonstrates that the residues of the catalytic triad are positioned to promote each step of both the forward and reverse reaction with remarkably little motion and with conservation of hydrogen-bonding interactions. The results also provide insights into the mechanism by which inhibitors like BPTI normally resist hydrolysis when bound to their target proteases.
Collapse
|
12
|
Zakharova E, Horvath MP, Goldenberg DP. Functional and structural roles of the Cys14-Cys38 disulfide of bovine pancreatic trypsin inhibitor. J Mol Biol 2008; 382:998-1013. [PMID: 18692070 DOI: 10.1016/j.jmb.2008.07.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 07/22/2008] [Accepted: 07/24/2008] [Indexed: 10/21/2022]
Abstract
The disulfide bond between Cys14 and Cys38 of bovine pancreatic trypsin inhibitor lies on the surface of the inhibitor and forms part of the protease-binding region. The functional properties of three variants lacking this disulfide, with one or both of the Cys residues replaced with Ser, were examined, and X-ray crystal structures of the complexes with bovine trypsin were determined and refined to the 1.58-A resolution limit. The crystal structure of the complex formed with the mutant with both Cys residues replaced was nearly identical with that of the complex containing the wild-type protein, with the Ser oxygen atoms positioned to replace the disulfide bond with a hydrogen bond. The two structures of the complexes with single replacements displayed small local perturbations with alternate conformations of the Ser side chains. Despite the absence of the disulfide bond, the crystallographic temperature factors show no evidence of increased flexibility in the complexes with the mutant inhibitors. All three of the variants were cleaved by trypsin more rapidly than the wild-type inhibitor, by as much as 10,000-fold, indicating that the covalent constraint normally imposed by the disulfide contributes to the remarkable resistance to hydrolysis displayed by the wild-type protein. The rates of hydrolysis display an unusual dependence on pH over the range of 3.5-8.0, decreasing at the more alkaline values, as compared with the increased hydrolysis rates for normal substrates under these conditions. These observations can be accounted for by a model for inhibition in which an acyl-enzyme intermediate forms at a significant rate but is rapidly converted back to the enzyme-inhibitor complex by nucleophilic attack by the newly created amino group. The model suggests that a lack of flexibility in the acyl-enzyme intermediate, rather than the enzyme-inhibitor complex, may be a key factor in the ability of bovine pancreatic trypsin inhibitor and similar inhibitors to resist hydrolysis.
Collapse
Affiliation(s)
- Elena Zakharova
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA
| | | | | |
Collapse
|
13
|
Rajabi M, de Leeuw E, Pazgier M, Li J, Lubkowski J, Lu W. The conserved salt bridge in human alpha-defensin 5 is required for its precursor processing and proteolytic stability. J Biol Chem 2008; 283:21509-18. [PMID: 18499668 DOI: 10.1074/jbc.m801851200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mammalian alpha-defensins, expressed primarily in leukocytes and epithelia, play important roles in innate and adaptive immune responses to microbial infection. Six invariant cysteine residues forming three indispensable disulfide bonds and one Gly residue required structurally for an atypical beta-bulge are totally conserved in the otherwise diverse sequences of all known mammalian alpha-defensins. In addition, a pair of oppositely charged residues (Arg/Glu), forming a salt bridge across a protruding loop in the molecule, is highly conserved. To investigate the structural and functional roles of the conserved Arg(6)-Glu(14) salt bridge in human alpha-defensin 5 (HD5), we chemically prepared HD5 and its precursor proHD5 as well as their corresponding salt bridge-destabilizing analogs E14Q-HD5 and E57Q-proHD5. The Glu-to-Gln mutation, whereas significantly reducing the oxidative folding efficiency of HD5, had no effect on the folding of proHD5. Bovine trypsin productively and correctly processed proHD5 in vitro but spontaneously degraded E57Q-proHD5. Significantly, HD5 was resistant to trypsin treatment, whereas E14Q-HD5 was highly susceptible. Further, degradation of E14Q-HD5 by trypsin was initiated by the cleavage of the Arg(13)-Gln(14) peptide bond in the loop region, a catastrophic proteolytic event resulting directly in quick digestion of the whole defensin molecule. The E14Q mutation did not alter the bactericidal activity of HD5 against Staphylococcus aureus but substantially enhanced the killing of Escherichia coli. By contrast, proHD5 and E57Q-proHD5 were largely inactive against both strains at the concentrations tested. Our results confirm that the primary function of the conserved salt bridge in HD5 is to ensure correct processing of proHD5 and subsequent stabilization of mature alpha-defensin in vivo.
Collapse
Affiliation(s)
- Mohsen Rajabi
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
14
|
Oku H, Yamada K, Katakai R. Conformational change from antiparallel beta-sheet to alpha-helix in a series of depsipeptide, -(Leu-Leu-Lac)(n)-: syntheses, spectroscopic studies, and crystal structures of Boc-Leu-Lac-OEt and Boc-(Leu-Leu-Lac)(n)-OEt (n = 1, 2). Biopolymers 2008; 89:270-83. [PMID: 18067154 DOI: 10.1002/bip.20904] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The depsipeptides Boc-Leu-Lac-OEt (1) and Boc-(Leu-Leu-Lac)(n)-OEt (n = 1, 2) (2 and 3, respectively) (Boc = tert-butyloxycarbonyl, Lac = L-lactic acid residue) has been synthesized and studied by crystallographic, CD spectroscopic, and ESI-MS analyses. In the packing cells, those three compounds adopt beta-strand conformations. Each molecule is linked into a dimer (1) or an infinite assembly (2 and 3) by tight hydrogen bonds of the type NH...O==C. Interestingly, the hexamer, 3 shows the first example of antiparallel pleated beta-sheet crystal structure for a depsipeptide molecule. In the packing cells, especially for 3, the ester groups O--C==O are perpendicularly oriented to the amide groups NH--C==O and beta-sheet planes to avoid the interaction between --O--(ester) and O==C. Therefore, when the chain length become longer, the O...O==C repulsion interaction works as a beta-sheet breaker and hence promotes an alpha-helical structure as observed for Boc-(Leu-Leu-Lac)(3)-Leu-Leu-OEt (4) (Oku et al. Biopolymers 2004, 75, 242-254) and Boc-(Leu-Leu-Lac)(n)-OEt (n = 4-6) (5-7) (Katakai et al., Biopolymers 1996, 38, 285-290), in which the O...O==C repulsion does not cause significant structural changes in alpha-helical main chains. Therefore from the structural and spectroscopic analyses, we have found governing factors for the specificity in the beta-sheet and alpha-helix decision in this series of depsipeptides, -(Leu-Leu-Lac)(n)-.
Collapse
Affiliation(s)
- Hiroyuki Oku
- Department of Chemistry and Chemical Biology, Gunma University, Kiryu, Gunma, Japan.
| | | | | |
Collapse
|
15
|
Hanson WM, Domek GJ, Horvath MP, Goldenberg DP. Rigidification of a flexible protease inhibitor variant upon binding to trypsin. J Mol Biol 2006; 366:230-43. [PMID: 17157870 PMCID: PMC1847787 DOI: 10.1016/j.jmb.2006.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 10/27/2006] [Indexed: 11/22/2022]
Abstract
The Tyr35-->Gly replacement in bovine pancreatic trypsin inhibitor (BPTI) has previously been shown to dramatically enhance the flexibility of the trypsin-binding region of the free inhibitor and to destabilize the interaction with the protease by about 3 kcal/mol. The effects of this replacement on the enzyme-inhibitor interaction were further studied here by X-ray crystallography and isothermal titration calorimetry (ITC). The co-crystal structure of Y35G BPTI bound to trypsin was determined using 1.65 A resolution X-ray diffraction data collected from cryopreserved crystals, and a new structure of the complex with wild-type BPTI under the same conditions was determined using 1.62 A data. These structures reveal that, in contrast to the free protein, Y35G BPTI adopts a conformation nearly identical with that of the wild-type protein, with a water-filled cavity in place of the missing Tyr side-chain. The crystallographic temperature factors for the two complexes indicate that the mutant inhibitor is nearly as rigid as the wild-type protein when bound to trypsin. Calorimetric measurements show that the change in enthalpy upon dissociation of the complex is 2.5 kcal/mol less favorable for the complex containing Y35G BPTI than for the complex with the wild-type inhibitor. Thus, the destabilization of the complex resulting from the Y35G replacement is due to a more favorable change in entropy upon dissociation. The heat capacity changes for dissociation of the mutant and wild-type complexes were very similar, suggesting that the entropic effects probably do not arise from solvation effects, but are more likely due to an increase in protein conformational entropy upon dissociation of the mutant inhibitor. These results define the biophysical role of a highly conserved core residue located outside of a protein-binding interface, demonstrating that Tyr35 has little impact on the trypsin-bound BPTI structure and acts primarily to define the structure of the free protein so as to maximize binding affinity.
Collapse
Affiliation(s)
- W Miachel Hanson
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA
| | | | | | | |
Collapse
|
16
|
Lim JK, Lu W, Hartley O, DeVico AL. N-terminal proteolytic processing by cathepsin G converts RANTES/CCL5 and related analogs into a truncated 4-68 variant. J Leukoc Biol 2006; 80:1395-404. [PMID: 16963625 DOI: 10.1189/jlb.0406290] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
N-terminal proteolytic processing modulates the biological activity and receptor specificity of RANTES/CCL5. Previously, we showed that an unidentified protease associated with monocytes and neutrophils digests RANTES into a variant lacking three N-terminal residues (4-68 RANTES). This variant binds CCR5 but exhibits lower chemotactic and antiviral activities than unprocessed RANTES. In this study, we characterize cathepsin G as the enzyme responsible for this processing. Cell-mediated production of the 4-68 variant was abrogated by Eglin C, a leukocyte elastase and cathepsin G inhibitor, but not by the elastase inhibitor elastatinal. Further, anti-cathepsin G antibodies abrogated RANTES digestion in neutrophil cultures. In accordance, reagent cathepsin G specifically digested recombinant RANTES into the 4-68 variant. AOP-RANTES and Met-RANTES were also converted into the 4-68 variant upon exposure to cathepsin G or neutrophils, while PSC-RANTES was resistant to such cleavage. Similarly, macaque cervicovaginal lavage samples digested Met-RANTES and AOP-RANTES, but not PSC-RANTES, into the 4-68 variant and this processing was also inhibited by anti-cathepsin G antibodies. These findings suggest that cathepsin G mediates a novel pathway for regulating RANTES activity and may be relevant to the role of RANTES and its analogs in preventing HIV infection.
Collapse
Affiliation(s)
- Jean K Lim
- Institute of Human Virology, University of Maryland, Baltimore, 725 W. Lombard Street, 6th fl., Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
17
|
Wu Z, Li X, de Leeuw E, Ericksen B, Lu W. Why Is the Arg5-Glu13 Salt Bridge Conserved in Mammalian α-Defensins? J Biol Chem 2005; 280:43039-47. [PMID: 16246847 DOI: 10.1074/jbc.m510562200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Mammalian alpha-defensins, expressed primarily in leukocytes and epithelia, kill a broad range of microbes, constituting one of the first lines of innate immune defense against infection. Nine amino acid residues, including six cysteines, one glycine, and a pair of oppositely charged residues Arg/Glu, are conserved in the otherwise diverse sequences of all known mammalian alpha-defensins. Structural analysis indicates that the two charged residues form a salt bridge, likely stabilizing a protruding loop in the molecule. To investigate the structural and functional roles of the conserved Arg5-Glu13 salt bridge in alpha-defensins, we chemically prepared human neutrophil alpha-defensin 2 (HNP2) and five HNP2 analogs, R5E/E13R, E13Q, E13R, R5T/E13Y, and R14A. In contrast to HNP2 and R14A-HNP2, none of the four salt bridge analogs was capable of folding into a native conformation in the context of isolated defensin domains. However, when covalently attached to the 45-residue pro-HNP2 propeptide, the salt bridge analogs of HNP2 in their pro-forms all folded productively, suggesting that the Arg5-Glu13 salt bridge is not required for correct pro-alpha-defensin folding. When assayed against both Escherichia coli and Staphylococcus aureus, the six alpha-defensins showed bactericidal activity that correlated with the number of net positive charges carried by individual molecules in the panel, irrespective of whether or not the Arg5-Glu13 salt bridge was decimated, suggesting that Arg5 and Glu13 are not functionally conserved. Proteolytic resistance analysis with human neutrophil elastase, one major protease contained in azurophils with HNPs, revealed that destabilization of the salt bridge dramatically accelerated defensin degradation by the enzyme. Thus, we propose that the Arg5-Glu13 salt bridge found in most mammalian alpha-defensins is conserved for defensin in vivo stability.
Collapse
Affiliation(s)
- Zhibin Wu
- Institute of Human Virology, University of Maryland Biotechnology Institute, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|
18
|
Abstract
To make more practical the total chemical synthesis of proteins by the ligation of unprotected peptide building blocks, we have developed a method to facilitate the isolation and handling of intermediate products. The synthetic technique makes use of a His6 tag at the C terminus of the target polypeptide chain, introduced during the synthesis of the C-terminal peptide segment building block. The presence of a His6 tag enables the isolation of peptide or protein products directly from ligation reaction mixtures by Ni-NTA affinity column purification. This simple approach enables facile buffer exchange to alternate reaction conditions and is compatible with direct analytical control by protein MS of the multiple ligation steps involved in protein synthesis. We used syntheses of crambin and a modular tetratricopeptide repeat protein of 17 kDa as models to examine the utility of this affinity purification approach. The results show that His6 tag-assisted chemical protein synthesis is a useful method that substantially reduces handling losses and provides for rapid chemical protein syntheses.
Collapse
Affiliation(s)
- Duhee Bang
- Institute for Biophysical Dynamics and Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
19
|
Powers ET, Deechongkit S, Kelly JW. Backbone-Backbone H-Bonds Make Context-Dependent Contributions to Protein Folding Kinetics and Thermodynamics: Lessons from Amide-to-Ester Mutations. ADVANCES IN PROTEIN CHEMISTRY 2005; 72:39-78. [PMID: 16581372 DOI: 10.1016/s0065-3233(05)72002-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The contribution of backbone-backbone hydrogen bonds (H-bonds) to protein folding energetics has been controversial. This is due, at least in part, to the inability to perturb backbone-backbone H-bonds by traditional methods of protein mutagenesis. Recently, however, protein backbone mutagenesis has become possible with the development of chemical and biological methods to replace individual amides in the protein backbone with esters. Here, we review the use of amide-to-ester mutation as a tool to evaluate the contribution of backbone-backbone H-bonds to protein folding kinetics and thermodynamics.
Collapse
Affiliation(s)
- Evan T Powers
- Department of Chemistry and The Skaggs Institute for Chemical Biology The Scripps Research Institute, La Jolla, California 92037
| | | | | |
Collapse
|
20
|
Yang X, Wang M, Fitzgerald MC. Analysis of protein folding and function using backbone modified proteins. Bioorg Chem 2004; 32:438-49. [PMID: 15381405 DOI: 10.1016/j.bioorg.2004.06.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Indexed: 11/25/2022]
Abstract
With the recent development of chemical and biological methods to introduce backbone modifications into the polypeptide chains of proteins, there have been a growing number of site-directed mutagenesis experiments focused on understanding the role of the polypeptide backbone in protein folding and function. The substitution of a main chain amide bond with an ester bond is now a popular mutation to investigate the role of the polypeptide backbone in ligand, binding, enzyme catalysis, and protein folding. Here we review the results of studies on some 25 ester-bond containing analogues from nine different protein systems. The structural, thermodynamic, and functional consequences of introducing backbone amide- to ester-bond mutations into these protein systems are discussed.
Collapse
Affiliation(s)
- Xiaoye Yang
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | | | | |
Collapse
|
21
|
Cieplak AS, Sürmeli NB. Single-site mutation and secondary structure stability: an isodesmic reaction approach. The case of unnatural amino acid mutagenesis Ala-->Lac. J Org Chem 2004; 69:3250-61. [PMID: 15132529 DOI: 10.1021/jo0358372] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A method is described to evaluate backbone interactions in proteins via computational unnatural amino acid mutagenesis. Several N-acetyl polyalanyl amides (AcA(n)NH(2)) were optimized in the representative helical (3(10)-, 4(13)-, and a "hybrid" kappa-helix, n = 7, 9, 10, 14) and hairpin (two- and three-stranded antiparallel beta-sheets with type I turns betaalphaalphaepsilon, n = 6, 9, 10) conformations, and extended conformers of N-acetyl polyalanyl methylamides (n = 2, 3) were used to derive multistranded beta-sheet fragments. Subsequently, each residue of every model structure was substituted, one at a time, with l-lactic acid. The resulting mutant structures were again optimized, and group-transfer energies DeltaE(GT) were obtained as heats of the isodesmic reactions: AcA(n)NHR + AcOMe --> AcA(x)LacA(y)NHR + AcNHMe (R = H, CH(3)). These group-transfer energies correlate with the degree of charge polarization of the substituted peptide linkages as measured by the difference Deltae in H and O Mulliken populations in HN-C=O and with the H-bond distances in the "wild-type" structures. A good correlation obtains for the HF/3-21G and B3LYP/6-31G* group-transfer energies. The destabilization effects are interpreted in terms of loss of interstrand and intrastrand H-bonds, decrease in Lewis basicity of the C=O group, and O...O repulsion. On the basis of several comparisons of Ala --> Lac DeltaE(GT)'s with heats of the NH --> CH(2) substitutions, the latter contribution is estimated (B3LYP/6-31G*) to range between 1.5 and 2.4 kcal mol(-1), a figure close to the recent experimental DeltaDeltaG(o) value of 2.6 kcal mol(-1) (McComas, C. C.; Crowley, B. M.; Boger, D. L. J. Am.Chem. Soc. 2003, 125, 9314). The partitioning yields the following maximum values of the electronic association energy of H-bonds in the examined sample of model structures (B3LYP/6-31G* estimates): 3(10)-helix D(e) = -1.7 kcal mol(-1), alpha-helix D(e) = -3.8 kcal mol(-1), beta-sheet D(e) = -6.1 kcal mol(-1). The premise of experimental evaluations of the backbone-backbone H-bonding that Ala --> Lac substitution in proteins is isosteric (e.g., Koh, J. T.; Cornish, V. W.; Schultz, P. G. Biochemistry 1997, 36, 11314) is often but not always corroborated. Examination of the integrity of H-bonding pattern and phi(i), psi(i) distribution identified several mutants with significant distortions of the "wild-type" structure resulting inter alia from the transitions between i, i + 3 and i, i + 4 H-bonding in helices, observed previously in the crystallographic studies of depsipeptides (Ohyama, T.; Oku, H.; Hiroki, A.; Maekawa, Y.; Yoshida, M.; Katakai, R. Biopolymers 2000, 54, 375; Karle, I. L.; Das, C.; Balaram, P. Biopolymers 2001, 59, 276). Thus, the isodesmic reaction approach provides a simple way to gauge how conformation of the polypeptide chain and dimensions of the H-bonding network affect the strength of backbone-backbone C=O...HN bonds. The results indicate that the stabilization provided by such interactions increases on going from 3(10)-helix to alpha-helix to beta-sheet.
Collapse
|
22
|
Wu Z, Alexandratos J, Ericksen B, Lubkowski J, Gallo RC, Lu W. Total chemical synthesis of N-myristoylated HIV-1 matrix protein p17: structural and mechanistic implications of p17 myristoylation. Proc Natl Acad Sci U S A 2004; 101:11587-92. [PMID: 15280532 PMCID: PMC511025 DOI: 10.1073/pnas.0404649101] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The HIV-1 matrix protein p17, excised proteolytically from the N terminus of the Gag polyprotein, forms a protective shell attached to the inner surface of the plasma membrane of the virus. During the late stages of the HIV-1 replication cycle, the N-terminally myristoylated p17 domain targets the Gag polyprotein to the host-cell membrane for particle assembly. In the early stages of HIV-1 replication, however, some p17 molecules dissociate from the viral membrane to direct the preintegration complex to the host-cell nucleus. These two opposing targeting functions of p17 require that the protein be capable of reversible membrane interaction. It is postulated that a significant structural change in p17 triggered by proteolytic cleavage of the Gag polyprotein sequesters the N-terminal myristoyl group, resulting in a weaker membrane binding by the matrix protein than the Gag precursor. To test this "myristoyl switch" hypothesis, we obtained highly purified synthetic HIV-1 p17 of 131 amino acid residues and its N-myristoylated form in large quantity. Both forms of p17 were characterized by circular dichroism spectroscopy, protein chemical denaturation, and analytical centrifugal sedimentation. Our results indicate that although N-myristoylation causes no spectroscopically discernible conformational change in p17, it stabilizes the protein by 1 kcal/mol and promotes protein trimerization in solution. These findings support the premise that the myristoyl switch in p17 is triggered not by a structural change associated with proteolysis, but rather by the destabilization of oligomeric structures of membrane-bound p17 in the absence of downstream Gag subdomains.
Collapse
Affiliation(s)
- Zhibin Wu
- Institute of Human Virology, University of Maryland Biotechnology Institute, and School of Medicine, University of Maryland, 725 West Lombard Street, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
23
|
Liu ZX, Fei H, Chi CW. Two engineered eglin c mutants potently and selectively inhibiting kexin or furin. FEBS Lett 2003; 556:116-20. [PMID: 14706837 DOI: 10.1016/s0014-5793(03)01393-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Eglin c with mutants L45R and D42R at the P(1) and P(4) positions has been reported to become a stable inhibitor toward the proprotein convertases (PC), furin and kexin, with a K(i) of 2.3x10(-8) and 1.3x10(-10) M, respectively. The mutant was further engineered at the P(2)'-P(4)' positions to create a more potent and selective inhibitor for each enzyme. The residue Asp at P(1)' which is crucial for stabilizing the conformation of eglin c remained unchanged. The eglin c mutants cloned into the vector pGEX-2T and expressed in Escherichia coli (DH5alpha) were purified to homogeneity, and their inhibitory activities toward the purified recombinant furin and kexin were examined. The results showed that (1) Leu47 at P(2)' replaced with either a positively or negatively charged residue resulted in a decrease in inhibitory activities to both enzymes; (2) the replacement of Arg with Asp at P(3)' was favorable for inhibiting furin with a K(i) of 7.8 x 10(-9) M, but not for inhibiting kexin; (3) the replacement of Tyr with Glu at P(4)' increased the inhibitory activity to kexin with a K(i) of 3 x 10(-11) M, but was almost without any influence on furin inhibition. It was indicated that the inhibitory specificity of eglin c could be changed from inhibiting elastase to inhibiting PCs by site-directed mutation at the P positions, while the inhibitory selectivity to furin or kexin could be optimized by mutation at the P' positions.
Collapse
Affiliation(s)
- Zhi-xue Liu
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academic of Science, 200031, Shanghai, PR China
| | | | | |
Collapse
|
24
|
Hanson WM, Beeser SA, Oas TG, Goldenberg DP. Identification of a Residue Critical for Maintaining the Functional Conformation of BPTI. J Mol Biol 2003; 333:425-41. [PMID: 14529627 DOI: 10.1016/j.jmb.2003.08.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effects of amino acid replacements on the backbone dynamics of bovine pancreatic trypsin inhibitor (BPTI) were examined using 15N NMR relaxation experiments. Previous studies have shown that backbone amide groups within the trypsin-binding region of the wild-type protein undergo conformational exchange processes on the micros time scale, and that replacement of Tyr35 with Gly greatly increases the number of backbone atoms involved in such motions. In order to determine whether these mutational effects are specific to the replacement of this residue with Gly, six additional replacements were examined in the present study. In two of these, Tyr35 was replaced with either Ala or Leu, and the other four were single replacements of Tyr23, Phe33, Asn43 or Asn44, all of which are highly buried in the native structure and conserved in homologous proteins. The Y35A and Y35L mutants displayed dynamic properties very similar to those of the Y35G mutant, with the backbone segments including residues 10-19 and 32-44 undergoing motions revealed by enhanced 15N transverse relaxation rates. On the other hand, the Y23L, N43G and N44A substitutions caused almost no detectable changes in backbone dynamics, on either the ns-ps or ms-micros time scales, even though each of these replacements significantly destabilizes the native conformation. Replacement of Phe33 with Leu caused intermediate effects, with several residues that have previously been implicated in motions in the wild-type protein displaying enhanced transverse relaxation rates. These results demonstrate that destabilizing amino acid replacements can be accommodated in a native protein with dramatically different effects on conformational dynamics and that Tyr35 plays a particularly important role in defining the conformation of the trypsin-binding site of BPTI.
Collapse
Affiliation(s)
- W Miachel Hanson
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA
| | | | | | | |
Collapse
|
25
|
Radisky ES, Koshland DE. A clogged gutter mechanism for protease inhibitors. Proc Natl Acad Sci U S A 2002; 99:10316-21. [PMID: 12142461 PMCID: PMC124911 DOI: 10.1073/pnas.112332899] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2002] [Indexed: 11/18/2022] Open
Abstract
A classical peptide inhibitor of serine proteases that is hydrolyzed approximately 10(7) times more slowly than a good substrate is shown to form an acyl-enzyme intermediate rapidly. Despite this quick first step, further reaction is slowed dramatically because of tight and oriented binding of the cleaved peptide, preventing acyl-enzyme hydrolysis and favoring the reverse reaction. Moreover, this mechanism appears to be common to a large class of tight-binding serine protease inhibitors that mimic good substrates. The arrest of enzymatic reaction at the intermediate stage allowed us to determine that the consensus nucleophilic attack angle is close to 90 degrees in the reactive Michaelis complexes.
Collapse
Affiliation(s)
- Evette S Radisky
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
26
|
Karle IL, Das C, Balaram P. Effects of hydrogen-bond deletion on peptide helices: structural characterization of depsipeptides containing lactic acid. Biopolymers 2001; 59:276-89. [PMID: 11473352 DOI: 10.1002/1097-0282(20011005)59:4<276::aid-bip1024>3.0.co;2-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The insertion of alpha-hydroxy acids into peptide chains provides a convenient means for investigating the effects of hydrogen bond deletion on polypeptide secondary structures. The crystal structures of three oligopeptides containing L-lactic acid (Lac) residue have been determined. Peptide 1, Boc-Val-Ala-Leu-Aib-Val-Lac-Leu-Aib-Val-Ala-Leu-OMe (Boc: tert-butyloxycarbonyl; Aib: alpha- aminoisobutyric acid; OMe: methyl ester), and peptide 2, Boc-Val-Ala-Leu-Aib-Val-Lac-Leu-Aib-Val-Leu-OMe, adopt completely helical conformations in the crystalline state with the Lac(6) residue comfortably accommodated in the center of a helix. The distance between the O atoms of Leu(3) CO group and the Lac(6) O (ester) in both the structures is 3.1-3.3 A. The NMR and CD studies of peptide 1 and its all-amide analogue 4, Boc-Val-Ala-Leu-Aib-Val-Ala-Leu-Aib-Val-Ala-Leu-OMe, provide firm evidence for a continuous helical conformation in solution in both the cases. In a 14-residue peptide 3, Boc-Val-Ala-Leu-Aib-Val-Ala-Leu-Val-Ala-Leu-Aib-Val-Lac-Leu-OMe, residues Val(1)-Leu(10) adopt a helical conformation. Aib(11) is the site of chiral reversal resulting in helix termination by formation of a Schellman motif. Residues 12-14 adopt nonhelical conformations. The loss of the hydrogen bond near the C-terminus appears to facilitate the chiral reversal at Aib(11). Published 2001 John Wiley & Sons, Inc. Biopolymers 59: 276-289, 2001
Collapse
Affiliation(s)
- I L Karle
- Laboratory for the Structure of Matter, Naval Research Laboratory, Washington, DC, 20375-5341, USA
| | | | | |
Collapse
|
27
|
Abstract
We have compiled a comprehensive list of the articles published in the year 2000 that describe work employing commercial optical biosensors. Selected reviews of interest for the general biosensor user are highlighted. Emerging applications in areas of drug discovery, clinical support, food and environment monitoring, and cell membrane biology are emphasized. In addition, the experimental design and data processing steps necessary to achieve high-quality biosensor data are described and examples of well-performed kinetic analysis are provided.
Collapse
Affiliation(s)
- R L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
28
|
Beligere GS, Dawson PE. Design, Synthesis, and Characterization of 4-Ester CI2, a Model for Backbone Hydrogen Bonding in Protein α-Helices. J Am Chem Soc 2000. [DOI: 10.1021/ja001648e] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gangamani S. Beligere
- Contribution from the Departments of Cell Biology and Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Philip E. Dawson
- Contribution from the Departments of Cell Biology and Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
29
|
Dwyer MA, Lu W, Dwyer JJ, Kossiakoff AA. Biosynthetic phage display: a novel protein engineering tool combining chemical and genetic diversity. CHEMISTRY & BIOLOGY 2000; 7:263-74. [PMID: 10780926 DOI: 10.1016/s1074-5521(00)00102-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Molecular diversity in nature is developed through a combination of genetic and chemical elements. We have developed a method that permits selective manipulation of both these elements in one protein engineering tool. It combines the ability to introduce non-natural amino acids into a protein using native chemical ligation with exhaustive targeted mutagenesis of the protein via phage-display mutagenesis. RESULTS A fully functional biosynthetic version of the protease inhibitor eglin c was constructed. The amino-terminal fragment (residues 8-40) was chemically synthesized with a non-natural amino acid at position 25. The remaining carboxy-terminal fragment was expressed as a 30-residue peptide extension of gIIIp or gVIIIp on filamentous phage in a phage-display mutagenesis format. Native chemical ligation was used to couple the two fragments and produced a protein that refolded to its active form. To facilitate the packing of the introduced non-natural amino acid, residues 52 and 54 in the carboxy-terminal fragment were fully randomized by phage-display mutagenesis. Although the majority of the observed solutions for residues 52 and 54 were hydrophobic - complementing the stereochemistry of the introduced non-natural amino acid - a significant number of residues (unexpected because of stereochemical and charge criteria) were observed in these positions. CONCLUSIONS Peptide synthesis and phage-display mutagenesis can be combined to produce a very powerful protein engineering tool. The physical properties of the environment surrounding the introduced non-natural residue can be selected for by evaluating all possible combinations of amino acid types at a targeted set of sites using phage-display mutagenesis.
Collapse
Affiliation(s)
- M A Dwyer
- Department of Biochemistry and Molecular Biology, University of Chicago, IL 60637, USA
| | | | | | | |
Collapse
|