1
|
Ye A, Mei H, Zhang Z, Song F, Jiang L, Huang T, Li P, Du S, Feng Y, Jiang T, Wu F, Cheng L, Qu J, Xiao J. Corneal first aid lens: Collagen-based hydrogels loading aFGF as contact lens for treating corneal injuries. J Control Release 2025; 379:251-265. [PMID: 39800237 DOI: 10.1016/j.jconrel.2025.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/26/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Severe corneal injuries can cause visual impairment even blindness. Surgically stitching or implanting biomaterials have been developed, but their implementation requires professional surgeons, failing to address the immediate need of medical treatment. The pressing challenge lies in developing multifunctional biomaterials that enable self-management of corneal injuries. This study introduces collagen-based hydrogels that can be used as contact lenses, incorporating macromolecular collagen into common polymer materials via a dual-step orthogonal cross-linking process. This method ensures superior optical and mechanical performance while preserving the bioactivity and structural stability of the incorporated materials. Specialized contact lens facilitates the controlled release of labile protein therapeutics such as acidic fibroblast growth factor (aFGF), eliminating the need for stabilizers like heparin. This capability allows the lens to deliver a wide range of labile proteins, thus expanding its therapeutic use across various ophthalmic and potentially other medical conditions. The lens's anti-inflammatory and anti-fibrotic properties effectively treat corneal alkali burn. Termed 'corneal first-aids lens', it can provide postoperative clinical care and serve as a viable and safe therapeutic alternative for patients with limited medical access.
Collapse
Affiliation(s)
- Anqi Ye
- Laboratory of Translational Medicine, Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Cixi Biomedical Research Institute, School of Pharmaceutical Sciences, Wenzhou Medical University, Ningbo, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), State Key Laboratory of Ophthalmology, Optometry and Visual Science and National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, China
| | - Hao Mei
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), State Key Laboratory of Ophthalmology, Optometry and Visual Science and National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, China
| | - Zheng Zhang
- Laboratory of Translational Medicine, Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Cixi Biomedical Research Institute, School of Pharmaceutical Sciences, Wenzhou Medical University, Ningbo, China
| | - Fuqiang Song
- Laboratory of Translational Medicine, Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Cixi Biomedical Research Institute, School of Pharmaceutical Sciences, Wenzhou Medical University, Ningbo, China
| | - Linyuan Jiang
- Laboratory of Translational Medicine, Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Cixi Biomedical Research Institute, School of Pharmaceutical Sciences, Wenzhou Medical University, Ningbo, China
| | - Ting Huang
- Laboratory of Translational Medicine, Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Cixi Biomedical Research Institute, School of Pharmaceutical Sciences, Wenzhou Medical University, Ningbo, China
| | - Ping Li
- Laboratory of Translational Medicine, Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Cixi Biomedical Research Institute, School of Pharmaceutical Sciences, Wenzhou Medical University, Ningbo, China
| | - Siting Du
- Laboratory of Translational Medicine, Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Cixi Biomedical Research Institute, School of Pharmaceutical Sciences, Wenzhou Medical University, Ningbo, China
| | - Yanzhen Feng
- Laboratory of Translational Medicine, Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Cixi Biomedical Research Institute, School of Pharmaceutical Sciences, Wenzhou Medical University, Ningbo, China
| | - Tianyao Jiang
- Laboratory of Translational Medicine, Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Cixi Biomedical Research Institute, School of Pharmaceutical Sciences, Wenzhou Medical University, Ningbo, China
| | - Fenzan Wu
- Laboratory of Translational Medicine, Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China.
| | - Li Cheng
- Laboratory of Translational Medicine, Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China
| | - Jia Qu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), State Key Laboratory of Ophthalmology, Optometry and Visual Science and National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, China.
| | - Jian Xiao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Cixi Biomedical Research Institute, School of Pharmaceutical Sciences, Wenzhou Medical University, Ningbo, China.
| |
Collapse
|
2
|
Mohale M, Gundampati RK, Krishnaswamy Suresh Kumar T, Heyes CD. Site-specific labeling and functional efficiencies of human fibroblast growth Factor-1 with a range of fluorescent Dyes in the flexible N-Terminal region and a rigid β-turn region. Anal Biochem 2022; 640:114524. [PMID: 34933004 DOI: 10.1016/j.ab.2021.114524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/08/2021] [Indexed: 11/01/2022]
Abstract
Human fibroblast growth factor-1 (hFGF1) binding to its receptor and heparin play critical roles in cell proliferation, angiogenesis and wound healing but is also implicated in cancer. Fluorescence imaging is a powerful approach to study such protein interactions, but it is not always obvious if the site chosen will be efficiently labeled, often relying on trial-and-error. To provide a more systematic approach towards an efficient site-specific labeling strategy, we labeled two structurally distinct regions of the protein - the flexible N-terminus and a rigid loop. Several dyes were chosen to cover the visible region and to investigate how the structure of the dye affects the labeling efficiency. Flexibility in either the protein labeling site or the dye structure was found to result in high labeling efficiency, but flexibility in both resulted in a significant decrease in labeling efficiency. Conversely, too much rigidity in both can result in dye-protein interactions that can aggregate the protein. Importantly, site-specifically labeling hFGF1 in these regions maintained biological activity. These results could be applicable to other proteins by considering the flexibility of both the protein labeling site and the dye structure.
Collapse
Affiliation(s)
- Mamello Mohale
- Department of Chemistry and Biochemistry, University of Arkansas, 345 N. Campus Drive, Fayetteville, AR, 72701, USA
| | - Ravi Kumar Gundampati
- Department of Chemistry and Biochemistry, University of Arkansas, 345 N. Campus Drive, Fayetteville, AR, 72701, USA
| | | | - Colin D Heyes
- Department of Chemistry and Biochemistry, University of Arkansas, 345 N. Campus Drive, Fayetteville, AR, 72701, USA.
| |
Collapse
|
3
|
Yu B, Sun W, Huang Z, Sun G, Li L, Gu J, Zheng M, Li X, Chun C, Hui Q, Wang X. Large-Scale Preparation of Highly Stable Recombinant Human Acidic Fibroblast Growth Factor in Escherichia coli BL21(DE3) plysS Strain. Front Bioeng Biotechnol 2021; 9:641505. [PMID: 33912546 PMCID: PMC8072344 DOI: 10.3389/fbioe.2021.641505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/24/2021] [Indexed: 12/02/2022] Open
Abstract
In this study, the optimum human aFGF gene encoding haFGF135 was cloned in pET3c and transferred to Escherichia coli BL21(DE3) plysS. To enhance the yield of fermentation and the expression level of the target protein, the fermentation parameters, including temperature, pH, dissolved oxygen, glucose concentration, ammonium chloride concentration, induction time, and inducer (IPTG) concentration, were optimized. The optimized fermentation parameters were used in large-scale fermentation (30 L). Ion-exchange and heparin-affinity column chromatography techniques were used for separation and purification of rhaFGF135 protein. HPLC, isoelectric focusing electrophoresis, and mass spectrometry were used to detect the purity, isoelectric point, and molecular weight and peptide map of rhaFGF135 protein, respectively. Mitogenic activity of rhaFGF135 protein was detected in NIH-3T3 cells and a full-thickness injury wound diabetic rat model. The production and expression level of rhaFGF135 in the 30-L scale fermentation reached 80.4 ± 2.7 g/L culture and 37.8% ± 1.8%, respectively. The RP-HPLC and SDS-PAGE purity of the final rhaFGF135 product almost reached 100%, and the final pure protein yield was 158.6 ± 6.8 mg/L culture. Finally, the cell and animal experiments showed that rhaFGF135 retained a potent mitogenic activity. The large-scale process of rhaFGF135 production reported herein is relatively stable and time-saving, and thus, it can be used as an efficient and economic strategy for the synthesis of rhaFGF135 at the industrial level.
Collapse
Affiliation(s)
- Bingjieu Yu
- Wenzhou Medical University, Chashan University Park, Wenzhou, China
| | - Wenzhe Sun
- Wenzhou Medical University, Chashan University Park, Wenzhou, China
| | - Zhen Huang
- Wenzhou Medical University, Chashan University Park, Wenzhou, China
| | - Gang Sun
- Wenzhou Medical University, Chashan University Park, Wenzhou, China
| | - Le Li
- Wenzhou Medical University, Chashan University Park, Wenzhou, China
| | - Jiawei Gu
- Wenzhou Medical University, Chashan University Park, Wenzhou, China
| | - Mengying Zheng
- Wenzhou Medical University, Chashan University Park, Wenzhou, China
| | - Xiaokun Li
- Wenzhou Medical University, Chashan University Park, Wenzhou, China.,Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, China
| | - ChangJu Chun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, South Korea
| | - Qi Hui
- Wenzhou Medical University, Chashan University Park, Wenzhou, China.,Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, China
| | - Xiaojie Wang
- Wenzhou Medical University, Chashan University Park, Wenzhou, China.,Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, China
| |
Collapse
|
4
|
Expression of biologically recombinant human acidic fibroblast growth factor in Arabidopsis thaliana seeds via oleosin fusion technology. Gene 2015; 566:89-94. [PMID: 25889272 DOI: 10.1016/j.gene.2015.04.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 04/01/2015] [Accepted: 04/12/2015] [Indexed: 11/20/2022]
Abstract
The potential of oleosins to act as carriers for recombinant foreign proteins in plant cells has been established. Using the oleosin fusion technology, the protein can be targeted to oil bodies in oilseeds by fusing it to the N- or C-terminus of oleosin. In this study, aFGF was expressed in Arabidopsis thaliana seeds via oleosin fusion technology. A plant-preferred aFGF gene was synthesized by optimizing codon usage and was fused to the C-terminus of the A. thaliana 18.5kDa oleosin gene. The fusion gene was driven by the phaseolin promoter to confer seed-specific expression of the human acidic fibroblast growth factor in A. thaliana. The T-DNA region of the recombinant plasmid pKO-aFGF was introduced into the genome of Arabidopsis thaliana by the floral dip method. The aFGF protein expression was confirmed by SDS-PAGE and western blotting. The biological activity showed that oil bodies fused to aFGF stimulated NIH/3T3 cell proliferation activity.
Collapse
|
5
|
Wang Y, Wang H, Ren L, Weng Q, Bao Y, Tian H, Yang YG, Li X. Non-mitogenic form of acidic fibroblast growth factor protects against graft-versus-host disease without accelerating leukemia. Int Immunopharmacol 2014; 23:395-9. [PMID: 25239811 DOI: 10.1016/j.intimp.2014.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 08/13/2014] [Accepted: 09/05/2014] [Indexed: 10/24/2022]
Abstract
Acid fibroblast growth factor (aFGF) has been shown to prevent epithelial damage under various conditions, suggesting its potential to inhibit GVHD. However, because aFGF receptors are expressed on tumor cells, it may possibly offset the graft-vs.-tumor (GVT) effects of allogeneic bone marrow transplantation (allo-BMT). Here, we addressed these questions in a B6→B6D2F1 allo-BMT model. Although aFGF administration attenuated GVHD in non-leukemic recipients, aFGF treatment markedly accelerated death in mice that received recipient-type tumor (P815) cells along with allo- or syngeneic-BMT. Similar protection against GVHD was achieved by administration of a non-mitogenic form of aFGF (naFGF). Importantly, GVT effects were fully preserved in naFGF-treated recipients. Furthermore, aFGF, but not naFGF, significantly enhanced P815 cell proliferation both in vitro and in vivo. Our data indicate that the tumor-promoting, but not GVHD-protecting, effect of aFGF largely depends on its mitogenic activity, and suggest that naFGF may provide a safer approach to inhibiting GVHD in patients with malignancies.
Collapse
Affiliation(s)
- Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China; Transplantation Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Hui Wang
- Transplantation Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA
| | - Luqing Ren
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Qiaoyou Weng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Yuyan Bao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Haishan Tian
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Yong-Guang Yang
- Transplantation Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA; First Hospital of Jilin University, Changchun, PR China.
| | - Xiaokun Li
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China.
| |
Collapse
|
6
|
Xu R, Ori A, Rudd TR, Uniewicz KA, Ahmed YA, Guimond SE, Skidmore MA, Siligardi G, Yates EA, Fernig DG. Diversification of the structural determinants of fibroblast growth factor-heparin interactions: implications for binding specificity. J Biol Chem 2012; 287:40061-73. [PMID: 23019343 DOI: 10.1074/jbc.m112.398826] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The functions of a large number (>435) of extracellular regulatory proteins are controlled by their interactions with heparan sulfate (HS). In the case of fibroblast growth factors (FGFs), HS binding determines their transport between cells and is required for the assembly of high affinity signaling complexes with their cognate FGF receptor. However, the specificity of the interaction of FGFs with HS is still debated. Here, we use a panel of FGFs (FGF-1, FGF-2, FGF-7, FGF-9, FGF-18, and FGF-21) spanning five FGF subfamilies to probe their specificities for HS at different levels as follows: binding parameters, identification of heparin-binding sites (HBSs) in the FGFs, changes in their secondary structure caused by heparin binding and structures in the sugar required for binding. For interaction with heparin, the FGFs exhibit K(D) values varying between 38 nM (FGF-18) and 620 nM (FGF-9) and association rate constants spanning over 20-fold (FGF-1, 2,900,000 M(-1) s(-1) and FGF-9, 130,000 M(-1) s(-1)). The canonical HBS in FGF-1, FGF-2, FGF-7, FGF-9, and FGF-18 differs in its size, and these FGFs have a different complement of secondary HBS, ranging from none (FGF-9) to two (FGF-1). Differential scanning fluorimetry identified clear preferences in these FGFs for distinct structural features in the polysaccharide. These data suggest that the differences in heparin-binding sites in both the protein and the sugar are greatest between subfamilies and may be more restricted within a FGF subfamily in accord with the known conservation of function within FGF subfamilies.
Collapse
Affiliation(s)
- Ruoyan Xu
- Institute of Integrative Biology, Department of Chemical and Structural Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Mohan SK, Rani SG, Chiu IM, Yu C. WITHDRAWN: Interaction of FGF1 with a novel anti-angiogenic drug SSR128129E. Arch Biochem Biophys 2012:S0003-9861(12)00231-7. [PMID: 22683470 DOI: 10.1016/j.abb.2012.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/16/2012] [Accepted: 05/25/2012] [Indexed: 11/18/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Sepuru K Mohan
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | |
Collapse
|
8
|
Zhou Y, Ren L, Zhu J, Yan S, Wang H, Song N, Li L, Ouyang H, Pang D. Construction of a recombinant human FGF1 expression vector for mammary gland-specific expression in human breast cancer cells. Mol Cell Biochem 2011; 354:39-46. [PMID: 21461910 DOI: 10.1007/s11010-011-0803-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 03/24/2011] [Indexed: 11/24/2022]
Abstract
Human Fibroblast growth factor 1 (FGF1) has been recognized as a valuable protein drug for the treatment of many diseases because of its multiple functions in regulating a variety of biological processes involved in embryonic development, cell growth and differentiation, morphogenesis, tissue repair, and others. The aim of this study was to develop an FGF1 mammary gland-specific expression vector to produce FGF1 on a large scale from transgenic cows to meet the demand for FGF1 in medical use. In this study, we generated an FGF1 mammary gland-specific expression vector and validated its function in human MCF-7 cells. This vector was shown to successfully express functional FGF1, thus potentially enabling the generation of transgenic cows to be used as mammary gland bioreactors.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Animal Biotechnology, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, 130062 Jilin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Feito MJ, Jiménez M, Fernández-Cabrera C, Rivas G, Giménez-Gallego G, Lozano RM. Strategy for fluorescent labeling of human acidic fibroblast growth factor without impairment of mitogenic activity: A bona fide tracer. Anal Biochem 2011; 411:1-9. [DOI: 10.1016/j.ab.2010.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 12/17/2010] [Accepted: 12/17/2010] [Indexed: 10/18/2022]
|
10
|
FGF1 nuclear translocation is required for both its neurotrophic activity and its p53-dependent apoptosis protection. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1719-27. [DOI: 10.1016/j.bbamcr.2009.09.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 09/04/2009] [Accepted: 09/10/2009] [Indexed: 12/29/2022]
|
11
|
Protective effects of mutant of acidic fibroblast growth factor against cerebral ischaemia-reperfusion injury in rats. Injury 2009; 40:963-7. [PMID: 19497570 DOI: 10.1016/j.injury.2009.01.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 01/13/2009] [Accepted: 01/14/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the protective effect of a mutant of acidic fibroblast growth factor (MaFGF) against cerebral ischaemia-reperfusion injury in rats. METHODS Sixty male Sprague-Dawley rats were randomly divided into six groups as follows: sham-operated group, untreated group, 20microg/kg, 40microg/kg and 80microg/kg MaFGF-treated groups and also the positive control group. Cerebral ischaemia-reperfusion injury was induced by middle cerebral artery occlusion (MCAO) for 2h followed by reperfusion for 24h. Different dose of MaFGF were infused intravenously at 1h after middle cerebral artery (MCA) occlusion. Nimodipine was used as positive control. The behaviour deficit score, brain-infarcted area, brain oedema degree, malondialdehyde (MDA) content and superoxide dismutase (SOD) activity were detected at 24h after reperfusion. RESULTS The results showed that MaFGF at the dose of 20microg/kg, 40microg/kg and 80microg/kg significantly alleviated brain injury. Compared to untreated group, the behaviour deficits were much less severe, the brain oedema alleviated obviously, the MDA contents decreased and SOD activity increased dramatically in MaFGF-treated groups respectively. The efficacy of MaFGF was similar to that of nimodipine. CONCLUSION The results demonstrate that MaFGF has neuroprotective effect against brain injury resulting from focal ischaemia-reperfusion in Sprague-Dawley rats.
Collapse
|
12
|
Xu H, Yang JN, Li XK, Zheng Q, Zhao W, Su ZJ, Huang YD. Retina protective effect of acidic fibroblast growth factor after canceling its mitogenic activity. J Ocul Pharmacol Ther 2008; 24:445-51. [PMID: 18788994 DOI: 10.1089/jop.2007.0092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE The aim of this study was to investigate the effect of mutant of acidic fibroblast growth factor (MaFGF) on N-methyl-N-nitrosourea (MNU)-induced retinal degeneration in Sprague-Dawley rats. METHODS Fifty (50)-day-old female Sprague-Dawley rats were given a single intraperitoneal injection of normal saline (NS) or 60 mg x kg(-1) body weight of MNU, and then NS or different doses of MaFGF were injected intravitreally twice at 0 and 12 h after NS or MNU treatment. After NS or MNU treatment for different times, the apoptotic index of the photoreceptor cell was detected by TUNEL labeling, whereas the mRNA expressions and the protein levels of antiapoptotic Bcl-2 and proapoptotic Bax were determined by reverse transcriptase polymerase chain reaction and Western blotting, respectively. Retinal damage was evaluated based on retinal thickness. RESULTS MNU-induced retinal damage was partially protected by MaFGF in a dose-independent manner in rats. MaFGF at doses of 1.25 and 2.5 microg could partially suppress photoreceptor cell loss, whereas MaFGF at a dose of 5.0 mug had no protective effect on photoreceptor cell. The apoptotic index at 24 h post-MNU in the peripheral retina was 38.1 +/- 3.6%, whereas 1.25 and 2.5 mug MaFGF markedly reduced it to 27.5 +/- 2.0 and 21.1 +/- 1.9% (P = <0.001), respectively. As compared with the MNU-treated group, MaFGF significantly upregulated the expression of Bcl-2 mRNA and protein and downregulated the expression of Bax mRNA and protein (P = <0.001). CONCLUSION MaFGF could counteract MNU-induced retinal damage and may be a therapeutic agent for the treatment of retinal degeneration.
Collapse
Affiliation(s)
- Hua Xu
- Pharmacy College, Jinan University, Guangzhou, China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Huang Y, Rao Y, Feng C, Li Y, Wu X, Su Z, Xiao J, Xiao Y, Feng W, Li X. High-level expression and purification of Tat-haFGF19-154. Appl Microbiol Biotechnol 2007; 77:1015-22. [PMID: 18000664 DOI: 10.1007/s00253-007-1249-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 09/26/2007] [Accepted: 10/10/2007] [Indexed: 10/22/2022]
Abstract
Human acidic fibroblast growth factor (haFGF) stimulates repair and regeneration of central and peripheral nerves after various injuries. However, it is unable to cross the blood-brain barrier (BBB). To produce a therapeutic haFGF with cell-permeable activity, we fused the haFGF(19-154) gene with Tat-PTD. After its construction by a single-step insertion of a polymerase chain reaction (PCR)-amplified coding sequence, the vector pTat-haFGF(19-154)-His was expressed in Escherichia coli BL21 (DE3) cells. The optimal expression level of the soluble fusion protein was up to 36.7% of the total cellular protein. The recombinant Tat-haFGF(19-154)-His was purified by a combination of Ni-NTA affinity, Sephadex G-25, and heparin affinity chromatography to 95% as detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The final yield was 171 mg/l culture. Purified Tat-haFGF(19-154)-His had distinct mitogenic activity in Balb/c 3T3 cells, as measured by methylthiazoletetrazolium (MTT) assay and its ED(50) was 3.931 x 10(-4) micromol/l. Tat-haFGF(19-154)-His protein intravenously injected at the dose of 10 mg/kg could be detected in the pallium and hippocampi.
Collapse
Affiliation(s)
- Yadong Huang
- Biopharmaceutical Research & Development Center, Jinan University College of Pharmacy, Guangzhou, Guangdong, 510632, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Xu H, Hai GF, Xiang JZ, Yao CC, Zheng Q, Zhang QH, Hong H. Protective effect of non-mitogenic human acidic fibroblast growth factor on hepatocyte injury. Hepatol Res 2007; 37:836-44. [PMID: 17573954 DOI: 10.1111/j.1872-034x.2007.00131.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIM To study whether non-mitogenic human acidic fibroblast growth factor (nm-haFGF) has protective effects on H(2)O(2)-induced hepatocyte injury in vitro and CCl(4)-induced hepatocyte injury in vivo. METHODS (i) HL-7702 hepatocytes were incubated with different concentrations of nm-haFGF for 12 h, and then the activity of lactate dehydrogenase (LDH) in culture medium was detected, and genomic DNA electrophoresis analysis was observed after being exposed to H(2)O(2) (8 mmol/L) for 4 h. Proximately, apoptotic rates and protein expressions of Bcl-2 and Bax of HL-7702 cell were detected after being exposed to H(2)O(2) (0.2 mmol/L) for 20 h. (ii) Being injected intraperitoneally with nm-haFGF, mice were treated with CCl(4) intraperitoneally to induce hepatic injury. Twenty-four hours later, serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were measured and histopathologic changes were evaluated. RESULTS (i) In vitro tests: LDH activities and apoptotic rates decreased, the protein expression of Bcl-2 increased and Baxdecreased in nm-haFGF-treated groups at the concentrations of 100 150 and 200 ng/mL, compared with that in the model control group, which was treated with H(2)O(2) alone. The genomic DNA remained nearly intact at the concentrations of 150 and 200 ng/mL. (ii) In vivo tests: serum ALT and AST in nm-haFGF-treated groups (10 mug/kg and 20 mug/kg) were much lower as compared to the model control group, which was treated with CCl(4) alone. Histological examination showed that nm-haFGF markedly ameliorated hepatocytes vacuolation, cloudy swelling and inflammatory cells infiltration induced by CCl(4). CONCLUSION nm-haFGF had protective effects against H(2)O(2)-induced hepatocyte injury in vitro and CCl(4)-induced acute liver injury in vivo.
Collapse
Affiliation(s)
- Hua Xu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, and Pharmacy College, Ji-nan University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Yoon H, Laxmikanthan G, Lee J, Blaber SI, Rodriguez A, Kogot JM, Scarisbrick IA, Blaber M. Activation profiles and regulatory cascades of the human kallikrein-related peptidases. J Biol Chem 2007; 282:31852-64. [PMID: 17823117 DOI: 10.1074/jbc.m705190200] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human kallikrein (KLK)-related peptidases are the largest family of serine peptidases, comprising 15 members (KLK1-15) and with the majority (KLK4-15) being identified only within the last decade. Members of this family are associated with important diseased states (including cancer, inflammation, and neurodegeneration) and have been utilized or proposed as clinically important biomarkers or therapeutic targets of interest. All human KLKs are synthesized as prepro-forms that are proteolytically processed to secreted pro-forms via the removal of an amino-terminal secretion signal peptide. The secreted inactive pro-KLKs are then activated extracellularly to mature peptidases by specific proteolytic release of their amino-terminal propeptide. Although a key step in the regulation of KLK function, details regarding the activation of the human pro-KLKs (i.e. the KLK "activome") are unknown, to a significant extent, but have been postulated to involve "activation cascades" with other KLKs and endopeptidases. To characterize more completely the KLK activome, we have expressed from Escherichia coli individual KLK propeptides fused to the amino terminus of a soluble carrier protein. The ability of 12 different mature KLKs to process the 15 different pro-KLK peptide sequences has been determined. Various autolytic and cross-activation relationships identified using this system have subsequently been characterized using recombinant pro-KLK proteins. The results demonstrate the potential for extensive KLK activation cascades and, when combined with available data for the tissue-specific expression of the KLK family, permit the construction of specific regulatory cascades. One such tissue-specific cascade is proposed for the central nervous system.
Collapse
Affiliation(s)
- Hyesook Yoon
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida 32306-4300, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Rajalingam D, Graziani I, Prudovsky I, Yu C, Kumar TKS. Relevance of partially structured states in the non-classical secretion of acidic fibroblast growth factor. Biochemistry 2007; 46:9225-38. [PMID: 17636870 PMCID: PMC3656169 DOI: 10.1021/bi7002586] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acidic fibroblast growth factor (aFGF) is a signal peptide-less protein that is secreted into the extracellular compartment as part of a multiprotein release complex, consisting of aFGF, S100A13 (a calcium binding protein), and a 40 kDa (p40) form of synaptotagmin (Syt1), a protein that participates in the docking of a variety of secretory vesicles. p40 Syt1, and specifically its C2A domain, is believed to play a major role in the non-classical secretion of the aFGF release complex mediated by the interaction of aFGF and p40 Syt1with the phospholipids of the cell membrane inner leaflet. In the present study, we investigate the structural characteristics of aFGF and the C2A domain of p40 Syt1 under acidic conditions, using a variety of biophysical techniques including multidimensional NMR spectroscopy. Urea-induced equilibrium unfolding (at pH 3.4) of both aFGF and the C2A domain are non-cooperative and proceed with the accumulation of stable intermediate states. 1-Anilino-8-napthalene sulfonate (ANS) binding and size-exclusion chromatography results suggest that both aFGF and the C2A domain exist as partially structured states under acidic conditions (pH 3.4). Limited trypsin digestion analysis and 1H-15N chemical shift perturbation data reveal that the flexibility of certain portions of the protein backbone is increased in the partially structured state(s) of aFGF. The residues that are perturbed in the partially structured state(s) in aFGF are mostly located at the N- and C-terminal ends of the protein. In marked contrast, most of the interactions stabilizing the native secondary structure are preserved in the partially structured state of the C2A domain. Isothermal titration calorimetry data indicate that the binding affinity between aFGF and the C2A domain is significantly enhanced at pH 3.4. In addition, both aFGF and the C2A domain exhibit much higher lipid binding affinity in their partially structured states. The translocation of the multiprotein FGF release complex across the membrane appears to be facilitated by the formation of partially structured states of aFGF and the C2A domain of p40 Syt1.
Collapse
Affiliation(s)
| | - Irene Graziani
- Department of Chemistry and Biochemistry, Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Igor Prudovsky
- Department of Chemistry and Biochemistry, Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Chin Yu
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701
- Department of Chemistry, National Tsing Hua University, Hsinchu 30043, Taiwan
- To whom correspondence should be addressed. Phone: 479-575-5646. Fax: 479-575-4049. (T.K.S.K.). Phone: 886-35-711082. Fax: 886-35-721524. cyu@ mx.nthu.edu.tw (C.Y.)
| | - Thallapuranam Krishnaswamy S. Kumar
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701
- To whom correspondence should be addressed. Phone: 479-575-5646. Fax: 479-575-4049. (T.K.S.K.). Phone: 886-35-711082. Fax: 886-35-721524. cyu@ mx.nthu.edu.tw (C.Y.)
| |
Collapse
|
17
|
Dubey VK, Lee J, Somasundaram T, Blaber S, Blaber M. Spackling the crack: stabilizing human fibroblast growth factor-1 by targeting the N and C terminus beta-strand interactions. J Mol Biol 2007; 371:256-68. [PMID: 17570396 DOI: 10.1016/j.jmb.2007.05.065] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 04/22/2007] [Accepted: 05/21/2007] [Indexed: 10/23/2022]
Abstract
The beta-trefoil protein human fibroblast growth factor-1 (FGF-1) is made up of a six-stranded antiparallel beta-barrel closed off on one end by three beta-hairpins, thus exhibiting a 3-fold axis of structural symmetry. The N and C terminus beta-strands hydrogen bond to each other and their interaction is postulated from both NMR and X-ray structure data to be important in folding and stability. Specific mutations within the adjacent N and C terminus beta-strands of FGF-1 are shown to provide a substantial increase in stability. This increase is largely correlated with an increased folding rate constant, and with a smaller but significant decrease in the unfolding rate constant. A series of stabilizing mutations are subsequently combined and result in a doubling of the DeltaG value of unfolding. When taken in the context of previous studies of stabilizing mutations, the results indicate that although FGF-1 is known for generally poor thermal stability, the beta-trefoil architecture appears capable of substantial thermal stability. Targeting stabilizing mutations within the N and C terminus beta-strand interactions of a beta-barrel architecture may be a generally useful approach to increase protein stability. Such stabilized mutations of FGF-1 are shown to exhibit significant increases in effective mitogenic potency, and may prove useful as "second generation" forms of FGF-1 for application in angiogenic therapy.
Collapse
Affiliation(s)
- Vikash Kumar Dubey
- Department of Biomedical Sciences, Florida State University, Tallahassee FL 32306, USA
| | | | | | | | | |
Collapse
|
18
|
Wu X, Liu X, Xiao Y, Huang Z, Xiao J, Lin S, Cai L, Feng W, Li X. Purification and modification by polyethylene glycol of a new human basic fibroblast growth factor mutant-hbFGF(Ser25,87,92). J Chromatogr A 2007; 1161:51-5. [PMID: 17307188 DOI: 10.1016/j.chroma.2007.01.135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 01/22/2007] [Accepted: 01/25/2007] [Indexed: 11/26/2022]
Abstract
The mutant of human basic fibroblast growth factor (hbFGF), hbFGF(Ser25,87,92), which was constructed by replacing the cysteine residues at the positions of the 25th, the 87th and the 92nd with serine residues, was coupled to polyethylene glycol (PEG) with a molecular size of 20 kDa (20K) (PEG(20K)) to obtain hbFGF derivative, PEG(20K)-hbFGF(Ser25,87,92). The optimal modified reaction was conducted at 12 degrees C for 12h with the molar ratio of PEG(20K) to hbFGF(Ser25,87,92) of 30:1. The result of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed that the modification rate was up to 60%. The PEGylated product retained binding affinity to heparin and could be purified by heparin affinity chromatography. Compared to hbFGF mutant, purified PEG(20K)-hbFGF(Ser25,87,92) retained about 34% of mitogenic activity. Heat-stability assay indicated that the modified product was more stable than the native protein at the temperature of 37 degrees C.
Collapse
Affiliation(s)
- Xiaoping Wu
- Chinese-American Research Institute for Diabetes Complications, School of Pharmacy, Wenzhou Medical College, Wenzhou 325035, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Fantoni A, Bill RM, Gustafsson L, Hedfalk K. Improved yields of full-length functional human FGF1 can be achieved using the methylotrophic yeast Pichia pastoris. Protein Expr Purif 2006; 52:31-9. [PMID: 17134911 DOI: 10.1016/j.pep.2006.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 09/21/2006] [Accepted: 10/18/2006] [Indexed: 11/25/2022]
Abstract
We have produced human fibroblast growth factor 1 (hFGF1) in the methylotrophic yeast Pichia pastoris in order to obtain the large amounts of active protein required for subsequent functional and structural characterization. Four constructs were made to examine both intracellular and secreted expression, with variations in the location of the His6 tag at either end of the peptide. hFGF1 could be produced from all four constructs in shake flasks, but production was optimized by growing only the highest-yielding of these strains, which produced hFGF1 intracellularly, under tightly controlled conditions in a 3 L fermentor. One hundred and eight milligrams of pure protein was achieved per liter culture (corresponding to 0.68 mg of protein per gram of wet cells), the function of which was verified using NIH 3T3 cell cultures. This is a 30-fold improvement over previously reported yields of full-length hFGF1.
Collapse
Affiliation(s)
- Adele Fantoni
- Magnetic Resonance Center (Centro di Risonanze Magnetiche), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | | | | | | |
Collapse
|
20
|
Canales A, Lozano R, López-Méndez B, Angulo J, Ojeda R, Nieto PM, Martín-Lomas M, Giménez-Gallego G, Jiménez-Barbero J. Solution NMR structure of a human FGF-1 monomer, activated by a hexasaccharide heparin-analogue. FEBS J 2006; 273:4716-27. [PMID: 16995857 DOI: 10.1111/j.1742-4658.2006.05474.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The 3D structure of a complex formed by the acidic fibroblast growth factor (FGF-1) and a specifically designed synthetic heparin hexasaccharide has been determined by NMR spectroscopy. This hexasaccharide can substitute natural heparins in FGF-1 mitogenesis assays, in spite of not inducing any apparent dimerization of the growth factor. The use of this well defined synthetic heparin analogue has allowed us to perform a detailed NMR structural analysis of the heparin-FGF interaction, overcoming the limitations of NMR to deal with the high molecular mass and heterogeneity of the FGF-1 oligomers formed in the presence of natural heparin fragments. Our results confirm that glycosaminoglycans induced FGF-1 dimerization either in a cis or trans disposition with respect to the heparin chain is not an absolute requirement for biological activity.
Collapse
|
21
|
Wu X, Li X, Zeng Y, Zheng Q, Wu S. Site-directed PEGylation of human basic fibroblast growth factor. Protein Expr Purif 2006; 48:24-7. [PMID: 16545577 DOI: 10.1016/j.pep.2006.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 01/30/2006] [Accepted: 02/02/2006] [Indexed: 12/01/2022]
Abstract
Through site-directed mutagenesis, three cysteines of human basic fibroblast growth factor (hbFGF) were replaced with serine residues, resulting in a hbFGF mutant named hbFGFSer25,69,92. The mutant with only one cysteine residue at the 87th position, whose mitogenic activity was comparable to that of wild-type hbFGF, was further coupled to polyethylene glycol with a molecular size of 5 kDa (PEG5K) via the cysteine residue to obtain another hbFGF derivative, PEG5K-hbFGFSer25,69,92. The optimal modification reaction was conducted at 4 degrees C for 4 h at a molar ratio of PEG5K to hbFGFSer25,69,92 of 20:1. The result of SDS-PAGE showed that the modification extent was up to 80%. The modified product was purified by ion exchange chromatography. Compared to the hbFGF mutant, the purified PEG5K-hbFGFSer25,69,92 still retained about 60% of the mitogenic activity of the former, which provided a good basis for further studying the bioactivity of the PEGylated protein in vivo.
Collapse
Affiliation(s)
- Xiaoping Wu
- Key Laboratory of Ministry of Education for Tissue Transplantation and Immunology, Jinan University, Guangzhou 510632, PR China
| | | | | | | | | |
Collapse
|
22
|
Wu X, Su Z, Li X, Zheng Q, Huang Y, Yuan H. High-level expression and purification of a nonmitogenic form of human acidic fibroblast growth factor in Escherichia coli. Protein Expr Purif 2005; 42:7-11. [PMID: 15882952 DOI: 10.1016/j.pep.2004.07.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 07/09/2004] [Accepted: 07/12/2004] [Indexed: 10/25/2022]
Abstract
To decrease the potential side effects of acidic fibroblast growth factor (aFGF) caused by its broad-spectrum mitogenic activity, a nonmitogenic form of aFGF (nhaFGF), which retained the cardio- and neuroprotective characters of the wild-type aFGF, was overexpressed in Escherichia coli. The expression level of nhaFGF was up to 25% of the total cellular protein. The expressed nhaFGF was purified by ionic exchange and heparin affinity chromatography from the supernatant of bacteria lysate. The mitogenic activity of the purified nhaFGF was decreased dramatically comparable to that of the wild-type aFGF (haFGF) detected by methylthiazoletetrazolium method. The purified recombinant nhaFGF was sufficiently prepared and sufficient for the following pharmacological study.
Collapse
Affiliation(s)
- Xiaoping Wu
- Biopharmaceutical Research and Development Center, Pharmacy College, Jinan University, Guangzhou, PR China.
| | | | | | | | | | | |
Collapse
|
23
|
Fu XB, Li XK, Wang T, Cheng B, Sheng ZY. Enhanced anti-apoptosis and gut epithelium protection function of acidic fibroblast growth factor after cancelling of its mitogenic activity. World J Gastroenterol 2004; 10:3590-6. [PMID: 15534912 PMCID: PMC4611998 DOI: 10.3748/wjg.v10.i24.3590] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: Mitogenic and non-mitogenic activities of fibroblast growth factor (FGF) are coupled to a range of biological functions, from cell proliferation and differentiation to the onset of many diseases. Recent reports have shown that acidic fibroblast growth factor (aFGF) has a powerful anti-apoptosis function, which may have potentially therapeutical effect on gut ischemia and reperfusion injuries. However, whether this function depends on its mitogenic or non-mitogenic activity remains unclear. In this study, we identified the source of its anti-apoptosis function with a mutant, aFGF28-154 and observed its effect on reducing gut ischemia and reperfusion injury.
METHODS: aFGF28-154 was generated by amplification of appropriate DNA fragments followed by subcloning the products into pET-3c vectors, then they were expressed in BL21 (DE3) cells and purified on an M2 agarose affinity column. This mutant aFGF28-154 maintained its non-mitogenic activity and lost its mitogenic activity. With a dexamethasone (DEX)-induced mouse thymocyte apoptosis model in vitro and in vivo, we studied the anti-apoptotic function of aFGF28-154. Also, in vivo study was performed to further confirm whether aFGF28-154 could significantly reduce apoptosis in gut epithelium after gut ischemia-reperfusion injury in rats. Based on these studies, the possible signal transduction pathways involved were studied.
RESULTS: With a dexamethasone (DEX)-induced mouse thymocyte apoptosis model in vitro and in vivo, we found that the anti-apoptotic function of aFGF28-154 was significantly enhanced when compared with the wild type aFGF. In vivo study further confirmed that aFGF28-154 significantly reduced apoptosis in gut epithelium after gut ischemia-reperfusion injury in rats. The mechanisms of anti-apoptosis function of aFGF28-154 did not depend on its mitogenic activity and were mainly associated with its non-mitogenic activities, including the intracellular calcium ion balance protection, ERK1/2 activation sustaining and cell cycle balance.
CONCLUSION: These findings emphasize the importance of non-mitogenic effects of aFGF, and have implications for its therapeutic use in preventing apoptosis and other injuries in tissues and internal organs triggered by ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Xiao-Bing Fu
- Wound Healing and Cell Biology Laboratory, Burns Institute, 304 Medical Department, General Hospital of PLA, Trauma Centre of Postgraduate Medical College, 51 Fucheng Road, Beijing 100037, China.
| | | | | | | | | |
Collapse
|
24
|
Prudovsky I, Mandinova A, Soldi R, Bagala C, Graziani I, Landriscina M, Tarantini F, Duarte M, Bellum S, Doherty H, Maciag T. The non-classical export routes: FGF1 and IL-1alpha point the way. J Cell Sci 2004; 116:4871-81. [PMID: 14625381 DOI: 10.1242/jcs.00872] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Non-classical protein release independent of the ER-Golgi pathway has been reported for an increasing number of proteins lacking an N-terminal signal sequence. The export of FGF1 and IL-1alpha, two pro-angiogenic polypeptides, provides two such examples. In both cases, export is based on the Cu2+-dependent formation of multiprotein complexes containing the S100A13 protein and might involve translocation of the protein across the membrane as a 'molten globule'. FGF1 and IL-1alpha are involved in pathological processes such as restenosis and tumor formation. Inhibition of their export by Cu2+ chelators is thus an effective strategy for treatment of several diseases.
Collapse
Affiliation(s)
- Igor Prudovsky
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, Maine 04074, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Fernández-Tornero C, Lozano RM, Redondo-Horcajo M, Gómez AM, López JC, Quesada E, Uriel C, Valverde S, Cuevas P, Romero A, Giménez-Gallego G. Leads for development of new naphthalenesulfonate derivatives with enhanced antiangiogenic activity: crystal structure of acidic fibroblast growth factor in complex with 5-amino-2-naphthalene sulfonate. J Biol Chem 2003; 278:21774-81. [PMID: 12676958 DOI: 10.1074/jbc.m212833200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Inhibition of angiogenesis-promoting factors such as fibroblast growth factors is considered to be a potential procedure for inhibiting solid tumor growth. Although several peptide-based inhibitors are currently under study, the development of antiangiogenic compounds of small molecular size is a pharmacological goal of considerable interest. We have already shown that certain naphthalene sulfonates constitute minimal functional substitutes of the antiangiogenic compounds of the suramin and suradista family. Using those data as a lead, we have carried out a rational search for new angiogenesis inhibitors that could provide new pharmacological insights for the development of antiangiogenic treatments. The results of the study strongly underline the relevance of the stereochemistry for an efficient inhibition of acidic fibroblast growth factor mitogenic activity by the naphthalene sulfonate family and allow us to formulate rules to aid in searching for new inhibitors and pharmaceutical developments. To provide further leads for such developments and acquire a detailed insight into the basis of the inhibitory activity of the naphthalene sulfonate derivatives, we solved the three-dimensional structure of acidic fibroblast growth factor complexed to 5-amino-2-naphthalenesulfonate, the most pharmacologically promising of the identified inhibitors. The structure shows that binding of this compound would hamper the interaction of acidic fibroblast growth factor with the different components of the cell membrane mitogenesis-triggering complex.
Collapse
Affiliation(s)
- Carlos Fernández-Tornero
- Departamento de Estructura y Función de Proteínas, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, C/Velázquez 144, 28006 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kim J, Blaber SI, Blaber M. Alternative type I and I' turn conformations in the beta8/beta9 beta-hairpin of human acidic fibroblast growth factor. Protein Sci 2002; 11:459-66. [PMID: 11847269 PMCID: PMC2373472 DOI: 10.1110/ps.43802] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Human acidic fibroblast growth factor (FGF-1) has a beta-trefoil structure, one of the fundamental protein superfolds. The X-ray crystal structures of wild-type and various mutant forms of FGF-1 have been solved in five different space groups: C2, C222(1), P2(1) (four molecules/asu), P2(1) (three molecules/asu), and P2(1)2(1)2(1). These structures reveal two characteristically different conformations for the beta8/beta9 beta-hairpin comprising residue positions 90-94. This region in the wild-type FGF-1 structure (P2(1), four molecules/asu), a his-tagged His93-->Gly mutant (P2(1), three molecules/asu) and a his-tagged Asn106-->Gly mutant (P2(1)2(1)2(1)) adopts a 3:5 beta-hairpin known as a type I (1-4) G1 beta-bulge (containing a type I turn). However, a his-tagged form of wild-type FGF-1 (C222(1)) and a his-tagged Leu44-->Phe mutant (C2) adopt a 3:3 beta-hairpin (containing a type I' turn) for this same region. A feature that distinguishes these two types of beta-hairpin structures is the number and location of side chain positions with eclipsed C(beta) and main-chain carbonyl oxygen groups (Psi is equivalent to +60 degrees). The effects of glycine mutations upon stability, at positions within the hairpin, have been used to identify the most likely structure in solution. Type I' turns in the structural data bank are quite rare, and a survey of these turns reveals that a large percentage exhibit crystal contacts within 3.0 A. This suggests that many of the type I' turns in X-ray structures may be adopted due to crystal packing effects.
Collapse
Affiliation(s)
- Jaewon Kim
- Institute of Molecular Biophysics and Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4380, USA
| | | | | |
Collapse
|
27
|
Lozano RM, Redondo-Horcajo M, Jimenez MA, Zilberberg L, Cuevas P, Bikfalvi A, Rico M, Giménez-Gallego G. Solution structure and interaction with basic and acidic fibroblast growth factor of a 3-kDa human platelet factor-4 fragment with antiangiogenic activity. J Biol Chem 2001; 276:35723-34. [PMID: 11423536 DOI: 10.1074/jbc.m101565200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Platelet factor-4 is a protein belonging to the family of ELR-negative CXC chemokines which binds to fibroblast growth factor and inhibits its mitogenic activity. Platelet factor-4 also inhibits tumor growth by mechanisms involving antiangiogenesis. Antiangiogenic activity in vitro has also been shown for the 24-residue C-terminal fragment of the protein, which decreases the affinity between basic fibroblast growth factor and its cell-surface receptor. In this study, the preferential conformation of this fragment in solution has been determined and has been found to be composed of two helical subdomains. In addition, we show that the fragment forms a specific 1:1 complex with acidic and basic fibroblast growth factors and that both subdomains are probably required for inhibition of fibroblast growth factor-driven mitogenesis. Finally, we show that the binding of the fragment alters the structure of the fibroblast growth factors, although some of such alterations do not seem related with the inhibition of mitogenic activity. Since this fragment has recently been shown to inhibit fibroblast growth factor-induced angiogenesis in vivo when injected intraperitoneally, these results are relevant for developing new antiangiogenic treatments.
Collapse
Affiliation(s)
- R M Lozano
- Centro de Investigaciones Biológicas, (CSIC) Velázquez 144, 28006 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Cuevas P, Carceller F, Giménez-Gallego G. Fibroblast growth factors in myocardial ischemia / reperfusion injury and ischemic preconditioning. J Cell Mol Med 2001; 5:132-42. [PMID: 12067496 PMCID: PMC6517810 DOI: 10.1111/j.1582-4934.2001.tb00146.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Angiogenic growth factors such as fibroblast growth factors (FGFs) are currently in clinical trials for accelerating blood vessel formation in myocardial and limb ischemic conditions. However, recent experimental evidence suggests that FGFs can also participate as endogenous cardioprotective agents. In this report, the current knowledge for FGFs implication in myocardial ischemic tolerance will be summarized. Pharmacologic preconditioning with drugs as FGFs that mimic the beneficial effects of ischemic preconditioning could lead to novel therapeutic approaches for the treatment of ischemic disorders including myocardial infarction and stroke.
Collapse
Affiliation(s)
- P Cuevas
- Department of Research, Ramón y Cajal Hospital, Madrid, Spain.
| | | | | |
Collapse
|
29
|
Samuel D, Kumar TK, Balamurugan K, Lin WY, Chin DH, Yu C. Structural events during the refolding of an all beta-sheet protein. J Biol Chem 2001; 276:4134-41. [PMID: 11038349 DOI: 10.1074/jbc.m005921200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The refolding kinetics of the 140-residue, all beta-sheet, human fibroblast growth factor (hFGF-1) is studied using a variety of biophysical techniques such as stopped-flow fluorescence, stopped-flow circular dichroism, and quenched-flow hydrogen exchange in conjunction with multidimensional NMR spectroscopy. Urea-induced unfolding of hFGF-1 under equilibrium conditions reveals that the protein folds via a two-state (native <--> unfolded) mechanism without the accumulation of stable intermediates. However, measurement of the unfolding and refolding rates in various concentrations of urea shows that the refolding of hFGF-1 proceeds through accumulation of kinetic intermediates. Results of the quenched-flow hydrogen exchange experiments reveal that the hydrogen bonds linking the N- and C-terminal ends are the first to form during the refolding of hFGF-1. The basic beta-trefoil framework is provided by the simultaneous formation of beta-strands I, IV, IX, and X. The other beta-strands comprising the beta-barrel structure of hFGF-1 are formed relatively slowly with time constants ranging from 4 to 13 s.
Collapse
Affiliation(s)
- D Samuel
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | | | | | | | | | | |
Collapse
|
30
|
Samuel D, Kumar TK, Srimathi T, Hsieh H, Yu C. Identification and characterization of an equilibrium intermediate in the unfolding pathway of an all beta-barrel protein. J Biol Chem 2000; 275:34968-75. [PMID: 10950956 DOI: 10.1074/jbc.m005147200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The guanidinium hydrochloride (GdnHCl)-induced unfolding of an all beta-sheet protein, the human acidic fibroblast growth factor (hFGF-1), is studied using a variety of biophysical techniques including multidimensional NMR spectroscopy. The unfolding of hFGF-1 in GdnHCl is shown to involve the formation of a stable equilibrium intermediate. Size exclusion chromotagraphy using fast protein liquid chromatography shows that the intermediate accumulates maximally at 0.96 m GdnHCl. 1-Anilinonapthalene 8-sulfonate binding, one-dimensional (1)H NMR, and limited proteolytic digestion experiments suggest that the intermediate has characteristics resembling a molten globule state. Chemical shift perturbation and hydrogen-deuterium exchange monitored by (1)H-(15)N heteronuclear single quantum coherence spectra reveal that profound structural changes in the intermediate state (in 0.96 m GdnHCl) occur in the C-terminal, heparin binding region of the protein molecule. Additionally, results of the stopped flow fluorescence experiments suggest that the kinetic refolding of hFGF-1 proceeds through the accumulation of an intermediate at low concentrations of the denaturant. To our knowledge, the present study is the first report wherein an equilibrium intermediate is characterized in detail in an all beta-barrel protein.
Collapse
Affiliation(s)
- D Samuel
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30043 Taiwan
| | | | | | | | | |
Collapse
|