1
|
Chen X, Wang Y, Li C, Hua Z, Cui H, Lin L. Antibacterial effect of protease-responsive cationic eugenol liposomes modified by gamma-polyglutamic acid against Staphylococcus aureus. J Liposome Res 2024; 34:411-420. [PMID: 37966062 DOI: 10.1080/08982104.2023.2280829] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023]
Abstract
Eugenol, as a natural antibacterial agent, has been widely studied for its inhibitory effect on the common food-borne pathogen Staphylococcus aureus (S. aureus). However, the widespread application of eugenol is still limited by its instability and volatility. Herein, γ-polyglutamic acid coated eugenol cationic liposomes (pGA-ECLPs) were successfully constructed by self-assembly with an average particle size of 170.7 nm and an encapsulation efficiency of 36.2%. The formation of pGA shell significantly improved the stability of liposomes, and the encapsulation efficiency of eugenol only decreased by 20.7% after 30 days of storage at 4 °C. On the other hand, the pGA layer can be hydrolyzed by S. aureus, achieving effective control of release through response to bacterial stimuli. The application experiments further confirmed that pGA-ECLPs effectively prolonged the antibacterial effect of eugenol in fresh chicken without causing obvious sensory effects on the food. The above results of this study provide an important reference for extending the action time of natural antibacterial substances and developing new stimuli-responsive antibacterial systems.
Collapse
Affiliation(s)
- Xiaochen Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yiwei Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Zichun Hua
- School of Life Sciences, Nanjing University, Nanjing, China
- Changzhou High-Tech Research Institute of Nanjing University, Changzhou China
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| |
Collapse
|
2
|
Aghajani M, Esmaeili F. Anti-biofouling assembly strategies for protein & cell repellent surfaces: a mini-review. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1770-1789. [PMID: 34085909 DOI: 10.1080/09205063.2021.1932357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The protein/cell interactions with the surface at the blood-biomaterial interface generally control the efficiency of biomedical devices. A wide range of active processes and slow kinetics occur simultaneously with many biomaterials in healthcare applications, leading to multiple biological reactions and reduced clinical functions. In this work, we present a brief review of studies as the interface between proteins and biomaterials. These include mechanisms of resistance to proteins, protein-rejecting polyelectrolyte multilayers, and coatings of hydrophilic, polysaccharide and phospholipid nature. The mechanisms required to attain surfaces that resist adhesion include steric exclusion, water-related effects, and volume effects. Also, approaches in the use of hydrophilic, highly hydrated, and electrically neutral coatings have demonstrated a good ability to decrease cell adhesion. Moreover, amongst the available methods, the approach of layer-by-layer deposition has been known as an interesting process to manipulate protein and cell adhesion behavior.
Collapse
Affiliation(s)
- Mahdi Aghajani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fariba Esmaeili
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Gnanasampanthan T, Beyer CD, Yu W, Karthäuser JF, Wanka R, Spöllmann S, Becker HW, Aldred N, Clare AS, Rosenhahn A. Effect of Multilayer Termination on Nonspecific Protein Adsorption and Antifouling Activity of Alginate-Based Layer-by-Layer Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5950-5963. [PMID: 33969986 DOI: 10.1021/acs.langmuir.1c00491] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Layer-by-layer (LbL) assembly is a versatile platform for applying coatings and studying the properties of promising compounds for antifouling applications. Here, alginate-based LbL coatings were fabricated by alternating the deposition of alginic acid and chitosan or polyethylenimine to form multilayer coatings. Films were prepared with either odd or even bilayer numbers to investigate if the termination of the LbL coatings affects the physicochemical properties, resistance against the nonspecific adsorption (NSA) of proteins, and antifouling efficacy. The hydrophilic films, which were characterized using spectroscopic ellipsometry, water contact angle goniometry, ATR-FTIR spectroscopy, AFM, XPS, and SPR spectroscopy, revealed high swelling in water and strongly reduced the NSA of proteins compared to the hydrophobic reference. While the choice of the polycation was important for the protein resistance of the LbL coatings, the termination mattered less. The attachment of diatoms and settling of barnacle cypris larvae revealed good antifouling properties that were controlled by the termination and the charge density of the LbL films.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nick Aldred
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | | |
Collapse
|
4
|
Gadomska‐Gajadhur A, Kruk A, Dulnik J, Chwojnowski A. New polyester biodegradable scaffolds for chondrocyte culturing: Preparation, properties, and biological activity. J Appl Polym Sci 2021. [DOI: 10.1002/app.50089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Aleksandra Kruk
- Faculty of Chemistry Warsaw University of Technology Warsaw Poland
- Faculty of Pharmacy Medical University of Warsaw Warsaw Poland
| | - Judyta Dulnik
- Institute of Fundamental Technological Reserch PAS Warsaw Poland
| | - Andrzej Chwojnowski
- Nałęcz Institute of Biocybernetics and Biomedical Engineering PAS Warsaw Poland
| |
Collapse
|
5
|
Ávila-Cossío ME, Rivero IA, García-González V, Alatorre-Meda M, Rodríguez-Velázquez E, Calva-Yáñez JC, Espinoza KA, Pulido-Capiz Á. Preparation of Polymeric Films of PVDMA-PEI Functionalized with Fatty Acids for Studying the Adherence and Proliferation of Langerhans β-Cells. ACS OMEGA 2020; 5:5249-5257. [PMID: 32201814 PMCID: PMC7081399 DOI: 10.1021/acsomega.9b04313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
This study reports the synthesis of thin polymeric films by the layer-by-layer deposition and covalent cross-linking of polyvinyl dimethylazlactone and polyethylene imine, which were functionalized with lauric (12-C), myristic (14-C), and palmitic (16-C) saturated fatty acids, whose high levels in the bloodstream are correlated with insulin resistance and the potential development of type 2 diabetes mellitus. Aiming to assess the effect of the fatty acids on the adhesion and proliferation of Langerhans β-cells, all prepared films (35 and 35.5 bilayers with and without functionalization with the fatty acids) were characterized in terms of their physical, chemical, and biological properties by a battery of experimental techniques including 1H and 13C NMR, mass spectrometry, attenuated total reflectance-Fourier transform infrared spectroscopy, field emission scanning electron microscopy, atomic force microscopy, cell staining, and confocal laser scanning microscopy among others. In general, the developed films were found to be nanometric, transparent, resistant against manipulation, chemically reactive, and highly cytocompatible. On the other hand, in what the effect of the fatty acids is concerned, palmitic acid was found to impair the proliferation of the cultured β-cells, contrary to its homologues which did not alter this biological process. In our opinion, the multidisciplinary study presented here might be of interest for the research community working on the development of cytocompatible 2D model substrates for the safe and reproducible characterization of cell responses.
Collapse
Affiliation(s)
- Martha E Ávila-Cossío
- Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Centro de Graduados e Investigación en Química, Blvd. Alberto Limón Padilla S/N, 22510 Tijuana, Baja California, Mexico
| | - Ignacio A Rivero
- Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Centro de Graduados e Investigación en Química, Blvd. Alberto Limón Padilla S/N, 22510 Tijuana, Baja California, Mexico
| | - Victor García-González
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, 21100 Mexicali, Baja California, Mexico
| | - Manuel Alatorre-Meda
- Cátedras CONACyT-Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Centro de Graduados e Investigación en Química-Grupo de Biomateriales y Nanomedicina, Blvd. Alberto Limón Padilla S/N, 22510 Tijuana, Baja California, Mexico
| | - Eustolia Rodríguez-Velázquez
- Facultad de Odontología, Universidad Autónoma de Baja California, Campus Tijuana, Calzada Universidad 14418, 22390 Tijuana, Baja California, Mexico
- Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Centro de Graduados e Investigación en Química-Grupo de Biomateriales y Nanomedicina, Blvd. Alberto Limón Padilla S/N, 22510 Tijuana, Baja California, Mexico
| | - Julio C Calva-Yáñez
- Cátedras CONACyT-Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Centro de Graduados e Investigación en Química-Grupo de Biomateriales y Nanomedicina, Blvd. Alberto Limón Padilla S/N, 22510 Tijuana, Baja California, Mexico
| | - Karla A Espinoza
- Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Centro de Graduados e Investigación en Química, Blvd. Alberto Limón Padilla S/N, 22510 Tijuana, Baja California, Mexico
| | - Ángel Pulido-Capiz
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, 21100 Mexicali, Baja California, Mexico
| |
Collapse
|
6
|
Ko Y, Christau S, von Klitzing R, Genzer J. Charge Density Gradients of Polymer Thin Film by Gaseous Phase Quaternization. ACS Macro Lett 2020; 9:158-162. [PMID: 35638676 DOI: 10.1021/acsmacrolett.9b00930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report on the rapid formation of charge density gradients in polymer films by exposing poly([2-dimethylaminoethyl] methacrylate) (PDMAEMA) films resting on flat silica substrates to methyl iodide (i.e., MI, also known as iodomethane) vapors. We adjust the charge gradient by varying the MI concentration in solution and the process time. The thickness of the parent PDMAEMA film does not affect the diffusion of MI through and the reaction kinetics in the films. Instead, the diffusion of MI through the gaseous phase constitutes the limiting step in the overall process.
Collapse
Affiliation(s)
- Yeongun Ko
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Stephanie Christau
- Department of Chemical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Regine von Klitzing
- Department of Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Jan Genzer
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education Hokkaido University, Sapporo, 060-0808, Japan
| |
Collapse
|
7
|
Carmagnola I, Chiono V, Abrigo M, Ranzato E, Martinotti S, Ciardelli G. Tailored functionalization of poly(L-lactic acid) substrates at the nanoscale to enhance cell response. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:526-546. [PMID: 30773129 DOI: 10.1080/09205063.2019.1580954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Poly(L-lactic) acid (PLLA) has been widely employed in tissue engineering due to its mechanical properties, biodegradability and biocompatibility. The layer-by-layer (LbL) technique was here proposed as a simple method to impart bioactivity to the surface of PLLA substrates. Aminolysis treatment was applied to introduce amino groups on the surface of PLLA solvent cast films. Then, PLLA films were coated with heparin (HE)/chitosan (CH) multilayer by the LbL technique. Each functionalization step was characterized through physico-chemical and morphological analyses. Aminolysis treatment increased film surface wettability (64.8° ± 2.4° against 74.6° ± 1.3° for untreated PLLA) due to the formation of surface amino groups, which were quantified by acid orange colorimetric assay (0.05 nmol/mm2). After the deposition of 9 layers, the static contact angle varied between values close to 40° C (HE-based layer) and 60 °C (CH-based layer), showing the typical alternate trend of LbL coating. The successful HE/CH deposition was confirmed by ATR-FTIR and X-ray photoelectron spectroscopy (XPS) analyses. Particularly, XPS spectra of coated samples showed the presence of nitrogen (indicative of HE and CH deposition), and sulfur (indicative of HE deposition). The amount of deposited HE was quantified by Taylor's Blue colorimetric method: after the deposition of 19 and 20 layers the HE concentration was around 33 µg/cm2. Finally, in vitro studies performed using HaCaT immortalized human skin keratinocytes, C2C12 immortalized mouse myoblasts and human fibroblasts demonstrated that HE/CH multilayer-coated PLLA is a promising substrate for soft tissue engineering, as cell response may be modulated by changing the surface chemical properties.
Collapse
Affiliation(s)
- Irene Carmagnola
- a Department of Mechanical and Aerospace Engineering , Politecnico di Torino , Turin , Italy.,b Politecnico di Torino , POLITO BIOMedLAB , Turin , Italy
| | - Valeria Chiono
- a Department of Mechanical and Aerospace Engineering , Politecnico di Torino , Turin , Italy.,b Politecnico di Torino , POLITO BIOMedLAB , Turin , Italy.,c CNR-IPCF , National Research Council-Institute for Chemical and Physical Processes , Pisa , Italy
| | - Martina Abrigo
- a Department of Mechanical and Aerospace Engineering , Politecnico di Torino , Turin , Italy
| | - Elia Ranzato
- d Department of Science and Technological Innovation , University of Oriental Piedmont , Alessandria , Italy
| | - Simona Martinotti
- d Department of Science and Technological Innovation , University of Oriental Piedmont , Alessandria , Italy
| | - Gianluca Ciardelli
- a Department of Mechanical and Aerospace Engineering , Politecnico di Torino , Turin , Italy.,b Politecnico di Torino , POLITO BIOMedLAB , Turin , Italy.,c CNR-IPCF , National Research Council-Institute for Chemical and Physical Processes , Pisa , Italy
| |
Collapse
|
8
|
Landry MJ, Rollet FG, Kennedy TE, Barrett CJ. Layers and Multilayers of Self-Assembled Polymers: Tunable Engineered Extracellular Matrix Coatings for Neural Cell Growth. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8709-8730. [PMID: 29481757 DOI: 10.1021/acs.langmuir.7b04108] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Growing primary cells and tissue in long-term cultures, such as primary neural cell culture, presents many challenges. A critical component of any environment that supports neural cell growth in vivo is an appropriate 2-D surface or 3-D scaffold, typically in the form of a thin polymer layer that coats an underlying plastic or glass substrate and aims to mimic critical aspects of the extracellular matrix. A fundamental challenge to mimicking a hydrophilic, soft natural cell environment is that materials with these properties are typically fragile and are difficult to adhere to and stabilize on an underlying plastic or glass cell culture substrate. In this review, we highlight the current state of the art and overview recent developments of new artificial extracellular matrix (ECM) surfaces for in vitro neural cell culture. Notably, these materials aim to strike a balance between being hydrophilic and soft while also being thick, stable, robust, and bound well to the underlying surface to provide an effective surface to support long-term cell growth. We focus on improved surface and scaffold coating systems that can mimic the natural physicochemical properties that enhance neuronal survival and growth, applied as soft hydrophilic polymer coatings for both in vitro cell culture and for implantable neural probes and 3-D matrixes that aim to enhance stability and longevity to promote neural biocompatibility in vivo. With respect to future developments, we outline four emerging principles that serve to guide the development of polymer assemblies that function well as artificial ECMs: (a) design inspired by biological systems and (b) the employment of principles of aqueous soft bonding and self-assembly to achieve (c) a high-water-content gel-like coating that is stable over time in a biological environment and possesses (d) a low modulus to more closely mimic soft, compliant real biological tissue. We then highlight two emerging classes of thick material coatings that have successfully captured these guiding principles: layer-by-layer deposited water-soluble polymers (LbL) and silk fibroin (SF) materials. Both materials can be deposited from aqueous solution yet transition to a water-insoluble coating for long-term stability while retaining a softness and water content similar to those of biological materials. These materials hold great promise as next-generation biocompatible coatings for tissue engineers and for chemists and biologists within the biomedical field.
Collapse
|
9
|
Szczepanowicz K, Kruk T, Świątek W, Bouzga AM, Simon CR, Warszyński P. Poly(l-glutamic acid)-g-poly(ethylene glycol) external layer in polyelectrolyte multilayer films: Characterization and resistance to serum protein adsorption. Colloids Surf B Biointerfaces 2018; 166:295-302. [PMID: 29604572 DOI: 10.1016/j.colsurfb.2018.03.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 03/06/2018] [Accepted: 03/17/2018] [Indexed: 11/28/2022]
Abstract
Formation of protein-resistant surfaces is a major challenge in the design of novel biomaterials and an important strategy to prevent protein adsorption is the formation of protein-resistant coatings. It can be achieved by proper modification of surfaces, e.g., by immobilization of hydrophilic polymers such as poly(ethylene glycol) (PEG). An appropriate method to immobilize PEG at charged surfaces is the adsorption of copolymers with PEG chains grafted onto polyelectrolyte backbone. The growing interest in the use of polyelectrolyte multilayer coatings in biomedical applications to improve biocompatibility and/or to prepare coating with antiadhesive properties has been the main reason for these studies. Therefore the aim was to produce protein resistant polyelectrolyte multilayer films. They were formed via the layer-by-layer approach, while their pegylation by the deposition of pegylated polyanion, PGA-g-PEG, as an external layer. The influence of PEG chain length and grafting density of PGA-g-PEG copolymers on the protein antiadhesive properties of pegylated polyelectrolyte multilayer films was investigated. To monitor the formation of pegylated and non-pegylated multilayer films, adsorption of the following proteins: HSA, Fibrinogen, and FBS were measured by quartz crystal microbalance (QCM - D). We found that protein adsorption onto all pegylated polyelectrolyte multilayers was significantly reduced in comparison to non-pegylated ones. Long-term performance tests confirmed the stability and the durability of the protein resistant properties of the pegylated multilayers. Antiadhesive properties of tested surfaces pegylated by PGA-g-PEG were compared to the available data for pegylated polycation PLL-g-PEG.
Collapse
Affiliation(s)
- Krzysztof Szczepanowicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland.
| | - Tomasz Kruk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | - Wiktoria Świątek
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | - Aud M Bouzga
- SINTEF Material and Chemistry, Forskningsveien 1, N-0314 Oslo, Norway
| | - Christian R Simon
- SINTEF Material and Chemistry, Forskningsveien 1, N-0314 Oslo, Norway
| | - Piotr Warszyński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| |
Collapse
|
10
|
Surmaitis RL, Arias CJ, Schlenoff JB. Stressful Surfaces: Cell Metabolism on a Poorly Adhesive Substrate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3119-3125. [PMID: 29457460 DOI: 10.1021/acs.langmuir.7b04172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The adhesion and proliferation of cells are exquisitely sensitive to the nature of the surface to which they attach. Aside from cell counting, cell "health" on surfaces is typically established by measuring the metabolic rate with dyes that participate in the metabolic pathway or using "live/dead" assays with combinations of membrane permeable/impermeable dyes. The binary information gleaned from these tests-whether cells are attached or not, and whether they are living or dead-provides an incomplete picture of cell health. In the present work, proliferation rates and net metabolism of 3T3 fibroblasts seeded on "biocompatible" ultrathin polyelectrolyte multilayer films and on control tissue culture plastic were compared. Cells adhered to, and proliferated on, both surfaces, which were shown to be nontoxic according to live/dead assays. However, adhesion was poorer on the multilayer surface, illustrated by diffuse organization of the actin cytoskeleton and less-developed focal adhesions. Proliferation was also slower on the multilayer. When normalized for the total number of cells, it was shown that cells on multilayers experienced a five-day burst of metabolic stress, after which the metabolic rate approached that of the control surface. This initial state of high stress has not been reported or appreciated in studies of cell growth on multilayers, although the observation period for this system is usually a few days.
Collapse
Affiliation(s)
- Richard L Surmaitis
- Department of Chemistry & Biochemistry , The Florida State University , Tallahassee , Florida 32306 , United States
| | - Carlos J Arias
- Department of Chemistry & Biochemistry , The Florida State University , Tallahassee , Florida 32306 , United States
| | - Joseph B Schlenoff
- Department of Chemistry & Biochemistry , The Florida State University , Tallahassee , Florida 32306 , United States
| |
Collapse
|
11
|
West A. Intermolecular Forces and Solvation. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/b978-0-12-801970-2.00002-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
12
|
Pahal S, Gakhar R, Raichur AM, Varma MM. Polyelectrolyte multilayers for bio-applications: recent advancements. IET Nanobiotechnol 2017; 11:903-908. [PMID: 29155388 PMCID: PMC8676474 DOI: 10.1049/iet-nbt.2017.0007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 06/09/2017] [Accepted: 07/17/2017] [Indexed: 11/25/2023] Open
Abstract
The synergistic relationship between structure and the bulk properties of polyelectrolyte multilayer (PEM) films has generated tremendous interest in their application for loading and release of bioactive species. Layer-by-layer assembly is the simplest, cost effective process for fabrication of such PEMs films, leading to one of the most widely accepted platforms for incorporating biological molecules with nanometre precision. The bulk reservoir properties of PEM films render them a potential candidate for applications such as biosensing, drug delivery and tissue engineering. Various biomolecules such as proteins, DNA, RNA or other desired molecules can be incorporated into the PEM stack via electrostatic interactions and various other secondary interactions such as hydrophobic interactions. The location and availability of the biological molecules within the PEM stack mediates its applicability in various fields of biomedical engineering such as programmed drug delivery. The development of advanced technologies for biomedical applications using PEM films has seen rapid progress recently. This review briefly summarises the recent successes of PEM being utilised for diverse bio-applications.
Collapse
Affiliation(s)
- Suman Pahal
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Ruchi Gakhar
- Department of Engineering Physics, University of Wisconsin, Madison, WI 53706, USA
| | - Ashok M Raichur
- Nanotechnology and Water Sustainability Unit, University of South Africa, Florida 1710, Johannesburg, South Africa
| | - Manoj M Varma
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
13
|
Abstract
This review is focused on the use of membranes for the specific application of bone regeneration. The first section focuses on the relevance of membranes in this context and what are the specifications that they should possess to improve the regeneration of bone. Afterward, several techniques to engineer bone membranes by using "bulk"-like methods are discussed, where different parameters to induce bone formation are disclosed in a way to have desirable structural and functional properties. Subsequently, the production of nanostructured membranes using a bottom-up approach is discussed by highlighting the main advances in the field of bone regeneration. Primordial importance is given to the promotion of osteoconductive and osteoinductive capability during the membrane design. Whenever possible, the films prepared using different techniques are compared in terms of handability, bone guiding ability, osteoinductivity, adequate mechanical properties, or biodegradability. A last chapter contemplates membranes only composed by cells, disclosing their potential to regenerate bone.
Collapse
Affiliation(s)
- Sofia G Caridade
- Department of Chemistry CICECO, Aveiro Institute of Materials, University of Aveiro , Aveiro, Portugal
| | - João F Mano
- Department of Chemistry CICECO, Aveiro Institute of Materials, University of Aveiro , Aveiro, Portugal
| |
Collapse
|
14
|
Han B, Ma T, Vergara JH, Palmese GR, Yin J, Lee D, Han L. Non-additive impacts of covalent cross-linking on the viscoelastic nanomechanics of ionic polyelectrolyte complexes. RSC Adv 2017. [DOI: 10.1039/c7ra08514a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study elucidates the influences of adding covalent cross-linking on the nanomechanical viscoelasticity of ionically cross-linked polyelectrolyte networks.
Collapse
Affiliation(s)
- Biao Han
- School of Biomedical Engineering, Science, and Health Systems
- Drexel University
- Philadelphia
- USA
| | - Tianzhu Ma
- School of Biomedical Engineering, Science, and Health Systems
- Drexel University
- Philadelphia
- USA
| | - John H. Vergara
- Department of Chemical and Biological Engineering
- Drexel University
- Philadelphia
- USA
| | - Giuseppe R. Palmese
- Department of Chemical and Biological Engineering
- Drexel University
- Philadelphia
- USA
| | - Jie Yin
- Department of Mechanical Engineering
- Temple University
- Philadelphia
- USA
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering
- University of Pennsylvania
- Philadelphia
- USA
| | - Lin Han
- School of Biomedical Engineering, Science, and Health Systems
- Drexel University
- Philadelphia
- USA
| |
Collapse
|
15
|
Moehwald H, Brezesinski G. From Langmuir Monolayers to Multilayer Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10445-10458. [PMID: 27540629 DOI: 10.1021/acs.langmuir.6b02518] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This feature article is intended to describe a route from Langmuir monolayers as the most suitable and well-defined models to polyelectrolyte multilayers. The latter are structurally controlled not with angstrom but with nanometer precision; however, they are very modular with regard to building blocks and function and are robust, therefore promising many diverse applications. There have been many methods developed to structurally characterize Langmuir monolayers; therefore, they serve as models in membrane biophysics and materials science as well as in general physics as two-dimensional model systems. Many of these methods as well as ideas to control interfaces could be taken over to study polyelectrolyte multilayers with their extended internal interfaces. Finally, as an outlook we try to sketch various aspects to transit toward systems with higher structural hierarchy, enabling the coupling of different functions and arriving at responsive three-dimensional systems.
Collapse
Affiliation(s)
- Helmuth Moehwald
- Max-Planck-Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Gerald Brezesinski
- Max-Planck-Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
16
|
Silva JM, Reis RL, Mano JF. Biomimetic Extracellular Environment Based on Natural Origin Polyelectrolyte Multilayers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4308-42. [PMID: 27435905 DOI: 10.1002/smll.201601355] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/15/2016] [Indexed: 05/23/2023]
Abstract
Surface modification of biomaterials is a well-known approach to enable an adequate biointerface between the implant and the surrounding tissue, dictating the initial acceptance or rejection of the implantable device. Since its discovery in early 1990s layer-by-layer (LbL) approaches have become a popular and attractive technique to functionalize the biomaterials surface and also engineering various types of objects such as capsules, hollow tubes, and freestanding membranes in a controllable and versatile manner. Such versatility enables the incorporation of different nanostructured building blocks, including natural biopolymers, which appear as promising biomimetic multilayered systems due to their similarity to human tissues. In this review, the potential of natural origin polymer-based multilayers is highlighted in hopes of a better understanding of the mechanisms behind its use as building blocks of LbL assembly. A deep overview on the recent progresses achieved in the design, fabrication, and applications of natural origin multilayered films is provided. Such films may lead to novel biomimetic approaches for various biomedical applications, such as tissue engineering, regenerative medicine, implantable devices, cell-based biosensors, diagnostic systems, and basic cell biology.
Collapse
Affiliation(s)
- Joana M Silva
- 3Bs Research Group-Biomaterials Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Rui L Reis
- 3Bs Research Group-Biomaterials Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - João F Mano
- 3Bs Research Group-Biomaterials Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| |
Collapse
|
17
|
Yang JM, Tsai RZ, Hsu CC. Protein adsorption on polyanion/polycation layer-by-layer assembled polyelectrolyte films. Colloids Surf B Biointerfaces 2016; 142:98-104. [DOI: 10.1016/j.colsurfb.2016.02.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 02/12/2016] [Accepted: 02/16/2016] [Indexed: 12/27/2022]
|
18
|
Arias CJ, Surmaitis RL, Schlenoff JB. Cell Adhesion and Proliferation on the "Living" Surface of a Polyelectrolyte Multilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:5412-5421. [PMID: 27191244 DOI: 10.1021/acs.langmuir.6b00784] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The adhesion of living eukaryotic cells to a substrate, one of the most complex problems in surface science, requires adsorption of extracellular proteins such as fibronectin. Thin films of polyelectrolyte complex made layer-by-layer (polyelectrolyte multilayers or PEMUs) offer a high degree of control of surface charge and composition-interconnected and essential variables for protein adhesion. Fibroblasts grown on multilayers of poly(styrenesulfonate), PSS, and poly(diallyldimethylammonium), PDADMA, with increasing thickness exhibit good adhesion until the 12th layer of polyelectrolyte has been added, whereupon there is a sudden transition to nonadhesive behavior. This sharp change is due to the migration of excess positive charge to the surface-a previously unrecognized property of PEMUs. Precise radiotracer assays of adsorbed (125)I-albumin show how protein adsorption is related to multilayer surface charge. With more negative surface charge density from the sulfonates of PSS, more albumin adsorbs to the surface. However, a loosely held or "soft corona" exchanges with serum protein under the Vroman effect, which is correlated with poor cell adhesion. A comprehensive view of cell adhesion highlights the central role of robust protein adhesion, which is required before any secondary effects of matrix stiffness on cell fate can come into play.
Collapse
Affiliation(s)
- Carlos J Arias
- Department of Chemistry and Biochemistry, The Florida State University , Tallahassee, Florida 32306, United States
| | - Richard L Surmaitis
- Department of Chemistry and Biochemistry, The Florida State University , Tallahassee, Florida 32306, United States
| | - Joseph B Schlenoff
- Department of Chemistry and Biochemistry, The Florida State University , Tallahassee, Florida 32306, United States
| |
Collapse
|
19
|
Photonic hydrogel sensors. Biotechnol Adv 2016; 34:250-71. [DOI: 10.1016/j.biotechadv.2015.10.005] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 10/11/2015] [Accepted: 10/16/2015] [Indexed: 12/22/2022]
|
20
|
Dange-Delbaere C, Buron C, Euvrard M, Filiâtre C. Stability and cathodic electrophoretic deposition of polystyrene particles pre-coated with chitosan–alginate multilayer. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
21
|
Nanostructured multilayer polyelectrolyte films with silver nanoparticles as antibacterial coatings. Colloids Surf B Biointerfaces 2016; 137:158-66. [DOI: 10.1016/j.colsurfb.2015.06.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/04/2015] [Accepted: 06/07/2015] [Indexed: 11/22/2022]
|
22
|
Heinze T, Siebert M, Berlin P, Koschella A. Biofunctional Materials Based on Amino Cellulose Derivatives - A Nanobiotechnological Concept. Macromol Biosci 2015; 16:10-42. [DOI: 10.1002/mabi.201500184] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/22/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Thomas Heinze
- Center of Excellence for Polysaccharide Research; Institute of Organic Chemistry and Macromolecular Chemistry; Friedrich Schiller University of Jena; Humboldtstraße 10 07743 Jena Germany
| | - Melanie Siebert
- Center of Excellence for Polysaccharide Research; Institute of Organic Chemistry and Macromolecular Chemistry; Friedrich Schiller University of Jena; Humboldtstraße 10 07743 Jena Germany
| | - Peter Berlin
- Center of Excellence for Polysaccharide Research; Institute of Organic Chemistry and Macromolecular Chemistry; Friedrich Schiller University of Jena; Humboldtstraße 10 07743 Jena Germany
| | - Andreas Koschella
- Center of Excellence for Polysaccharide Research; Institute of Organic Chemistry and Macromolecular Chemistry; Friedrich Schiller University of Jena; Humboldtstraße 10 07743 Jena Germany
| |
Collapse
|
23
|
Arias CJ, Keller TCS, Schlenoff JB. Quasi-Spherical Cell Clusters Induced by a Polyelectrolyte Multilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:6436-6446. [PMID: 26035629 DOI: 10.1021/acs.langmuir.5b00678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Fibroblasts cultured on polyelectrolyte multilayers, PEMUs, made from poly(diallyldimethylammonium), PDADMA, and poly(styrene sulfonate), PSS, showed a variety of attachment modes, depending on the charge of the last layer and deposition conditions. PEMUs terminated with PDADMA (cationic) were cytotoxic when built in 1.0 M NaCl but cytophilic when built in 0.15 M NaCl. Cells adhered poorly to all PSS-capped (anionic) films. PEMUs built in 0.15 M NaCl but terminated with a layer of PSS in 1.0 M NaCl induced most cells to form spherical clusters after about 48 h of culture. These clusters still interrogated the surface, and when they were replated on control tissue culture plastic, cells emerged with close to 100% viability. Differences between the various surfaces were probed in an effort to identify the mechanism responsible for this unusual behavior, which did not follow accepted correlations between substrate stiffness and cell adhesion. No significant differences in roughness or wetting were observed between cluster-inducing PSS-capped multilayers and those that did not produce clusters. When the surface charge was assayed with radiolabeled ions a strong increase in negative surface charge was revealed. Viewing the multilayer as a zwitterionic solid and comparing its surface charge density to that of a cell membrane yields similarities that suggest a mechanism for preventing protein adhesion to the surface, a necessary step in the integrin-mediated mechanotransduction properties of a cell.
Collapse
Affiliation(s)
- Carlos J Arias
- †Department of Chemistry and Biochemistry and ‡Department of Biological Sciences, The Florida State University, Tallahassee, Florida 32306, United States
| | - Thomas C S Keller
- †Department of Chemistry and Biochemistry and ‡Department of Biological Sciences, The Florida State University, Tallahassee, Florida 32306, United States
| | - Joseph B Schlenoff
- †Department of Chemistry and Biochemistry and ‡Department of Biological Sciences, The Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
24
|
Blaszykowski C, Sheikh S, Thompson M. A survey of state-of-the-art surface chemistries to minimize fouling from human and animal biofluids. Biomater Sci 2015. [DOI: 10.1039/c5bm00085h] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fouling of artificial surfaces by biofluids is a plague Biotechnology deeply suffers from. Herein, we inventory the state-of-the-art surface chemistries developed to minimize this effect from both human and animal biosamples.
Collapse
Affiliation(s)
| | - Sonia Sheikh
- University of Toronto
- Department of Chemistry – St. George campus
- Toronto
- Canada M5S 3H6
| | - Michael Thompson
- Econous Systems Inc
- Toronto
- Canada M5S 3H6
- University of Toronto
- Department of Chemistry – St. George campus
| |
Collapse
|
25
|
Enescu D, Frache A, Geobaldo F. Formation and oxygen diffusion barrier properties of fish gelatin/natural sodium montmorillonite clay self-assembled multilayers onto the biopolyester surface. RSC Adv 2015. [DOI: 10.1039/c5ra11283d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In order to expand the application of bio-derived polymers it is imperative that the issues related to their poor gas barrier properties be addressed.
Collapse
Affiliation(s)
- Daniela Enescu
- The Centre for Research on Adaptive Nanostructure and Nanodevice, CRANN
- Trinity College
- Dublin 2
- Ireland
| | - Alberto Frache
- Department of Applied Science and Technology
- Polytechnic of Turin
- Turin
- Italy
| | - Francesco Geobaldo
- Department of Applied Science and Technology
- Polytechnic of Turin
- Turin
- Italy
| |
Collapse
|
26
|
Lee IC, Wu YC, Cheng EM, Yang WT. Biomimetic niche for neural stem cell differentiation using poly-L-lysine/hyaluronic acid multilayer films. J Biomater Appl 2014; 29:1418-27. [DOI: 10.1177/0885328214563341] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polyelectrolyte multilayer films have been suggested as tunable substrates with flexible surface properties that can modulate cell behavior. However, these films’ biological effects on neural stem/progenitor cells have rarely been studied. Herein, biomimetic multilayer films composed of hyaluronic acid and poly-L-lysine were chosen to mimic the native extracellular matrix niche of brain tissue and were evaluated for their inductive effects, without the addition of chemical factors. Because neural stem/progenitor cells are sensitive to substrate properties, it is important that this system provides control over the surface charge, and slight stiffness variations are also possible. Both of these factors affect neural stem/progenitor cell differentiation. The results showed that neural stem/progenitor cells were induced to differentiate on the poly-L-lysine/hyaluronic acid multilayer films with 0.5–4 alternating layers. In addition, the neurite outgrowth length was regulated by the surface charge of the terminal layer but did not increase with the layer number. In contrast, the quantity of differentiated neurons was enhanced slightly as the number of layers increased but was not affected by the surface charge of the terminal layer. In sum, material pairs in the form of native poly-L-lysine/hyaluronic acid films achieved important targets for neural regenerative medicine, including enhancement of the neurite outgrowth length, regulation of neuron differentiation, and the formation of a network. These extracellular matrix–mimetic poly-L-lysine/hyaluronic acid multilayer films may provide a versatile platform that could be useful for surface modification for applications in neural engineering.
Collapse
Affiliation(s)
- I-Chi Lee
- Graduate Institute of Biochemical and Biomedical Engineering, Chang-Gung University, Taiwan, R.O.C
| | - Yu-Chieh Wu
- Graduate Institute of Biochemical and Biomedical Engineering, Chang-Gung University, Taiwan, R.O.C
| | - En-Ming Cheng
- Department of Biomedical Sciences, Chang-Gung University, Tao-yuan 333, Taiwan, R.O.C
| | - Wen-Ting Yang
- Graduate Institute of Biochemical and Biomedical Engineering, Chang-Gung University, Taiwan, R.O.C
| |
Collapse
|
27
|
Lee IC, Liu YC, Tsai HA, Shen CN, Chang YC. Promoting the selection and maintenance of fetal liver stem/progenitor cell colonies by layer-by-layer polypeptide tethered supported lipid bilayer. ACS APPLIED MATERIALS & INTERFACES 2014; 6:20654-63. [PMID: 25243588 DOI: 10.1021/am503928u] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In this study, we designed and constructed a series of layer-by-layer polypeptide adsorbed supported lipid bilayer (SLB) films as a novel and label-free platform for the isolation and maintenance of rare populated stem cells. In particular, four alternative layers of anionic poly-l-glutamic acid and cationic poly-l-lysine were sequentially deposited on an anionic SLB. We found that the fetal liver stem/progenitor cells from the primary culture were selected and formed colonies on all layer-by-layer polypeptide adsorbed SLB surfaces, regardless of the number of alternative layers and the net charges on those layers. Interestingly, these isolated stem/progenitor cells formed colonies which were maintained for an 8 day observation period. Quartz crystal microbalance with dissipation measurements showed that all SLB-polypeptide films were protein resistant with serum levels significantly lower than those on the polypeptide multilayer films without an underlying SLB. We suggest the fluidic SLB promotes selective binding while minimizing the cell-surface interaction due to its nonfouling nature, thus limiting stem cell colonies from spreading.
Collapse
Affiliation(s)
- I-Chi Lee
- Graduate Institute of Biochemical and Biomedical Engineering, Chang-Gung University , Tao-yuan 333, Taiwan, R.O.C
| | | | | | | | | |
Collapse
|
28
|
Lei KF, Lee IC, Liu YC, Wu YC. Successful differentiation of neural stem/progenitor cells cultured on electrically adjustable indium tin oxide (ITO) surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:14241-14249. [PMID: 25363477 DOI: 10.1021/la5039238] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In order to control differentiation of neural cells and guide the developed neurites to targets, polyelectrolyte multilayer (PEM) films were used because of their capability of modulation of electrical charged characteristics, thickness, and stiffness. In this work, we suggested that indium tin oxide (ITO) is an alternative surface to achieve the above-mentioned objectives. A microfluidic system with four culture chambers was developed and each chamber consisted of parallel ITO surfaces for the application of adjustable electrical field. Neural stem/progenitor cells (NSPCs) were respectively cultured on the ITO surfaces with and without PEM film, constructed by alternate adsorption of poly(L-lysine) (PLL) and poly(L-glutamic acid) (PLGA). Analyses of cell morphology, cytotoxicity, process outgrowth, differentiated cell types, and neuron functionality were compared between both surfaces. In this study, NSPCs successfully differentiated on ITO surface with electrical stimulation. The optimal electrical potential was found to be 80 mV that could stimulate the longest process, i.e., >300 μm, after 3 days culture. Cell differentiation, process development, and functionality of differentiated neuron on ITO surface were shown to be strongly controlled by the electrical stimulation that can be simply adjusted by external equipment. The electrically adjustable cell differentiation reported here could potentially be applied to neurochip for the study of neural signal transmission in a well-constructed network.
Collapse
Affiliation(s)
- Kin Fong Lei
- Graduate Institute of Medical Mechatronics, Chang Gung University , Taoyuan, Taiwan
| | | | | | | |
Collapse
|
29
|
Deng J, Sun M, Wang S, Han L, Mao Z, Li D, Chen H, Gao C. Adsorption of Fibronectin on Salt-Etched Polyelectrolyte Multilayers and its Roles in Mediating the Adhesion and Migration of Vascular Smooth Muscle Cells. Macromol Biosci 2014; 15:241-52. [DOI: 10.1002/mabi.201400344] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 09/06/2014] [Indexed: 01/20/2023]
Affiliation(s)
- Jun Deng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Mingcong Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Shasha Wang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Department of Polymer Science and Engineering; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Lulu Han
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Dan Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Department of Polymer Science and Engineering; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Hong Chen
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Department of Polymer Science and Engineering; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
30
|
Panayotov IV, Collart-Dutilleul PY, Salehi H, Martin M, Végh A, Yachouh J, Vladimirov B, Sipos P, Szalontai B, Gergely C, Cuisinier FJG. Sprayed cells and polyelectrolyte films for biomaterial functionalization: the influence of physical PLL-PGA film treatments on dental pulp cell behavior. Macromol Biosci 2014; 14:1771-82. [PMID: 25212873 DOI: 10.1002/mabi.201400256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/07/2014] [Indexed: 02/05/2023]
Abstract
Further development of biomaterials is expected as advanced therapeutic products must be compliant to good manufacturing practice regulations. A spraying method for building-up polyelectrolyte films followed by the deposition of dental pulp cells by spraying is presented. Physical treatments of UV irradiation and a drying/wetting process are applied to the system. Structural changes and elasticity modifications of the obtained coatings are revealed by atomic force microscopy and by Raman spectroscopy. This procedure results in thicker, rougher and stiffer film. The initially ordered structure composed of mainly α helices is transformed into random/β-structures. The treatment enhanced dental pulp cell adhesion and proliferation, suggesting that this system is promising for medical applications.
Collapse
Affiliation(s)
- Ivan V Panayotov
- EA4203 Laboratoire de Bio-santé et Nano-science, Université Montpellier 1, Montpellier, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lee IC, Wu YC. Assembly of polyelectrolyte multilayer films on supported lipid bilayers to induce neural stem/progenitor cell differentiation into functional neurons. ACS APPLIED MATERIALS & INTERFACES 2014; 6:14439-50. [PMID: 25111699 DOI: 10.1021/am503750w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The key factors affecting the success of neural engineering using neural stem/progenitor cells (NSPCs) are the neuron quantity, the guidance of neurite outgrowth, and the induction of neurons to form functional synapses at synaptic junctions. Herein, a biomimetic material comprising a supported lipid bilayer (SLB) with adsorbed sequential polyelectrolyte multilayer (PEM) films was fabricated to induce NSPCs to form functional neurons without the need for serum and growth factors in a short-term culture. SLBs are suitable artificial substrates for neural engineering due to their structural similarity to synaptic membranes. In addition, PEM film adsorption provides protection for the SLB as well as the ability to vary the surface properties to evaluate the effects of physical and mechanical signals on NSPC differentiation. Our results revealed that NSPCs were inducible on SLB-PEM films consisting of up to eight alternating layers. In addition, the process outgrowth length, the percentage of differentiated neurons, and the synaptic function were regulated by the number of layers and the surface charge of the outermost layer. The average process outgrowth length was greater than 500 μm on SLB-PLL/PLGA (n = 7.5) after only 3 days of culture. Moreover, the quantity and quality of the differentiated neurons were obviously enhanced on the SLB-PEM system compared with those on the PEM-only substrates. These results suggest that the PEM films can induce NSPC adhesion and differentiation and that an SLB base may enhance neuron differentiation and trigger the formation of functional synapses.
Collapse
Affiliation(s)
- I-Chi Lee
- Graduate Institute of Biochemical and Biomedical Engineering, Chang-Gung University , No. 259, Wenhua First Road, Guishan Township, Taoyuan County, 33302, Taiwan (R.O.C.)
| | | |
Collapse
|
32
|
Lee IC, Wu YC. Facilitating neural stem/progenitor cell niche calibration for neural lineage differentiation by polyelectrolyte multilayer films. Colloids Surf B Biointerfaces 2014; 121:54-65. [PMID: 24937134 DOI: 10.1016/j.colsurfb.2014.05.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 04/09/2014] [Accepted: 05/22/2014] [Indexed: 01/08/2023]
Abstract
Neural stem/progenitor cells (NSPCs) are a possible candidate for advancing development and lineage control in neural engineering. Differentiated protocols have been developed in this field to generate neural progeny and to establish neural networks. However, continued refinement is required to enhance differentiation specificity and prevent the generation of unwanted cell types. In this study, we fabricated a niche-modulated system to investigate surface effects on NSPC differentiation by the formation of polyelectrolyte multilayer (PEM) films governed by electrostatic interactions of poly-l-glutamine acid as a polyanion and poly-l-lysine as a polycation. The serum- and chemical agent-free system provided a clean and clear platform to observe in isolation the interaction between surface niche and stem cell differentiation. We found that NSPCs were inducible on PEM films of up to eight alternating layers. In addition, neurite outgrowth, neuron percentage, and synaptic function were regulated by layer number and the surface charge of the terminal layer. The average process outgrowth length was over 500μm on PLL/PLGA(n=7.5) only after 3 days of culture. Moreover, the quantity and quality of the differentiated neurons were enhanced as the number of layers increased, especially when the terminal layer was poly-l-lysine. Our results achieve important targets of neural engineering, including long processes, large neural network size, and large amounts of functional neurons. Our methodology for nanoscale control of material deposition can be successfully applied for surface modification, neural niche modulation, and neural engineering applications.
Collapse
Affiliation(s)
- I-Chi Lee
- Graduate Institute of Biochemical and Biomedical Engineering, Chang-Gung University, Tao-yuan 333, Taiwan, ROC.
| | - Yu-Chieh Wu
- Graduate Institute of Biochemical and Biomedical Engineering, Chang-Gung University, Tao-yuan 333, Taiwan, ROC
| |
Collapse
|
33
|
Fejerskov B, Jensen NBS, Teo BM, Städler B, Zelikin AN. Biocatalytic polymer coatings: on-demand drug synthesis and localized therapeutic effect under dynamic cell culture conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:1314-1324. [PMID: 24376172 DOI: 10.1002/smll.201303101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/05/2013] [Indexed: 06/03/2023]
Abstract
Biocatalytic surface coatings are prepared herein for localized synthesis of drugs and their on-demand, site-specific delivery to adhering cells. This novel approach is based on the incorporation of an enzyme into multilayered polymer coatings to accomplish enzyme-prodrug therapy (EPT). The build-up of enzyme-containing multilayered coatings is characterized and correlations are drawn between the multilayer film assembly conditions and the enzymatic activity of the resulting coatings. Therapeutic effect elicited by the substrate mediated EPT (SMEPT) strategy is investigated using a prodrug for an anticancer agent, SN-38. The performance of biocatalytic coatings under flow conditions is investigated and it is demonstrated that EPT allows synthesizing the drugs on-demand, at the time desired and in a controllable amount to suit particular applications. Finally, using cells cultured in sequentially connected flow chambers, it is demonstrated that SMEPT affords a site-specific drug delivery, that is, exerts a higher therapeutic effect in cells adhering directly to the biocatalytic coatings than in the cells cultured "downstream". Taken together, these data illustrate biomedical opportunities made possible by engineering tools of EPT into multilayered polymer coatings and present a novel, highly versatile tool for surface mediated drug delivery.
Collapse
Affiliation(s)
- Betina Fejerskov
- Department of Chemistry, Aarhus University, Aarhus, 8000, Denmark
| | | | | | | | | |
Collapse
|
34
|
Preparation and development of block copolypeptide vesicles and hydrogels for biological and medical applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:283-97. [DOI: 10.1002/wnan.1262] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/01/2014] [Indexed: 02/04/2023]
|
35
|
Multilayer films by blending heparin with semisynthetic cellulose sulfates: Physico-chemical characterization and cell responses. J Biomed Mater Res A 2014; 102:4224-33. [DOI: 10.1002/jbm.a.35095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/17/2014] [Accepted: 01/23/2014] [Indexed: 11/07/2022]
|
36
|
Lin IT, Tsai YL, Kang CC, Huang WC, Wang CL, Lin MY, Lou PJ, Shih JY, Wang HC, Wu HD, Tsai TH, Jan IS, Chang TC. BMVC test, an improved fluorescence assay for detection of malignant pleural effusions. Cancer Med 2014; 3:162-73. [PMID: 24408009 PMCID: PMC3930401 DOI: 10.1002/cam4.179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 10/31/2013] [Accepted: 11/25/2013] [Indexed: 01/05/2023] Open
Abstract
The diagnosis of malignant pleural effusions is an important issue in the management of malignancy patients. Generally, cytologic examination is a routine diagnostic technique. However, morphological interpretation of cytology is sometimes inconclusive. Here an ancillary method named BMVC test is developed for rapid detection of malignant pleural effusion to improve the diagnostic accuracy at low cost. A simple assay kit is designed to collect living cells from clinical pleural effusion and a fluorescence probe, 3,6-Bis(1-methyl-4-vinylpyridinium) carbazole diiodide (BMVC), is used to illuminate malignant cells. The fluorescence intensity is quantitatively analyzed by ImageJ program. This method yields digital numbers for the test results without any grey zone or ambiguities in the current cytology tests due to intra-observer and inter-observer variability. Comparing with results from double-blind cytologic examination, this simple test gives a good discrimination between malignant and benign specimens with sensitivity of 89.4% (42/47) and specificity of 93.3% (56/60) for diagnosis of malignant pleural effusion. BMVC test provides accurate results in a short time period, and the digital output could assist cytologic examination to become more objective and clear-cut. This is a convenient ancillary tool for detection of malignant pleural effusions.
Collapse
Affiliation(s)
- I-Ting Lin
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yoon H, Dell EJ, Freyer JL, Campos LM, Jang WD. Polymeric supramolecular assemblies based on multivalent ionic interactions for biomedical applications. POLYMER 2014. [DOI: 10.1016/j.polymer.2013.12.038] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Chitosan/polyanion surface modification of styrene–butadiene–styrene block copolymer membrane for wound dressing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 34:140-8. [DOI: 10.1016/j.msec.2013.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/13/2013] [Accepted: 09/04/2013] [Indexed: 11/24/2022]
|
39
|
Aggarwal N, Altgärde N, Svedhem S, Zhang K, Fischer S, Groth T. Study on multilayer structures prepared from heparin and semi-synthetic cellulose sulfates as polyanions and their influence on cellular response. Colloids Surf B Biointerfaces 2013; 116:93-103. [PMID: 24463147 DOI: 10.1016/j.colsurfb.2013.12.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/15/2013] [Accepted: 12/20/2013] [Indexed: 11/19/2022]
Abstract
Multilayer coatings of polycationic chitosan paired with polyanionic semi-synthetic cellulose sulfates or heparin were prepared by the layer-by-layer method. Two different cellulose sulfates (CS) with high (CS2.6) and intermediate (CS1.6) sulfation degree were prepared by sulfation of cellulose. Multilayers were fabricated at pH 4 and the resulting films were characterized by several methods. The multilayer 'optical' mass, measured by surface plasmon resonance, showed little differences in the total mass adsorbed irrespective of which polyanion was used. In contrast, 'acoustic' mass, calculated from quartz crystal micro balance with dissipation monitoring, showed the lowest mass and dissipation values for CS2.6 (highest sulfation degree) multilayers indicating formation of stiffer layers compared to heparin and CS1.6 layers which led to higher mass and dissipation values. Water contact angle and zeta potential measurements indicated formation of more distinct layers with using heparin as polyanion, while use of CS1.6 and CS2.6 resulted into more fuzzy intermingled multilayers. CS1.6 multilayers significantly supported adhesion and growth of C2C12 cells where as only few cells attached and started to spread initially on CS2.6 layers but favoured long term cell growth. Contrastingly cells adhered and grew poorly on to the layers of heparin. This present study shows that cellulose sulfates are attractive candidates for multilayer formation as potential substratum for controlled cell adhesion. Since a peculiar interaction of cellulose sulfates with growth factors was found during previous studies, immobilization of cellulose sulfate in multilayer systems might be of great interest for tissue engineering applications.
Collapse
Affiliation(s)
- Neha Aggarwal
- Biomedical Materials Group, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Germany
| | - Noomi Altgärde
- Department of Applied Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Sofia Svedhem
- Department of Applied Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Kai Zhang
- Institute of Macromolecular Chemistry and Paper Chemistry, Technische Universität Darmstadt, Petersenstr. 22, D-64287 Darmstadt, Germany
| | - Steffen Fischer
- Institute of Plant and Wood Chemistry, Dresden University of Technology, Pienner Str. 19, D-01737 Tharandt, Germany
| | - Thomas Groth
- Biomedical Materials Group, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Germany.
| |
Collapse
|
40
|
Smith BT, Halperin J, Darzins A, Davis RH. Enhanced sediment flow in inclined settlers via surface modification or applied vibration for harvesting microalgae. ALGAL RES 2013. [DOI: 10.1016/j.algal.2013.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Aggarwal N, Altgärde N, Svedhem S, Michanetzis G, Missirlis Y, Groth T. Tuning Cell Adhesion and Growth on Biomimetic Polyelectrolyte Multilayers by Variation of pH During Layer-by-Layer Assembly. Macromol Biosci 2013; 13:1327-38. [DOI: 10.1002/mabi.201300153] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/01/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Neha Aggarwal
- Biomedical Materials Group, Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Heinrich-Damerow-Strasse 4 06120 Halle (Saale) Germany
| | - Noomi Altgärde
- Department of Applied Physics; Chalmers University of Technology; 412 96 Göteborg Sweden
| | - Sofia Svedhem
- Department of Applied Physics; Chalmers University of Technology; 412 96 Göteborg Sweden
| | - Georgios Michanetzis
- Biomedical Engineering Laboratory; Faculty of Mechanical Engineering, University of Patras; Rion 26500 Patras Greece
| | - Yannis Missirlis
- Biomedical Engineering Laboratory; Faculty of Mechanical Engineering, University of Patras; Rion 26500 Patras Greece
| | - Thomas Groth
- Biomedical Materials Group, Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Heinrich-Damerow-Strasse 4 06120 Halle (Saale) Germany
| |
Collapse
|
42
|
Synthesis and Self-Assembly of Well-Defined Block Copolypeptides via Controlled NCA Polymerization. HIERARCHICAL MACROMOLECULAR STRUCTURES: 60 YEARS AFTER THE STAUDINGER NOBEL PRIZE II 2013. [DOI: 10.1007/12_2013_234] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
43
|
Vinzenz X, Hüger E, Himmerlich M, Krischok S, Busch S, Wöllenstein J, Hoffmann C. Preparation and characterization of poly(l-histidine)/poly(l-glutamic acid) multilayer on silicon with nanometer-sized surface structures. J Colloid Interface Sci 2012; 386:252-9. [DOI: 10.1016/j.jcis.2012.07.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/17/2012] [Accepted: 07/19/2012] [Indexed: 12/22/2022]
|
44
|
Huang X, Lin N, Hang R, Wang X, Zhang X, Tang B. Modulating the behaviors of C3A cells via surface charges of polyelectrolyte multilayers. Carbohydr Polym 2012; 92:1064-70. [PMID: 23399129 DOI: 10.1016/j.carbpol.2012.10.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/05/2012] [Accepted: 10/24/2012] [Indexed: 02/03/2023]
Abstract
The purpose of this study was to evaluate in vitro how the modulating surface charges of materials influenced the behaviors of hepatocytes. Cells of a human hepatocyte cell line, C3A, which have been used in a clinically tested bioartificial liver, were conducted as cell models. Polyelectrolyte multilayers (PEMs) of poly-L-lysine and alginate biopolymers were fabricated and then the zeta potential was assessed. Protein adsorption study showed that fibrinogen deposition could be modulated via tuning the terminal layer and the surface charges of PEMs. Furthermore, through observing the cellular morphology, viability, functional protein analysis and gene expression, we found that the behavior of C3A cells could be modulated via tuning of surface charges on PEMs, which was different from that via grafting functional groups on PEMs. It suggested that the PEMs with different charges could be used in vitro to manipulate cell behaviors to improve upon the design of tissue engineering.
Collapse
Affiliation(s)
- Xiaobo Huang
- Institute of Surface Engineering, Taiyuan University of Technology, 79 Yingze Road, Taiyuan 030024, PR China
| | | | | | | | | | | |
Collapse
|
45
|
Palamà IE, D'Amone S, Coluccia AML, Gigli G. Micropatterned polyelectrolyte nanofilms promote alignment and myogenic differentiation of C2C12 cells in standard growth media. Biotechnol Bioeng 2012; 110:586-96. [PMID: 22886558 DOI: 10.1002/bit.24626] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 07/20/2012] [Accepted: 07/23/2012] [Indexed: 12/19/2022]
Abstract
Alignment of skeletal myoblasts is considered a critical step during myotube formation. The C2C12 cell line is frequently used as a model of skeletal muscle differentiation that can be induced by lowering the serum concentration in standard culture flasks. In order to mimic the striated architectures of skeletal muscles in vitro, micro-patterning techniques and surface engineering have been proven as useful approaches for promoting elongation and alignment of C2C12 myoblasts, thereby enhancing the outgrowth of multi-nucleated myotubes upon switching from growth media (GM) to differentiative media (DM). Herein, a layer-by-layer (LbL) polyelectrolyte multilayer deposition was combined with a micro-molding in capillaries (MIMIC) method to simultaneously provide biochemical and geometrical instructive cues that induced the formation of tightly apposed and parallel arrays of differentiating myotubes from C2C12 cells maintained in GM media for 15 days. This study focuses on two different types of patterned/self-assembled nanofilms based on alternated layers of poly (allylamine hydrochloride) (PAH)/poly(sodium 4-styrene-sulfonate) (PSS) as biocompatible but not biodegradable polymeric structures, or poly-L-arginine sulfate salt (pARG)/dextran sulfate sodium salt (DXS) as both biocompatible and biodegradable surfaces. The influence of these microstructures as well as of the nanofilm composition on C2C12 skeletal muscle cells' differentiation and viability was evaluated and quantified, pointing to give a reference for skeletal muscle regenerative potential in culture conditions that do not promote it. At this regard, our results validate PEM microstructured devices, to a greater extent for (PAH/PSS)₅-coated microgrooves, as biocompatible and innovative tools for tissue engineering applications and molecular dissection of events controlling C2C12 skeletal muscle regeneration without switching to their optimal differentiative culture media in vitro.
Collapse
Affiliation(s)
- Ilaria E Palamà
- NNL, CNR-Institute of Nanoscience, Via Arnesano, Lecce 73100, Italy.
| | | | | | | |
Collapse
|
46
|
Han L, Mao Z, Wu J, Zhang Y, Gao C. Influences of surface chemistry and swelling of salt-treated polyelectrolyte multilayers on migration of smooth muscle cells. J R Soc Interface 2012; 9:3455-68. [PMID: 22896570 DOI: 10.1098/rsif.2012.0546] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The cell migration plays a crucial role in a variety of physiological and pathological processes and can be regulated by the cell-substrate interactions. We found previously that the poly(sodium 4-styrenesulphonate) (PSS)/poly(diallyldimethylammonium) chloride (PDADMAC) multilayers post-treated in 1-5 M NaCl solutions result in continuous changes of their physico-chemical properties such as thickness, chemical composition, surface charge, swelling ratio and wettability. In this study, the responses of human smooth muscle cells (SMCs) on these salt-treated multilayers, particularly the governing factors of cellular migration that offer principles for designing therapeutics and implants, were disclosed. The cell migration rate was slowest on the 3 M NaCl-treated multilayers, which was comparable with that on tissue culture plates, but it was highest on 5 M NaCl-treated multilayers. To elucidate the intrinsic mechanisms, cell adhesion, proliferation, adhesion and related gene expressions were further investigated. The SMCs preferred to attach, spread and proliferate on the PSS-dominated surfaces with well-organized focal adhesion and actin fibres, especially on the 3 M NaCl-treated multilayers, while were kept round and showed low viability on the PDADMAC-dominated surfaces. The relative mRNA expression levels of adhesion-related genes such as fibronectin, laminin and focal adhesion kinase, and migration-related genes such as myosin IIA and Cdc42 were compared to explain the different cellular behaviours. These results reveal that the surface chemistry and the swelling of the salt-treated multilayers govern the cell migration behaviours.
Collapse
Affiliation(s)
- Lulu Han
- MOE of Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | | | | | | | | |
Collapse
|
47
|
Blaszykowski C, Sheikh S, Thompson M. Surface chemistry to minimize fouling from blood-based fluids. Chem Soc Rev 2012; 41:5599-612. [PMID: 22772072 DOI: 10.1039/c2cs35170f] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Upon contact with bodily fluids/tissues, exogenous materials spontaneously develop a layer of proteins on their surface. In the case of biomedical implants and equipment, biological processes with deleterious effects may ensue. For biosensing platforms, it is synonymous with an overwhelming background signal that prevents the detection/quantification of target analytes present in considerably lower concentrations. To address this ubiquitous problem, tremendous efforts have been dedicated over the years to engineer protein-resistant coatings. There is now extensive literature available on stealth organic adlayers able to minimize fouling down to a few ng cm(-2), however from technologically irrelevant single-protein buffered solutions. Unfortunately, few coatings have been reported to present such level of performance when exposed to highly complex proteinaceous, real-world media such as blood serum and plasma, even diluted. Herein, we concisely review the surface chemistry developed to date to minimize fouling from these considerably more challenging blood-based fluids. Adsorption dynamics is also discussed.
Collapse
Affiliation(s)
- Christophe Blaszykowski
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada M5S 3H6
| | | | | |
Collapse
|
48
|
Costa E, Lloyd MM, Chopko C, Aguiar-Ricardo A, Hammond PT. Tuning smart microgel swelling and responsive behavior through strong and weak polyelectrolyte pair assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:10082-10090. [PMID: 22676290 PMCID: PMC3412153 DOI: 10.1021/la301586t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The layer-by-layer (LbL) assembly of polyelectrolyte pairs on temperature and pH-sensitive cross-linked poly(N-isopropylacrylamide)-co-(methacrylic acid), poly(NIPAAm-co-MAA), microgels enabled a fine-tuning of the gel swelling and responsive behavior according to the mobility of the assembled polyelectrolyte (PE) pair and the composition of the outermost layer. Microbeads with well-defined morphology were initially prepared by synthesis in supercritical carbon dioxide. Upon LbL assembly of polyelectrolytes, interactions between the multilayers and the soft porous microgel led to differences in swelling and thermoresponsive behavior. For the weak PE pairs, namely poly(L-lysine)/poly(L-glutamic acid) and poly(allylamine hydrochloride)/poly(acrylic acid), polycation-terminated microgels were less swollen and more thermoresponsive than native microgel, whereas polyanion-terminated microgels were more swollen and not significantly responsive to temperature, in a quasi-reversible process with consecutive PE assembly. For the strong PE pair, poly(diallyldimethylammonium chloride)/poly(sodium styrene sulfonate), the differences among polycation and polyanion-terminated microgels are not sustained after the first PE bilayer due to extensive ionic cross-linking between the polyelectrolytes. The tendencies across the explored systems became less noteworthy in solutions with larger ionic strength due to overall charge shielding of the polyelectrolytes and microgel. ATR FT-IR studies correlated the swelling and responsive behavior after LbL assembly on the microgels with the extent of H-bonding and alternating charge distribution within the gel. Thus, the proposed LbL strategy may be a simple and flexible way to engineer smart microgels in terms of size, surface chemistry, overall charge and permeability.
Collapse
Affiliation(s)
- Eunice Costa
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Margaret M. Lloyd
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Caroline Chopko
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ana Aguiar-Ricardo
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Paula T. Hammond
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
49
|
Chalmeau J, le Grimellec C, Sternick J, Vieu C. Patterned domains of supported phospholipid bilayer using microcontact printing of Pll-g-PEG molecules. Colloids Surf B Biointerfaces 2012; 89:188-95. [DOI: 10.1016/j.colsurfb.2011.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 08/08/2011] [Accepted: 09/09/2011] [Indexed: 11/24/2022]
|
50
|
Optimizing interfacial features to regulate neural progenitor cells using polyelectrolyte multilayers and brain derived neurotrophic factor. Biointerphases 2011; 6:189-99. [DOI: 10.1116/1.3656249] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|