1
|
Castelletto V, de Mello L, da Silva ER, Seitsonen J, Hamley IW. Self-Assembly and Cytocompatibility of Amino Acid Conjugates Containing a Novel Water-Soluble Aromatic Protecting Group. Biomacromolecules 2023; 24:5403-5413. [PMID: 37914531 PMCID: PMC10646988 DOI: 10.1021/acs.biomac.3c00860] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 11/03/2023]
Abstract
There has been considerable interest in peptides in which the Fmoc (9-fluorenylmethoxycarbonyl) protecting group is retained at the N-terminus, since this bulky aromatic group can drive self-assembly, and Fmoc-peptides are biocompatible and have applications in cell culture biomaterials. Recently, analogues of new amino acids with 2,7-disulfo-9-fluorenylmethoxycarbonyl (Smoc) protecting groups have been developed for water-based peptide synthesis. Here, we report on the self-assembly and biocompatibility of Smoc-Ala, Smoc-Phe and Smoc-Arg as examples of Smoc conjugates to aliphatic, aromatic, and charged amino acids, respectively. Self-assembly occurs at concentrations above the critical aggregation concentration (CAC). Cryo-TEM imaging and SAXS reveal the presence of nanosheet, nanoribbon or nanotube structures, and spectroscopic methods (ThT fluorescence circular dichroism and FTIR) show the presence of β-sheet secondary structure, although Smoc-Ala solutions contain significant unaggregated monomer content. Smoc shows self-fluorescence, which was used to determine CAC values of the Smoc-amino acids from fluorescence assays. Smoc fluorescence was also exploited in confocal microscopy imaging with fibroblast cells, which revealed its uptake into the cytoplasm. The biocompatibility of these Smoc-amino acids was found to be excellent with zero cytotoxicity (in fact increased metabolism) to fibroblasts at low concentration.
Collapse
Affiliation(s)
- Valeria Castelletto
- School
of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| | - Lucas de Mello
- School
of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
- Departamento
de Biofísica, Universidade Federal
de São Paulo, São
Paulo 04023-062, Brazil
| | | | - Jani Seitsonen
- Nanomicroscopy
Center, Aalto University, Puumiehenkuja 2, FIN-02150 Espoo, Finland
| | - Ian W Hamley
- School
of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| |
Collapse
|
2
|
Mochizuki K. The packing parameter of bare surfactant does not necessarily indicate morphological changes. J Colloid Interface Sci 2022; 631:17-21. [DOI: 10.1016/j.jcis.2022.10.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
|
3
|
Huang GR, Lam CN, Hong K, Wang Y, Shinohara Y, Do C, Chen WR. Ion Atmosphere of Wormlike Micelles Profiled by Contrast Variation Small-Angle Neutron Scattering. ACS Macro Lett 2022; 11:66-71. [PMID: 35574783 DOI: 10.1021/acsmacrolett.1c00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structural studies of wormlike micelles have so far mostly focused on the conformational properties of surfactant aggregates. The diffuse ionic atmosphere, which has a profound influence on various micellization phenomena such as thermodynamic stability and structural polymorphism, remains largely unexplored experimentally. In this report a strategy of contrast variation small-angle neutron scattering for this crucial structural study is outlined. Underlined by a general criterion established for unbiasedly identifying the length scale relevant to charge association from the spectral evolution, our analytical framework can provide a quantitative description of counterion distribution in a mathematically tractable manner. Our method can be conveniently extended to facilitate structural studies of complex multicomponent systems using contrast variation neutron scattering.
Collapse
Affiliation(s)
- Guan-Rong Huang
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Christopher N. Lam
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Kunlun Hong
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Yangyang Wang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Yuya Shinohara
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Changwoo Do
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Wei-Ren Chen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
4
|
Eskandari R, Asoodeh A, Mousavi SD, Firouzi Z. The effect of a novel drug delivery system using encapsulated antimicrobial peptide Protonectin (IL-12) into Nano micelle PEG-PCL on A549 adenocarcinoma lung cell line. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02699-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Ye H, Shen Z, Wei M, Li Y. Red blood cell hitchhiking enhances the accumulation of nano- and micro-particles in the constriction of a stenosed microvessel. SOFT MATTER 2021; 17:40-56. [PMID: 33285555 DOI: 10.1039/d0sm01637c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We investigate the circulation of nano- and micro-particles, including spherical particles and filamentous nanoworms, with red blood cells (RBCs) suspension in a constricted channel that mimics a stenosed microvessel. Through three-dimensional simulations using the immersed boundary-based Lattice Boltzmann method, the influence of channel geometries, such as the length and ratio of the constriction, on the accumulation of particles is systematically studied. Firstly, we find that the accumulation of spherical particles with 1 μm diameter in the constriction increases with the increases of both the length and ratio of the constriction. This is attributed to the interaction between spheres and RBCs. The RBCs "carry" the spheres and they accumulate inside the constriction together, due to the altered local hydrodynamics induced by the existence of the constriction. Secondly, nanoworms demonstrate higher accumulation than that of spheres inside the constriction, which is associated with the escape of nanoworms from RBC clusters and their accumulation near the wall of main channel. The accumulated near-wall nanoworms will eventually enter the constriction, thus enhancing their concentration inside the constriction. However, an exceptional case occurs in the case of constrictions with large ratio and long length. In such circumstances, the RBCs aggregate together tightly and concentrate at the center of the channel, which makes the nanoworms hardly able to escape from RBC clusters, leading to a similar accumulation of nanoworms and spheres inside the constriction. This study may provide theoretical guidance for the design of nano- and micro-particles for biomedical engineering applications, such as drug delivery systems for patients with stenosed microvessels.
Collapse
Affiliation(s)
- Huilin Ye
- Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, Unit 3139, Storrs, Connecticut 06269, USA.
| | | | | | | |
Collapse
|
6
|
Schäfer K, Kolli HB, Killingmoe Christensen M, Bore SL, Diezemann G, Gauss J, Milano G, Lund R, Cascella M. Supramolecular Packing Drives Morphological Transitions of Charged Surfactant Micelles. Angew Chem Int Ed Engl 2020; 59:18591-18598. [PMID: 32543728 PMCID: PMC7589243 DOI: 10.1002/anie.202004522] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/29/2020] [Indexed: 12/16/2022]
Abstract
The shape and size of self-assembled structures upon local organization of their molecular building blocks are hard to predict in the presence of long-range interactions. Combining small-angle X-ray/neutron scattering data, theoretical modelling, and computer simulations, sodium dodecyl sulfate (SDS), over a broad range of concentrations and ionic strengths, was investigated. Computer simulations indicate that micellar shape changes are associated with different binding of the counterions. By employing a toy model based on point charges on a surface, and comparing it to experiments and simulations, it is demonstrated that the observed morphological changes are caused by symmetry breaking of the irreducible building blocks, with the formation of transient surfactant dimers mediated by the counterions that promote the stabilization of cylindrical instead of spherical micelles. The present model is of general applicability and can be extended to all systems controlled by the presence of mobile charges.
Collapse
Affiliation(s)
- Ken Schäfer
- Department ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Hima Bindu Kolli
- Department of Physics and AstronomyThe University of SheffieldWestern BankSheffieldS10 2TNUK
| | - Mikkel Killingmoe Christensen
- Department of Chemistry and Hylleraas Centre for Quantum Molecular SciencesUniversity of OsloPO-Box 1033 Blindern0315OsloNorway
| | - Sigbjørn Løland Bore
- Department of Chemistry and Hylleraas Centre for Quantum Molecular SciencesUniversity of OsloPO-Box 1033 Blindern0315OsloNorway
| | - Gregor Diezemann
- Department ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Jürgen Gauss
- Department ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Giuseppe Milano
- Department of Organic Materials ScienceYamagata University4-3-16 JonanYonezawaYamagata-ken992-8510Japan
| | - Reidar Lund
- Department of Chemistry and Hylleraas Centre for Quantum Molecular SciencesUniversity of OsloPO-Box 1033 Blindern0315OsloNorway
| | - Michele Cascella
- Department of Chemistry and Hylleraas Centre for Quantum Molecular SciencesUniversity of OsloPO-Box 1033 Blindern0315OsloNorway
| |
Collapse
|
7
|
Schäfer K, Kolli HB, Killingmoe Christensen M, Bore SL, Diezemann G, Gauss J, Milano G, Lund R, Cascella M. Supramolecular Packing Drives Morphological Transitions of Charged Surfactant Micelles. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ken Schäfer
- Department Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Hima Bindu Kolli
- Department of Physics and Astronomy The University of Sheffield Western Bank Sheffield S10 2TN UK
| | - Mikkel Killingmoe Christensen
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences University of Oslo PO-Box 1033 Blindern 0315 Oslo Norway
| | - Sigbjørn Løland Bore
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences University of Oslo PO-Box 1033 Blindern 0315 Oslo Norway
| | - Gregor Diezemann
- Department Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Jürgen Gauss
- Department Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Giuseppe Milano
- Department of Organic Materials Science Yamagata University 4-3-16 Jonan Yonezawa Yamagata-ken 992-8510 Japan
| | - Reidar Lund
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences University of Oslo PO-Box 1033 Blindern 0315 Oslo Norway
| | - Michele Cascella
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences University of Oslo PO-Box 1033 Blindern 0315 Oslo Norway
| |
Collapse
|
8
|
Street STG, He Y, Jin XH, Hodgson L, Verkade P, Manners I. Cellular uptake and targeting of low dispersity, dual emissive, segmented block copolymer nanofibers. Chem Sci 2020; 11:8394-8408. [PMID: 34094184 PMCID: PMC8162143 DOI: 10.1039/d0sc02593c] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/03/2020] [Indexed: 11/21/2022] Open
Abstract
Polymer-based nanoparticles show substantial promise in the treatment and diagnosis of cancer and other diseases. Herein we report an exploration of the cellular uptake of tailored, low dispersity segmented 1D nanoparticles which were prepared from an amphiphilic block copolymer, poly(dihexylfluorene)-b-poly(ethyleneglycol) (PDHF13-b-PEG227), with a crystallizable PDHF core-forming block and a 'stealth' PEG corona-forming block with different end-group functionalities. Segmented C-B-A-B-C pentablock 1D nanofibers with varied spatially-defined coronal chemistries and a selected length (95 nm) were prepared using the living crystallization-driven self-assembly (CDSA) seeded-growth method. As the blue fluorescence of PDHF is often subject to environment-related quenching, a far-red BODIPY (BD) fluorophore was attached to the PEG end-group of the coronal B segments to provide additional tracking capability. Folic acid (FA) was also incorporated as a targeting group in the terminal C segments. These dual-emissive pentablock nanofibers exhibited uptake into >97% of folate receptor positive HeLa cells by flow cytometry. In the absence of FA, no significant uptake was detected and nanofibers with either FA or BD coronal groups showed no significant toxicity. Correlative light and electron microscopy (CLEM) studies revealed receptor-mediated endocytosis as an uptake pathway, with subsequent localization to the perinuclear region. A significant proportion of the nanofibers also appeared to interact with the cell membrane in an end-on fashion, which was coupled with fluorescence quenching of the PDHF core. These results provide new insights into the cellular uptake of polymer-based nanofibers and suggest their potential use in targeted therapies and diagnostics.
Collapse
Affiliation(s)
- Steven T G Street
- School of Chemistry, University of Bristol Bristol BS8 1TS UK
- Department of Chemistry, University of Victoria Victoria BC V8W 3V6 Canada
| | - Yunxiang He
- School of Chemistry, University of Bristol Bristol BS8 1TS UK
| | - Xu-Hui Jin
- School of Chemistry, University of Bristol Bristol BS8 1TS UK
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing China
| | - Lorna Hodgson
- School of Biochemistry, University of Bristol Bristol BS8 1TD UK
| | - Paul Verkade
- School of Biochemistry, University of Bristol Bristol BS8 1TD UK
| | - Ian Manners
- School of Chemistry, University of Bristol Bristol BS8 1TS UK
- Department of Chemistry, University of Victoria Victoria BC V8W 3V6 Canada
| |
Collapse
|
9
|
Kelly EA, Willis-Fox N, Houston JE, Blayo C, Divitini G, Cowieson N, Daly R, Evans RC. A single-component photorheological fluid with light-responsive viscosity. NANOSCALE 2020; 12:6300-6306. [PMID: 32162625 DOI: 10.1039/c9nr10350c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Viscoelastic fluids whose rheological properties are tunable with light have the potential to deliver significant impact in fields relying on a change in flow behavior, such as in-use tuning of combined efficient heat-transfer and drag-reduction agents, microfluidic flow and controlled encapsulation and release. However, simple, single-component systems must be developed to allow integration with these applications. Here, we report a single-component viscoelastic fluid, capable of a dramatic light-sensitive rheological response, from a neutral azobenzene photosurfactant, 4-hexyl-4'butyloxymonotetraethylene glycol (C6AzoOC4E4) in water. From cryo-transmission electron microscopy (TEM), small-angle X-ray scattering (SAXS) and rheology measurements, we observe that the photosurfactant forms an entangled network of wormlike micelles in water, with a high viscosity (28 Pa s) and viscoelastic behaviour. UV irradiation of the surfactant solution creates a less dense micellar network, with some vesicle formation. As a result, the solution viscosity is reduced by four orders of magnitude (to 1.2 × 10-3 Pa s). This process is reversible and the high and low viscosity states can be cycled several times, through alternating UV and blue light irradiation.
Collapse
Affiliation(s)
- Elaine A Kelly
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Rd, Cambridge CB3 0FS, UK.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Yin R, Sahoo D, Xu F, Huang W, Zhou Y. Scalable preparation of crystalline nanorods through sequential polymerization-induced and crystallization-driven self-assembly of alternating copolymers. Polym Chem 2020. [DOI: 10.1039/d0py00093k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report a two-step sequential polymerization-induced and crystallization-driven self-assembly (sequential PI/CDSA) of alternating copolymers to prepare micron-length crystalline nanorods with an ultrathin lamellar structure on a large scale.
Collapse
Affiliation(s)
- Rui Yin
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Dipankar Sahoo
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Fugui Xu
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Wei Huang
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| |
Collapse
|
11
|
Abstract
Mother Nature produces a perfectly defined architecture that inspires researchers to make polymeric macromolecules for an array of functions. The present article describes recent development in the PISA to synthesize polymeric nano-objects.
Collapse
Affiliation(s)
- Shivshankar R. Mane
- Polymer Science and Engineering Division
- CSIR – National Chemical Laboratory
- Pune 411008
- India
| |
Collapse
|
12
|
SreeHarsha N, Hiremath JG, Aitha RK, Domb AJ, Al‐Dhubiab BE, Ramnarayanan C, Alzahrani AM, Venugopala KN, Akrawi SH, Attimarad M, Nair AB. Paclitaxel loaded poly (DL lactic acid co castor oil) 60:40 with poloxamer‐F68 rod shape cylindrical nanoparticle preparation and in vitro cytotoxicity studies. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nagaraja SreeHarsha
- Department of Pharmaceutical Sciences, College of Clinical PharmacyKing Faisal University Al‐Ahsa Saudi Arabia
- Department of Biotechnology and Food TechnologyDurban University of Technology Durban 4001 South Africa
- Department of PharmaceuticsVidya Siri College of Pharmacy Bangalore India
| | | | | | - Abraham J. Domb
- School of Pharmacy, Faculty of MedicineThe Hebrew University of Jerusalem Jerusalem 91120 Israel
| | - Bandar E. Al‐Dhubiab
- Department of Pharmaceutical Sciences, College of Clinical PharmacyKing Faisal University Al‐Ahsa Saudi Arabia
| | | | - Abdullah Mossa Alzahrani
- Department of Biological Sciences, College of ScienceKing Faisal University Al‐Ahsa Saudi Arabia
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical PharmacyKing Faisal University Al‐Ahsa Saudi Arabia
- School of Pharmacy, Faculty of MedicineThe Hebrew University of Jerusalem Jerusalem 91120 Israel
| | - Sabah H. Akrawi
- Department of Pharmaceutical Sciences, College of Clinical PharmacyKing Faisal University Al‐Ahsa Saudi Arabia
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical PharmacyKing Faisal University Al‐Ahsa Saudi Arabia
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical PharmacyKing Faisal University Al‐Ahsa Saudi Arabia
| |
Collapse
|
13
|
Lam CN, Do C, Wang Y, Huang GR, Chen WR. Structural properties of the evolution of CTAB/NaSal micelles investigated by SANS and rheometry. Phys Chem Chem Phys 2019; 21:18346-18351. [PMID: 31397831 DOI: 10.1039/c9cp02868d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surfactants are amphiphilic molecules that spontaneously self-assemble in aqueous solution into various ordered and disordered phases. Under certain conditions, one-dimensional structures in the form of long, flexible wormlike micelles can develop. Cetyltrimethylammonium bromide (CTAB) is one of the most widely studied surfactants, and in the presence of sodium salicylate (NaSal), wormlike micelles can form at very dilute concentrations of surfactant. We carry out a systematic study of the structures of CTAB/NaSal over a surfactant concentration range of 2.5-15 mM and at salt-to-surfactant molar ratios of 0.5-10. Using small-angle neutron scattering (SANS), we qualitatively and quantitatively characterize the equilibrium structures of CTAB/NaSal, mapping the phase behavior of CTAB/NaSal at low concentrations within the region of phase space where nascent wormlike micelles transition into long and entangled structures. Complementary rheological assessments not only demonstrate the significant influence of the inter-micellar Coulombic interaction on the micellar structure but also suggest the potential existence of a hierarchical structure which is beyond the accessibility of the SANS technique.
Collapse
Affiliation(s)
- Christopher N Lam
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
| | | | | | | | | |
Collapse
|
14
|
Yu Q, Roberts MG, Pearce S, Oliver AM, Zhou H, Allen C, Manners I, Winnik MA. Rodlike Block Copolymer Micelles of Controlled Length in Water Designed for Biomedical Applications. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00959] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
| | | | - Samuel Pearce
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Alex M. Oliver
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | | | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Ian Manners
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | | |
Collapse
|
15
|
Wakabayashi R, Obayashi H, Hashimoto R, Kamiya N, Goto M. Complementary interaction with peptide amphiphiles guides size-controlled assembly of small molecules for intracellular delivery. Chem Commun (Camb) 2019; 55:6997-7000. [PMID: 31112157 DOI: 10.1039/c9cc02473e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We introduced complementary interactions between peptide amphiphiles and a small fluorescence dye to develop a programmable multi-component supramolecular assembly, and intracellular delivery of the dye was controlled by the dimensions of the co-assembly, which was manipulated by the peptide design.
Collapse
Affiliation(s)
- Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | | | | | | | | |
Collapse
|
16
|
Cortes MDLA, de la Campa R, Valenzuela ML, Díaz C, Carriedo GA, Presa Soto A. Cylindrical Micelles by the Self-Assembly of Crystalline- b-Coil Polyphosphazene- b-P2VP Block Copolymers. Stabilization of Gold Nanoparticles. Molecules 2019; 24:molecules24091772. [PMID: 31067770 PMCID: PMC6539542 DOI: 10.3390/molecules24091772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 11/24/2022] Open
Abstract
During the last number of years a variety of crystallization-driven self-assembly (CDSA) processes based on semicrystalline block copolymers have been developed to prepare a number of different nanomorphologies in solution (micelles). We herein present a convenient synthetic methodology combining: (i) The anionic polymerization of 2-vinylpyridine initiated by organolithium functionalized phosphane initiators; (ii) the cationic polymerization of iminophosphoranes initiated by –PR2Cl2; and (iii) a macromolecular nucleophilic substitution step, to prepare the novel block copolymers poly(bistrifluoroethoxy phosphazene)-b-poly(2-vinylpyridine) (PTFEP-b-P2VP), having semicrystalline PTFEP core forming blocks. The self-assembly of these materials in mixtures of THF (tetrahydrofuran) and 2-propanol (selective solvent to P2VP), lead to a variety of cylindrical micelles of different lengths depending on the amount of 2-propanol added. We demonstrated that the crystallization of the PTFEP at the core of the micelles is the main factor controlling the self-assembly processes. The presence of pyridinyl moieties at the corona of the micelles was exploited to stabilize gold nanoparticles (AuNPs).
Collapse
Affiliation(s)
| | - Raquel de la Campa
- Department of Organic and Inorganic Chemistry (IUQOEM), School of Chemistry, University of Oviedo, 33006 Oviedo, Spain.
| | - Maria Luisa Valenzuela
- Inorganic Chemistry and Molecular Material Center, Institute of Applied Chemistry Science, School of Engineering, University Autónoma de Chile, 8900000 Santiago, Chile.
| | - Carlos Díaz
- Department of Chemistry, School of Chemistry, University of Chile, 7800003 Santiago, Chile.
| | - Gabino A Carriedo
- Department of Organic and Inorganic Chemistry (IUQOEM), School of Chemistry, University of Oviedo, 33006 Oviedo, Spain.
| | - Alejandro Presa Soto
- Department of Organic and Inorganic Chemistry (IUQOEM), School of Chemistry, University of Oviedo, 33006 Oviedo, Spain.
| |
Collapse
|
17
|
Rymaruk MJ, Hunter SJ, O’Brien CT, Brown SL, Williams CN, Armes SP. RAFT Dispersion Polymerization in Silicone Oil. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00129] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Matthew J. Rymaruk
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Saul J. Hunter
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Cate T. O’Brien
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Steven L. Brown
- Scott Bader Company
Ltd., Wollaston, Wellingborough, Northamptonshire NN29 7RL, U.K
| | - Clive N. Williams
- Scott Bader Company
Ltd., Wollaston, Wellingborough, Northamptonshire NN29 7RL, U.K
| | - Steven P. Armes
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| |
Collapse
|
18
|
|
19
|
Elter JK, Biehl P, Gottschaldt M, Schacher FH. Core-crosslinked worm-like micelles from polyether-based diblock terpolymers. Polym Chem 2019. [DOI: 10.1039/c9py01054h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We herein report on the synthesis of polyether-based diblock terpolymers and their self-assembly into complex solution structures (e.g. filomicelles). The aggregates were core-crosslinked and their structure was influenced via ultrasonication.
Collapse
Affiliation(s)
- Johanna K. Elter
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University Jena
- D-07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Philip Biehl
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University Jena
- D-07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Michael Gottschaldt
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University Jena
- D-07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Felix H. Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University Jena
- D-07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| |
Collapse
|
20
|
Warren NJ, Derry MJ, Mykhaylyk OO, Lovett JR, Ratcliffe LPD, Ladmiral V, Blanazs A, Fielding LA, Armes SP. Critical Dependence of Molecular Weight on Thermoresponsive Behavior of Diblock Copolymer Worm Gels in Aqueous Solution. Macromolecules 2018; 51:8357-8371. [PMID: 30449901 PMCID: PMC6236470 DOI: 10.1021/acs.macromol.8b01617] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/02/2018] [Indexed: 01/03/2023]
Abstract
Reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate was used to prepare three poly(glycerol monomethacrylate) x -poly(2-hydroxypropyl methacrylate) y (denoted G x -H y or PGMA-PHPMA) diblock copolymers, namely G37-H80, G54-H140, and G71-H200. A master phase diagram was used to select each copolymer composition to ensure that a pure worm phase was obtained in each case, as confirmed by transmission electron microscopy (TEM) and small-angle x-ray scattering (SAXS) studies. The latter technique indicated a mean worm cross-sectional diameter (or worm width) ranging from 11 to 20 nm as the mean degree of polymerization (DP) of the hydrophobic PHPMA block was increased from 80 to 200. These copolymer worms form soft hydrogels at 20 °C that undergo degelation on cooling. This thermoresponsive behavior was examined using variable temperature DLS, oscillatory rheology, and SAXS. A 10% w/w G37-H80 worm dispersion dissociated to afford an aqueous solution of molecularly dissolved copolymer chains at 2 °C; on returning to ambient temperature, these chains aggregated to form first spheres and then worms, with the original gel strength being recovered. In contrast, the G54-H140 and G71-H200 worms each only formed spheres on cooling to 2 °C, with thermoreversible (de)gelation being observed in the former case. The sphere-to-worm transition for G54-H140 was monitored by variable temperature SAXS: these experiments indicated the gradual formation of longer worms at higher temperature, with a concomitant reduction in the number of spheres, suggesting worm growth via multiple 1D sphere-sphere fusion events. DLS studies indicated that a 0.1% w/w aqueous dispersion of G71-H200 worms underwent an irreversible worm-to-sphere transition on cooling to 2 °C. Furthermore, irreversible degelation over the time scale of the experiment was also observed during rheological studies of a 10% w/w G71-H200 worm dispersion. Shear-induced polarized light imaging (SIPLI) studies revealed qualitatively different thermoreversible behavior for these three copolymer worm dispersions, although worm alignment was observed at a shear rate of 10 s-1 in each case. Subsequently conducting this technique at a lower shear rate of 1 s-1 combined with ultra small-angle x-ray scattering (USAXS) also indicated that worm branching occurred at a certain critical temperature since an upturn in viscosity, distortion in the birefringence, and a characteristic feature in the USAXS pattern were observed. Finally, SIPLI studies indicated that the characteristic relaxation times required for loss of worm alignment after cessation of shear depended markedly on the copolymer molecular weight.
Collapse
Affiliation(s)
- Nicholas J. Warren
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Matthew J. Derry
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | | | - Joseph R. Lovett
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Liam P. D. Ratcliffe
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Vincent Ladmiral
- Ingénierie
et Architectures Macromoléculaires, CNRS, UM, ENSCM, Institut Charles Gerhardt UMR 5253, Place Eugène Bataillon, Cedex 5 34095 Montpellier, France
| | - Adam Blanazs
- BASF SE, GMV/P-B001, 67056 Ludwigshafen, Germany
| | - Lee A. Fielding
- School
of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Steven P. Armes
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| |
Collapse
|
21
|
Pijpers IAB, Abdelmohsen LKEA, Xia Y, Cao S, Williams DS, Meng F, Hest JCM, Zhong Z. Adaptive Polymersome and Micelle Morphologies in Anticancer Nanomedicine: From Design Rationale to Fabrication and Proof‐of‐Concept Studies. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Imke A. B. Pijpers
- Eindhoven University of Technology P.O. Box 513 (STO 3.31) 5600MB Eindhoven The Netherlands
| | | | - Yifeng Xia
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and ApplicationCollege of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 P. R. China
| | - Shoupeng Cao
- Eindhoven University of Technology P.O. Box 513 (STO 3.31) 5600MB Eindhoven The Netherlands
| | | | - Fenghua Meng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and ApplicationCollege of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 P. R. China
| | - Jan C. M. Hest
- Eindhoven University of Technology P.O. Box 513 (STO 3.31) 5600MB Eindhoven The Netherlands
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and ApplicationCollege of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 P. R. China
| |
Collapse
|
22
|
Zhou M, Li J, Zhang H, Hong K. Stimuli-responsive fiber-like micelles from the self-assembly of well-defined rod-coil block copolymer. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Chakraborty K, Vijayan K, Brown AEX, Discher DE, Loverde SM. Glassy worm-like micelles in solvent and shear mediated shape transitions. SOFT MATTER 2018; 14:4194-4203. [PMID: 29744515 PMCID: PMC6174325 DOI: 10.1039/c8sm00080h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The glassiness of polymer melts is generally considered to be suppressed by small dimensions, added solvent, and heat. Here, we suggest that glassiness persists at the nanoscale in worm-like micelles composed of amphiphilic diblock copolymers of poly(ethylene oxide)-polystyrene (PS). The glassiness of these worms is indicated by a lack of fluorescence recovery after photobleaching as well as micron-length rigid segments separated by hinges. The coarse-grained molecular dynamics studies probe the dynamics of the PS in these glassy worms. Addition of an organic solvent promotes a transition from hinged to fully flexible worms and to spheres or vesicles. Simulation demonstrates two populations of organic solvent in the core of the micelle-a solvent 'pool' in the micelle core and a second population that accumulates at the interface between the core and the corona. The stable heterogeneity of the residual solvent could explain the unusual hinged rigidity, but solvent removal during shear-extension could be more effective and yield - as observed - nearly straight worms without hinges.
Collapse
Affiliation(s)
- Kaushik Chakraborty
- Department of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Boulevard, Staten Island, New York 10314, USA.
| | | | | | | | | |
Collapse
|
24
|
Parhiz H, Khoshnejad M, Myerson JW, Hood E, Patel PN, Brenner JS, Muzykantov VR. Unintended effects of drug carriers: Big issues of small particles. Adv Drug Deliv Rev 2018; 130:90-112. [PMID: 30149885 PMCID: PMC6588191 DOI: 10.1016/j.addr.2018.06.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/11/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023]
Abstract
Humoral and cellular host defense mechanisms including diverse phagocytes, leukocytes, and immune cells have evolved over millions of years to protect the body from microbes and other external and internal threats. These policing forces recognize engineered sub-micron drug delivery systems (DDS) as such a threat, and react accordingly. This leads to impediment of the therapeutic action, extensively studied and discussed in the literature. Here, we focus on side effects of DDS interactions with host defenses. We argue that for nanomedicine to reach its clinical potential, the field must redouble its efforts in understanding the interaction between drug delivery systems and the host defenses, so that we can engineer safer interventions with the greatest potential for clinical success.
Collapse
Affiliation(s)
- Hamideh Parhiz
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Makan Khoshnejad
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob W Myerson
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth Hood
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Priyal N Patel
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob S Brenner
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Vladimir R Muzykantov
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Targeted Therapeutics and Translational Nanomedicine (CT3N), University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
25
|
Zhao J, Lu H, Yao Y, Ganda S, Stenzel MH. Length vs. stiffness: which plays a dominant role in the cellular uptake of fructose-based rod-like micelles by breast cancer cells in 2D and 3D cell culture models? J Mater Chem B 2018; 6:4223-4231. [DOI: 10.1039/c8tb00706c] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Internalization of rod-like micelles by breast cancer cells is significantly affected by the stiffness of nano-rods.
Collapse
Affiliation(s)
- Jiacheng Zhao
- Centre for Advanced Macromolecular Design
- The University of New South Wales
- Sydney
- Australia
- School of Chemistry
| | - Hongxu Lu
- Centre for Advanced Macromolecular Design
- The University of New South Wales
- Sydney
- Australia
- School of Chemistry
| | - Yin Yao
- Electron Microscope Unit
- The University of New South Wales
- Sydney
- Australia
| | - Sylvia Ganda
- Centre for Advanced Macromolecular Design
- The University of New South Wales
- Sydney
- Australia
- School of Chemistry
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design
- The University of New South Wales
- Sydney
- Australia
- School of Chemistry
| |
Collapse
|
26
|
Zhao J, Stenzel MH. Entry of nanoparticles into cells: the importance of nanoparticle properties. Polym Chem 2018. [DOI: 10.1039/c7py01603d] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Knowledge of the interactions between nanoparticles (NPs) and cell membranes is of great importance for the design of safe and efficient nanomedicines.
Collapse
Affiliation(s)
- Jiacheng Zhao
- Centre for Advanced Macromolecular Design
- The University of New South Wales
- Sydney
- Australia
- School of Chemical Engineering
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design
- The University of New South Wales
- Sydney
- Australia
- School of Chemistry
| |
Collapse
|
27
|
Yang C, Ma X, Lin J, Wang L, Lu Y, Zhang L, Cai C, Gao L. Supramolecular “Step Polymerization” of Preassembled Micelles: A Study of “Polymerization” Kinetics. Macromol Rapid Commun 2017; 39. [DOI: 10.1002/marc.201700701] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Chaoying Yang
- Shanghai Key Laboratory of Advanced Polymeric Materials; State Key Laboratory of Bioreactor Engineering; Key Laboratory for Ultrafine Materials of Ministry of Education; School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Xiaodong Ma
- Shanghai Key Laboratory of Advanced Polymeric Materials; State Key Laboratory of Bioreactor Engineering; Key Laboratory for Ultrafine Materials of Ministry of Education; School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials; State Key Laboratory of Bioreactor Engineering; Key Laboratory for Ultrafine Materials of Ministry of Education; School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials; State Key Laboratory of Bioreactor Engineering; Key Laboratory for Ultrafine Materials of Ministry of Education; School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Yingqing Lu
- Shanghai Key Laboratory of Advanced Polymeric Materials; State Key Laboratory of Bioreactor Engineering; Key Laboratory for Ultrafine Materials of Ministry of Education; School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Liangshun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials; State Key Laboratory of Bioreactor Engineering; Key Laboratory for Ultrafine Materials of Ministry of Education; School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials; State Key Laboratory of Bioreactor Engineering; Key Laboratory for Ultrafine Materials of Ministry of Education; School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Liang Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials; State Key Laboratory of Bioreactor Engineering; Key Laboratory for Ultrafine Materials of Ministry of Education; School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| |
Collapse
|
28
|
Kinnear C, Moore TL, Rodriguez-Lorenzo L, Rothen-Rutishauser B, Petri-Fink A. Form Follows Function: Nanoparticle Shape and Its Implications for Nanomedicine. Chem Rev 2017; 117:11476-11521. [DOI: 10.1021/acs.chemrev.7b00194] [Citation(s) in RCA: 342] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Calum Kinnear
- Bio21 Institute & School of Chemistry, University of Melbourne, Parkville 3010, Australia
| | | | | | | | | |
Collapse
|
29
|
Recent advance of pH-sensitive nanocarriers targeting solid tumors. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0349-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Mahmud A, Harada T, Rajagopal K, Christian DA, Nair P, Murphy R, Discher DE. Spray stability of self-assembled filaments for delivery. J Control Release 2017; 263:162-171. [PMID: 28549950 DOI: 10.1016/j.jconrel.2017.05.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 05/17/2017] [Indexed: 11/19/2022]
Abstract
Filamentous viruses are common in nature and efficiently deliver - sometimes via aerosol - genetic material, viral proteins, and other factors to animals and plants. Aerosolization can be a severe physicochemical test of the stability of any filamentous assembly whether it is made from natural polymers such as viral proteins or synthetic polymers. Here, worm-like "filomicelles" that self-assemble in water from amphiphilic block copolymers were investigated as aerosolized delivery vehicles. After spraying and drying, fluorophore-loaded filomicelles that were originally ~10-20μm long could be imaged as 2-5μm long fragments that survived rehydration on natural and artificial surfaces (i.e. plant leaves and glass). As a functional test of delivery, the hydrophobic pesticide bifenthrin was loaded into filomicelles (up to 25% w/w) and sprayed onto plants infested with two agricultural pests, beet army worm or two-spotted spider mites; pesticidal efficacy exceeded that of commercial formulations. Persistent delivery by the filomicelle formulation was especially notable and broadly consistent with previous intravenous delivery of other drugs and dyes with the highly elongated filomicelles.
Collapse
Affiliation(s)
- Abdullah Mahmud
- NanoBio-Polymers Lab, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Takamasa Harada
- NanoBio-Polymers Lab, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karthikan Rajagopal
- NanoBio-Polymers Lab, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David A Christian
- NanoBio-Polymers Lab, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Praful Nair
- NanoBio-Polymers Lab, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryan Murphy
- Complex Assemblies of Soft Matter, Centre National de la Recherche Scientifique - Rhodia, University of Pennsylvania, Unité Mixte Internationale 3254, Bristol, PA 19007, USA
| | - Dennis E Discher
- NanoBio-Polymers Lab, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
31
|
Kapishon V, Allison S, Whitney RA, Cunningham MF, Szewczuk MR, Neufeld RJ. Oseltamivir-conjugated polymeric micelles prepared by RAFT living radical polymerization as a new active tumor targeting drug delivery platform. Biomater Sci 2017; 4:511-21. [PMID: 26788555 DOI: 10.1039/c5bm00519a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Targeted drug delivery using polymeric nanostructures has been at the forefront of cancer research, engineered for safer, more efficient and effective use of chemotherapy. Here, we designed a new polymeric micelle delivery system for active tumor targeting followed by micelle-drug internalization via receptor-induced endocytosis. We recently reported that oseltamivir phosphate targets and inhibits Neu1 sialidase activity associated with receptor tyrosine kinases such as epidermal growth factor receptors (EGFRs) which are overexpressed in cancer cells. By decorating micelles with oseltamivir, we investigated whether they actively targeted human pancreatic PANC1 cancer cells. Amphiphilic block copolymers with oseltamivir conjugated at the hydrophilic end, oseltamivir-pPEGMEMA-b-pMMA (oseltamivir-poly(polyethylene glycol methyl ether methacrylate)-block-poly(methyl methacrylate), were synthesized using reversible addition-fragmentation chain transfer (RAFT) living radical polymerization. Oseltamivir-conjugated micelles have self-assembling properties to give worm-like micellar structures with molecular weight of 80 000 g mol(-1). Oseltamivir-conjugated water soluble pPEGMEMA, dose dependently, both inhibited sialidase activity associated with Neu1, and reduced viability of PANC1 cells. In addition, oseltamivir-conjugated micelles, labelled with a hydrophobic fluorescent dye within the micelle core, were subsequently internalized by PANC1 cells. Blocking cell surface Neu1 with anti-Neu1 antibody, reduced internalization of oseltamivir-conjugated micelles, demonstrating that Neu1 binding linked to sialidase inhibition were prerequisite steps for subsequent internalization of the micelles. The mechanism of internalization is likely that of receptor-induced endocytosis demonstrating potential as a new nanocarrier system for not only targeting a tumor cell, but also for directly reducing viability through Neu1 inhibition, followed by intracellular delivery of hydrophobic cytotoxic chemotherapeutics.
Collapse
Affiliation(s)
- Vitaliy Kapishon
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| | - Stephanie Allison
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| | - Ralph A Whitney
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| | - Michael F Cunningham
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6. and Department of Chemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| | - Ronald J Neufeld
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| |
Collapse
|
32
|
Moeinzadeh S, Jabbari E. Nanoparticles and Their Applications. SPRINGER HANDBOOK OF NANOTECHNOLOGY 2017. [DOI: 10.1007/978-3-662-54357-3_11] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Abstract
Recently, there has been an emerging interest in controlling 3D structures and designing novel 3D shapes for drug carriers at nano- and micro-scales. Certain 3D shapes and structures of drug particles enable transportation of the drugs to desired areas of the body, allow drugs to target specific cells and tissues, and influence release kinetics. Advanced nano- and micro-manufacturing methods including 3D printing, photolithography-based processes, microfluidics and DNA origami have been developed to generate defined 3D shapes and structures for drug carriers. This paper reviews the importance of 3D structures and shapes on controlled drug delivery, and the current state-of-the-art technologies that allow the creation of novel 3D drug carriers at nano- and micro-scales.
Collapse
|
34
|
|
35
|
Zhao J, Lu H, Xiao P, Stenzel MH. Cellular Uptake and Movement in 2D and 3D Multicellular Breast Cancer Models of Fructose-Based Cylindrical Micelles That Is Dependent on the Rod Length. ACS APPLIED MATERIALS & INTERFACES 2016; 8:16622-16630. [PMID: 27286273 DOI: 10.1021/acsami.6b04805] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
While the shape effect of nanoparticles on cellular uptake has been frequently studied, no consistent conclusions are available currently. The controversy mainly focuses on the cellular uptake of elongated (i.e., filaments or rod-like micelles) as compared to spherical (i.e., micelles and vesicles) nanoparticles. So far, there is no clear trend that proposes the superiority of spherical or nonspherical nanoparticles with conflicting reports available in the literature. One of the reasons is that these few reports available deal with nanoparticles of different shapes, surface chemistries, stabilities, and aspects ratios. Here, we investigated the effect of the aspect ratio of cylindrical micelles on the cellular uptake by breast cancer cell lines MCF-7 and MDA-MB-231. Cylindrical micelles, also coined rod-like micelles, of various length were prepared using fructose-based block copolymers poly(1-O-methacryloyl-β-d-fructopyranose)-b-poly(methyl methacrylate). The critical water content, temperature, and stirring rate that trigger the morphological transition from spheres to rods of various aspect ratios were identified, allowing the generation of different kinetically trapping morphologies. High shear force as they are found with high stirring rates was observed to inhibit the formation of long rods. Rod-like micelles with length of 500-2000 nm were subsequently investigated toward their ability to translocate in breast cancer cells and penetrate into MCF-7 multicellular spheroid models. It was found that shorter rods were taken up at a higher rate than longer rods.
Collapse
Affiliation(s)
- Jiacheng Zhao
- Centre for Advanced Macromolecular Design, ‡School of Chemical Engineering, and §School of Chemistry, The University of New South Wales , Sydney, New South Wales 2062, Australia
| | - Hongxu Lu
- Centre for Advanced Macromolecular Design, ‡School of Chemical Engineering, and §School of Chemistry, The University of New South Wales , Sydney, New South Wales 2062, Australia
| | - Pu Xiao
- Centre for Advanced Macromolecular Design, ‡School of Chemical Engineering, and §School of Chemistry, The University of New South Wales , Sydney, New South Wales 2062, Australia
| | - Martina H Stenzel
- Centre for Advanced Macromolecular Design, ‡School of Chemical Engineering, and §School of Chemistry, The University of New South Wales , Sydney, New South Wales 2062, Australia
| |
Collapse
|
36
|
Khan I, Khan M, Umar MN, Oh DH. Nanobiotechnology and its applications in drug delivery system: a review. IET Nanobiotechnol 2016; 9:396-400. [PMID: 26647817 DOI: 10.1049/iet-nbt.2014.0062] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nanobiotechnology holds great potential in various regimes of life sciences. In this review, the potential applications of nanobiotechnology in various sectors of nanotechnologies, including nanomedicine and nanobiopharmaceuticals, are highlighted. To overcome the problems associated with drug delivery, nanotechnology has gained increasing interest in recent years. Nanosystems with different biological properties and compositions have been extensively investigated for drug delivery applications. Nanoparticles fabricated through various techniques have elevated therapeutic efficacy, provided stability to the drugs and proved capable of targeting the cells and controlled release inside the cell. Polymeric nanoparticles have shown increased development and usage in drug delivery as well as in diagnostics in recent decades.
Collapse
Affiliation(s)
- Imran Khan
- Department of Food Science and Biotechnology, School of Bio-convergence Science and Technology, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea
| | - Momin Khan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, School of Bio-convergence Science and Technology, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea.
| |
Collapse
|
37
|
Myerson JW, Anselmo AC, Liu Y, Mitragotri S, Eckmann DM, Muzykantov VR. Non-affinity factors modulating vascular targeting of nano- and microcarriers. Adv Drug Deliv Rev 2016; 99:97-112. [PMID: 26596696 PMCID: PMC4798918 DOI: 10.1016/j.addr.2015.10.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/29/2015] [Accepted: 10/09/2015] [Indexed: 12/22/2022]
Abstract
Particles capable of homing and adhering to specific vascular biomarkers have potential as fundamental tools in drug delivery for mediation of a wide variety of pathologies, including inflammation, thrombosis, and pulmonary disorders. The presentation of affinity ligands on the surface of a particle provides a means of targeting the particle to sites of therapeutic interest, but a host of other factors come into play in determining the targeting capacity of the particle. This review presents a summary of several key considerations in nano- and microparticle design that modulate targeted delivery without directly altering epitope-specific affinity. Namely, we describe the effect of factors in definition of the base carrier (including shape, size, and flexibility) on the capacity of carriers to access, adhere to, and integrate in target biological milieus. Furthermore, we present a summary of fundamental dynamics of carrier behavior in circulation, taking into account interactions with cells in circulation and the role of hemodynamics in mediating the direction of carriers to target sites. Finally, we note non-affinity aspects to uptake and intracellular trafficking of carriers in target cells. In total, recent findings presented here may offer an opportunity to capitalize on mitigating factors in the behavior of ligand-targeted carriers in order to optimize targeting.
Collapse
|
38
|
Canning S, Smith GN, Armes SP. A Critical Appraisal of RAFT-Mediated Polymerization-Induced Self-Assembly. Macromolecules 2016; 49:1985-2001. [PMID: 27019522 PMCID: PMC4806311 DOI: 10.1021/acs.macromol.5b02602] [Citation(s) in RCA: 654] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/01/2016] [Indexed: 12/16/2022]
Abstract
Recently, polymerization-induced self-assembly (PISA) has become widely recognized as a robust and efficient route to produce block copolymer nanoparticles of controlled size, morphology, and surface chemistry. Several reviews of this field have been published since 2012, but a substantial number of new papers have been published in the last three years. In this Perspective, we provide a critical appraisal of the various advantages offered by this approach, while also pointing out some of its current drawbacks. Promising future research directions as well as remaining technical challenges and unresolved problems are briefly highlighted.
Collapse
Affiliation(s)
- Sarah
L. Canning
- Dainton Building, Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Gregory N. Smith
- Dainton Building, Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Steven P. Armes
- Dainton Building, Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| |
Collapse
|
39
|
Cunningham VJ, Armes SP, Musa OM. Synthesis, characterisation and Pickering emulsifier performance of poly(stearyl methacrylate)-poly( N-2-(methacryloyloxy)ethyl pyrrolidone) diblock copolymer nano-objects via RAFT dispersion polymerisation in n-dodecane. Polym Chem 2016; 7:1882-1891. [PMID: 28496522 PMCID: PMC5361141 DOI: 10.1039/c6py00138f] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 02/11/2016] [Indexed: 01/19/2023]
Abstract
A near-monodisperse poly(stearyl methacrylate) macromolecular chain transfer agent (PSMA macro-CTA) was prepared via reversible addition-fragmentation chain transfer (RAFT) solution polymerisation in toluene. This PSMA macro-CTA was then utilised as a stabiliser block for the RAFT dispersion polymerisation of a highly polar monomer, N-2-(methacryloyloxy)ethyl pyrrolidone (NMEP), in n-dodecane at 90 °C. 1H NMR studies confirmed that the rate of NMEP polymerisation was significantly faster than that of a non-polar monomer (benzyl methacrylate, BzMA) under the same conditions. For example, when targeting a PSMA14-PNMEP100 diblock copolymer, more than 99% NMEP conversion was achieved within 30 min, whereas only 19% BzMA conversion was obtained on the same time scale for the corresponding PSMA14-PBzMA100 synthesis. The resulting PSMA-PNMEP diblock copolymer chains underwent polymerisation-induced self-assembly (PISA) during growth of the insoluble PNMEP block to form either spherical micelles, highly anisotropic worms or polydisperse vesicles, depending on the target DP of the PNMEP chains. Systematic variation of this latter parameter, along with the solids content, allowed the construction of a phase diagram which enabled pure morphologies to be reproducibly targeted. Syntheses conducted at 10% w/w solids led to the formation of kinetically-trapped spheres. A monotonic increase in particle diameter with PNMEP DP was observed for such PISA syntheses, with particle diameters of up to 462 nm being obtained for PSMA14-PNMEP960. Increasing the copolymer concentration to 15% w/w solids led to worm-like micelles, while vesicles were obtained at 27.5% w/w solids. High (≥95%) NMEP conversions were achieved in all cases and 3 : 1 chloroform/methanol GPC analysis indicated relatively high blocking efficiencies. However, relatively broad molecular weight distributions (Mw/Mn > 1.50) were observed when targeting PNMEP DPs greater than 150. This indicates light branching caused by the presence of a low level of dimethacrylate impurity. Finally, PSMA14-PNMEP49 spheres were evaluated as Pickering emulsifiers. Unexpectedly, it was found that either water-in-oil or oil-in-water Pickering emulsions could be obtained depending on the shear rate employed for homogenisation. Further investigation suggested that high shear rates lead to in situ inversion of the initial hydrophobic PSMA14-PNMEP49 spheres to form hydrophilic PNMEP49-PSMA14 spheres.
Collapse
Affiliation(s)
- V J Cunningham
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , South Yorkshire S3 7HF , UK .
| | - S P Armes
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , South Yorkshire S3 7HF , UK .
| | - O M Musa
- Ashland Specialty Ingredients , 1005 US 202/206 , Bridgewater , NJ 08807 , USA
| |
Collapse
|
40
|
Biopolymeric Mucin and Synthetic Polymer Analogs: Their Structure, Function and Role in Biomedical Applications. Polymers (Basel) 2016; 8:polym8030071. [PMID: 30979166 PMCID: PMC6432556 DOI: 10.3390/polym8030071] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 12/17/2022] Open
Abstract
Mucin networks are viscoelastic fibrillar aggregates formed through the complex self-association of biopolymeric glycoprotein chains. The networks form a lubricious, hydrated protective shield along epithelial regions within the human body. The critical role played by mucin networks in impacting the transport properties of biofunctional molecules (e.g., biogenic molecules, probes, nanoparticles), and its effect on bioavailability are well described in the literature. An alternate perspective is provided in this paper, presenting mucin’s complex network structure, and its interdependent functional characteristics in human physiology. We highlight the recent advances that were achieved through the use of mucin in diverse areas of bioengineering applications (e.g., drug delivery, biomedical devices and tissue engineering). Mucin network formation is a highly complex process, driven by wide variety of molecular interactions, and the network possess structural and chemical variations, posing a great challenge to understand mucin’s bulk behavior. Through this review, the prospective potential of polymer based analogs to serve as mucin mimic is suggested. These analog systems, apart from functioning as an artificial model, reducing the current dependency on animal models, can aid in furthering our fundamental understanding of such complex structures.
Collapse
|
41
|
Truong NP, Quinn JF, Whittaker MR, Davis TP. Polymeric filomicelles and nanoworms: two decades of synthesis and application. Polym Chem 2016. [DOI: 10.1039/c6py00639f] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review highlights the substantial progress in the syntheses and applications of filomicelles, an emerging nanomaterial with distinct and useful properties.
Collapse
Affiliation(s)
- Nghia P. Truong
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - John F. Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - Michael R. Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| |
Collapse
|
42
|
Li X, Zhang Q, Ahmad Z, Huang J, Ren Z, Weng W, Han G, Mao C. Near-infrared luminescent CaTiO 3:Nd 3+ nanofibers with tunable and trackable drug release kinetics. J Mater Chem B 2015; 3:7449-7456. [PMID: 27398215 PMCID: PMC4934121 DOI: 10.1039/c5tb01158b] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
750-850 nm (NIR I) and 1000-1400 nm (NIR II) in the near infrared (NIR) spectra are two windows of optical transparency for biological tissues with the latter capable of penetrating tissue deeper. Monitoring drug release from the drug carrier is still a daunting challenge in the field of nanomedicine. To overcome such a challenge, we propose to use porous Nd3+-doped CaTiO3 nanofibers, which can be excited by NIR I to emit NIR II light, to carry drugs to test the concept of monitoring drug release from the nanofibers by detecting the NIR II emission intensity. Towards this end, we first used electrospinning to prepare porous Nd3+-doped CaTiO3 nanofibers by adding micelle-forming surfactant Pluronic F127, followed by annealing to remove the organic component. After a model drug, ibuprofen, was loaded into the porous nanofibers, the drug release from the nanofibers into the phosphate buffered saline (PBS) solution was monitored by detecting the NIR II emission from the nanofibers. We found that the release of the drug molecules from the nanofibers into the PBS solution triggers the quenching of NIR II emission by the hydroxyl groups in the surrounding media. Consequently, more drug release corresponded to more reduction in the intensity of the NIR II emission, allowing us to monitor the drug release by simply detecting the intensity of NIR II from the nanofibers. In addition, we demonstrated that tuning the amount of micelle-forming surfactant Pluronic F127 enabled us to tune the porosity of the nanofibers and thus the drug release kinetics. This study suggests that Nd3+ doped CaTiO3 nanostructures can serve as a promising drug delivery platform with the potential to monitor drug release kinetics by detecting the tissue-penetrating NIR emission.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Qiuhong Zhang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK
| | - Jie Huang
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
| | - Zhaohui Ren
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Wenjian Weng
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Gaorong Han
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Chuanbin Mao
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma, 73019-5300, USA
| |
Collapse
|
43
|
Müller LK, Landfester K. Natural liposomes and synthetic polymeric structures for biomedical applications. Biochem Biophys Res Commun 2015; 468:411-8. [PMID: 26315266 DOI: 10.1016/j.bbrc.2015.08.088] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
Abstract
In the last decades, the development and design of drug delivery systems have attracted great attention. Especially siRNA carriers have been of special interest since discovered as suitable tool for gene silencing. Self-assembled structures consisting of amphiphilic molecules are the most investigated carriers with regards to siRNA delivery. Liposomes as drug vehicles already found their way into clinical use, as they are highly biocompatible and their colloidal stability and circulation time in blood can be significantly enhanced by PEGylation. Fully synthetic polymersomes inspired by these natural structures provide enhanced stability and offer a wide range of modification-possibilities. Therefore, their design as carrier vehicles has become of great interest. This mini-review highlights the possibilities of using polymeric vesicles for potential drug delivery and gives a brief overview of their potential regarding fine-tuning towards targeted delivery or triggered drug release.
Collapse
Affiliation(s)
- Laura K Müller
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
44
|
Ding H, Yin Q, Wan G, Dai X, Shi X, Qiao Y. Solubilization of menthol by platycodin D in aqueous solution: An integrated study of classical experiments and dissipative particle dynamics simulation. Int J Pharm 2015; 480:143-51. [DOI: 10.1016/j.ijpharm.2015.01.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/19/2014] [Accepted: 01/18/2015] [Indexed: 11/28/2022]
|
45
|
Liang R, Xu J, Li W, Liao Y, Wang K, You J, Zhu J, Jiang W. Precise Localization of Inorganic Nanoparticles in Block Copolymer Micellar Aggregates: From Center to Interface. Macromolecules 2014. [DOI: 10.1021/ma501835r] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ruijing Liang
- Key
Laboratory for Large-Format Battery Materials and System of the Ministry
of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiangping Xu
- Key
Laboratory for Large-Format Battery Materials and System of the Ministry
of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- State
Key Laboratory of Polymer Physics and Chemistry, Chuangchun Institute
of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China
| | - Weikun Li
- Key
Laboratory for Large-Format Battery Materials and System of the Ministry
of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yonggui Liao
- Key
Laboratory for Large-Format Battery Materials and System of the Ministry
of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ke Wang
- Key
Laboratory for Large-Format Battery Materials and System of the Ministry
of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jichun You
- College
of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Jintao Zhu
- Key
Laboratory for Large-Format Battery Materials and System of the Ministry
of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Jiang
- State
Key Laboratory of Polymer Physics and Chemistry, Chuangchun Institute
of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China
| |
Collapse
|
46
|
Wang Y, Wang D, Fu Q, Liu D, Ma Y, Racette K, He Z, Liu F. Shape-controlled paclitaxel nanoparticles with multiple morphologies: rod-shaped, worm-like, spherical, and fingerprint-like. Mol Pharm 2014; 11:3766-71. [PMID: 25188586 PMCID: PMC4334274 DOI: 10.1021/mp500436p] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
![]()
Although many nanocarriers have been
developed to encapsulate paclitaxel
(PTX), the drug loading and circulation time in vivo always are not ideal because of its rigid “brickdust”
molecular structure. People usually concentrate their attention on
the spherical nanocarriers, here paclitaxel nanoparticles with different
geometries were established through the chemical modification of PTX,
nanoprecipitation, and core-matched cargos. Previously we have developed
rod-shape paclitaxel nanocrystals using block copolymer, pluronic
F127. Unfortunately, the pharmacokinetic (PK) profile of PTX nanocrystals
is very poor. However, when PTX was replaced by its prodrug, the geometry
of the nanoparticles changed from rod-shaped to worm-like. The worm-like
nanoparticles can be further changed to spherical nanoparticles using
the nanoprecipitation method, and changed to fingerprint-like nanoparticles
upon the addition of the core-matched PTX. The nanoparticles with
nonspherical morphologies, including worm-like nanoparticles and fingerprint-like
nanoparticles, offer significant advantages in regards to key PK parameters in vivo. More important, in this report the application
of the core-matching technology in creating a core-matched environment
capable of controlling the in vivo PK of paclitaxel
was demonstrated, and it revealed a novel technique platform to construct
nanoparticles and improve the poor PK profiles of the drugs.
Collapse
Affiliation(s)
- Yongjun Wang
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Pharmacy Lane, Chapel Hill, North Carolina27599, United States
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Truong NP, Whittaker MR, Mak CW, Davis TP. The importance of nanoparticle shape in cancer drug delivery. Expert Opin Drug Deliv 2014; 12:129-42. [DOI: 10.1517/17425247.2014.950564] [Citation(s) in RCA: 374] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Kocik MK, Mykhaylyk OO, Armes SP. Aqueous worm gels can be reconstituted from freeze-dried diblock copolymer powder. SOFT MATTER 2014; 10:3984-3992. [PMID: 24733440 DOI: 10.1039/c4sm00415a] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Worm-like diblock copolymer nanoparticles comprising poly(glycerol monomethacrylate) (PGMA) as a stabilizer block and poly(2-hydroxypropyl methacrylate) (PHPMA) as a core-forming block were readily synthesized at 10% w/w solids via aqueous dispersion polymerization at 70 °C using Reversible Addition-Fragmentation chain Transfer (RAFT) chemistry. On cooling to 20 °C, soft transparent free-standing gels are formed due to multiple inter-worm interactions. These aqueous PGMA-PHPMA diblock copolymer worms were freeze-dried, then redispersed in water with cooling to 3-5 °C before warming up to 20 °C; this protocol ensures molecular dissolution of the copolymer chains, which aids formation of a transparent aqueous gel. Rheology, SAXS and TEM studies confirm that such reconstituted gels comprise formed PGMA-PHPMA copolymer worms and they possess essentially the same physical properties determined for the original worm gels prior to freeze-drying. Such worm gel reconstitution is expected to be highly beneficial in the context of various biomedical applications, since it enables worm gels to be readily prepared using a wide range of cell growth media as the continuous aqueous phase.
Collapse
Affiliation(s)
- M K Kocik
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, Yorkshire S3 7HF, UK.
| | | | | |
Collapse
|
49
|
Howard M, Zern BJ, Anselmo AC, Shuvaev VV, Mitragotri S, Muzykantov V. Vascular targeting of nanocarriers: perplexing aspects of the seemingly straightforward paradigm. ACS NANO 2014; 8:4100-32. [PMID: 24787360 PMCID: PMC4046791 DOI: 10.1021/nn500136z] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/30/2014] [Indexed: 05/18/2023]
Abstract
Targeted nanomedicine holds promise to find clinical use in many medical areas. Endothelial cells that line the luminal surface of blood vessels represent a key target for treatment of inflammation, ischemia, thrombosis, stroke, and other neurological, cardiovascular, pulmonary, and oncological conditions. In other cases, the endothelium is a barrier for tissue penetration or a victim of adverse effects. Several endothelial surface markers including peptidases (e.g., ACE, APP, and APN) and adhesion molecules (e.g., ICAM-1 and PECAM) have been identified as key targets. Binding of nanocarriers to these molecules enables drug targeting and subsequent penetration into or across the endothelium, offering therapeutic effects that are unattainable by their nontargeted counterparts. We analyze diverse aspects of endothelial nanomedicine including (i) circulation and targeting of carriers with diverse geometries, (ii) multivalent interactions of carrier with endothelium, (iii) anchoring to multiple determinants, (iv) accessibility of binding sites and cellular response to their engagement, (v) role of cell phenotype and microenvironment in targeting, (vi) optimization of targeting by lowering carrier avidity, (vii) endocytosis of multivalent carriers via molecules not implicated in internalization of their ligands, and (viii) modulation of cellular uptake and trafficking by selection of specific epitopes on the target determinant, carrier geometry, and hydrodynamic factors. Refinement of these aspects and improving our understanding of vascular biology and pathology is likely to enable the clinical translation of vascular endothelial targeting of nanocarriers.
Collapse
Affiliation(s)
- Melissa Howard
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine & Therapeutics and Department of Pharmacology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Blaine J. Zern
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine & Therapeutics and Department of Pharmacology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Aaron C. Anselmo
- Department of Chemical Engineering, Center for Bioengineering, University of California, Santa Barbara, California 93106, United States
| | - Vladimir V. Shuvaev
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine & Therapeutics and Department of Pharmacology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Samir Mitragotri
- Department of Chemical Engineering, Center for Bioengineering, University of California, Santa Barbara, California 93106, United States
| | - Vladimir Muzykantov
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine & Therapeutics and Department of Pharmacology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
50
|
Nanoparticles Based on a Hydrophilic Polyester with a Sheddable PEG Coating for Protein Delivery. Pharm Res 2014; 31:2593-604. [DOI: 10.1007/s11095-014-1355-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/27/2014] [Indexed: 11/26/2022]
|