1
|
González J, Ghaffarinejad A, Ivanov M, Ferreira P, Vilarinho PM, Borrás A, Amorín H, Wicklein B. Advanced Cellulose-Nanocarbon Composite Films for High-Performance Triboelectric and Piezoelectric Nanogenerators. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1206. [PMID: 37049298 PMCID: PMC10097288 DOI: 10.3390/nano13071206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Natural polymers such as cellulose have interesting tribo- and piezoelectric properties for paper-based energy harvesters, but their low performance in providing sufficient output power is still an impediment to a wider deployment for IoT and other low-power applications. In this study, different types of celluloses were combined with nanosized carbon fillers to investigate their effect on the enhancement of the electrical properties in the final nanogenerator devices. Cellulose pulp (CP), microcrystalline cellulose (MCC) and cellulose nanofibers (CNFs) were blended with carbon black (CB), carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs). The microstructure of the nanocomposite films was characterized by scanning electron and probe microscopies, and the electrical properties were measured macroscopically and at the local scale by piezoresponse force microscopy. The highest generated output voltage in triboelectric mode was obtained from MCC films with CNTs and CB, while the highest piezoelectric voltage was produced in CNF-CNT films. The obtained electrical responses were discussed in relation to the material properties. Analysis of the microscopic response shows that pulp has a higher local piezoelectric d33 coefficient (145 pC/N) than CNF (14 pC/N), while the macroscopic response is greatly influenced by the excitation mode and the effective orientation of the crystals relative to the mechanical stress. The increased electricity produced from cellulose nanocomposites may lead to more efficient and biodegradable nanogenerators.
Collapse
Affiliation(s)
- Jaime González
- Materials Science Institute of Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
| | - Ali Ghaffarinejad
- Nanotechnology on Surfaces and Plasma Lab, Materials Science Institute of Seville (ICMS), Consejo Superior de Investigaciones Científicas (CSIC-US), 41092 Seville, Spain
| | - Maxim Ivanov
- CICECO-Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paula Ferreira
- CICECO-Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paula M Vilarinho
- CICECO-Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana Borrás
- Nanotechnology on Surfaces and Plasma Lab, Materials Science Institute of Seville (ICMS), Consejo Superior de Investigaciones Científicas (CSIC-US), 41092 Seville, Spain
| | - Harvey Amorín
- Materials Science Institute of Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
| | - Bernd Wicklein
- Materials Science Institute of Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
| |
Collapse
|
2
|
Samyn P, Meftahi A, Geravand SA, Heravi MEM, Najarzadeh H, Sabery MSK, Barhoum A. Opportunities for bacterial nanocellulose in biomedical applications: Review on biosynthesis, modification and challenges. Int J Biol Macromol 2023; 231:123316. [PMID: 36682647 DOI: 10.1016/j.ijbiomac.2023.123316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/30/2022] [Accepted: 01/13/2023] [Indexed: 01/22/2023]
Abstract
Bacterial nanocellulose (BNC) is a natural polysaccharide produced as extracellular material by bacterial strains and has favorable intrinsic properties for primary use in biomedical applications. In this review, an update on state-of-the art and challenges in BNC production, surface modification and biomedical application is given. Recent insights in biosynthesis allowed for better understanding of governing parameters improving production efficiency. In particular, introduction of different carbon/nitrogen sources from alternative feedstock and industrial upscaling of various production methods is challenging. It is important to have control on the morphology, porosity and forms of BNC depending on biosynthesis conditions, depending on selection of bacterial strains, reactor design, additives and culture conditions. The BNC is intrinsically characterized by high water absorption capacity, good thermal and mechanical stability, biocompatibility and biodegradability to certain extent. However, additional chemical and/or physical surface modifications are required to improve cell compatibility, protein interaction and antimicrobial properties. The novel trends in synthesis include the in-situ culturing of hybrid BNC nanocomposites in combination with organic material, inorganic material or extracellular components. In parallel with toxicity studies, the applications of BNC in wound care, tissue engineering, medical implants, drug delivery systems or carriers for bioactive compounds, and platforms for biosensors are highlighted.
Collapse
Affiliation(s)
- Pieter Samyn
- SIRRIS, Department Innovations in Circular Economy, Leuven, Belgium.
| | - Amin Meftahi
- Department of Polymer and Textile Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran; Nanotechnology Research Center, Islamic Azad University, South Tehran Branch, Tehran, Iran
| | - Sahar Abbasi Geravand
- Department of Technical & Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Hamideh Najarzadeh
- Department of Textile Engineering, Science And Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, 11795 Cairo, Egypt; School of Chemical Sciences, Dublin City University, Dublin 9, D09 Y074 Dublin, Ireland.
| |
Collapse
|
3
|
Prilepskii A, Nikolaev V, Klaving A. Conductive bacterial cellulose: From drug delivery to flexible electronics. Carbohydr Polym 2023; 313:120850. [PMID: 37182950 DOI: 10.1016/j.carbpol.2023.120850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
Bacterial cellulose (BC) is a chemically pure, non-toxic, and non-pyrogenic natural polymer with high mechanical strength and a complex fibrillar porous structure. Due to these unique biological and physical properties, BC has been amply used in the food industry and, to a somewhat lesser extent, in medicine and cosmetology. To expand its application the BC structure can be modified. This review presented some recent developments in electrically conductive BC-based composites. The as-synthesized BC is an excellent dielectric. Conductive polymers, graphene oxide, nanoparticles and other materials are used to provide it with conductive properties. Conductive bacterial cellulose (CBC) is currently investigated in numerous areas including electrically conductive scaffolds for tissue regeneration, implantable and wearable biointerfaces, flexible batteries, sensors, EMI shielding composites. However, there are several issues to be addressed before CBC composites can enter the market, namely, composite mechanical strength reduction, porosity decrease, change in chemical characteristics. Some of them can be addressed both at the stage of synthesis, biologically, or by adding (nano)materials with the required properties to the BC structure. We propose several solutions to meet the challenges and suggest some promising BC applications.
Collapse
|
4
|
Shao M, Shi Z, Zhang C, Li Z, Zhai B. Preparation and performance of bacterial cellulose-based enzyme-carrying composite hydrogels as wound healing material. J BIOACT COMPAT POL 2023. [DOI: 10.1177/08839115221143445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
As a biosynthetic polymer, Bacterial cellulose (BC) has been largely used in biomedical and technological fields for the excellent biocompatibility and water holding capability. In this study, BC hydrogel were mass-produced from G. xylinus. A novel gel, BC nanocomposite (BC/NC) hydrogel, was prepared via in situ free radical aqueous polymerization from NIPAM in the presence of Clay was added as physical crosslinker. The physical and chemical properties were evaluated, and the results showed that the properties of the composite hydrogel were improved, for example, the Young’s modulus rose by nearly 30%, from 4.7 to 6.0 Mpa with the increasing of NIPAM. BC/NC-lys hydrogel were prepared by treating BC/NC hydrogel with Lysostaphin solution, and the cytocompatibility and antibacterial activities were assessed in vitro. The effects of composite hydrogel on wound healing were examined in rat skin models, the cure rate was up to 92.35% in the test group and only 78.83% in the control group after 14 days. The composite BC/NC3-lys hydrogel were developed in the hope of accelerating the wound healing process as well as decreasing the infection rate.
Collapse
Affiliation(s)
- Meiling Shao
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, P.R. China
| | - Zhan Shi
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, P.R. China
| | - Chi Zhang
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, P.R. China
| | - Zhongyi Li
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, P.R. China
| | - Bin Zhai
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, P.R. China
| |
Collapse
|
5
|
de Assis SC, Morgado DL, Scheidt DT, de Souza SS, Cavallari MR, Ando Junior OH, Carrilho E. Review of Bacterial Nanocellulose-Based Electrochemical Biosensors: Functionalization, Challenges, and Future Perspectives. BIOSENSORS 2023; 13:142. [PMID: 36671977 PMCID: PMC9856105 DOI: 10.3390/bios13010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Electrochemical biosensing devices are known for their simple operational procedures, low fabrication cost, and suitable real-time detection. Despite these advantages, they have shown some limitations in the immobilization of biochemicals. The development of alternative materials to overcome these drawbacks has attracted significant attention. Nanocellulose-based materials have revealed valuable features due to their capacity for the immobilization of biomolecules, structural flexibility, and biocompatibility. Bacterial nanocellulose (BNC) has gained a promising role as an alternative to antifouling surfaces. To widen its applicability as a biosensing device, BNC may form part of the supports for the immobilization of specific materials. The possibilities of modification methods and in situ and ex situ functionalization enable new BNC properties. With the new insights into nanoscale studies, we expect that many biosensors currently based on plastic, glass, or paper platforms will rely on renewable platforms, especially BNC ones. Moreover, substrates based on BNC seem to have paved the way for the development of sensing platforms with minimally invasive approaches, such as wearable devices, due to their mechanical flexibility and biocompatibility.
Collapse
Affiliation(s)
- Samuel Chagas de Assis
- Grupo de Pesquisa em Energia e Sustentabilidade Energética-GPEnSE, Universidade Federal da Integração Latino-Americana—UNILA, Av. Sílvio Américo Sasdelli, 1842, Foz do Iguaçu 85866-000, PR, Brazil
| | - Daniella Lury Morgado
- Grupo de Pesquisa em Energia e Sustentabilidade Energética-GPEnSE, Universidade Federal da Integração Latino-Americana—UNILA, Av. Sílvio Américo Sasdelli, 1842, Foz do Iguaçu 85866-000, PR, Brazil
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, SP, Brazil
| | - Desiree Tamara Scheidt
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, SP, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas 13083-970, SP, Brazil
| | - Samara Silva de Souza
- Grupo de Pesquisa em Energia e Sustentabilidade Energética-GPEnSE, Universidade Federal da Integração Latino-Americana—UNILA, Av. Sílvio Américo Sasdelli, 1842, Foz do Iguaçu 85866-000, PR, Brazil
- Departamento de Engenharia de Bioprocessos e Biotecnologia, Universidade Tecnológica Federal do Paraná—UTFPR, Campus Dois Vizinhos, Dois Vizinhos 85660-000, PR, Brazil
| | - Marco Roberto Cavallari
- School of Electrical and Computer Engineering, University of Campinas (Unicamp), Av. Albert Einstein 400, Campinas 13083-852, SP, Brazil
| | - Oswaldo Hideo Ando Junior
- Grupo de Pesquisa em Energia e Sustentabilidade Energética-GPEnSE, Universidade Federal da Integração Latino-Americana—UNILA, Av. Sílvio Américo Sasdelli, 1842, Foz do Iguaçu 85866-000, PR, Brazil
- Academic Unit of Cabo de Santo Agostinho (UACSA), Universidade Federal Rural de Pernambuco (UFRPE), Rua Cento e Sessenta e Três, 300-Cohab, Cabo de Santo Agostinho 54518-430, PE, Brazil
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, SP, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas 13083-970, SP, Brazil
| |
Collapse
|
6
|
Navya PV, Gayathri V, Samanta D, Sampath S. Bacterial cellulose: A promising biopolymer with interesting properties and applications. Int J Biol Macromol 2022; 220:435-461. [PMID: 35963354 DOI: 10.1016/j.ijbiomac.2022.08.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/24/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022]
Abstract
The ever-increasing demands for materials with desirable properties led to the development of materials that impose unfavorable influences on the environment and the ecosystem. Developing a low-cost, durable, and eco-friendly functional material with biological origins has become necessary to avoid these consequences. Bacterial cellulose generated by bacteria dispenses excellent structural and functional properties and satisfies these requirements. BC and BC-derived materials are essential in developing pure and environmentally safe functional materials. This review offers a detailed understanding of the biosynthesis of BC, properties, various functionalization methods, and applicability in biomedical, water treatment, food storage, energy conversion, and energy storage applications.
Collapse
Affiliation(s)
- P V Navya
- Department of Materials Science, School of Technology, Central University of Tamil Nadu, Thiruvarur 610101, India.
| | - Varnakumar Gayathri
- Polymer Science and Technology Department, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Debasis Samanta
- Polymer Science and Technology Department, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Srinivasan Sampath
- Department of Materials Science, School of Technology, Central University of Tamil Nadu, Thiruvarur 610101, India.
| |
Collapse
|
7
|
Choi SM, Rao KM, Zo SM, Shin EJ, Han SS. Bacterial Cellulose and Its Applications. Polymers (Basel) 2022; 14:polym14061080. [PMID: 35335411 PMCID: PMC8949969 DOI: 10.3390/polym14061080] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
The sharp increase in the use of cellulose seems to be in increasing demand in wood; much more research related to sustainable or alternative materials is necessary as a lot of the arable land and natural resources use is unsustainable. In accordance, attention has focused on bacterial cellulose as a new functional material. It possesses a three-dimensional, gelatinous structure consisting of cellulose with mechanical and thermal properties. Moreover, while a plant-originated cellulose is composed of cellulose, hemi-cellulose, and lignin, bacterial cellulose attributable to the composition of a pure cellulose nanofiber mesh spun is not necessary in the elimination of other components. Moreover, due to its hydrophilic nature caused by binding water, consequently being a hydrogel as well as biocompatibility, it has only not only used in medical fields including artificial skin, cartilage, vessel, and wound dressing, but also in delivery; some products have even been commercialized. In addition, it is widely used in various technologies including food, paper, textile, electronic and electrical applications, and is being considered as a highly versatile green material with tremendous potential. However, many efforts have been conducted for the evolution of novel and sophisticated materials with environmental affinity, which accompany the empowerment and enhancement of specific properties. In this review article, we summarized only industry and research status regarding BC and contemplated its potential in the use of BC.
Collapse
Affiliation(s)
- Soon Mo Choi
- Research Institute of Cell Culture, Yeung-Nam University, Gyengsan-si 38541, Korea;
- School of Chemical Engineering, Yeung-Nam University, Gyengsan-si 38541, Korea; (K.M.R.); (S.M.Z.)
| | - Kummara Madhusudana Rao
- School of Chemical Engineering, Yeung-Nam University, Gyengsan-si 38541, Korea; (K.M.R.); (S.M.Z.)
| | - Sun Mi Zo
- School of Chemical Engineering, Yeung-Nam University, Gyengsan-si 38541, Korea; (K.M.R.); (S.M.Z.)
| | - Eun Joo Shin
- Department of Organic Materials and Polymer Engineering, Dong-A University, Busan 49315, Korea
- Correspondence: (E.J.S.); (S.S.H.); Tel.: +82-51-2007343 (E.J.S.); +82-53-8103892 (S.S.H.); Fax: +82-51-2007540 (E.J.S.); +82-53-8104686 (S.S.H.)
| | - Sung Soo Han
- Research Institute of Cell Culture, Yeung-Nam University, Gyengsan-si 38541, Korea;
- School of Chemical Engineering, Yeung-Nam University, Gyengsan-si 38541, Korea; (K.M.R.); (S.M.Z.)
- Correspondence: (E.J.S.); (S.S.H.); Tel.: +82-51-2007343 (E.J.S.); +82-53-8103892 (S.S.H.); Fax: +82-51-2007540 (E.J.S.); +82-53-8104686 (S.S.H.)
| |
Collapse
|
8
|
Dong YD, Zhang LQ, Zhou P, Liu Y, Lin H, Zhong GJ, Yao G, Li ZM, Lai B. Natural cellulose supported carbon nanotubes and Fe 3O 4 NPs as the efficient peroxydisulfate activator for the removal of bisphenol A: An enhanced non-radical oxidation process. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127054. [PMID: 34481389 DOI: 10.1016/j.jhazmat.2021.127054] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/28/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Currently, many catalysts are inconvenient to separate from water, and the solvents used in the preparation process are not environmentally friendly, resulting in low recovery efficiency and secondary pollution. In this study, the magnetic and porous regenerated cellulose/carbon nanotubes/Fe3O4 nanoparticles (RC/CNTs/Fe3O4 NPs) composites were synthesized for activation of peroxydisulfate (PDS) in a green alkaline-urea system. The RC/CNTs/Fe3O4 NPs-PDS system achieved 100% removal of bisphenol A compared with CNTs (~64.6%), RC (~0%) or Fe3O4 NPs (~0%), which was closely related to the introduction of defects and functional groups, nitrogen doping and conductive networks. Interestingly, the strong interaction between CNTs and the sheath-like protective layer formed by urea on the cellulose surface promotes the introduction of nitrogen into the composites at the preparation temperature of 70 °C. Moreover, the mechanism of the system was found to be a typical non-radical pathway. Fortunately, there is no leaching of iron ions in the system, and the effects of the actual waterbody, initial pH, and different anions are negligible. The recycling and separation experiments revealed the practicality and superiority of the composite. This work provides a feasible and sustainable strategy for the application of natural cellulose-supported catalysts.
Collapse
Affiliation(s)
- Yu-Dan Dong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Yibin Park, Sichuan University, Yibin 644000, China
| | - Liang-Qing Zhang
- College of Material Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Yibin Park, Sichuan University, Yibin 644000, China
| | - Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Yibin Park, Sichuan University, Yibin 644000, China
| | - Hao Lin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Gan-Ji Zhong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Gang Yao
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Institute of Environmental Engineering, RWTH Aachen University, Germany
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Yibin Park, Sichuan University, Yibin 644000, China.
| |
Collapse
|
9
|
Mechanical properties of cellulose nanofibril papers and their bionanocomposites: A review. Carbohydr Polym 2021; 273:118507. [PMID: 34560938 DOI: 10.1016/j.carbpol.2021.118507] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/14/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022]
Abstract
Cellulose nanofibril (CNF) paper has various applications due to its unique advantages. Herein, we present the intrinsic mechanical properties of CNF papers, along with the preparation and properties of nanoparticle-reinforced CNF composite papers. The literature on CNF papers reveals a strong correlation between the intrafibrillar network structure and the resulting mechanical properties. This correlation is found to hold for all primary factors affecting mechanical properties, indicating that the performance of CNF materials depends directly on and can be tailored by controlling the intrafibrillar network of the system. The parameters that influence the mechanical properties of CNF papers were critically reviewed. Moreover, the effect on the mechanical properties by adding nanofillers to CNF papers to produce multifunctional composite products was discussed. We concluded this article with future perspectives and possible developments in CNFs and their bionanocomposite papers.
Collapse
|
10
|
Bacterial cellulose and its potential for biomedical applications. Biotechnol Adv 2021; 53:107856. [PMID: 34666147 DOI: 10.1016/j.biotechadv.2021.107856] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 12/11/2022]
Abstract
Bacterial cellulose (BC) is an important polysaccharide synthesized by some bacterial species under specific culture conditions, which presents several remarkable features such as microporosity, high water holding capacity, good mechanical properties and good biocompatibility, making it a potential biomaterial for medical applications. Since its discovery, BC has been used for wound dressing, drug delivery, artificial blood vessels, bone tissue engineering, and so forth. Additionally, BC can be simply manipulated to form its derivatives or composites with enhanced physicochemical and functional properties. Several polymers, carbon-based nanomaterials, and metal nanoparticles (NPs) have been introduced into BC by ex situ and in situ methods to design hybrid materials with enhanced functional properties. This review provides comprehensive knowledge and highlights recent advances in BC production strategies, its structural features, various in situ and ex situ modification techniques, and its potential for biomedical applications.
Collapse
|
11
|
Sethi J, Liimatainen H, Sirviö JA. Fast and Filtration-Free Method to Prepare Lactic Acid-Modified Cellulose Nanopaper. ACS OMEGA 2021; 6:19038-19044. [PMID: 34337242 PMCID: PMC8320081 DOI: 10.1021/acsomega.1c02328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/01/2021] [Indexed: 05/07/2023]
Abstract
Dewatering in the preparation of cellulose nanopapers can take up to a few hours, which is a notable bottleneck in the commercialization of nanopapers. As a solution, we report a filtration-free method that is capable of preparing lactic acid-modified cellulose nanopapers within a few minutes. The bleached cellulose nanofibers (CNFs), obtained using a Masuko grinder, were functionalized by sonication-assisted lactic acid modification and centrifuged at 14 000 rpm to achieve a doughlike, concentrated mass. The concentrated CNFs were rolled into a wet sheet and dried in a vacuum drier to obtain nanopapers. The nanopaper preparation time was 10 min, which is significantly faster than the earlier time period reported in the literature (up to a few hours of preparation time). The mechanical properties of nanopaper were comparable to the previous values reported for nanopapers. In addition, the method was successfully used to prepare highly conductive functional nanopapers containing carboxylated multiwalled carbon nanotubes.
Collapse
Affiliation(s)
- Jatin Sethi
- Fibre
and Particle Engineering Research Unit, University of Oulu, P.O. Box 4300, 90014 Oulu, Finland
- Fibre
Technology Division, KTH Royal Institute
of Technology, Teknikringen
58, SE-100 44 Stockholm, Sweden
| | - Henrikki Liimatainen
- Fibre
and Particle Engineering Research Unit, University of Oulu, P.O. Box 4300, 90014 Oulu, Finland
| | - Juho Antti Sirviö
- Fibre
and Particle Engineering Research Unit, University of Oulu, P.O. Box 4300, 90014 Oulu, Finland
| |
Collapse
|
12
|
Abstract
Abstract
The presented chapter deals with structure, morphology, and properties aspects concerning cellulose-based polymers in both research and industrial production, such as cellulose fibers, cellulose membranes, cellulose nanocrystals, and bacterial cellulose, etc. The idea was to highlight the main cellulose-based polymers and cellulose derivatives, as well as the dissolution technologies in processing cellulose-based products. The structure and properties of cellulose are introduced briefly. The main attention has been paid to swelling and dissolution of cellulose in order to yield various kinds of cellulose derivatives through polymerization. The main mechanisms and methods are also presented. Finally, the environmental friendly and green cellulose-based polymers will be evaluated as one of the multifunctional and smart materials with significant progress.
Collapse
Affiliation(s)
- Xing Zhou
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology , Xi’an 710048 , P. R. China
- School of Materials Science and Engineering, Xi’an University of Technology , Xi’an 710048 , P. R. China
| | - Yaya Hao
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology , Xi’an 710048 , P. R. China
| | - Xin Zhang
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology , Xi’an 710048 , P. R. China
| | - Xinyu He
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology , Xi’an 710048 , P. R. China
| | - Chaoqun Zhang
- College of Materials and Energy, South China Agricultural University , Guangzhou 510642 , P. R. China
| |
Collapse
|
13
|
|
14
|
Poddar MK, Dikshit PK. Recent development in bacterial cellulose production and synthesis of cellulose based conductive polymer nanocomposites. NANO SELECT 2021. [DOI: 10.1002/nano.202100044] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Maneesh Kumar Poddar
- Department of Chemical Engineering National Institute of Technology Karnataka Surathkal Karnataka India
| | - Pritam Kumar Dikshit
- Department of Life Sciences School of Basic Sciences and Research Sharda University Greater Noida Uttar Pradesh India
| |
Collapse
|
15
|
Milano F, Guascito MR, Semeraro P, Sawalha S, Da Ros T, Operamolla A, Giotta L, Prato M, Valli L. Nanocellulose/Fullerene Hybrid Films Assembled at the Air/Water Interface as Promising Functional Materials for Photo-electrocatalysis. Polymers (Basel) 2021; 13:243. [PMID: 33445737 PMCID: PMC7828161 DOI: 10.3390/polym13020243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/03/2021] [Accepted: 01/09/2021] [Indexed: 01/04/2023] Open
Abstract
Cellulose nanomaterials have been widely investigated in the last decade, unveiling attractive properties for emerging applications. The ability of sulfated cellulose nanocrystals (CNCs) to guide the supramolecular organization of amphiphilic fullerene derivatives at the air/water interface has been recently highlighted. Here, we further investigated the assembly of Langmuir hybrid films that are based on the electrostatic interaction between cationic fulleropyrrolidines deposited at the air/water interface and anionic CNCs dispersed in the subphase, assessing the influence of additional negatively charged species that are dissolved in the water phase. By means of isotherm acquisition and spectroscopic measurements, we demonstrated that a tetra-sulfonated porphyrin, which was introduced in the subphase as anionic competitor, strongly inhibited the binding of CNCs to the floating fullerene layer. Nevertheless, despite the strong inhibition by anionic molecules, the mutual interaction between fulleropyrrolidines at the interface and the CNCs led to the assembly of robust hybrid films, which could be efficiently transferred onto solid substrates. Interestingly, ITO-electrodes that were modified with five-layer hybrid films exhibited enhanced electrical capacitance and produced anodic photocurrents at 0.4 V vs Ag/AgCl, whose intensity (230 nA/cm2) proved to be four times higher than the one that was observed with the sole fullerene derivative (60 nA/cm2).
Collapse
Affiliation(s)
- Francesco Milano
- Istituto di Scienze delle Produzioni Alimentari (ISPA), Consiglio Nazionale delle Ricerche (CNR), S.P. Lecce-Monteroni, Ecotekne, 73100 Lecce, Italy;
| | - Maria Rachele Guascito
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy; (M.R.G.); (P.S.); (L.V.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di Lecce, S.P. Lecce-Monteroni, 73100 Lecce, Italy
| | - Paola Semeraro
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy; (M.R.G.); (P.S.); (L.V.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di Lecce, S.P. Lecce-Monteroni, 73100 Lecce, Italy
| | - Shadi Sawalha
- Dipartimento di Ingegneria dell’Innovazione, Università del Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy;
- Department of Chemical Engineering, An-Najah National University, P.O. Box 7, Nablus 00970, Palestine
| | - Tatiana Da Ros
- Center of Excellence for Nanostructured Materials (CENMAT) and INSTM, Unit of Trieste, Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, via Giorgieri 1, 34127 Trieste, Italy; (T.D.R.); (M.P.)
| | - Alessandra Operamolla
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Livia Giotta
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy; (M.R.G.); (P.S.); (L.V.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di Lecce, S.P. Lecce-Monteroni, 73100 Lecce, Italy
| | - Maurizio Prato
- Center of Excellence for Nanostructured Materials (CENMAT) and INSTM, Unit of Trieste, Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, via Giorgieri 1, 34127 Trieste, Italy; (T.D.R.); (M.P.)
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia San Sebastián, Spain
- Basque Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Ludovico Valli
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy; (M.R.G.); (P.S.); (L.V.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di Lecce, S.P. Lecce-Monteroni, 73100 Lecce, Italy
| |
Collapse
|
16
|
Singh A, Walker KT, Ledesma-Amaro R, Ellis T. Engineering Bacterial Cellulose by Synthetic Biology. Int J Mol Sci 2020; 21:E9185. [PMID: 33276459 PMCID: PMC7730232 DOI: 10.3390/ijms21239185] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 02/06/2023] Open
Abstract
Synthetic biology is an advanced form of genetic manipulation that applies the principles of modularity and engineering design to reprogram cells by changing their DNA. Over the last decade, synthetic biology has begun to be applied to bacteria that naturally produce biomaterials, in order to boost material production, change material properties and to add new functionalities to the resulting material. Recent work has used synthetic biology to engineer several Komagataeibacter strains; bacteria that naturally secrete large amounts of the versatile and promising material bacterial cellulose (BC). In this review, we summarize how genetic engineering, metabolic engineering and now synthetic biology have been used in Komagataeibacter strains to alter BC, improve its production and begin to add new functionalities into this easy-to-grow material. As well as describing the milestone advances, we also look forward to what will come next from engineering bacterial cellulose by synthetic biology.
Collapse
Affiliation(s)
- Amritpal Singh
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK; (A.S.); (K.T.W.); (R.L.-A.)
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Kenneth T. Walker
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK; (A.S.); (K.T.W.); (R.L.-A.)
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Rodrigo Ledesma-Amaro
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK; (A.S.); (K.T.W.); (R.L.-A.)
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Tom Ellis
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK; (A.S.); (K.T.W.); (R.L.-A.)
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
17
|
High-density phage particles immobilization in surface-modified bacterial cellulose for ultra-sensitive and selective electrochemical detection of Staphylococcus aureus. Biosens Bioelectron 2020; 157:112163. [DOI: 10.1016/j.bios.2020.112163] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 01/29/2023]
|
18
|
El Mrabate B, Udayakumar M, Csiszár E, Kristály F, Leskó M, Somlyai Sipos L, Schabikowski M, Németh Z. Development of bacterial cellulose-ZnO-MWCNT hybrid membranes: a study of structural and mechanical properties. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200592. [PMID: 32742699 PMCID: PMC7353959 DOI: 10.1098/rsos.200592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Self-supported and flexible bacterial cellulose (BC) based hybrid membranes were synthesized and decorated with zinc oxide/multi-walled carbon nanotube (ZnO-MWCNT) composite additives in order to modify and tune their surface and bulk properties. Two types of ZnO-MWCNT additives with different morphologies were used in a wide concentration range from 0 to 90% for BC-based hybrids produced by filtration. The interaction between BC and ZnO-MWCNT and the effect of concentration and morphology of additives on the properties like zeta potential, hydrophilicity, electrical conductivity, etc. would be an important factor in various applications. Furthermore, the as-prepared hybrid membranes were characterized with the use of scanning electron microscopy (SEM), focused ion beam scanning electron microscopy (FIB-SEM), energy dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD) and surface area measurement (BET). Applying the presented synthesis routes, the surface properties of BC-based membranes can be tailored easily. Results reveal that the as-prepared BC-ZnO-MWCNT hybrid membranes can be ideal candidates for different kinds of applications, such as water filtration or catalysts.
Collapse
Affiliation(s)
- Bilal El Mrabate
- Higher Education and Industry Cooperation Center of Advanced Materials and Intelligent Technologies, University of Miskolc, H-3515 Miskolc, Hungary
- Institute of Chemistry, University of Miskolc, H-3515 Miskolc, Hungary
| | - Mahitha Udayakumar
- Higher Education and Industry Cooperation Center of Advanced Materials and Intelligent Technologies, University of Miskolc, H-3515 Miskolc, Hungary
- Institute of Chemistry, University of Miskolc, H-3515 Miskolc, Hungary
| | - Emília Csiszár
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Ferenc Kristály
- Institute of Mineralogy and Geology, University of Miskolc, H-3515 Miskolc, Hungary
| | - Máté Leskó
- Institute of Mineralogy and Geology, University of Miskolc, H-3515 Miskolc, Hungary
| | - László Somlyai Sipos
- Institute of Physical Metallurgy, Metal Forming and Nanotechnology, University of Miskolc, H-3515 Miskolc, Hungary
| | - Mateusz Schabikowski
- Institute of Nuclear Physics, Polish Academy of Sciences, PL 31-342 Krakow, Poland
| | - Zoltán Németh
- Higher Education and Industry Cooperation Center of Advanced Materials and Intelligent Technologies, University of Miskolc, H-3515 Miskolc, Hungary
- Institute of Chemistry, University of Miskolc, H-3515 Miskolc, Hungary
| |
Collapse
|
19
|
Osorio M, Martinez E, Naranjo T, Castro C. Recent Advances in Polymer Nanomaterials for Drug Delivery of Adjuvants in Colorectal Cancer Treatment: A Scientific-Technological Analysis and Review. Molecules 2020; 25:E2270. [PMID: 32408538 PMCID: PMC7288015 DOI: 10.3390/molecules25102270] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is the type with the second highest morbidity. Recently, a great number of bioactive compounds and encapsulation techniques have been developed. Thus, this paper aims to review the drug delivery strategies for chemotherapy adjuvant treatments for CRC, including an initial scientific-technological analysis of the papers and patents related to cancer, CRC, and adjuvant treatments. For 2018, a total of 167,366 cancer-related papers and 306,240 patents were found. Adjuvant treatments represented 39.3% of the total CRC patents, indicating the importance of adjuvants in the prognosis of patients. Chemotherapy adjuvants can be divided into two groups, natural and synthetic (5-fluorouracil and derivatives). Both groups can be encapsulated using polymers. Polymer-based drug delivery systems can be classified according to polymer nature. From those, anionic polymers have garnered the most attention, because they are pH responsive. The use of polymers tailors the desorption profile, improving drug bioavailability and enhancing the local treatment of CRC via oral administration. Finally, it can be concluded that antioxidants are emerging compounds that can complement today's chemotherapy treatments. In the long term, encapsulated antioxidants will replace synthetic drugs and will play an important role in curing CRC.
Collapse
Affiliation(s)
- Marlon Osorio
- School of Engineering, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín 050031, Colombia; (M.O.); (E.M.)
| | - Estefanía Martinez
- School of Engineering, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín 050031, Colombia; (M.O.); (E.M.)
| | - Tonny Naranjo
- School of Health Sciences, Universidad Pontificia Bolivariana, Calle 78 B # 72 A-109, Medellín 050034, Colombia;
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas, Carrera 72 A # 78 B-141, Medellín 050034, Colombia
| | - Cristina Castro
- School of Engineering, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín 050031, Colombia; (M.O.); (E.M.)
| |
Collapse
|
20
|
Rastogi A, Banerjee R. Statistical optimization of bacterial cellulose production by Leifsonia soli and its physico-chemical characterization. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.12.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
High mass loading polyaniline layer anchored cellulose fibers: Enhanced interface junction for high conductivity and flame retardancy. Carbohydr Polym 2020; 230:115660. [PMID: 31887901 DOI: 10.1016/j.carbpol.2019.115660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/14/2019] [Accepted: 11/22/2019] [Indexed: 11/20/2022]
Abstract
Novel cellulose fibers-based composite consisted of zirconium oxyhydroxide and phytic acid doped polyaniline was prepared via a two-step method of simple chemical precipitation and followed by in situ polymerization process. Cellulose fibers were firstly modified with zirconium oxyhydroxide to enhance the binding of phytic acid doped polyaniline to the surface. A compact coating of phytic doped polyaniline was developed on zirconium oxyhydroxide modified cellulose fibers through the chelating of zirconium ions to phytic acid. The resulting composite possessed a controllable mass loading of polyaniline, which could significantly improve the conductivity, flame retardancy and electrochemical stability. Therefore, the expected chelating between zirconium ions on cellulose fibers and phytic acid doped in polyaniline supported the excellent properties of the composite paper. Notably, the developed strategy is efficient, low-cost and environmental friendly, and the work opens up new doors to the development of other cellulose fibers-related interface enhancement applications.
Collapse
|
22
|
Miyashiro D, Hamano R, Umemura K. A Review of Applications Using Mixed Materials of Cellulose, Nanocellulose and Carbon Nanotubes. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E186. [PMID: 31973149 PMCID: PMC7074973 DOI: 10.3390/nano10020186] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
Abstract
Carbon nanotubes (CNTs) have been extensively studied as one of the most interesting nanomaterials for over 25 years because they exhibit excellent mechanical, electrical, thermal, optical, and electrical properties. In the past decade, the number of publications and patents on cellulose and nanocellulose (NC) increased tenfold. Research on NC with excellent mechanical properties, flexibility, and transparency is accelerating due to the growing environmental problems surrounding us such as CO2 emissions, the accumulation of large amounts of plastic, and the depletion of energy resources such as oil. Research on mixed materials of cellulose, NC, and CNTs has been expanding because these materials exhibit various characteristics that can be controlled by varying the combination of cellulose, NC to CNTs while also being biodegradable and recyclable. An understanding of these mixed materials is required because these characteristics are diverse and are expected to solve various environmental problems. Thus far, many review papers on cellulose, NC or CNTs have been published. Although guidance for the suitable application of these mixed materials is necessary, there are few reviews summarizing them. Therefore, this review introduces the application and feature on mixed materials of cellulose, NC and CNTs.
Collapse
Affiliation(s)
- Daisuke Miyashiro
- Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (R.H.); (K.U.)
- ESTECH CORP., 2-7-31 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Ryo Hamano
- Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (R.H.); (K.U.)
| | - Kazuo Umemura
- Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; (R.H.); (K.U.)
| |
Collapse
|
23
|
Kim DH, Na IY, Lee DH, Kim GT. Foldable water-activated reserve battery with diverse voltages. RSC Adv 2020; 10:402-410. [PMID: 35492544 PMCID: PMC9047974 DOI: 10.1039/c9ra09401f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/18/2019] [Indexed: 12/02/2022] Open
Abstract
A reserve battery is a device which is inert until its activation and generates electricity by injecting an electrolyte for the purpose of immediate use. Due to a relatively short history and the use in restricted fields, reserve batteries have not attracted attention without any technical advance such as be being flexible and foldable. In this study, we demonstrate a way of fabricating a flexible and even foldable reserve battery which is activated by various solutions. A paper electrode composed of cellulose and carbon nanotube, which is working as a cathode, was assembled with a sheet of an aluminum anode. The injection of a NaCl solution resulted in approximately 0.7 V while a KOH solution led to a much higher voltage of 1.3 V than the NaCl electrolyte. Impedance analysis unveiled that the best discharge performance was found in the reserve battery showing the smallest semicircle in impedance spectra, irrespective of electrolytes. And, folding the battery did not degrade the discharge performance, compared with an unfolded battery. Furthermore, the battery cell was even activated by seawater, resulting in about 0.7 V and a nice discharge performance. We think that our battery system can be extended to other reserve batteries requiring flexibility and foldability. A flexible and foldable water-activated reserve battery was successfully fabricated by assembling a paper electrode and an aluminum sheet.![]()
Collapse
Affiliation(s)
- Do-Hyun Kim
- School of Electrical Engineering
- Korea University
- Seoul 02841
- Republic of Korea
| | - In-Yeob Na
- School of Electrical Engineering
- Korea University
- Seoul 02841
- Republic of Korea
| | - Duck Hyun Lee
- Green Materials and Processes Group
- Korea Institute of Industrial Technology
- Ulsan
- Republic of Korea
| | - Gyu Tae Kim
- School of Electrical Engineering
- Korea University
- Seoul 02841
- Republic of Korea
| |
Collapse
|
24
|
Muñoz-García JC, Corbin KR, Hussain H, Gabrielli V, Koev T, Iuga D, Round AN, Mikkelsen D, Gunning PA, Warren FJ, Khimyak YZ. High Molecular Weight Mixed-Linkage Glucan as a Mechanical and Hydration Modulator of Bacterial Cellulose: Characterization by Advanced NMR Spectroscopy. Biomacromolecules 2019; 20:4180-4190. [PMID: 31518115 DOI: 10.1021/acs.biomac.9b01070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacterial cellulose (BC) consists of a complex three-dimensional organization of ultrafine fibers which provide unique material properties such as softness, biocompatibility, and water-retention ability, of key importance for biomedical applications. However, there is a poor understanding of the molecular features modulating the macroscopic properties of BC gels. We have examined chemically pure BC hydrogels and composites with arabinoxylan (BC-AX), xyloglucan (BC-XG), and high molecular weight mixed-linkage glucan (BC-MLG). Atomic force microscopy showed that MLG greatly reduced the mechanical stiffness of BC gels, while XG and AX did not exert a significant effect. A combination of advanced solid-state NMR methods allowed us to characterize the structure of BC ribbons at ultra-high resolution and to monitor local mobility and water interactions. This has enabled us to unravel the effect of AX, XG, and MLG on the short-range order, mobility, and hydration of BC fibers. Results show that BC-XG hydrogels present BC fibrils of increased surface area, which allows BC-XG gels to hold higher amounts of bound water. We report for the first time that the presence of high molecular weight MLG reduces the density of clusters of BC fibrils and dramatically increases water interactions with BC. Our data supports two key molecular features determining the reduced stiffness of BC-MLG hydrogels, that is, (i) the adsorption of MLG on the surface of BC fibrils precluding the formation of a dense network and (ii) the preorganization of bound water by MLG. Hence, we have produced and fully characterized BC-MLG hydrogels with novel properties which could be potentially employed as renewable materials for applications requiring high water retention capacity (e.g. personal hygiene products).
Collapse
Affiliation(s)
| | - Kendall R Corbin
- Food, Innovation and Health , Quadram Institute Bioscience , Norwich Research Park , Norwich NR4 7UQ , U.K
| | - Haider Hussain
- School of Pharmacy , University of East Anglia , Norwich NR4 7TJ , U.K
| | - Valeria Gabrielli
- School of Pharmacy , University of East Anglia , Norwich NR4 7TJ , U.K
| | - Todor Koev
- School of Pharmacy , University of East Anglia , Norwich NR4 7TJ , U.K.,Food, Innovation and Health , Quadram Institute Bioscience , Norwich Research Park , Norwich NR4 7UQ , U.K
| | - Dinu Iuga
- Department of Physics , University of Warwick , Coventry CV4 7AL , U.K
| | - Andrew N Round
- School of Pharmacy , University of East Anglia , Norwich NR4 7TJ , U.K
| | - Deirdre Mikkelsen
- QAAFI Centre for Nutrition and Food Sciences , The University of Queensland , St. Lucia Campus , Brisbane , Queensland 4070 , Australia
| | - Patrick A Gunning
- Food, Innovation and Health , Quadram Institute Bioscience , Norwich Research Park , Norwich NR4 7UQ , U.K
| | - Frederick J Warren
- Food, Innovation and Health , Quadram Institute Bioscience , Norwich Research Park , Norwich NR4 7UQ , U.K
| | | |
Collapse
|
25
|
Zhang Q, Zhang L, Wu W, Xiao H. Methods and applications of nanocellulose loaded with inorganic nanomaterials: A review. Carbohydr Polym 2019; 229:115454. [PMID: 31826470 DOI: 10.1016/j.carbpol.2019.115454] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/14/2019] [Accepted: 10/06/2019] [Indexed: 01/10/2023]
Abstract
Nanocellulose obtained from natural renewable resources has attracted enormous interests owing to its unique morphological characteristics, excellent mechanical strength, biocompatibility and biodegradability for a variety of applications in many fields. The template structure, high specific surface area, and active surface groups make it feasible to conduct surface modification and accommodate various nano-structured materials via physical or chemical deposition. The review presented herein focuses on the methodologies of loading different nano-structured materials on nanocellulose, including metals, nanocarbons, oxides, mineral salt, quantum dots and nonmetallic elements; and further describes the applications of nanocellulose composites in the fields of catalysis, optical electronic devices, biomedicine, sensors, composite reinforcement, photoswitching, flame retardancy, and oil/water separation.
Collapse
Affiliation(s)
- Qing Zhang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp & Paper Science & Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Zhang
- Key Laboratory for Organic Electronics and information, National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Weibing Wu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp & Paper Science & Technology, Nanjing Forestry University, Nanjing 210037, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
26
|
Eslahi N, Mahmoodi A, Mahmoudi N, Zandi N, Simchi A. Processing and Properties of Nanofibrous Bacterial Cellulose-Containing Polymer Composites: A Review of Recent Advances for Biomedical Applications. POLYM REV 2019. [DOI: 10.1080/15583724.2019.1663210] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Niloofar Eslahi
- Department of Textile Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amin Mahmoodi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Nafiseh Mahmoudi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Nooshin Zandi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
| | - Abdolreza Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
27
|
Rebelo AR, Liu C, Schäfer KH, Saumer M, Yang G, Liu Y. Poly(4-vinylaniline)/Polyaniline Bilayer-Functionalized Bacterial Cellulose for Flexible Electrochemical Biosensors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10354-10366. [PMID: 31318565 DOI: 10.1021/acs.langmuir.9b01425] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A bacterial cellulose (BC) nanofibril network is modified with an electrically conductive polyvinylaniline/polyaniline (PVAN/PANI) bilayer for construction of potential electrochemical biosensors. This is accomplished through surface-initiated atom transfer radical polymerization of 4-vinylaniline, followed by in situ chemical oxidative polymerization of aniline. A uniform coverage of the BC nanofiber with 1D supramolecular PANI nanostructures is confirmed by Fourier transform infrared, X-ray diffractogram, and CHN elemental analysis. Cyclic voltammograms evince the switching in the electrochemical behavior of BC/PVAN/PANI nanocomposites from the redox peaks at 0.74 V, in the positive scan and at -0.70 V, in the reverse scan, (at 100 mV·s-1 scan rate). From these redox peaks, PANI is the emeraldine form with the maximal electrical performance recorded, showing charge-transfer resistance as low as 21 Ω and capacitance as high as 39 μF. The voltage-sensible nanocomposites can interact with neural stem cells isolated from the subventricular zone (SVZ) of the brain, through stimulation and characterization of differentiated SVZ cells into specialized and mature neurons with long neurites measuring up to 115 ± 24 μm length after 7 days of culture without visible signs of cytotoxic effects. The findings pave the path to the new effective nanobiosensor technologies for nerve regenerative medicine, which demands both electroactivity and biocompatibility.
Collapse
Affiliation(s)
| | | | - Karl-H Schäfer
- Department of Applied Sciences , University of Applied Sciences Kaiserslautern , Zweibrücken 66482 , Germany
| | - Monika Saumer
- Department of Applied Sciences , University of Applied Sciences Kaiserslautern , Zweibrücken 66482 , Germany
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | | |
Collapse
|
28
|
Torres F, Arroyo J, Troncoso O. Bacterial cellulose nanocomposites: An all-nano type of material. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:1277-1293. [DOI: 10.1016/j.msec.2019.01.064] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
|
29
|
Zhu P, Liu Y, Fang Z, Kuang Y, Zhang Y, Peng C, Chen G. Flexible and Highly Sensitive Humidity Sensor Based on Cellulose Nanofibers and Carbon Nanotube Composite Film. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4834-4842. [PMID: 30892906 DOI: 10.1021/acs.langmuir.8b04259] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Flexible and highly sensitive humidity sensors are crucial for humidity detection. In this study, a flexible cellulose nanofiber/carbon nanotube (NFC/CNT) humidity sensor with high sensitivity performance was developed via fast vacuum filtration. CNTs were well dispersed in water by using 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO)-oxidized NFC as a dispersant. More importantly, NFC also acted as a humidity sensitive material, achieving superior performance of NFC/CNT humidity sensors. The obtained NFC/CNT humidity sensor with 5 wt % CNT loading exhibits outstanding sensitive performance, and its response value reaches a maximum of 69.9% (Δ I/ I0) at 95% relative humidity (RH). It also displays good bending resistance and long-term stability. In addition, the NFC/CNT humidity sensor was employed to monitor human breath. Therefore, we believe that the flexible, highly sensitive, and simply designed NFC/CNT humidity sensor is a promising candidate for various applications in the field of humidity measurement.
Collapse
Affiliation(s)
- Penghui Zhu
- State Key Laboratory of Pulp and Paper Engineering, Guangdong Engineering Technology Research and Development Center of Specialty Paper and Paper-Based Functional Materials , South China University of Technology , Guangzhou 510640 , China
| | - Yu Liu
- State Key Laboratory of Pulp and Paper Engineering, Guangdong Engineering Technology Research and Development Center of Specialty Paper and Paper-Based Functional Materials , South China University of Technology , Guangzhou 510640 , China
| | - Zhiqiang Fang
- State Key Laboratory of Pulp and Paper Engineering, Guangdong Engineering Technology Research and Development Center of Specialty Paper and Paper-Based Functional Materials , South China University of Technology , Guangzhou 510640 , China
| | - Yudi Kuang
- State Key Laboratory of Pulp and Paper Engineering, Guangdong Engineering Technology Research and Development Center of Specialty Paper and Paper-Based Functional Materials , South China University of Technology , Guangzhou 510640 , China
| | - Yazeng Zhang
- State Key Laboratory of Pulp and Paper Engineering, Guangdong Engineering Technology Research and Development Center of Specialty Paper and Paper-Based Functional Materials , South China University of Technology , Guangzhou 510640 , China
| | - Congxing Peng
- State Key Laboratory of Pulp and Paper Engineering, Guangdong Engineering Technology Research and Development Center of Specialty Paper and Paper-Based Functional Materials , South China University of Technology , Guangzhou 510640 , China
| | - Gang Chen
- State Key Laboratory of Pulp and Paper Engineering, Guangdong Engineering Technology Research and Development Center of Specialty Paper and Paper-Based Functional Materials , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
30
|
Abstract
Incorporating nanomaterials in living systems could force the latter to produce "bionicomposites". We report a review of the first attempts with such bionicomposites, e.g. showing how the control of the eating and dormant states of microorganisms can provide nano-architectures with novel mechanical and functional properties, and how introducing nanomaterials in the diets of animals producing silks (spiders or silkworms) leads to intrinsically reinforced fibers with strengths higher than those of their natural counterparts, as well as those of synthetic polymer fibers or carbon fiber-reinforced polymeric composites.
Collapse
Affiliation(s)
- Nicola M Pugno
- Laboratory of Bio-Inspired and Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy.
| | | |
Collapse
|
31
|
Huang Y, Kormakov S, He X, Gao X, Zheng X, Liu Y, Sun J, Wu D. Conductive Polymer Composites from Renewable Resources: An Overview of Preparation, Properties, and Applications. Polymers (Basel) 2019; 11:E187. [PMID: 30960171 PMCID: PMC6418900 DOI: 10.3390/polym11020187] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/12/2019] [Accepted: 01/19/2019] [Indexed: 12/13/2022] Open
Abstract
This article reviews recent advances in conductive polymer composites from renewable resources, and introduces a number of potential applications for this material class. In order to overcome disadvantages such as poor mechanical properties of polymers from renewable resources, and give renewable polymer composites better electrical and thermal conductive properties, various filling contents and matrix polymers have been developed over the last decade. These natural or reusable filling contents, polymers, and their composites are expected to greatly reduce the tremendous pressure of industrial development on the natural environment while offering acceptable conductive properties. The unique characteristics, such as electrical/thermal conductivity, mechanical strength, biodegradability and recyclability of renewable conductive polymer composites has enabled them to be implemented in many novel and exciting applications including chemical sensors, light-emitting diode, batteries, fuel cells, heat exchangers, biosensors etc. In this article, the progress of conductive composites from natural or reusable filling contents and polymer matrices, including (1) natural polymers, such as starch and cellulose, (2) conductive filler, and (3) preparation approaches, are described, with an emphasis on potential applications of these bio-based conductive polymer composites. Moreover, several commonly-used and innovative methods for the preparation of conductive polymer composites are also introduced and compared systematically.
Collapse
Affiliation(s)
- Yao Huang
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Semen Kormakov
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaoxiang He
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaolong Gao
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiuting Zheng
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ying Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing 100029, China.
| | - Jingyao Sun
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Daming Wu
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
- State Key Laboratory of Organic-Inorganic Composites, Beijing 100029, China.
| |
Collapse
|
32
|
Bacterial Cellulose-Based Hydrogels: Synthesis, Properties, and Applications. POLYMERS AND POLYMERIC COMPOSITES: A REFERENCE SERIES 2019. [DOI: 10.1007/978-3-319-77830-3_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
33
|
Amdursky N, Głowacki ED, Meredith P. Macroscale Biomolecular Electronics and Ionics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1802221. [PMID: 30334284 DOI: 10.1002/adma.201802221] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/25/2018] [Indexed: 05/18/2023]
Abstract
The conduction of ions and electrons over multiple length scales is central to the processes that drive the biological world. The multidisciplinary attempts to elucidate the physics and chemistry of electron, proton, and ion transfer in biological charge transfer have focused primarily on the nano- and microscales. However, recently significant progress has been made on biomolecular materials that can support ion and electron currents over millimeters if not centimeters. Likewise, similar transport phenomena in organic semiconductors and ionics have led to new innovations in a wide variety of applications from energy generation and storage to displays and bioelectronics. Here, the underlying principles of conduction on the macroscale in biomolecular materials are discussed, highlighting recent examples, and particularly the establishment of accurate structure-property relationships to guide rationale material and device design. The technological viability of biomolecular electronics and ionics is also discussed.
Collapse
Affiliation(s)
- Nadav Amdursky
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Eric Daniel Głowacki
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Bredgatan 33, SE-60174, Norrköping, Sweden
- Wallenberg Centre for Molecular Medicine, Linköping University, 58183, Linköping, Sweden
| | - Paul Meredith
- Department of Physics, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| |
Collapse
|
34
|
Mohamed A, Ardyani T, Bakar SA, Sagisaka M, Umetsu Y, Hussin MRM, Ahmad MK, Mamat MH, King S, Czajka A, Hill C, Eastoe J. Preparation of conductive cellulose paper through electrochemical exfoliation of graphite: The role of anionic surfactant ionic liquids as exfoliating and stabilizing agents. Carbohydr Polym 2018; 201:48-59. [PMID: 30241844 DOI: 10.1016/j.carbpol.2018.08.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/23/2018] [Accepted: 08/10/2018] [Indexed: 01/16/2023]
Abstract
A facile electrochemical exfoliation method was established to efficiently prepare conductive paper containing reduced graphene oxide (RGO) with the help of single chain anionic surfactant ionic liquids (SAILs). The surfactant ionic liquids are synthesized from conventional organic surfactant anions and a 1-butyl-3-methyl-imidazolium cation. For the first time the combination of SAILs and cellulose was used to directly exfoliate graphite. The ionic liquid 1-butyl-3-methyl-imidazolium dodecylbenzenesulfonate (BMIM-DBS) was shown to have notable affinity for graphene, demonstrating improved electrical properties of the conductive cellulose paper. The presence of BMIM-DBS in the system promotes five orders of magnitude enhancement of the paper electrical conductivity (2.71 × 10-5 S cm-1) compared to the native cellulose (1.97 × 10-10 S cm-1). A thorough investigation using electron microscopy and Raman spectroscopy highlights the presence of uniform graphene incorporated inside the matrices. Studies into aqueous aggregation behavior using small-angle neutron scattering (SANS) point to the ability of this compound to act as a bridge between graphene and cellulose, and is responsible for the enhanced exfoliation level and stabilization of the resulting dispersion. The simple and feasible process for producing conductive paper described here is attractive for the possibility of scaling-up this technique for mass production of conductive composites containing graphene or other layered materials.
Collapse
Affiliation(s)
- Azmi Mohamed
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia; Nanotechnology Research Centre, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia.
| | - Tretya Ardyani
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
| | - Suriani Abu Bakar
- Nanotechnology Research Centre, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
| | - Masanobu Sagisaka
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan
| | - Yasushi Umetsu
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan
| | - Mohd Rofei Mat Hussin
- MIMOS Semiconductor Sdn Bhd (MSSB), Technology Park Malaysia, 57000 Bukit Jalil, Kuala Lumpur, Malaysia
| | - Mohd Khairul Ahmad
- Microelectronic and Nanotechnology - Shamsuddin Research Centre (MiNT-SRC), Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia
| | - Mohamad Hafiz Mamat
- NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
| | - Stephen King
- Rutherford Appleton Laboratory, ISIS Spallation Source, Chilton, Oxfordshire, OX110QT, United Kingdom
| | - Adam Czajka
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, United Kingdom
| | - Christopher Hill
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, United Kingdom
| | - Julian Eastoe
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, United Kingdom
| |
Collapse
|
35
|
Hosseini H, Kokabi M, Mousavi SM. Conductive bacterial cellulose/multiwall carbon nanotubes nanocomposite aerogel as a potentially flexible lightweight strain sensor. Carbohydr Polym 2018; 201:228-235. [DOI: 10.1016/j.carbpol.2018.08.054] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/23/2018] [Accepted: 08/12/2018] [Indexed: 12/01/2022]
|
36
|
Controlled mercerization of bacterial cellulose provides tunability of modulus and ductility over two orders of magnitude. J Mech Behav Biomed Mater 2018; 90:530-537. [PMID: 30469131 DOI: 10.1016/j.jmbbm.2018.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 05/25/2018] [Accepted: 11/04/2018] [Indexed: 02/06/2023]
Abstract
Effects of mercerization process on plant-based cellulose is well studied in the literature whereas the effects of mercerization on mechanical properties of bacterial cellulose is not investigated. In this work bacterial cellulose (BC) was mercerized in NaOH solution with different molar concentrations of 0, 1.50, 1.75, 2.00, 2.13, 2.25, 5.00, 7.00 and 10.00 M. The BC samples shrunk substantially with increasing NaOH concentration. At the same concentration, NaOH treatment resulted in significantly larger shrinkage than KOH treatment. Mercerization of BC samples in 7 M NaOH resulted in an order of magnitude increase in elongation from 5.4 ± 1.6% to 50.8 ± 5.7% along with about 30-fold reduction in Young's modulus. Mercerized samples in 4 M NaOH had maximum toughness among all groups at a value of 64.0 ± 15.8 MJ m-3. Changes in BC crystalline structure from cellulose I to cellulose II were characterized and confirmed semiquantitatively by using X-ray diffraction (XRD) and Raman spectroscopy. Results of this work demonstrated mercerization as a method to tune the mechanical properties of BC precisely. Mercerized BC as a biocompatible material with tunable mechanical properties shows potential to be utilized in tissue engineering and regenerative medicine in the future.
Collapse
|
37
|
Siljander S, Keinänen P, Räty A, Ramakrishnan KR, Tuukkanen S, Kunnari V, Harlin A, Vuorinen J, Kanerva M. Effect of Surfactant Type and Sonication Energy on the Electrical Conductivity Properties of Nanocellulose-CNT Nanocomposite Films. Int J Mol Sci 2018; 19:E1819. [PMID: 29925803 PMCID: PMC6032297 DOI: 10.3390/ijms19061819] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/06/2018] [Accepted: 06/15/2018] [Indexed: 11/16/2022] Open
Abstract
We present a detailed study on the influence of sonication energy and surfactant type on the electrical conductivity of nanocellulose-carbon nanotube (NFC-CNT) nanocomposite films. The study was made using a minimum amount of processing steps, chemicals and materials, to optimize the conductivity properties of free-standing flexible nanocomposite films. In general, the NFC-CNT film preparation process is sensitive concerning the dispersing phase of CNTs into a solution with NFC. In our study, we used sonication to carry out the dispersing phase of processing in the presence of surfactant. In the final phase, the films were prepared from the dispersion using centrifugal cast molding. The solid films were analyzed regarding their electrical conductivity using a four-probe measuring technique. We also characterized how conductivity properties were enhanced when surfactant was removed from nanocomposite films; to our knowledge this has not been reported previously. The results of our study indicated that the optimization of the surfactant type clearly affected the formation of freestanding films. The effect of sonication energy was significant in terms of conductivity. Using a relatively low 16 wt. % concentration of multiwall carbon nanotubes we achieved the highest conductivity value of 8.4 S/cm for nanocellulose-CNT films ever published in the current literature. This was achieved by optimizing the surfactant type and sonication energy per dry mass. Additionally, to further increase the conductivity, we defined a preparation step to remove the used surfactant from the final nanocomposite structure.
Collapse
Affiliation(s)
- Sanna Siljander
- Laboratory of Materials Science, Tampere University of Technology, FI-33720 Tampere, Finland.
| | - Pasi Keinänen
- Laboratory of Materials Science, Tampere University of Technology, FI-33720 Tampere, Finland.
| | - Anna Räty
- Laboratory of Materials Science, Tampere University of Technology, FI-33720 Tampere, Finland.
| | | | - Sampo Tuukkanen
- BioMediTech, Tampere University of Technology, FI-33720 Tampere, Finland.
| | | | - Ali Harlin
- VTT Research Center, FI-02044 Espoo, Finland.
| | - Jyrki Vuorinen
- Laboratory of Materials Science, Tampere University of Technology, FI-33720 Tampere, Finland.
| | - Mikko Kanerva
- Laboratory of Materials Science, Tampere University of Technology, FI-33720 Tampere, Finland.
| |
Collapse
|
38
|
Hwang HC, Woo JS, Park SY. Flexible carbonized cellulose/single-walled carbon nanotube films with high conductivity. Carbohydr Polym 2018; 196:168-175. [PMID: 29891284 DOI: 10.1016/j.carbpol.2018.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/11/2018] [Accepted: 05/04/2018] [Indexed: 11/25/2022]
Abstract
A carbonized cellulose/single-walled carbon nanotube composite film (cell/SWCNTcarbon) was prepared with well-dispersed cellulose/SWCNT doped in N-methylmorpholine N-oxide (NMMO) monohydrate. After carbonization at 400 °C, the SWCNT content at electrical threshold of the cell/SWCNTcarbon nanocomposite decreased from 2 wt% to 1 wt%, and the electrical conductivity of the cell/SWCNT(1 wt%)carbon nanocomposite (0.6 S cm-1) increased by more than 6 orders of magnitude compared to that of pure carbonized cellulose (1.1 × 10-7 S cm-1). Further, it continuously increased as the carbonization temperature increased and reached 100 S cm-1 when the cell/SWCNT(1 wt%) nanocomposite was carbonized at 1400 °C. This drastic increase in the electrical conductivity at low carbonization temperatures (e.g. 400 °C) was due to the percolation of small carbon clusters with conducting SWCNTs. The incorporated SWCNTs improved flexibility and mechanical stability during carbonization so that the cell/SWCNT(1 wt%)carbon nanocomposite could be bent even after carbonization at 1400 °C; however, the carbonized cellulose prepared using the same method was too brittle. This cell/SWCNTcarbon nanocomposite may render the eco-friendly production of flexible electrodes for various applications, including heat sink parts, electromagnetic interference shielding materials, and electronic devices, feasible.
Collapse
Affiliation(s)
- Hyo-Chan Hwang
- Department of Polymer Science & Engineering, Polymeric Nanomaterials Laboratory, School of Applied Chemical Engineering, Kyungpook University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Jong Seok Woo
- Advanced Center of Engineering, Morgan Advanced Materials, 23, Dalseong2cha 4-ro, Guji-myeon, Dalseong-gun, Daegu, 43013, Republic of Korea
| | - Soo-Young Park
- Department of Polymer Science & Engineering, Polymeric Nanomaterials Laboratory, School of Applied Chemical Engineering, Kyungpook University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
39
|
Zhang BX, Zhang Y, Luo Z, Han W, Qiu W, Zhao T. Hierarchically Porous Zirconia Monolith Fabricated from Bacterial Cellulose and Preceramic Polymer. ACS OMEGA 2018; 3:4688-4694. [PMID: 31458690 PMCID: PMC6641484 DOI: 10.1021/acsomega.8b00098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/16/2018] [Indexed: 06/10/2023]
Abstract
A hierarchically porous zirconia (ZrO2) monolith was successfully fabricated by using bacterial cellulose (BC) as a biotemplate and preceramic polymer as a zirconium resource, via freeze-drying and two-step calcination process. Images of scanning electron microscopy showed that the ZrO2 monolith well-replicated a three-dimensional reticulated structure of pristine BC and possessed good morphology stability till 1100 °C in air. Results of N2 adsorption/desorption and mercury porosimetry analysis revealed the hierarchically porous structure and large specific area (9.7 m2·g-1) of the ZrO2 monolith, respectively. Patterns of X-ray powder diffraction indicated that the monoclinic phase and tetragonal phase coexisted in the ZrO2 monolith with the former as the main phase. In addition, the ZrO2 monolith possessed low bulk density (0.13 g·cm-3) and good mechanical strength. These properties suggest that the as-prepared ZrO2 monolith has a great potential to serve as an ideal catalyst or catalyst support.
Collapse
Affiliation(s)
- Bo-xing Zhang
- South
China Advanced Institute for Soft Matter Science and Technology (AISMST), South China University of Technology (SCUT), 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Yubei Zhang
- Laboratory
of Advanced Polymer Materials, Institute
of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China
| | - Zhenhua Luo
- Laboratory
of Advanced Polymer Materials, Institute
of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China
| | - Weijian Han
- Laboratory
of Advanced Polymer Materials, Institute
of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China
| | - Wenfeng Qiu
- South
China Advanced Institute for Soft Matter Science and Technology (AISMST), South China University of Technology (SCUT), 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Tong Zhao
- Laboratory
of Advanced Polymer Materials, Institute
of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China
| |
Collapse
|
40
|
Shao D, Yotprayoonsak P, Saunajoki V, Ahlskog M, Virtanen J, Kangas V, Volodin A, Haesendonck CV, Burdanova M, Mosley CDW, Lloyd-Hughes J. Conduction properties of thin films from a water soluble carbon nanotube/hemicellulose complex. NANOTECHNOLOGY 2018; 29:145203. [PMID: 29384138 DOI: 10.1088/1361-6528/aaabd1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We have examined the conductive properties of carbon nanotube based thin films, which were prepared via dispersion in water by non-covalent functionalization of the nanotubes with xylan, a type of hemicellulose. Measurements of low temperature conductivity, Kelvin probe force microscopy, and high frequency (THz) conductivity elucidated the intra-tube and inter-tube charge transport processes in this material. The measurements show excellent conductive properties of the as prepared thin films, with bulk conductivity up to 2000 S cm-1. The transport results demonstrate that the hemicellulose does not seriously interfere with the inter-tube conductance.
Collapse
Affiliation(s)
- Dongkai Shao
- Nanoscience Center, Department of Physics, University of Jyväskylä, FI-40014, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Luo H, Dong J, Yao F, Yang Z, Li W, Wang J, Xu X, Hu J, Wan Y. Layer-by-Layer Assembled Bacterial Cellulose/Graphene Oxide Hydrogels with Extremely Enhanced Mechanical Properties. NANO-MICRO LETTERS 2018; 10:42. [PMID: 30393691 PMCID: PMC6199091 DOI: 10.1007/s40820-018-0195-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 02/27/2018] [Indexed: 05/25/2023]
Abstract
Uniform dispersion of two-dimensional (2D) graphene materials in polymer matrices remains challenging. In this work, a novel layer-by-layer assembly strategy was developed to prepare a sophisticated nanostructure with highly dispersed 2D graphene oxide in a three-dimensional matrix consisting of one-dimensional bacterial cellulose (BC) nanofibers. This method is a breakthrough, with respect to the conventional static culture method for BC that involves multiple in situ layer-by-layer assembly steps at the interface between previously grown BC and the culture medium. In the as-prepared BC/GO nanocomposites, the GO nanosheets are mechanically bundled and chemically bonded with BC nanofibers via hydrogen bonding, forming an intriguing nanostructure. The sophisticated nanostructure of the BC/GO leads to greatly enhanced mechanical properties compared to those of bare BC. This strategy is versatile, facile, scalable, and can be promising for the development of high-performance BC-based nanocomposite hydrogels.
Collapse
Affiliation(s)
- Honglin Luo
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, People's Republic of China
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Jiaojiao Dong
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, People's Republic of China
| | - Fanglian Yao
- School of Chemical Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Zhiwei Yang
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, People's Republic of China
| | - Wei Li
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, People's Republic of China
| | - Jie Wang
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, People's Republic of China
| | - Xinhua Xu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Jian Hu
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, People's Republic of China.
| | - Yizao Wan
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, People's Republic of China.
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
42
|
Yamakawa A, Suzuki S, Oku T, Enomoto K, Ikeda M, Rodrigue J, Tateiwa K, Terada Y, Yano H, Kitamura S. Nanostructure and physical properties of cellulose nanofiber-carbon nanotube composite films. Carbohydr Polym 2017; 171:129-135. [DOI: 10.1016/j.carbpol.2017.05.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 05/01/2017] [Accepted: 05/04/2017] [Indexed: 11/29/2022]
|
43
|
Jasim A, Ullah MW, Shi Z, Lin X, Yang G. Fabrication of bacterial cellulose/polyaniline/single-walled carbon nanotubes membrane for potential application as biosensor. Carbohydr Polym 2017; 163:62-69. [DOI: 10.1016/j.carbpol.2017.01.056] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/25/2016] [Accepted: 01/15/2017] [Indexed: 12/22/2022]
|
44
|
Zhang X, Lu Z, Zhao J, Li Q, Zhang W, Lu C. Exfoliation/dispersion of low-temperature expandable graphite in nanocellulose matrix by wet co-milling. Carbohydr Polym 2017; 157:1434-1441. [DOI: 10.1016/j.carbpol.2016.11.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/18/2016] [Accepted: 11/08/2016] [Indexed: 10/20/2022]
|
45
|
Song Y, Sun Z, Xu L, Shao Z. Preparation and Characterization of Highly Aligned Carbon Nanotubes/Polyacrylonitrile Composite Nanofibers. Polymers (Basel) 2017; 9:E1. [PMID: 30970687 PMCID: PMC6432014 DOI: 10.3390/polym9010001] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 11/16/2022] Open
Abstract
In the electrospinning process, a modified parallel electrode method (MPEM), conducted by placing a positively charged ring between the needle and the parallel electrode collector, was used to fabricate highly aligned carbon nanotubes/polyacrylonitrile (CNTs/PAN) composite nanofibers. Characterizations of the samples-such as morphology, the degree of alignment, and mechanical and conductive properties-were investigated by a combination of scanning electron microscopy (SEM), transmission electron microscopy (TEM), universal testing machine, high-resistance meter, and other methods. The results showed the MPEM could improve the alignment and uniformity of electrospun CNTs/PAN composite nanofibers, and enhance their mechanical and conductive properties. This meant the successful preparation of highly aligned CNT-reinforced PAN nanofibers with enhanced physical properties, suggesting their potential application in appliances and communication areas.
Collapse
Affiliation(s)
- Yanhua Song
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China.
| | - Zhaoyang Sun
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China.
| | - Lan Xu
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China.
| | - Zhongbiao Shao
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China.
| |
Collapse
|
46
|
Florea M, Hagemann H, Santosa G, Abbott J, Micklem CN, Spencer-Milnes X, de Arroyo Garcia L, Paschou D, Lazenbatt C, Kong D, Chughtai H, Jensen K, Freemont PS, Kitney R, Reeve B, Ellis T. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain. Proc Natl Acad Sci U S A 2016; 113:E3431-40. [PMID: 27247386 PMCID: PMC4914174 DOI: 10.1073/pnas.1522985113] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology.
Collapse
Affiliation(s)
- Michael Florea
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Henrik Hagemann
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Gabriella Santosa
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - James Abbott
- Bioinformatics Support Service, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, United Kingdom; Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Chris N Micklem
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xenia Spencer-Milnes
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Laura de Arroyo Garcia
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Despoina Paschou
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Christopher Lazenbatt
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Deze Kong
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Haroon Chughtai
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Kirsten Jensen
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Paul S Freemont
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Richard Kitney
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Benjamin Reeve
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Tom Ellis
- Centre for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom;
| |
Collapse
|
47
|
Flexible conductive nanocellulose combined with silicon nanoparticles and polyaniline. Carbohydr Polym 2016; 140:43-50. [DOI: 10.1016/j.carbpol.2015.12.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/17/2015] [Accepted: 12/21/2015] [Indexed: 11/15/2022]
|
48
|
Zhang S, Shen Y, Shen G, Wang S, Shen G, Yu R. Electrochemical immunosensor based on Pd–Au nanoparticles supported on functionalized PDDA-MWCNT nanocomposites for aflatoxin B1 detection. Anal Biochem 2016; 494:10-5. [DOI: 10.1016/j.ab.2015.10.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/06/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
|
49
|
Zhang H, Guo H, Wang B, Shi S, Xiong L, Chen X. Synthesis and characterization of quaternized bacterial cellulose prepared in homogeneous aqueous solution. Carbohydr Polym 2016; 136:171-6. [DOI: 10.1016/j.carbpol.2015.09.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 10/23/2022]
|
50
|
Nanocomposites with functionalised polysaccharide nanocrystals through aqueous free radical polymerisation promoted by ozonolysis. Carbohydr Polym 2016; 135:256-66. [DOI: 10.1016/j.carbpol.2015.09.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 08/27/2015] [Accepted: 09/01/2015] [Indexed: 11/23/2022]
|