1
|
Amirian J, Wychowaniec JK, D′este M, Vernengo AJ, Metlova A, Sizovs A, Brangule A, Bandere D. Preparation and Characterization of Photo-Cross-Linkable Methacrylated Silk Fibroin and Methacrylated Hyaluronic Acid Composite Hydrogels. Biomacromolecules 2024; 25:7078-7097. [PMID: 39401165 PMCID: PMC11558566 DOI: 10.1021/acs.biomac.4c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 11/12/2024]
Abstract
Composite biomaterials with excellent biocompatibility and biodegradability are crucial in tissue engineering. In this work, a composite protein and polysaccharide photo-cross-linkable hydrogel was prepared using silk fibroin methacrylate (SFMA) and hyaluronic acid methacrylate (HAMA). SFMA was obtained by the methacrylation of degummed SF with glycidyl methacrylate (GMA), while HA was methacrylated by 2-aminoethyl methacrylate hydrochloride (AEMA). We investigated the effect of the addition of 1 wt % HAMA to 5, 10, and 20 wt % SFMA, which resulted in an increase in both static and cycling mechanical strengths. All composite hydrogels gelled under UV light in <30 s, allowing for rapid stabilization and stiffness increases. The biocompatibility of the hydrogels was confirmed by direct and indirect contact methods and by evaluation against the NIH3T3 and MC3T3 cell lines with a live-dead assay by confocal imaging. The range of obtained mechanical properties from developed composite and UV-cross-linkable hydrogels sets the basis as possible future biomaterials for various biomedical applications.
Collapse
Affiliation(s)
- Jhaleh Amirian
- Department
of Pharmaceutical Chemistry, Riga Stradins
University, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1048, Latvia
| | | | - Matteo D′este
- AO
Research Institute Davos, Clavadelerstrasse 8, Davos 7270, Switzerland
| | - Andrea J. Vernengo
- AO
Research Institute Davos, Clavadelerstrasse 8, Davos 7270, Switzerland
| | - Anastasija Metlova
- Laboratory
of Pharmaceutical Pharmacology, Latvian
Institute of Organic Synthesis, Riga LV-1006, Latvia
| | - Antons Sizovs
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1048, Latvia
- Laboratory
of Pharmaceutical Pharmacology, Latvian
Institute of Organic Synthesis, Riga LV-1006, Latvia
| | - Agnese Brangule
- Department
of Pharmaceutical Chemistry, Riga Stradins
University, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1048, Latvia
| | - Dace Bandere
- Department
of Pharmaceutical Chemistry, Riga Stradins
University, Riga LV-1007, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Riga LV-1048, Latvia
| |
Collapse
|
2
|
Gaviria Castrillon AM, Wray S, Rodríguez A, Fajardo SD, Machain VA, Parisi J, Bosio GN, Kaplan DL, Restrepo-Osorio A, Bosio VE. Biomimetic bilayer scaffold from Bombyx mori silk materials for small diameter vascular applications in tissue engineering. J Biomed Mater Res A 2024. [PMID: 39367651 DOI: 10.1002/jbm.a.37789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/05/2024] [Accepted: 08/19/2024] [Indexed: 10/06/2024]
Abstract
Enhancing the biocompatibility and mechanical stability of small diameter vascular scaffolds remain significant challenges. To address this challenge, small-diameter tubular structures were electrospun from silk fibroin (SF) from silk textile industry discarded materials to generate bilayer scaffolds that mimic native blood vessels, but derived from a sustainable natural material resource. The inner layer was obtained by directly dissolving SF in formic acid, while the middle layer (SF-M) was achieved through aqueous concentration of the protein. Structural and biological properties of each layer as well as the bilayer were evaluated. The inner layer exhibited nano-scale fiber diameters and 57.9% crystallinity, and degradation rates comparable with the SF-M layer. The middle layer displayed micrometer-scale fibers diameters with an ultimate extension of about 274%. Both layers presented contact angles suitable for cell growth and cytocompatibility, while the bilayer material displayed an intermediate mechanical response and a reduced enzymatic degradation rate when compared to each individual layer. The bilayer material emulates many of the characteristics of native small-diameter vessels, thereby suggesting further studies towards in vivo opportunities.
Collapse
Affiliation(s)
- Ana M Gaviria Castrillon
- Grupo de Investigación en Nuevos Materiales (GINUMA), Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Sandra Wray
- Departamento de Ciencias de la Vida, Insituto Tecnológico Buenos Aires (ITBA), Buenos Aires, Argentina
| | - Aníbal Rodríguez
- Departamento de Ciencias de la Vida, Insituto Tecnológico Buenos Aires (ITBA), Buenos Aires, Argentina
| | - Sahara Díaz Fajardo
- Grupo de Investigación en Nuevos Materiales (GINUMA), Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Victoria A Machain
- Biometrials for Tissue Engieeering Lab (BIOMIT Lab), Instituto de Física La Plata (CONICET, Universidad Nacional de La Plata), La Plata, Buenos Aires, Argentina
| | - Julieta Parisi
- Sector de Cultivos Celulares, Instituto Multidisciplinario de Biología Celular (CICPBA-CONICET-UNLP), La Plata, Argentina
| | - Gabriela N Bosio
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de la Plata, CONICET, La Plata, Buenos Aires, Argentina
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Adriana Restrepo-Osorio
- Grupo de Investigación en Nuevos Materiales (GINUMA), Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Valeria E Bosio
- Biometrials for Tissue Engieeering Lab (BIOMIT Lab), Instituto de Física La Plata (CONICET, Universidad Nacional de La Plata), La Plata, Buenos Aires, Argentina
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
3
|
Fu Y, Lin Q, Lan R, Shao Z. Ultra-Strong Protein-Based Hydrogels via Promoting Intermolecular Entanglement of the Amorphous Region. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403376. [PMID: 39221643 DOI: 10.1002/smll.202403376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/19/2024] [Indexed: 09/04/2024]
Abstract
Proteins are classified as biopolymers which share similar structural features with semi-crystalline polymers. Although their unique biocompatibility facilitates the universal applications of protein-based hydrogels in the biomedical field, the mechanical performances of protein-based hydrogels fall short of practical requirements. Conventional strategies for enhancing mechanical properties focus on forming regularly folded secondary structures as analogs of crystalline regions. This concept is based on proteins as the analogy of semi-crystalline polymers, in which crystalline regions profoundly contribute to the mechanical performances. Even though the contribution of the amorphous region is equally weighted for semi-crystalline polymers, their capacity to improve the mechanical performances of protein-based structures is still undervalued. Herein, the potential of promoting the mechanical performances is explored by controlling the state of amorphous regions in protein-based hydrogels. A fibril protein is chosen, regenerated silk fibroin (RSF), as a model molecule for its similar viscoelasticity with a semi-crystalline polymer. The amorphous regions in the RSF hydrogels are transformed from extended to entangled states through a double-crosslinking method. The formation of entanglement integrates new physically crosslinked points for remarkable improvement in mechanical performances. A robust hydrogel is not only developed but also intended to provide new insights into the structural-property relationship of protein-based hydrogels.
Collapse
Affiliation(s)
- Yu Fu
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
- Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Qinrui Lin
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Ruoqi Lan
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
- Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
- Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
- Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
4
|
Sun Y, Ma L, Wei T, Zheng M, Mao C, Yang M, Shuai Y. Green, Low-carbon Silk-based Materials in Water Treatment: Current State and Future Trends. CHEMSUSCHEM 2024; 17:e202301549. [PMID: 38298106 DOI: 10.1002/cssc.202301549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/04/2024] [Accepted: 01/29/2024] [Indexed: 02/02/2024]
Abstract
The improper and inadequate treatment of industrial, agricultural, and household wastewater exerts substantial pressure on the existing ecosystem and poses a serious threat to the health of both humans and animals. To address these issues, different types of materials have been employed to eradicate detrimental pollutants from wastewater and facilitate the reuse of water resources. Nevertheless, owing to the challenges associated with the degradation of these traditional materials post-use and their incompatibility with the environment, natural biopolymers have garnered considerable interest. Silk protein, as a biomacromolecule, exhibits advantageous characteristics including environmental friendliness, low carbon emissions, biodegradability, sustainability, and biocompatibility. Considering recent research findings, this comprehensive review outlines the structure and properties of silk proteins and offers a detailed overview of the manufacturing techniques employed in the production of silk-based materials (SBMs) spanning different forms. Furthermore, it conducts an in-depth analysis of the state-of-the-art SBMs for water treatment purposes, encompassing adsorption, catalysis, water disinfection, desalination, and biosensing. The review highlights the potential of SBMs in addressing the challenges of wastewater treatment and provides valuable insights into prospective avenues for further research.
Collapse
Affiliation(s)
- Yuxu Sun
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, 310058, Hangzhou, China
| | - Lantian Ma
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, 310058, Hangzhou, China
| | - Tiancheng Wei
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, 310058, Hangzhou, China
| | - Meidan Zheng
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, 310058, Hangzhou, China
| | - Chuanbin Mao
- School of Materials Science and Engineering, Zhejiang University, 310027, Hangzhou, Zhejiang, P. R. China
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong SAR, P. R.China
| | - Mingying Yang
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, 310058, Hangzhou, China
| | - Yajun Shuai
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, 310058, Hangzhou, China
| |
Collapse
|
5
|
Agostinacchio F, Fitzpatrick V, Dirè S, Kaplan DL, Motta A. Silk fibroin-based inks for in situ 3D printing using a double crosslinking process. Bioact Mater 2024; 35:122-134. [PMID: 38312518 PMCID: PMC10837071 DOI: 10.1016/j.bioactmat.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
The shortage of tissues and organs for transplantation is an urgent clinical concern. In situ 3D printing is an advanced 3D printing technique aimed at printing the new tissue or organ directly in the patient. The ink for this process is central to the outcomes, and must meet specific requirements such as rapid gelation, shape integrity, stability over time, and adhesion to surrounding healthy tissues. Among natural materials, silk fibroin exhibits fascinating properties that have made it widely studied in tissue engineering and regenerative medicine. However, further improvements in silk fibroin inks are needed to match the requirements for in situ 3D printing. In the present study, silk fibroin-based inks were developed for in situ applications by exploiting covalent crosslinking process consisting of a pre-photo-crosslinking prior to printing and in situ enzymatic crosslinking. Two different silk fibroin molecular weights were characterized and the synergistic effect of the covalent bonds with shear forces enhanced the shift in silk secondary structure toward β-sheets, thus, rapid stabilization. These hydrogels exhibited good mechanical properties, stability over time, and resistance to enzymatic degradation over 14 days, with no significant changes over time in their secondary structure and swelling behavior. Additionally, adhesion to tissues in vitro was demonstrated.
Collapse
Affiliation(s)
- Francesca Agostinacchio
- National Interuniversity Consortium of Material Science and Technology, Florence, Italy
- BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Department of Industrial Engineering, University of Trento, Trento, Italy
| | - Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Sandra Dirè
- Materials Chemistry Group & “Klaus Müller” Magnetic Resonance Laboratory, Department of Industrial Engineering, University of Trento, Trento, Italy
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Antonella Motta
- BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Department of Industrial Engineering, University of Trento, Trento, Italy
| |
Collapse
|
6
|
Park S, Kim SI, Choi JH, Kim SE, Choe SH, Son Y, Kang TW, Song JE, Khang G. Evaluation of Silk Fibroin/Gellan Gum Hydrogels with Controlled Molecular Weight through Silk Fibroin Hydrolysis for Tissue Engineering Application. Molecules 2023; 28:5222. [PMID: 37446884 DOI: 10.3390/molecules28135222] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Hydrogel is a versatile material that can be manipulated to achieve the desired physicochemical properties, such as stiffness, pore size, and viscoelasticity. Traditionally, these properties have been controlled through parameters such as concentration and pH adjustments. In this study, we focused on exploring the potential of hydrolyzed silk fibroin (HSF) as a molecular weight-modulating agent to control the physicochemical properties of double-composite hydrogels. We developed a synergistic dual-crosslinked hydrogel by combining ionically crosslinked silk fibroin with gellan gum (GG). The hydrolysis of silk fibroin not only enhanced its hydrophilicity but also enabled adjustments in its mechanical properties, including the pore size, initial modulus elasticity, and relaxation time. Moreover, biocompatibility assessments based on cell viability tests confirmed the potential of these hydrogels as biocompatible materials. By highlighting the significance of developing an HSF/GG dual-crosslinked hydrogel, this study contributes to the advancement of novel double-composite hydrogels with remarkable biocompatibility. Overall, our findings demonstrate the capability of controlling the mechanical properties of hydrogels through molecular weight modulation via hydrolysis and highlight the development of a biocompatible HSF/GG dual-crosslinked hydrogel with potential biomedical applications.
Collapse
Affiliation(s)
- Sunjae Park
- Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeonbuk, Republic of Korea
| | - Soo-In Kim
- Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeonbuk, Republic of Korea
| | - Joo-Hee Choi
- Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeonbuk, Republic of Korea
| | - Se-Eun Kim
- Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeonbuk, Republic of Korea
| | - Seung-Ho Choe
- Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeonbuk, Republic of Korea
| | - Youngjun Son
- Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeonbuk, Republic of Korea
| | - Tae-Woong Kang
- Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeonbuk, Republic of Korea
| | - Jeong-Eun Song
- Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeonbuk, Republic of Korea
| | - Gilson Khang
- Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeonbuk, Republic of Korea
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeonbuk, Republic of Korea
- Department of Orthopaedic & Traumatology, Airlangga University, Jl. Airlangga No. 4-6, Airlangga, Kec. Gubeng, Kota SBY, Surabaya 60115, Jawa Timur, Indonesia
| |
Collapse
|
7
|
Liang Y, Zou Y, Wu S, Song D, Xu W, Zhu K. Preparation and properties of chitin/silk fibroin biocompatible composite fibers. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 34:860-874. [PMID: 36369874 DOI: 10.1080/09205063.2022.2147746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the present world chitin is used enormously in various fields, such as biopharmaceuticals, medical and clinical bioproducts, food packaging, etc. However, its development has been curbed by the impaired performance and cumbersome dissolution process when chitin materials are dissolved and regenerated by physical or chemical methods. To further obtain the regenerated chitin fiber material with improved performance, silk fibroin was introduced into the chitin matrix material, and chitin/silk fibroin biocompatible composite fibers were obtained by formic acid/calcium chloride/ethanol ternary system and top-down wet spinning technology. The produced composite fibers outperformed previously reported chitin-silk composites in terms of the tensile strength (160 MPa) and failure strain (25%). The fibers also performed good cell compatibility and strong cellular affinity for non-toxicity. The cell viabilities of the fibers were about 20% greater than those of silk fiber after three days of co-culture with NIH-3T3. Furthermore, no hemolysis occurs in the presence of chitin/silk fibers, demonstrating their superior hemocompatibility. The fibers had a hemolysis index as low as 1%, which is far lower than the acceptable level of 5%. The material offers prospective opportunities for biomaterial applications in anticoagulation, absorbable surgical sutures, etc.
Collapse
Affiliation(s)
- Yaoting Liang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Yongkang Zou
- Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Shuangquan Wu
- Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Dengpeng Song
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Weilin Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Kunkun Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
8
|
Silk Fibroin Hydrogels Could Be Therapeutic Biomaterials for Neurological Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2076680. [PMID: 35547640 PMCID: PMC9085322 DOI: 10.1155/2022/2076680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/18/2022] [Indexed: 12/17/2022]
Abstract
Silk fibroin, a natural macromolecular protein without physiological activity, has been widely used in different fields, such as the regeneration of bones, cartilage, nerves, and other tissues. Due to irrevocable neuronal injury, the treatment and prognosis of neurological diseases need to be investigated. Despite attempts to propel neuroprotective therapeutic approaches, numerous attempts to translate effective therapies for brain disease have been largely unsuccessful. As a good candidate for biomedical applications, hydrogels based on silk fibroin effectively amplify their advantages. The ability of nerve tissue regeneration, inflammation regulation, the slow release of drugs, antioxidative stress, regulation of cell death, and hemostasis could lead to a new approach to treating neurological disorders. In this review, we introduced the preparation of SF hydrogels and then delineated the probable mechanism of silk fibroin in the treatment of neurological diseases. Finally, we showed the application of silk fibroin in neurological diseases.
Collapse
|
9
|
Rajput M, Mondal P, Yadav P, Chatterjee K. Light-based 3D bioprinting of bone tissue scaffolds with tunable mechanical properties and architecture from photocurable silk fibroin. Int J Biol Macromol 2022; 202:644-656. [PMID: 35066028 DOI: 10.1016/j.ijbiomac.2022.01.081] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 12/11/2022]
Abstract
Three-dimensional (3D) bioprinting based on digital light processing (DLP) offers unique opportunities to prepare scaffolds that mimic the architecture and biomechanical properties of human tissues. Limited availability of biocompatible and biodegradable bioinks amenable for DLP-bioprinting is an impediment in this field. This study presents a bioink prepared from silk fibroin (SF) tailored for DLP bioprinting. Photocurable methacrylated-SF (SF-MA) was synthesized with 67.3% of methacrylation. Physical characterization of rheological and mechanical properties revealed that the 3D printed hydrogels of SF-MA (spanning from 10 to 25 wt%) exhibit bone tissue-like viscoelastic behavior and compressive modulus ranging from ≈12 kPa to ≈96 kPa. The gels exhibited favorable degradation (≈48 to 91% in 21 days). This SF-MA bioink afforded the printing of complex structures, with high precision. Pre-osteoblasts were successfully encapsulated in 3D bioprinted SF-MA hydrogels with high viability. 15% SF-MA DLP bioprinted hydrogels efficiently supported cell proliferation with favorable cell morphology and cytoskeletal organization. A progressive increase in cell-mediated calcium deposition up to 14 days confirmed the ability of the gels to drive osteogenesis, which was further augmented by soluble induction factors. This work demonstrates the potential of silk fibroin-derived bioinks for DLP-based 3D bioprinting of scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Monika Rajput
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, Karnataka 560012, India
| | - Pritiranjan Mondal
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, Karnataka 560012, India
| | - Parul Yadav
- Centre for BioSystems Science and Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, Karnataka 560012, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, Karnataka 560012, India; Centre for BioSystems Science and Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, Karnataka 560012, India.
| |
Collapse
|
10
|
Wei X, Zang H, Guan Y, Yang C, Muncan J, Li L. Aquaphotomics investigation of the state of water in oral liquid formulation of traditional Chinese medicine and its dynamics during temperature perturbation. NEW J CHEM 2022. [DOI: 10.1039/d2nj03003a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three types of bound water with different hydrogen bonding strengths were identified and elucidated by aquaphotomics.
Collapse
Affiliation(s)
- Xiaoying Wei
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hengchang Zang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yongxia Guan
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, Shandong, China
| | - Cui Yang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jelena Muncan
- Aquaphotomics Research Department, Graduate School of Agricultural Science, Kobe University, Japan
| | - Lian Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
11
|
Križman K, Novak S, Kristl J, Majdič G, Drnovšek N. Long-acting silk fibroin xerogel delivery systems for controlled release of estradiol. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
12
|
Wyss CS, Karami P, Demongeot A, Bourban PE, Pioletti DP. Silk granular hydrogels self-reinforced with regenerated silk fibroin fibers. SOFT MATTER 2021; 17:7038-7046. [PMID: 34251015 DOI: 10.1039/d1sm00585e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Granular hydrogels with high stability, strength, and toughness are laborious to develop. Post-curing is often employed to bind microgels chemically and enhance mechanical properties. Here a unique strategy was investigated to maintain microgels together with a novel self-reinforced silk granular hydrogel composed of 10 wt% 20 kDa poly(ethylene glycol) dimethacrylate microgels and regenerated silk fibroin fibers. The principle is to use the swelling of microgels to concentrate the surrounding solution and regenerate silk fibroin in situ. Self-reinforcement is subsequently one of the added functions. We showed that silk fibroin in most compositions was homogeneously distributed and had successfully regenerated in situ around microgels, holding them together in a network-like structure. FTIR analysis revealed the presence of amorphous and crystalline silk fibroin, where 50% of the secondary structures could be assigned to strong β-sheets. Swelling ratios, i.e. 10-45 vol%, increased proportionally with the microgel content, suggesting that mainly microgels governed swelling. In contrast, the elastic modulus, i.e. 58-296 kPa, increased almost linearly with silk fibroin content. Moreover, we showed that the precursor could be injected and cast into a given shape. Viscous precursors of various compositions were also placed side by side to create mechanical gradients. Finally, it was demonstrated that silk granular hydrogel could successfully be synthesized with other microgels like gelatin methacryloyl. Silk granular hydrogels represent, therefore, a novel class of self-reinforced hydrogel structures with tunable swelling and elastic properties.
Collapse
Affiliation(s)
- Céline Samira Wyss
- Laboratory for Processing of Advanced Composites (LPAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| | - Peyman Karami
- Laboratory of Biomechanical Orthopedics (LBO), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Adrien Demongeot
- Laboratory for Processing of Advanced Composites (LPAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| | - Pierre-Etienne Bourban
- Laboratory for Processing of Advanced Composites (LPAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| | - Dominique P Pioletti
- Laboratory of Biomechanical Orthopedics (LBO), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| |
Collapse
|
13
|
Lassenberger A, Martel A, Porcar L, Baccile N. Interpenetrated biosurfactant-silk fibroin networks - a SANS study. SOFT MATTER 2021; 17:2302-2314. [PMID: 33480918 DOI: 10.1039/d0sm01869d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Silk fibroin (SF) based hydrogels have been exploited for years for their inherent biocompatibility and favorable mechanical properties which makes them interesting for biotechnology applications. In this study we investigate silk based composite hydrogels where pH-sensitive, anionic biosurfactant assemblies (sophorolipids SL-C18 : 1 and SL-C18 : 0), are employed to improve the present properties of SF. Results suggest that the presence of SL surfactant assemblies leads to faster gelling of SF by accelerating the refolding from random coil to β-sheet as shown by infrared and UV-visible spectroscopy. Small angle neutron scattering (SANS) including contrast matching studies show that SF and SL assemblies coexist in a fibrillary network that is, in the case of SL-C18 : 0, interpenetrating. The resulting overall network structure in composite gels is slightly more affected by SL-C18 : 1 than by SL-C18 : 0, whereas the structure of both SF and surfactant assemblies remains unchanged. No disassembly of SL surfactant structures is observed, which gives a new perspective on SF-surfactant interactions. The hydrophobic effect within SF is favored in the presence of SL, leading to faster refolding of SF into β-sheet conformation. The presented composite gels, being an interpenetrating network of which one compound (SL-C18 : 0) can be tweaked by pH, open an interesting option towards improved workability and stimuli responsive mechanical properties of SF based hydrogels with possible applications in controlled cell culture and tissue engineering or drug delivery. The presented SANS analysis approach has the potential to be expanded to other protein-surfactant systems and composite hydrogels.
Collapse
Affiliation(s)
- Andrea Lassenberger
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France.
| | - Anne Martel
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France.
| | - Lionel Porcar
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France.
| | - Niki Baccile
- Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, Paris F-75005, France.
| |
Collapse
|
14
|
Zhang L, Zhang W, Hu Y, Fei Y, Liu H, Huang Z, Wang C, Ruan D, Heng BC, Chen W, Shen W. Systematic Review of Silk Scaffolds in Musculoskeletal Tissue Engineering Applications in the Recent Decade. ACS Biomater Sci Eng 2021; 7:817-840. [PMID: 33595274 DOI: 10.1021/acsbiomaterials.0c01716] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During the past decade, various novel tissue engineering (TE) strategies have been developed to maintain, repair, and restore the biomechanical functions of the musculoskeletal system. Silk fibroins are natural polymers with numerous advantageous properties such as good biocompatibility, high mechanical strength, and low degradation rate and are increasingly being recognized as a scaffolding material of choice in musculoskeletal TE applications. This current systematic review examines and summarizes the latest research on silk scaffolds in musculoskeletal TE applications within the past decade. Scientific databases searched include PubMed, Web of Science, Medline, Cochrane library, and Embase. The following keywords and search terms were used: musculoskeletal, tendon, ligament, intervertebral disc, muscle, cartilage, bone, silk, and tissue engineering. Our Review was limited to articles on musculoskeletal TE, which were published in English from 2010 to September 2019. The eligibility of the articles was assessed by two reviewers according to prespecified inclusion and exclusion criteria, after which an independent reviewer performed data extraction and a second independent reviewer validated the data obtained. A total of 1120 articles were reviewed from the databases. According to inclusion and exclusion criteria, 480 articles were considered as relevant for the purpose of this systematic review. Tissue engineering is an effective modality for repairing or replacing injured or damaged tissues and organs with artificial materials. This Review is intended to reveal the research status of silk-based scaffolds in the musculoskeletal system within the recent decade. In addition, a comprehensive translational research route for silk biomaterial from bench to bedside is described in this Review.
Collapse
Affiliation(s)
- Li Zhang
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Department of Orthopaedics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wei Zhang
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yejun Hu
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, Zhejiang 310000, China
| | - Yang Fei
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, Zhejiang 310000, China
| | - Haoyang Liu
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu 210096, China
| | - Zizhan Huang
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, Zhejiang 310000, China
| | - Canlong Wang
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, Zhejiang 310000, China
| | - Dengfeng Ruan
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, Zhejiang 310000, China
| | | | - Weishan Chen
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, Zhejiang 310000, China
| | - Weiliang Shen
- Department of Orthopedic Surgery of The Second Affiliated Hospital and Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Sports System Disease Research and Accurate Diagnosis and Treatment of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Orthopaedics Research Institute, Zhejiang Univerisity, Hangzhou, Zhejiang 310000, China.,China Orthopaedic Regenerative Medicine (CORMed), Chinese Medical Association, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Farokhi M, Aleemardani M, Solouk A, Mirzadeh H, Teuschl AH, Redl H. Crosslinking strategies for silk fibroin hydrogels: promising biomedical materials. Biomed Mater 2021; 16:022004. [PMID: 33594992 DOI: 10.1088/1748-605x/abb615] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Due to their strong biomimetic potential, silk fibroin (SF) hydrogels are impressive candidates for tissue engineering, due to their tunable mechanical properties, biocompatibility, low immunotoxicity, controllable biodegradability, and a remarkable capacity for biomaterial modification and the realization of a specific molecular structure. The fundamental chemical and physical structure of SF allows its structure to be altered using various crosslinking strategies. The established crosslinking methods enable the formation of three-dimensional (3D) networks under physiological conditions. There are different chemical and physical crosslinking mechanisms available for the generation of SF hydrogels (SFHs). These methods, either chemical or physical, change the structure of SF and improve its mechanical stability, although each method has its advantages and disadvantages. While chemical crosslinking agents guarantee the mechanical strength of SFH through the generation of covalent bonds, they could cause some toxicity, and their usage is not compatible with a cell-friendly technology. On the other hand, physical crosslinking approaches have been implemented in the absence of chemical solvents by the induction of β-sheet conformation in the SF structure. Unfortunately, it is not easy to control the shape and properties of SFHs when using this method. The current review discusses the different crosslinking mechanisms of SFH in detail, in order to support the development of engineered SFHs for biomedical applications.
Collapse
Affiliation(s)
- Maryam Farokhi
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran. Maryam Farokhi and Mina Aleemardani contributed equally
| | | | | | | | | | | |
Collapse
|
16
|
Song Y, Wang H, Yue F, Lv Q, Cai B, Dong N, Wang Z, Wang L. Silk-Based Biomaterials for Cardiac Tissue Engineering. Adv Healthc Mater 2020; 9:e2000735. [PMID: 32939999 DOI: 10.1002/adhm.202000735] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/29/2020] [Indexed: 12/18/2022]
Abstract
Cardiovascular diseases are one of the leading causes of death globally. Among various cardiovascular diseases, myocardial infarction is an important one. Compared with conventional treatments, cardiac tissue engineering provides an alternative to repair and regenerate the injured tissue. Among various types of materials used for tissue engineering applications, silk biomaterials have been increasingly utilized due to their biocompatibility, biological functions, and many favorable physical/chemical properties. Silk biomaterials are often used alone or in combination with other materials in the forms of patches or hydrogels, and serve as promising delivery systems for bioactive compounds in tissue engineering repair scenarios. This review focuses primarily on the promising characteristics of silk biomaterials and their recent advances in cardiac tissue engineering.
Collapse
Affiliation(s)
- Yu Song
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huifang Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feifei Yue
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiying Lv
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bo Cai
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zheng Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
17
|
Chen J, Ohta Y, Nakamura H, Masunaga H, Numata K. Aqueous spinning system with a citrate buffer for highly extensible silk fibers. Polym J 2020. [DOI: 10.1038/s41428-020-00419-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Zhang Y, Tu H, Wu R, Patil A, Hou C, Lin Z, Meng Z, Ma L, Yu R, Yu W, Liu XY. Programing Performance of Silk Fibroin Superstrong Scaffolds by Mesoscopic Regulation among Hierarchical Structures. Biomacromolecules 2020; 21:4169-4179. [PMID: 32909737 DOI: 10.1021/acs.biomac.0c00981] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To design higher-strength natural scaffold materials, wool keratin (WK) rich in α-helix structures is used as a well-defined foreign substrate, which induces the formation of β-crystallites in silk fibroin (SF). Consequently, the macroscopic properties of silk materials (such as the rheological properties of SF hydrogels and the mechanical properties of stents) can be manipulated by governing the change in the hierarchical mesoscopic structure of silk materials. In this work, by monitoring the structure and morphology in the SF gel process, the mechanism of the effect of keratin on SF network formation was speculated, which was further used to design ultra-high-strength protein scaffolds. It has been confirmed that WK accelerates the gelation of SF by reducing the multistep nucleation barrier and increasing the primary nucleation sites, and then establishing a high-density SF domain network. The modulus of the protein composite scaffold prepared by this facile strategy can reach 11.55 MPa, and the MC-3T3 cells can grow well on the scaffold surface. The results suggest that freeze-dried biocompatible SF-based scaffolds are potential candidates for bone tissue engineering.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore.,Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.,Research Institution for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Jiujiang Research Institute, Xiamen University, Xiamen 361005, China
| | - Huang Tu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.,Research Institution for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Jiujiang Research Institute, Xiamen University, Xiamen 361005, China
| | - Ronghui Wu
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore.,Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.,Research Institution for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Jiujiang Research Institute, Xiamen University, Xiamen 361005, China
| | - Aniruddha Patil
- Research Institution for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Jiujiang Research Institute, Xiamen University, Xiamen 361005, China
| | - Chen Hou
- Research Institution for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Jiujiang Research Institute, Xiamen University, Xiamen 361005, China
| | - Zaifu Lin
- Research Institution for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Jiujiang Research Institute, Xiamen University, Xiamen 361005, China
| | - Zhaohui Meng
- Research Institution for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Jiujiang Research Institute, Xiamen University, Xiamen 361005, China
| | - Liyun Ma
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.,Research Institution for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Jiujiang Research Institute, Xiamen University, Xiamen 361005, China
| | - Rui Yu
- Research Institution for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Jiujiang Research Institute, Xiamen University, Xiamen 361005, China
| | - Weidong Yu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xiang Yang Liu
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| |
Collapse
|
19
|
Li H, Zhang J, Liu S, Yan Y, Li X. Consecutive dephosphorylation by alkaline phosphatase-directed in situ formation of porous hydrogels of SF with nanocrystalline calcium phosphate ceramics for bone regeneration. J Mater Chem B 2020; 8:9043-9051. [PMID: 32955073 DOI: 10.1039/d0tb01777a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alkaline phosphatase, as an enzyme involved in the process of bone mineralization and regeneration, was incorporated into a solution of SF to induce its gelation and mineralization through consecutive dephosphorylation actions on different substrates. In these processes, alkaline phosphatase firstly worked on a small peptide of NapGFFYp by removing its hydrophilic phosphate group. The resulted NapGFFY performed supramolecular assembly in the solution of SF and synergistically induced the conformation transition of SF from random coil to β-sheet structures, leading to the formation of a stable SF hydrogel under physiological conditions. And then, the entrapped ALP within the SF-NY gel network retained its catalytic activity, released phosphate ions from glycerophosphate, and catalysed the formation of calcium phosphate minerals within the porous gel. Because of the mild conditions of these processes and good biocompatibility of the scaffold, the mineralized SF gel can work as a biomimetic scaffold to promote the osteogenic differentiation of rBMSCs and stimulate femoral defect regeneration in a rat model.
Collapse
Affiliation(s)
- Hang Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Jikun Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Shengnan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Yufei Yan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China. and Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Xinming Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
20
|
Mastalska-Popławska J, Stempkowska A, Habina-Skrzyniarz I, Krzyżak AT, Rutkowski P, Izak P, Rudny J, Gawenda T. Water Interactions in Hybrid Polyacrylate-Silicate Hydrogel Systems. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4092. [PMID: 32942635 PMCID: PMC7560421 DOI: 10.3390/ma13184092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022]
Abstract
Hybrid polyacrylate-silicate hydrogels were obtained in the presence of N,N'-methylenebisacrylamide (NNMBA) as the cross-linking monomer and sodium thiosulphate/potassium persulphate (NTS/KPS) as the redox initiators. The results of the tests allowed us to conclude that a hybrid structure with a polyacrylate scaffolding and a silicate matrix had been obtained. The results of the rheological analysis revealed that the hydrogel sample with a 1:7 mass ratio of sodium water glass to the sodium polyacrylate is characterized by the highest complex viscosity. Thermal analysis (Thermogravimetry/Differential Scanning Calorimetry (TG/DSC)) showed that water begins to evaporate at higher temperatures, from 120 °C to even 180 °C. These results were confirmed by mid-infrared spectroscopy (MIR) and nuclear magnetic resonance spectroscopy (NMR) analysis. Differences in the intensity of the peaks derived from water in the MIR spectra indicate that most of the water is bounded. In turn, NMR results showed that the mobility of water molecules decreases as the amount of sodium water glass in the mixture increases.
Collapse
Affiliation(s)
- Joanna Mastalska-Popławska
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Krakow, Poland; (P.R.); (P.I.); (J.R.)
| | - Agata Stempkowska
- Faculty of Mining and Geoengineering, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Krakow, Poland; (A.S.); (T.G.)
| | - Iwona Habina-Skrzyniarz
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Krakow, Poland; (I.H.-S.); (A.T.K.)
| | - Artur T. Krzyżak
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Krakow, Poland; (I.H.-S.); (A.T.K.)
| | - Paweł Rutkowski
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Krakow, Poland; (P.R.); (P.I.); (J.R.)
| | - Piotr Izak
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Krakow, Poland; (P.R.); (P.I.); (J.R.)
| | - Jakub Rudny
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Krakow, Poland; (P.R.); (P.I.); (J.R.)
| | - Tomasz Gawenda
- Faculty of Mining and Geoengineering, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Krakow, Poland; (A.S.); (T.G.)
| |
Collapse
|
21
|
Kambe Y, Mizoguchi Y, Kuwahara K, Nakaoki T, Hirano Y, Yamaoka T. Beta-sheet content significantly correlates with the biodegradation time of silk fibroin hydrogels showing a wide range of compressive modulus. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109240] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
|
23
|
Cui C, Fu Q, Meng L, Hao S, Dai R, Yang J. Recent Progress in Natural Biopolymers Conductive Hydrogels for Flexible Wearable Sensors and Energy Devices: Materials, Structures, and Performance. ACS APPLIED BIO MATERIALS 2020; 4:85-121. [DOI: 10.1021/acsabm.0c00807] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Chen Cui
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Qingjin Fu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Lei Meng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Sanwei Hao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Rengang Dai
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Jun Yang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
24
|
Asakura T, Matsuda H, Naito A. Acetylation of Bombyx mori silk fibroin and their characterization in the dry and hydrated states using 13C solid-state NMR. Int J Biol Macromol 2020; 155:1410-1419. [DOI: 10.1016/j.ijbiomac.2019.11.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/05/2019] [Accepted: 11/13/2019] [Indexed: 10/25/2022]
|
25
|
Abstract
AbstractStructural proteins, including silk fibroins, play an important role in shaping the skeletons and structures of cells, tissues, and organisms. The amino acid sequences of structural proteins often show characteristic features, such as a repeating tandem motif, that are notably different from those of functional proteins such as enzymes and antibodies. In recent years, materials composed of or containing structural proteins have been studied and developed as biomedical, apparel, and structural materials. This review outlines the definition of structural proteins, methods for characterizing structural proteins as polymeric materials, and potential applications.
Collapse
|
26
|
Sogawa H, Katashima T, Numata K. A covalently crosslinked silk fibroin hydrogel using enzymatic oxidation and chemoenzymatically synthesized copolypeptide crosslinkers consisting of a GPG tripeptide motif and tyrosine: control of gelation and resilience. Polym Chem 2020. [DOI: 10.1039/d0py00187b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A covalently crosslinked silk fibroin hydrogel was successfully formedviaan enzymatic crosslinking reaction using copolypeptides, which consist of a glycine–proline–glycine tripeptide motif and tyrosine, as linker molecules.
Collapse
Affiliation(s)
- Hiromitsu Sogawa
- Biomacromolecules Research Team
- RIKEN Center for Sustainable Resource Science
- Saitama
- Japan
| | - Takuya Katashima
- Biomacromolecules Research Team
- RIKEN Center for Sustainable Resource Science
- Saitama
- Japan
| | - Keiji Numata
- Biomacromolecules Research Team
- RIKEN Center for Sustainable Resource Science
- Saitama
- Japan
| |
Collapse
|
27
|
Zhao Y, Guan J, Wu SJ. Highly Stretchable and Tough Physical Silk Fibroin-Based Double Network Hydrogels. Macromol Rapid Commun 2019; 40:e1900389. [PMID: 31692142 DOI: 10.1002/marc.201900389] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/08/2019] [Indexed: 12/26/2022]
Abstract
Regenerated silk fibroin (RSF) is a promising biomedical material, but the poor mechanical properties of RSF hydrogels may hinder the use as structural components. Herein, an equilibrium RSF hydrogel is prepared and optimized based on the double network (DN) concept. After sufficient soaking in water and removal of small molecules, the equilibrium RSF DN hydrogels prove stable in water, strong, highly extensible, and tough with 0.26-0.44 MPa tensile strength, 500-900% elongation, and 2 MJ m-3 work of extension. The combination of high strength and extensibility is attributed to the homogeneous morphology and the hydrophobic interactions and hydrogen bonding between the two networks. The strategy in this work overcomes the previous issue of swelling and eventual fracture of as-prepared RSF/SDS DN hydrogels in water. In addition, such mechanically superior RSF DN hydrogels also display low cytotoxicity. It concludes that the elastic and tough RSF DN hydrogels could be engineered by introducing widely used polymer networks, and the hydrogels from inexpensive, environmentally friendly, and biocompatible silk fibroin may hold great potential in biomedical applications.
Collapse
Affiliation(s)
- Yu Zhao
- Intl. Research Center for Advanced Structural and Biomaterials, School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Juan Guan
- Intl. Research Center for Advanced Structural and Biomaterials, School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Su Jun Wu
- Intl. Research Center for Advanced Structural and Biomaterials, School of Materials Science and Engineering, Beihang University, Beijing, 100191, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beijing, 100083, China
| |
Collapse
|
28
|
|
29
|
Kuang D, Jiang F, Wu F, Kaur K, Ghosh S, Kundu SC, Lu S. Highly elastomeric photocurable silk hydrogels. Int J Biol Macromol 2019; 134:838-845. [PMID: 31103592 DOI: 10.1016/j.ijbiomac.2019.05.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 11/26/2022]
Abstract
A photocurable silk fibroin hydrogel is prepared, for the first time, using natural silk protein fibroin and biophotosensitizer riboflavin. Riboflavin is excited by ultraviolet light to generate a triplet state which is transferred to produce active oxygen radicals with singlet oxygen as the main component. Active oxygen radicals can induce chemical cross-linking of amino-, phenol- and other groups in the silk fibroin macromolecules to form a photocurable hydrogel. The different biophysical characterizations of the gelation of this modified fibroin protein solution were studied by using Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, microplate reader and texture analyzer. The aggregate structures, surface morphologies, mechanical properties, light transmission and degradation properties of the gel were studied. The investigations showed that the silk fibroin/riboflavin hydrogels predominantly have random coils or alpha helix structures. These gels show resilience up to 90% after 80% compression and a light transmission of up to 97%. The cell culture experiment exhibits that the hydrogel has a satisfactory cytocompatibility.
Collapse
Affiliation(s)
- Dajiang Kuang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Fujian Jiang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Feng Wu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Kulwinder Kaur
- Regenerative Engineering Laboratory, Department of Textile Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sourabh Ghosh
- Regenerative Engineering Laboratory, Department of Textile Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Subhas C Kundu
- 3Bs Research Group, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark - 4805-017 Barco, Guimaraes, Portugal
| | - Shenzhou Lu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China.
| |
Collapse
|
30
|
Xu H, Tan Y, Rao W, Wang D, Xu S, Liao W, Wang YZ. Ultra-strong mechanical property and force-driven malleability of water-poor hydrogels. J Colloid Interface Sci 2019; 542:281-288. [DOI: 10.1016/j.jcis.2019.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/02/2019] [Accepted: 02/05/2019] [Indexed: 11/26/2022]
|
31
|
Asakura T, Tanaka T, Tanaka R. Advanced Silk Fibroin Biomaterials and Application to Small-Diameter Silk Vascular Grafts. ACS Biomater Sci Eng 2019; 5:5561-5577. [PMID: 33405687 DOI: 10.1021/acsbiomaterials.8b01482] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As the incidences of cardiovascular diseases have been on the rise in recent years, the need for small-diameter artificial vascular grafts is increasing globally. Although synthetic polymers such as expanded polytetrafluoroethylene or poly(ethylene terephthalate) have been successfully used for artificial vascular grafts ≥6 mm in diameter, they fail at smaller diameters (<6 mm) due to thrombus formation and intimal hyperplasia. Thus, development of vascular grafts for small diameter vessel replacement that are <6 mm in diameter remains a major clinical challenge. Silk fibroin (SF) from Bombyx mori silkworm is well-known as an excellent textile and also has been used as suture material in surgery for more than 2000 years. Many attempts to develop small-diameter SF vascular grafts with <6 mm in diameter have been reported. Here, research and development in small-diameter vascular grafts with SF are reviewed as follows: (1) the heterogeneous structure of SF fiber (Silk II), including the packing arrangements and type II β-turn structure of SF (Silk I*) before spinning; (2) SF modified by transgenic silkworm, which is more suitable for vascular grafts; (3) preparation of small-diameter SF vascular grafts; (4) characterization of SF in the hydrated state, including dynamics of water molecules by nuclear magnetic resonance; and (5) evaluation of the SF grafts by in vivo implantation experiment. According to the findings, SF is a promising material for small-diameter vascular graft development.
Collapse
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Takashi Tanaka
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Ryo Tanaka
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
32
|
Liu X, Toprakcioglu Z, Dear AJ, Levin A, Ruggeri FS, Taylor CG, Hu M, Kumita JR, Andreasen M, Dobson CM, Shimanovich U, Knowles TPJ. Fabrication and Characterization of Reconstituted Silk Microgels for the Storage and Release of Small Molecules. Macromol Rapid Commun 2019; 40:e1800898. [DOI: 10.1002/marc.201800898] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/18/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Xizhou Liu
- X. Liu, Z. Toprakcioglu, A. J. Dear, Dr. A. Levin, Dr. F. S. Ruggeri, C. G. Taylor, M. Hu, Dr. J. R. Kumita, Dr. M. Andreasen, Prof. C. M. Dobson, Prof. T. P. J. KnowlesDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Zenon Toprakcioglu
- X. Liu, Z. Toprakcioglu, A. J. Dear, Dr. A. Levin, Dr. F. S. Ruggeri, C. G. Taylor, M. Hu, Dr. J. R. Kumita, Dr. M. Andreasen, Prof. C. M. Dobson, Prof. T. P. J. KnowlesDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Alexander J. Dear
- X. Liu, Z. Toprakcioglu, A. J. Dear, Dr. A. Levin, Dr. F. S. Ruggeri, C. G. Taylor, M. Hu, Dr. J. R. Kumita, Dr. M. Andreasen, Prof. C. M. Dobson, Prof. T. P. J. KnowlesDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Aviad Levin
- X. Liu, Z. Toprakcioglu, A. J. Dear, Dr. A. Levin, Dr. F. S. Ruggeri, C. G. Taylor, M. Hu, Dr. J. R. Kumita, Dr. M. Andreasen, Prof. C. M. Dobson, Prof. T. P. J. KnowlesDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Francesco Simone Ruggeri
- X. Liu, Z. Toprakcioglu, A. J. Dear, Dr. A. Levin, Dr. F. S. Ruggeri, C. G. Taylor, M. Hu, Dr. J. R. Kumita, Dr. M. Andreasen, Prof. C. M. Dobson, Prof. T. P. J. KnowlesDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Christopher G. Taylor
- X. Liu, Z. Toprakcioglu, A. J. Dear, Dr. A. Levin, Dr. F. S. Ruggeri, C. G. Taylor, M. Hu, Dr. J. R. Kumita, Dr. M. Andreasen, Prof. C. M. Dobson, Prof. T. P. J. KnowlesDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Mengsha Hu
- X. Liu, Z. Toprakcioglu, A. J. Dear, Dr. A. Levin, Dr. F. S. Ruggeri, C. G. Taylor, M. Hu, Dr. J. R. Kumita, Dr. M. Andreasen, Prof. C. M. Dobson, Prof. T. P. J. KnowlesDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Janet R. Kumita
- X. Liu, Z. Toprakcioglu, A. J. Dear, Dr. A. Levin, Dr. F. S. Ruggeri, C. G. Taylor, M. Hu, Dr. J. R. Kumita, Dr. M. Andreasen, Prof. C. M. Dobson, Prof. T. P. J. KnowlesDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Maria Andreasen
- X. Liu, Z. Toprakcioglu, A. J. Dear, Dr. A. Levin, Dr. F. S. Ruggeri, C. G. Taylor, M. Hu, Dr. J. R. Kumita, Dr. M. Andreasen, Prof. C. M. Dobson, Prof. T. P. J. KnowlesDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
- Dr. M. AndreasenAarhus University Wilhelm Meyer's Allé 3 8000 Aarhus Denmark
| | - Christopher M. Dobson
- X. Liu, Z. Toprakcioglu, A. J. Dear, Dr. A. Levin, Dr. F. S. Ruggeri, C. G. Taylor, M. Hu, Dr. J. R. Kumita, Dr. M. Andreasen, Prof. C. M. Dobson, Prof. T. P. J. KnowlesDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | | | - Tuomas P. J. Knowles
- X. Liu, Z. Toprakcioglu, A. J. Dear, Dr. A. Levin, Dr. F. S. Ruggeri, C. G. Taylor, M. Hu, Dr. J. R. Kumita, Dr. M. Andreasen, Prof. C. M. Dobson, Prof. T. P. J. KnowlesDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
- Prof. T. P. J. KnowlesDepartment of Physics J J Thomson Avenue Cambridge CB3 0HE UK
| |
Collapse
|
33
|
Development of regenerated silk films coated with fluorinated polypeptides to achieve high water repellency and biodegradability in seawater. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2018.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Kambe Y, Yamaoka T. Biodegradation of injectable silk fibroin hydrogel prevents negative left ventricular remodeling after myocardial infarction. Biomater Sci 2019; 7:4153-4165. [DOI: 10.1039/c9bm00556k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Random collagen fiber networks formed by a slowly degrading silk fibroin hydrogel injection prevented left ventricular enlargement after myocardial infarction.
Collapse
Affiliation(s)
- Yusuke Kambe
- Department of Biomedical Engineering
- National Cerebral and Cardiovascular Center (NCVC) Research Institute
- Suita
- Japan
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering
- National Cerebral and Cardiovascular Center (NCVC) Research Institute
- Suita
- Japan
| |
Collapse
|
35
|
Bhunia BK, Mandal BB. Exploring Gelation and Physicochemical Behavior of in Situ Bioresponsive Silk Hydrogels for Disc Degeneration Therapy. ACS Biomater Sci Eng 2018; 5:870-886. [DOI: 10.1021/acsbiomaterials.8b01099] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bibhas K. Bhunia
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India
| | - Biman B. Mandal
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India
| |
Collapse
|
36
|
Kumar M, Gupta P, Bhattacharjee S, Nandi SK, Mandal BB. Immunomodulatory injectable silk hydrogels maintaining functional islets and promoting anti-inflammatory M2 macrophage polarization. Biomaterials 2018; 187:1-17. [DOI: 10.1016/j.biomaterials.2018.09.037] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/28/2018] [Accepted: 09/23/2018] [Indexed: 02/08/2023]
|
37
|
Chouhan D, Lohe TU, Samudrala PK, Mandal BB. In Situ Forming Injectable Silk Fibroin Hydrogel Promotes Skin Regeneration in Full Thickness Burn Wounds. Adv Healthc Mater 2018; 7:e1801092. [PMID: 30379407 DOI: 10.1002/adhm.201801092] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Indexed: 01/10/2023]
Abstract
Full-thickness skin wounds, associated with deep burns or chronic wounds pose a major clinical problem. Herein, the development of in situ forming hydrogel using a natural silk fibroin (SF) biomaterial for treating burn wounds is reported. Blends of SF solutions isolated from Bombyx mori and Antheraea assama show inherent self-assembly between silk proteins and lead to irreversible gelation at body temperature. Investigation of the gelation mechanism reveals crosslinking due to formation of β-sheet structures as examined by X-ray diffraction and Fourier transform infrared spectroscopy. The SF hydrogel supports proliferation of primary human dermal fibroblasts and migration of keratinocytes comparable to collagen gel (Col) as examined under in vitro conditions. The SF hydrogel also provides an instructive and supportive matrix to the full-thickness third-degree burn wounds in vivo. A 3-week comparative study with Col indicates that SF hydrogel not only promotes wound healing but also shows transitions from inflammation to proliferation stage as observed through the expression of TNF-α and CD163 genes. Further, deposition and remodeling of collagen type I and III fibers suggests an enhanced overall tissue regeneration. Comparable results with Col demonstrate the SF hydrogel as an effective and inexpensive formulation toward a potential therapeutic approach for burn wound treatment.
Collapse
Affiliation(s)
- Dimple Chouhan
- Biomaterial and Tissue Engineering Laboratory; Department of Biosciences and Bioengineering; Indian Institute of Technology Guwahati; Guwahati 781039 Assam India
| | - Tshewuzo-u Lohe
- Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education and Research, Guwahati; Guwahati 781039 Assam India
| | - Pavan Kumar Samudrala
- Department of Pharmacology and Toxicology; National Institute of Pharmaceutical Education and Research, Guwahati; Guwahati 781039 Assam India
| | - Biman B. Mandal
- Biomaterial and Tissue Engineering Laboratory; Department of Biosciences and Bioengineering; Indian Institute of Technology Guwahati; Guwahati 781039 Assam India
| |
Collapse
|
38
|
Buchtová N, D’Orlando A, Judeinstein P, Chauvet O, Weiss P, Le Bideau J. Water dynamics in silanized hydroxypropyl methylcellulose based hydrogels designed for tissue engineering. Carbohydr Polym 2018; 202:404-408. [DOI: 10.1016/j.carbpol.2018.08.143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/31/2018] [Accepted: 08/31/2018] [Indexed: 01/18/2023]
|
39
|
Zhong S, Ji X, Song L, Zhang Y, Zhao R. Enabling Transient Electronics with Degradation on Demand via Light-Responsive Encapsulation of a Hydrogel-Oxide Bilayer. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36171-36176. [PMID: 30272434 DOI: 10.1021/acsami.8b14161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Physically transient electronics, which can disappear under certain conditions in aqueous solutions or biofluids, has attracted increasing attention because of its potential applications as "green" electronics and biomedical devices. Till now, the excitation of the transient process is achieved by passive dissolution of the encapsulation layer, which has a very limited control over the process. Here, we report a novel light-triggered encapsulation strategy via a bilayer of a light-responsive hydrogel and oxide to control the degradation on demand in aqueous environment. The hydrogel serving as a barrier between the environment and oxide limited the water's movement and penetration, leading to improved stable operation time. More importantly, the light-responsive hydrogel underwent a gel-to-solution transition upon applying ultraviolet (UV) light. The drastic change of the water movement enabled a transient process triggered on demand. Via this encapsulation scheme, we demonstrated fully soluble resistors and resistive random access memory devices with the UV light-triggered transient process. This work provides a new pathway to design transient devices with controllable degradation to meet various requirements of green electronics and biomedical devices.
Collapse
Affiliation(s)
- Shuai Zhong
- Singapore University of Technology and Design , 8 Somapah Road , 487372 , Singapore
| | - Xinglong Ji
- Singapore University of Technology and Design , 8 Somapah Road , 487372 , Singapore
| | - Li Song
- Singapore University of Technology and Design , 8 Somapah Road , 487372 , Singapore
| | - Yishu Zhang
- Singapore University of Technology and Design , 8 Somapah Road , 487372 , Singapore
| | - Rong Zhao
- Singapore University of Technology and Design , 8 Somapah Road , 487372 , Singapore
| |
Collapse
|
40
|
Maziz A, Leprette O, Boyer L, Blatché C, Bergaud C. Tuning the properties of silk fibroin biomaterial via chemical cross-linking. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aae3b2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Wu P, Liu Q, Wang Q, Qian H, Yu L, Liu B, Li R. Novel silk fibroin nanoparticles incorporated silk fibroin hydrogel for inhibition of cancer stem cells and tumor growth. Int J Nanomedicine 2018; 13:5405-5418. [PMID: 30271137 PMCID: PMC6149978 DOI: 10.2147/ijn.s166104] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background A multi-drug delivery platform is needed as the intra-tumoral heterogeneity of cancer leads to different drug susceptibility. Cancer stem cells (CSCs), a small population of tumor cells responsible for tumor seeding and recurrence, are considered chemotherapy-resistant and have been reported to be sensitive to salinomycin (Sal) instead of paclitaxel (Ptx). Here we report a novel silk fibroin (SF) hydrogel-loading Sal and Ptx by incorporating drug-loaded silk fibroin nanoparticles (SF-NPs) to simultaneously kill CSCs and non-CSCs. Methods Using the method we have previously reported to prepare Ptx-loaded SF-NPs (Ptx-SF-NPs), Sal-loaded SF-NPs (Sal-SF-NPs) were fabricated under mild and non-toxic conditions. The drug-loaded SF-NPs were dispersed in the ultrasound processed SF solution prior to gelation. Results The resulting SF hydrogel (Sal-Ptx-NP-Gel) retained its injectable properties, exhibited bio-degradability and demonstrated homogeneous drug distribution compared to the non-NP incorporated hydrogel. Sal-Ptx-NP-Gel showed superior inhibition of tumor growth compared to single drug-loaded hydrogel and systemic dual drug administration in the murine hepatic carcinoma H22 subcutaneous tumor model. Sal-Ptx-NP-Gel also significantly reduced CD44+CD133+ tumor cells and demonstrated the least tumor formation in the in vivo tumor seeding experiment, indicating superior inhibition of cancer stem cells. Conclusion These results suggest that SF-NPs incorporated SF hydrogel is a promising drug delivery platform, and Sal-Ptx-NP-Gel could be a novel and powerful locoregional tumor treatment regimen in the future.
Collapse
Affiliation(s)
- Puyuan Wu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China, ;
| | - Qin Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China, ;
| | - Qin Wang
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China, ;
| | - Hanqing Qian
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China, ;
| | - Lixia Yu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China, ;
| | - Baorui Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China, ;
| | - Rutian Li
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China, ;
| |
Collapse
|
42
|
Thai silk fibroin gelation process enhancing by monohydric and polyhydric alcohols. Int J Biol Macromol 2018; 118:1726-1735. [PMID: 30017976 DOI: 10.1016/j.ijbiomac.2018.07.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 02/06/2023]
Abstract
Silk fibroin hydrogel is an interesting natural material in various biomedical applications. However, the self-assembled gelation takes a long time. In this work, different alcohol types are used as gelation enhancers for aqueous silk fibroin solution. Monohydric alcohols having carbon chain length from C1 to C4 and polyhydric alcohols with the number of mono- to tri- hydroxyl groups were used as the enhancers which are effective for rapid gelation. The addition of monohydric alcohol distinctively reduced the gelation time, comparing to the polyhydric alcohol. The gelation process is directly dependent on the polarity of alcohol and hydrophobicity. The alcohol mediated gelation imparts strong viscoelastic property and enhanced compressive modulus of resulting hydrogels. This is due to the effective formation of self-assembled beta sheet network of the silk fibroin chains facilitates the gelation process.
Collapse
|
43
|
Kerch G. Distribution of tightly and loosely bound water in biological macromolecules and age-related diseases. Int J Biol Macromol 2018; 118:1310-1318. [PMID: 29981332 DOI: 10.1016/j.ijbiomac.2018.06.187] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/21/2018] [Accepted: 06/29/2018] [Indexed: 02/06/2023]
Abstract
This mini-review article is focused on publications devoted to the changes in water binding energy and content of bound water in biological tissues during aging processes, when bound water lost from the hydration layer becomes free water. Bound water is released during cataractogenesis. In skin, water bound to proteins and other biomacromolecules becomes more mobile with increasing skin age. Extracellular to intracellular water ratio increases with age and was associated with muscle cell atrophy. Bound water concentration decreases with age in hydrated human bone and can be correlated with the strength and toughness of the bone. Higher fraction of free water in malignant tissues compared to normal tissues was observed. Hydration water mobility is enhanced around tau amyloid fibers. Water plays a decisive role in amyloid formation as entropic driving force. In the natural aging processes dehydration and glycation may be considered as subsequent steps.
Collapse
Affiliation(s)
- G Kerch
- Institute of Polymer Materials, Department of Materials Science and Applied Chemistry, Riga Technical University, Azenes 14/24, Riga, Latvia.
| |
Collapse
|
44
|
Ribeiro VP, da Silva Morais A, Maia FR, Canadas RF, Costa JB, Oliveira AL, Oliveira JM, Reis RL. Combinatory approach for developing silk fibroin scaffolds for cartilage regeneration. Acta Biomater 2018; 72:167-181. [PMID: 29626700 DOI: 10.1016/j.actbio.2018.03.047] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/13/2018] [Accepted: 03/28/2018] [Indexed: 01/26/2023]
Abstract
Several processing technologies and engineering strategies have been combined to create scaffolds with superior performance for efficient tissue regeneration. Cartilage tissue is a good example of that, presenting limited self-healing capacity together with a high elasticity and load-bearing properties. In this work, novel porous silk fibroin (SF) scaffolds derived from horseradish peroxidase (HRP)-mediated crosslinking of highly concentrated aqueous SF solution (16 wt%) in combination with salt-leaching and freeze-drying methodologies were developed for articular cartilage tissue engineering (TE) applications. The HRP-crosslinked SF scaffolds presented high porosity (89.3 ± 0.6%), wide pore distribution and high interconnectivity (95.9 ± 0.8%). Moreover, a large swelling capacity and favorable degradation rate were observed up to 30 days, maintaining the porous-like structure and β-sheet conformational integrity obtained with salt-leaching and freeze-drying processing. The in vitro studies supported human adipose-derived stem cells (hASCs) adhesion, proliferation, and high glycosaminoglycans (GAGs) synthesis under chondrogenic culture conditions. Furthermore, the chondrogenic differentiation of hASCs was assessed by the expression of chondrogenic-related markers (collagen type II, Sox-9 and Aggrecan) and deposition of cartilage-specific extracellular matrix for up to 28 days. The cartilage engineered constructs also presented structural integrity as their mechanical properties were improved after chondrogenic culturing. Subcutaneous implantation of the scaffolds in CD-1 mice demonstrated no necrosis or calcification, and deeply tissue ingrowth. Collectively, the structural properties and biological performance of these porous HRP-crosslinked SF scaffolds make them promising candidates for cartilage regeneration. STATEMENT OF SIGNIFICANCE In cartilage tissue engineering (TE), several processing technologies have been combined to create scaffolds for efficient tissue repair. In our study, we propose novel silk fibroin (SF) scaffolds derived from enzymatically crosslinked SF hydrogels processed by salt-leaching and freeze-drying technologies, for articular cartilage applications. Though these scaffolds, we were able to combine the elastic properties of hydrogel-based systems, with the stability, resilience and controlled porosity of scaffolds processed via salt-leaching and freeze-drying technologies. SF protein has been extensively explored for TE applications, as a result of its mechanical strength, elasticity, biocompatibility, and biodegradability. Thus, the structural, mechanical and biological performance of the proposed scaffolds potentiates their use as three-dimensional matrices for cartilage regeneration.
Collapse
|
45
|
Yazawa K, Malay AD, Ifuku N, Ishii T, Masunaga H, Hikima T, Numata K. Combination of Amorphous Silk Fiber Spinning and Postspinning Crystallization for Tough Regenerated Silk Fibers. Biomacromolecules 2018; 19:2227-2237. [DOI: 10.1021/acs.biomac.8b00232] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kenjiro Yazawa
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Ali D. Malay
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Nao Ifuku
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Takaoki Ishii
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Hiroyasu Masunaga
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- Harima Institute SPring-8 Center, Research Infrastructure Group, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Takaaki Hikima
- Harima Institute SPring-8 Center, Research Infrastructure Group, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
46
|
Numata K, Ifuku N, Isogai A. Silk Composite with a Fluoropolymer as a Water-Resistant Protein-Based Material. Polymers (Basel) 2018; 10:E459. [PMID: 30966494 PMCID: PMC6415215 DOI: 10.3390/polym10040459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 01/22/2023] Open
Abstract
Silk-based materials are water-sensitive and show different physical properties at different humidities and under wet/dry conditions. To overcome the water sensitivity of silk-based materials, we developed a silk composite material with a fluoropolymer. Blending and coating the silk protein-based materials, such as films and textiles, with the fluoropolymer enhanced the surface hydrophobicity, water vapor barrier properties, and size stability during shrinkage tests. This material design with a protein biopolymer and a fluoropolymer is expected to broaden the applicability of protein-based materials.
Collapse
Affiliation(s)
- Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wakoshi, Saitama 351-0198, Japan.
| | - Nao Ifuku
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wakoshi, Saitama 351-0198, Japan.
| | - Akira Isogai
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
47
|
Cheng B, Yan Y, Qi J, Deng L, Shao ZW, Zhang KQ, Li B, Sun Z, Li X. Cooperative Assembly of a Peptide Gelator and Silk Fibroin Afford an Injectable Hydrogel for Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2018; 10:12474-12484. [PMID: 29584396 DOI: 10.1021/acsami.8b01725] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Silk fibroin (SF) from Bombyx mori has received increasing interest in biomedical fields, because of its slow biodegradability, good biocompatibility, and low immunogenicity. Although SF-based hydrogels have been studied intensively as a potential matrix for tissue engineering, weak gelation performance and low mechanical strength are major limitations that hamper their widespread applicability. Therefore, searching for new strategies to improve the SF gelation property is highly desirable in tissue engineering research. Herein, we report a facile approach to induce rapid gelation of SF by a small peptide gelator (e.g., NapFF). Following the simple mixing of SF and NapFF in water, a stable hydrogel of SF was obtained in a short time period at physiological pH, and the minimum gelation concentration of SF can reach as low as 0.1%. In this process of gelation, NapFF not only can behave itself as a gelator for supramolecular self-assembly, but also can trigger the conformational transition of the SF molecule from random coil to β-sheet structure via hydrophobic and hydrogen-bonding interactions. More importantly, for the generation of a scaffold with favorable cell-surface interactions, a new peptide gelator (NapFFRGD) with Arg-Gly-Asp (RGD) domain was applied to functionalize SF hydrogel with improved bioactivity for cell adhesion and growth. Following encapsulating the vascular endothelial growth factor (VEGF), the SF gel was subcutaneously injected in mice, and served as an effective matrix to trigger the generation of new blood capillaries in vivo.
Collapse
Affiliation(s)
- Baochang Cheng
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Yufei Yan
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital , Shanghai Jiaotong University, School of Medicine , Shanghai 200025 , China
| | - Jingjing Qi
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Lianfu Deng
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital , Shanghai Jiaotong University, School of Medicine , Shanghai 200025 , China
| | - Zeng-Wu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical School , Huazhong University of Science and Technology , Wuhan 430022 , China
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering , Soochow University , Suzhou 215123 , China
| | - Bin Li
- Department of Orthopaedics, The First Affiliated Hospital, Orthopaedic Institute , Soochow University , Suzhou 215006 , China
| | - Ziling Sun
- School of Biology and Basic Medical Science , Soochow University , Suzhou 215123 , China
| | - Xinming Li
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| |
Collapse
|
48
|
Kuang D, Wu F, Yin Z, Zhu T, Xing T, Kundu SC, Lu S. Silk Fibroin/Polyvinyl Pyrrolidone Interpenetrating Polymer Network Hydrogels. Polymers (Basel) 2018; 10:E153. [PMID: 30966189 PMCID: PMC6414898 DOI: 10.3390/polym10020153] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 02/02/2018] [Accepted: 02/04/2018] [Indexed: 01/02/2023] Open
Abstract
Silk fibroin hydrogel is an ideal model as biomaterial matrix due to its excellent biocompatibility and used in the field of medical polymer materials. Nevertheless, native fibroin hydrogels show poor transparency and resilience. To settle these drawbacks, an interpenetrating network (IPN) of hydrogels are synthesized with changing ratios of silk fibroin/N-Vinyl-2-pyrrolidonemixtures that crosslink by H₂O₂ and horseradish peroxidase. Interpenetrating polymer network structure can shorten the gel time and the pure fibroin solution gel time for more than a week. This is mainly due to conformation from the random coil to the β-sheet structure changes of fibroin. Moreover, the light transmittance of IPN hydrogel can be as high as more than 97% and maintain a level of 90% within a week. The hydrogel, which mainly consists of random coil, the apertures inside can be up to 200 μm. Elastic modulus increases during the process of gelation. The gel has nearly 95% resilience under the compression of 70% eventually, which is much higher than native fibroin gel. The results suggest that the present IPN hydrogels have excellent mechanical properties and excellent transparency.
Collapse
Affiliation(s)
- Dajiang Kuang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Feng Wu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Zhuping Yin
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Tian Zhu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Tieling Xing
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Subhas C Kundu
- 3Bs Research Group, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Barco, 4805-017 Guimaraes, Portugal.
| | - Shenzhou Lu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| |
Collapse
|
49
|
Nishimura A, Matsuda H, Tasei Y, Asakura T. Effect of Water on the Structure and Dynamics of Regenerated [3- 13C] Ser, [3- 13C] , and [3- 13C] Ala-Bombyx mori Silk Fibroin Studied with 13C Solid-State Nuclear Magnetic Resonance. Biomacromolecules 2018; 19:563-575. [PMID: 29309731 DOI: 10.1021/acs.biomac.7b01665] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The effects of water on the structure and dynamics of natural and regenerated silk fibroin (SF) samples were studied using 13C solid-state nuclear magnetic resonance (NMR) spectroscopy. We prepared different types of SF materials, sponges, and fibers with different preparation methods and compared their NMR spectra in the dry and hydrated states. Three kinds of 13C NMR techniques, r-INEPT, CP/MAS, and DD/MAS, coupled with 13C isotope labeling of Ser, Tyr, and Ala residues were used. In the hydrated sponges, several conformations, that is, Silk I* and two kinds of β-sheets, A and B, random coil, and highly mobile hydrated random coil were observed, and the fractions were determined. The fractions were remarkably different among the three sponges but with only small differences among the regenerated and native fibers. The increase in the fraction of β-sheet B might be one of the structural factors for preparing stronger regenerated SF fiber.
Collapse
Affiliation(s)
- Akio Nishimura
- Department of Biotechnology, Tokyo University of Agriculture and Technology , Koganei, Tokyo 184-8588, Japan
| | - Hironori Matsuda
- Department of Biotechnology, Tokyo University of Agriculture and Technology , Koganei, Tokyo 184-8588, Japan
| | - Yugo Tasei
- Department of Biotechnology, Tokyo University of Agriculture and Technology , Koganei, Tokyo 184-8588, Japan
| | - Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology , Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
50
|
Ebrahimi A, Sadrjavadi K, Hajialyani M, Shokoohinia Y, Fattahi A. Preparation and characterization of silk fibroin hydrogel as injectable implants for sustained release of Risperidone. Drug Dev Ind Pharm 2017; 44:199-205. [PMID: 28956466 DOI: 10.1080/03639045.2017.1386195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The principal objective of the present study is to achieve a depot formulation of Risperidone by gelation of silk fibroin (SF). For this purpose, hydrochloric acid (HCl)/acetone-based and methanol-based hydrogels were prepared with different drug/polymer ratios (1:3, 1:6, and 1:15). For all the drug-loaded methanol-based hydrogels, gel transition of SF solutions occurred immediately and the gelation time was 1 min, while the gelation time of HCL/acetone-based hydrogels was around 360 min. According to the results obtined from Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) spectra, solvent systems and Risperidone could induce β-sheet structure, but HCL/acetone system had the lowest effect on induction of β-sheets. The crystallinity was increased by increasing the amount of Risperidone, and drug to polymer ratio of 1:3 possessed the highest crystallinity. Thermogravimetric analysis (TGA) indicated that increasing the amount of drug in formulation increased the stability of hydrogels, and methanol-based hydrogel with a ratio of 1:3 had the most stable structure. The release rate of Risperidone from methanol-based hydrogel at ratio of 1:3 was lower than that for HCl/acetone-based one, and it decreased by increasing the amount of Risperidone. The release of Risperidone from methanol hydrogel at ratios 1:3 and 1:6 continued up to 25 d which is acceptable for depot form of Risperidone and shows that the extended release of Risperidone was achieved successfully. In conclusion, SF hydrogel with the ability to respond to the environmental stimuli is an excellent candidate for injectable implants for extended release of Risperidone.
Collapse
Affiliation(s)
- Atefeh Ebrahimi
- a Student Research Committee , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Komail Sadrjavadi
- b Pharmaceutical Sciences Research Center , School of Pharmacy, Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Marziyeh Hajialyani
- b Pharmaceutical Sciences Research Center , School of Pharmacy, Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Yalda Shokoohinia
- b Pharmaceutical Sciences Research Center , School of Pharmacy, Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Ali Fattahi
- a Student Research Committee , Kermanshah University of Medical Sciences , Kermanshah , Iran.,b Pharmaceutical Sciences Research Center , School of Pharmacy, Kermanshah University of Medical Sciences , Kermanshah , Iran.,c Medical Biology Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran.,d Regenerative Medicine Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran.,e Nano Drug Delivery Research Center, Faculty of Pharmacy , Kermanshah University of Medical Sciences , Kermanshah , Iran
| |
Collapse
|