1
|
Patra S, Pareek D, Gupta PS, Wasnik K, Singh G, Yadav DD, Mastai Y, Paik P. Progress in Treatment and Diagnostics of Infectious Disease with Polymers. ACS Infect Dis 2024; 10:287-316. [PMID: 38237146 DOI: 10.1021/acsinfecdis.3c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
In this era of advanced technology and innovation, infectious diseases still cause significant morbidity and mortality, which need to be addressed. Despite overwhelming success in the development of vaccines, transmittable diseases such as tuberculosis and AIDS remain unprotected, and the treatment is challenging due to frequent mutations of the pathogens. Formulations of new or existing drugs with polymeric materials have been explored as a promising new approach. Variations in shape, size, surface charge, internal morphology, and functionalization position polymer particles as a revolutionary material in healthcare. Here, an overview is provided of major diseases along with statistics on infection and death rates, focusing on polymer-based treatments and modes of action. Key issues are discussed in this review pertaining to current challenges and future perspectives.
Collapse
Affiliation(s)
- Sukanya Patra
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| | - Divya Pareek
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| | - Prem Shankar Gupta
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| | - Kirti Wasnik
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| | - Gurmeet Singh
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| | - Desh Deepak Yadav
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| | - Yitzhak Mastai
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Pradip Paik
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| |
Collapse
|
2
|
Hu Q, Zhang Y, Mukerabigwi JF, Wang H, Cao Y. Polymer Conjugate as the New Promising Drug Delivery System for Combination Therapy against Cancer. Curr Top Med Chem 2024; 24:1101-1119. [PMID: 39005059 DOI: 10.2174/0115680266280603240321064308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 07/16/2024]
Abstract
This review highlights the advantages of combination therapy using polymer conjugates as drug delivery systems for cancer treatment. In this review, the specific structures and materials of polymer conjugates, as well as the different types of combination chemotherapy strategies, are discussed. Specific targeting strategies, such as monoclonal antibody therapy and small molecule ligands, are also explored. Additionally, self-assembled polymer micelles and overcoming multidrug resistance are described as potential strategies for combination therapy. The assessment of combinational therapeutic efficacy and the challenges associated with polymer conjugates are also addressed. The future outlook aims to overcome these challenges and improve the effectiveness of drug delivery systems for combination therapy. The conclusion emphasizes the potential of polymer conjugates in combination therapy while acknowledging the need for further research and development in this field.
Collapse
Affiliation(s)
- Qiang Hu
- Key Laboratory of Pesticide & Chemical Biology (Ministry of Education), National Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction (Ministry of Education), College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Yuannian Zhang
- Key Laboratory of Pesticide & Chemical Biology (Ministry of Education), National Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction (Ministry of Education), College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Jean Felix Mukerabigwi
- Department of Chemistry, University of Rwanda, College of Science and Technology, Po. Box: 3900, Kigali, Rwanda
| | - Haili Wang
- Key Laboratory of Pesticide & Chemical Biology (Ministry of Education), National Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction (Ministry of Education), College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Yu Cao
- Key Laboratory of Pesticide & Chemical Biology (Ministry of Education), National Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction (Ministry of Education), College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
3
|
Polymer-colloidal systems as MRI-detectable nanocarriers for peptide vaccine delivery. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
4
|
Choi W, Sun H, Battistella C, Berger O, Vratsanos MA, Wang MM, Gianneschi NC. Biomolecular Densely Grafted Brush Polymers: Oligonucleotides, Oligosaccharides and Oligopeptides. Angew Chem Int Ed Engl 2020; 59:19762-19772. [PMID: 32436259 PMCID: PMC11042487 DOI: 10.1002/anie.202005379] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Indexed: 01/19/2023]
Abstract
In this Minireview, we describe synthetic polymers densely functionalized with sequence-defined biomolecular sidechains. We focus on synthetic brush polymers of oligonucleotides, oligosaccharides, and oligopeptides, prepared via graft-through polymerization from biomolecule functionalized monomers. The resulting structures are brush polymers wherein a biomolecular graft is positioned at each monomer backbone unit. We describe key synthetic milestones, identify synthetic opportunities, and highlight recent advances in the field, including biological applications.
Collapse
Affiliation(s)
- Wonmin Choi
- Department Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (USA)
| | - Hao Sun
- Department Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (USA)
| | - Claudia Battistella
- Department Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (USA)
| | - Or Berger
- Department Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (USA)
| | - Maria A. Vratsanos
- Department Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (USA)
| | - Max M. Wang
- Department Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (USA)
| | - Nathan C. Gianneschi
- Department Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (USA)
| |
Collapse
|
5
|
Choi W, Sun H, Battistella C, Berger O, Vratsanos MA, Wang MM, Gianneschi NC. Biomolecular Densely Grafted Brush Polymers: Oligonucleotides, Oligosaccharides and Oligopeptides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Wonmin Choi
- Department Department of Chemistry Materials Science & Engineering Biomedical Engineering, Pharmacology International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| | - Hao Sun
- Department Department of Chemistry Materials Science & Engineering Biomedical Engineering, Pharmacology International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| | - Claudia Battistella
- Department Department of Chemistry Materials Science & Engineering Biomedical Engineering, Pharmacology International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| | - Or Berger
- Department Department of Chemistry Materials Science & Engineering Biomedical Engineering, Pharmacology International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| | - Maria A. Vratsanos
- Department Department of Chemistry Materials Science & Engineering Biomedical Engineering, Pharmacology International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| | - Max M. Wang
- Department Department of Chemistry Materials Science & Engineering Biomedical Engineering, Pharmacology International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| | - Nathan C. Gianneschi
- Department Department of Chemistry Materials Science & Engineering Biomedical Engineering, Pharmacology International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| |
Collapse
|
6
|
Bianculli RH, Mase JD, Schulz MD. Antiviral Polymers: Past Approaches and Future Possibilities. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01273] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Rachel H. Bianculli
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Jonathan D. Mase
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Michael D. Schulz
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
7
|
|
8
|
Li Z, Kosuri S, Foster H, Cohen J, Jumeaux C, Stevens MM, Chapman R, Gormley AJ. A Dual Wavelength Polymerization and Bioconjugation Strategy for High Throughput Synthesis of Multivalent Ligands. J Am Chem Soc 2019; 141:19823-19830. [PMID: 31743014 DOI: 10.1021/jacs.9b09899] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Structure-function relationships for multivalent polymer scaffolds are highly complex due to the wide diversity of architectures offered by such macromolecules. Evaluation of this landscape has traditionally been accomplished case-by-case due to the experimental difficulty associated with making these complex conjugates. Here, we introduce a simple dual-wavelength, two-step polymerize and click approach for making combinatorial conjugate libraries. It proceeds by incorporation of a polymerization friendly cyclopropenone-masked dibenzocyclooctyne into the side chain of linear polymers or the α-chain end of star polymers. Polymerizations are performed under visible light using an oxygen tolerant porphyrin-catalyzed photoinduced electron/energy transfer-reversible addition-fragmentation chain-transfer (PET-RAFT) process, after which the deprotection and click reaction is triggered by UV light. Using this approach, we are able to precisely control the valency and position of ligands on a polymer scaffold in a manner conducive to high throughput synthesis.
Collapse
Affiliation(s)
- Zihao Li
- Centre for Advanced Macromolecular Design (CAMD) and the Australian Centre for Nanotechnology (ACN), School of Chemistry , University of New South Wales , Sydney 2052 , Australia
| | - Shashank Kosuri
- Department of Biomedical Engineering , Rutgers, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - Henry Foster
- Centre for Advanced Macromolecular Design (CAMD) and the Australian Centre for Nanotechnology (ACN), School of Chemistry , University of New South Wales , Sydney 2052 , Australia
| | - Jarrod Cohen
- New Jersey Center for Biomaterials , Rutgers, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - Coline Jumeaux
- Department of Materials, Department of Bioengineering, and the Institute for Biomedical Engineering , Imperial College London , London SW7 2AZ , United Kingdom.,Department of Medical Biochemistry and Biophysics , Karolinska Institutet , SE-17177 , Stockholm , Sweden
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and the Institute for Biomedical Engineering , Imperial College London , London SW7 2AZ , United Kingdom.,Department of Medical Biochemistry and Biophysics , Karolinska Institutet , SE-17177 , Stockholm , Sweden
| | - Robert Chapman
- Centre for Advanced Macromolecular Design (CAMD) and the Australian Centre for Nanotechnology (ACN), School of Chemistry , University of New South Wales , Sydney 2052 , Australia
| | - Adam J Gormley
- Department of Biomedical Engineering , Rutgers, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| |
Collapse
|
9
|
Abstract
Infectious diseases caused by germs, parasites, fungi, virus and bacteria are one of the leading causes of death worldwide. Polymeric therapeutics are nanomedicines that offer several advantages making them useful for the treatment of infectious diseases such as targeted drug release mechanism, ability to maintain the drug concentration within a therapeutic window for a desired duration, biocompatibility with low immunogenicity and reduced drug toxicity resulting in enhanced therapeutic efficacy of the incorporated drug. Although polymeric therapeutics have been evaluated for the treatment of infectious diseases in vitro and in vivo with improved therapeutic efficacy, most treatments for infectious disease have not been evaluated using polymeric therapeutics. This review will focus on the applications of polymeric therapeutics for the treatment of infectious diseases (preclinical studies and clinical trials), with particular focus on parasitic and viral infections.
Collapse
|
10
|
ten Brummelhuis N, Wilke P, Börner HG. Identification of Functional Peptide Sequences to Lead the Design of Precision Polymers. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700632] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 09/26/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Niels ten Brummelhuis
- Laboratory for Organic Synthesis of Functional Systems; Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 D-12489 Berlin Germany
| | - Patrick Wilke
- Laboratory for Organic Synthesis of Functional Systems; Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 D-12489 Berlin Germany
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional Systems; Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 D-12489 Berlin Germany
| |
Collapse
|
11
|
Paik BA, Mane SR, Jia X, Kiick KL. Responsive Hybrid (Poly)peptide-Polymer Conjugates. J Mater Chem B 2017; 5:8274-8288. [PMID: 29430300 PMCID: PMC5802422 DOI: 10.1039/c7tb02199b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
(Poly)peptide-polymer conjugates continue to garner significant interest in the production of functional materials given their composition of natural and synthetic building blocks that confer select and synergistic properties. Owing to opportunities to design predefined architectures and structures with different morphologies, these hybrid conjugates enable new approaches for producing micro- or nanomaterials. Their modular design enables the incorporation of multiple responsive properties into a single conjugate. This review presents recent advances in (poly)peptide-polymer conjugates for drug-delivery applications, with a specific focus on the utility of the (poly)peptide component in the assembly of particles and nanogels, as well as the role of the peptide in triggered drug release.
Collapse
Affiliation(s)
- Bradford A Paik
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716-3106
| | - Shivshankar R Mane
- The Institude For Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstr. 18, 76128 Karlsruhe, Germany
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716-3106
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE 19716-3106
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716-3106
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE 19716-3106
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711
| |
Collapse
|
12
|
Bitran A, Chiang WY, Levine E, Prentiss M. Mechanisms of fast and stringent search in homologous pairing of double-stranded DNA. PLoS Comput Biol 2017; 13:e1005421. [PMID: 28257444 PMCID: PMC5360337 DOI: 10.1371/journal.pcbi.1005421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/21/2017] [Accepted: 02/21/2017] [Indexed: 12/03/2022] Open
Abstract
Self-organization in the cell relies on the rapid and specific binding of molecules to their cognate targets. Correct bindings must be stable enough to promote the desired function even in the crowded and fluctuating cellular environment. In systems with many nearly matched targets, rapid and stringent formation of stable products is challenging. Mechanisms that overcome this challenge have been previously proposed, including separating the process into multiple stages; however, how particular in vivo systems overcome the challenge remains unclear. Here we consider a kinetic system, inspired by homology dependent pairing between double stranded DNA in bacteria. By considering a simplified tractable model, we identify different homology testing stages that naturally occur in the system. In particular, we first model dsDNA molecules as short rigid rods containing periodically spaced binding sites. The interaction begins when the centers of two rods collide at a random angle. For most collision angles, the interaction energy is weak because only a few binding sites near the collision point contribute significantly to the binding energy. We show that most incorrect pairings are rapidly rejected at this stage. In rare cases, the two rods enter a second stage by rotating into parallel alignment. While rotation increases the stability of matched and nearly matched pairings, subsequent rotational fluctuations reduce kinetic trapping. Finally, in vivo chromosome are much longer than the persistence length of dsDNA, so we extended the model to include multiple parallel collisions between long dsDNA molecules, and find that those additional interactions can greatly accelerate the searching. Protein folding and the binding of sequence dependent proteins to DNA are examples of self-assembling systems in which the binding energy varies continuously throughout the interaction. Previous theoretical work has highlighted the importance of dividing the interaction into separate stages characterized by interaction times and binding energies that vary by orders of magnitude. Insight into how such a division might naturally arise and promote accurate and efficient self-assembly is provided by our study of a simple tractable model inspired by the homology dependent pairing of double stranded DNA molecules in vivo. In the model, the binding energy is controlled by one single continuously tunable variable whose natural evolution creates stages that efficiently and accurately form stable products.
Collapse
Affiliation(s)
- Amir Bitran
- Department of Physics, Harvard University, Cambridge, Massachusetts, United States of America
| | - Wei-Yin Chiang
- Department of Physics, Harvard University, Cambridge, Massachusetts, United States of America
- FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Erel Levine
- Department of Physics, Harvard University, Cambridge, Massachusetts, United States of America
- FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| | - Mara Prentiss
- Department of Physics, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
13
|
Danial M, Stauffer AN, Wurm FR, Root MJ, Klok HA. Site-Specific Polymer Attachment to HR2 Peptide Fusion Inhibitors against HIV-1 Decreases Binding Association Rates and Dissociation Rates Rather Than Binding Affinity. Bioconjug Chem 2016; 28:701-712. [PMID: 27737540 DOI: 10.1021/acs.bioconjchem.6b00540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A popular strategy for overcoming the limited plasma half-life of peptide heptad repeat 2 (HR2) fusion inhibitors against HIV-1 is conjugation with biocompatible polymers such as poly(ethylene glycol) (PEG). However, despite improved resistance to proteolysis and reduced renal elimination, covalent attachment of polymers often causes a loss in therapeutic potency. In this study, we investigated the molecular origins of the loss in potency upon conjugation of linear, midfunctional, and hyperbranched PEG-like polymers to peptides that inhibit HIV-1-host cell membrane fusion. Fluorescence binding assays revealed that polymer conjugation imparted mass transport limitations that manifested as coexistent slower association and dissociation rates from the gp41 target on HIV-1. Furthermore, reduced association kinetics rather than affinity disruption was responsible for the loss in antiviral potency. Finally, the binding assays indicated that the unmodified HR2-derived peptide demonstrated diffusion-limited binding. The observed high potency of the unmodified peptide in HIV-1 inhibition assays was therefore attributed to rapid peptide conformational changes upon binding to the gp41 prehairpin structure. This study emphasizes that the view in which polymer ligation to therapeutic peptides inadvertently leads to loss in potency due to a loss in binding affinity requires scientific verification on a case-by-case basis and that high peptide potency may be due to rapid target-binding events.
Collapse
Affiliation(s)
- Maarten Danial
- Institut des Matériaux and Institut des Sciences et Ingéniere Chimiques, École Polytechnique Fédérale de Lausanne, Laboratoire des Polymères , Bâtiment MXD, Station 12, 1015 Lausanne, Switzerland
| | - Angela N Stauffer
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University , 233 South 10th Street, Philadelphia, Pennsylvania 19107, U.S.A
| | - Frederik R Wurm
- Institut des Matériaux and Institut des Sciences et Ingéniere Chimiques, École Polytechnique Fédérale de Lausanne, Laboratoire des Polymères , Bâtiment MXD, Station 12, 1015 Lausanne, Switzerland
| | - Michael J Root
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University , 233 South 10th Street, Philadelphia, Pennsylvania 19107, U.S.A
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingéniere Chimiques, École Polytechnique Fédérale de Lausanne, Laboratoire des Polymères , Bâtiment MXD, Station 12, 1015 Lausanne, Switzerland
| |
Collapse
|
14
|
Meißig;ler M, Wieczorek S, ten Brummelhuis N, Börner HG. Synthetic Aspects of Peptide– and Protein–Polymer Conjugates in the Post-click Era. BIO-INSPIRED POLYMERS 2016. [DOI: 10.1039/9781782626664-00001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Biomacromolecules offer complex and precise functions embedded in their monomer sequence such as enzymatic activity or specific interactions towards other molecules. Their informational content and capability to organize in higher ordered structures is superior to those of synthetic molecules. In comparison, synthetic polymers are easy to access even at large production scales and they are chemically more diverse. Solubilization, shielding against enzymatic degradation to more advanced functions like switchability or protein mimicry, etc., are accessible through the world of polymer chemistry. Bio-inspired hybrid materials consisting of peptides or proteins and synthetic polymers thereby combine the properties of both molecules to give rise to a new class of materials with unique characteristics and performance. To obtain well-defined bioconjugate materials, high yielding and site-specific as well as biorthogonal ligation techniques are mandatory. Since the first attempts of protein PEGylation in the 1970s and the concept of “click” chemistry arising in 2001, continuous progress in the field of peptide– and protein–polymer conjugate preparation has been gained. Herein, we provide an overview on ligation techniques to prepare functional bioconjugates published in the last decade, also referred to as “post-click” methods. Furthermore, chemoenzymatic approaches and biotransformation reactions used in peptide or protein modification, as well as highly site-specific and efficient reactions originated in synthetic macromolecular chemistry, which could potentially be adapted for bioconjugation, are presented. Finally, future perspectives for the preparation and application of bioconjugates at the interface between biology and synthetic materials are given.
Collapse
Affiliation(s)
- Maria Meißig;ler
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 D-12489 Berlin Germany
| | - Sebastian Wieczorek
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 D-12489 Berlin Germany
| | - Niels ten Brummelhuis
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 D-12489 Berlin Germany
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 D-12489 Berlin Germany
| |
Collapse
|
15
|
Generalizing the Concept of Specific Compound Formulation Additives towards Non-Fluorescent Drugs: A Solubilization Study on Potential Anti-Alzheimer-Active Small-Molecule Compounds. Angew Chem Int Ed Engl 2016; 55:8752-6. [DOI: 10.1002/anie.201601147] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Indexed: 11/07/2022]
|
16
|
Lawatscheck C, Pickhardt M, Wieczorek S, Grafmüller A, Mandelkow E, Börner HG. Erweiterung des Konzeptes spezifischer Wirkstoff-Formulierungsadditive auf nichtfluoreszierende Wirkstoffe: eine Studie zur Solubilisierung potenzieller Anti-Alzheimer-Wirkstoffe. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Carmen Lawatscheck
- Humboldt-Universität zu Berlin; Institut für Chemie; Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Marcus Pickhardt
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE); Forschungszentrum CAESAR; Ludwig-Erhard-Allee 2 53175 Bonn Deutschland
| | - Sebastian Wieczorek
- Humboldt-Universität zu Berlin; Institut für Chemie; Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Andrea Grafmüller
- Max-Planck-Institut für Kolloide und Grenzflächen; Abteilung Theorie & Bio-Systeme; Am Mühlenberg 1 14476 Potsdam Deutschland
| | - Eckhard Mandelkow
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE); Forschungszentrum CAESAR; Ludwig-Erhard-Allee 2 53175 Bonn Deutschland
- Max-Planck-Institut für Stoffwechselforschung; Außenstation Hamburg, c/o DESY; Hamburg Deutschland
| | - Hans G. Börner
- Humboldt-Universität zu Berlin; Institut für Chemie; Brook-Taylor-Straße 2 12489 Berlin Deutschland
| |
Collapse
|
17
|
Anseth KS, Klok HA. Click Chemistry in Biomaterials, Nanomedicine, and Drug Delivery. Biomacromolecules 2016; 17:1-3. [DOI: 10.1021/acs.biomac.5b01660] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
18
|
Design of Self-Assembling Protein-Polymer Conjugates. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 940:179-214. [PMID: 27677514 DOI: 10.1007/978-3-319-39196-0_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein-polymer conjugates are of particular interest for nanobiotechnology applications because of the various and complementary roles that each component may play in composite hybrid-materials. This chapter focuses on the design principles and applications of self-assembling protein-polymer conjugate materials. We address the general design methodology, from both synthetic and genetic perspective, conjugation strategies, protein vs. polymer driven self-assembly and finally, emerging applications for conjugate materials. By marrying proteins and polymers into conjugated bio-hybrid materials, materials scientists, chemists, and biologists alike, have at their fingertips a vast toolkit for material design. These inherently hierarchical structures give rise to useful patterning, mechanical and transport properties that may help realize new, more efficient materials for energy generation, catalysis, nanorobots, etc.
Collapse
|
19
|
Danial M, Telwatte S, Tyssen D, Cosson S, Tachedjian G, Moad G, Postma A. Combination anti-HIV therapy via tandem release of prodrugs from macromolecular carriers. Polym Chem 2016. [DOI: 10.1039/c6py01882c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reversible addition-fragmentation chain transfer (RAFT) polymerisation has been used to create a library of copolymers outfitted with a combination of self-immolative reverse transcriptase inhibitor prodrug pendents comprising zidovudine (AZT) and lamivudine (3TC).
Collapse
Affiliation(s)
| | - Sushama Telwatte
- Centre for Biomedical Research
- Burnet Institute
- Melbourne
- Australia
| | - David Tyssen
- Centre for Biomedical Research
- Burnet Institute
- Melbourne
- Australia
| | - Steffen Cosson
- CSIRO Manufacturing
- Clayton VIC 3168
- Australia
- Australian Institute for Bioengineering & Nanotechnology
- University of Queensland
| | - Gilda Tachedjian
- Centre for Biomedical Research
- Burnet Institute
- Melbourne
- Australia
- Monash University
| | - Graeme Moad
- CSIRO Manufacturing
- Clayton VIC 3168
- Australia
| | | |
Collapse
|
20
|
Günay KA, Klok HA. Synthesis of cyclic peptide disulfide–PHPMA conjugates via sequential active ester aminolysis and CuAAC coupling. Polym Chem 2016. [DOI: 10.1039/c5py01817j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A synthetic strategy for the preparation of cyclic peptide disulfide–polymer conjugates that does not require peptide protecting groups is reported.
Collapse
Affiliation(s)
- Kemal Arda Günay
- École Polytechnique Fédérale de Lausanne (EPFL)
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques
- Laboratoire des Polymères
- CH-1015 Lausanne
- Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL)
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques
- Laboratoire des Polymères
- CH-1015 Lausanne
- Switzerland
| |
Collapse
|
21
|
Wieczorek S, Schwaar T, Senge MO, Börner HG. Specific Drug Formulation Additives: Revealing the Impact of Architecture and Block Length Ratio. Biomacromolecules 2015; 16:3308-12. [DOI: 10.1021/acs.biomac.5b00961] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Sebastian Wieczorek
- Department
of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany
| | - Timm Schwaar
- Department
of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany
| | - Mathias O. Senge
- School
of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences
Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse
Street, Dublin, 2, Ireland
| | - Hans G. Börner
- Department
of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany
| |
Collapse
|
22
|
Das A, Theato P. Activated Ester Containing Polymers: Opportunities and Challenges for the Design of Functional Macromolecules. Chem Rev 2015; 116:1434-95. [DOI: 10.1021/acs.chemrev.5b00291] [Citation(s) in RCA: 285] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anindita Das
- Institute
for Technical and
Macromolecular Chemistry, University of Hamburg, D-20146 Hamburg, Germany
| | - Patrick Theato
- Institute
for Technical and
Macromolecular Chemistry, University of Hamburg, D-20146 Hamburg, Germany
| |
Collapse
|
23
|
Kumar S, Bheemireddy V, De P. Aβ
17-20
Peptide-Guided Structuring of Polymeric Conjugates and Their pH-Triggered Dynamic Response. Macromol Biosci 2015; 15:1447-56. [PMID: 26084983 DOI: 10.1002/mabi.201500134] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/25/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Sonu Kumar
- Department of Chemical Sciences, Polymer Research Centre; Indian Institute of Science Education and Research Kolkata; Mohanpur 741246 Nadia West Bengal India
| | - Varun Bheemireddy
- Department of Chemical Sciences, Polymer Research Centre; Indian Institute of Science Education and Research Kolkata; Mohanpur 741246 Nadia West Bengal India
| | - Priyadarsi De
- Department of Chemical Sciences, Polymer Research Centre; Indian Institute of Science Education and Research Kolkata; Mohanpur 741246 Nadia West Bengal India
| |
Collapse
|
24
|
Abstract
Specific targeting is common in biology and is a key challenge in nanomedicine. It was recently demonstrated that multivalent probes can selectively target surfaces with a defined density of surface binding sites. Here we show, using a combination of experiments and simulations on multivalent polymers, that such "superselective" binding can be tuned through the design of the multivalent probe, to target a desired density of binding sites. We develop an analytical model that provides simple yet quantitative predictions to tune the polymer's superselective binding properties by its molecular characteristics such as size, valency, and affinity. This work opens up a route toward the rational design of multivalent probes with defined superselective targeting properties for practical applications, and provides mechanistic insight into the regulation of multivalent interactions in biology. To illustrate this, we show how the superselective targeting of the extracellular matrix polysaccharide hyaluronan to its main cell surface receptor CD44 is controlled by the affinity of individual CD44-hyaluronan interactions.
Collapse
|
25
|
Varner CT, Rosen T, Martin JT, Kane RS. Recent advances in engineering polyvalent biological interactions. Biomacromolecules 2015; 16:43-55. [PMID: 25426695 PMCID: PMC4294584 DOI: 10.1021/bm5014469] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/11/2014] [Indexed: 12/21/2022]
Abstract
Polyvalent interactions, where multiple ligands and receptors interact simultaneously, are ubiquitous in nature. Synthetic polyvalent molecules, therefore, have the ability to affect biological processes ranging from protein-ligand binding to cellular signaling. In this review, we discuss recent advances in polyvalent scaffold design and applications. First, we will describe recent developments in the engineering of polyvalent scaffolds based on biomolecules and novel materials. Then, we will illustrate how polyvalent molecules are finding applications as toxin and pathogen inhibitors, targeting molecules, immune response modulators, and cellular effectors.
Collapse
Affiliation(s)
- Chad T. Varner
- The Howard P. Isermann Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Tania Rosen
- The Howard P. Isermann Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Jacob T. Martin
- The Howard P. Isermann Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Ravi S. Kane
- The Howard P. Isermann Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
26
|
Bacinello D, Garanger E, Taton D, Tam KC, Lecommandoux S. Tailored drug-release from multi-functional polymer-peptide hybrid vesicles. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2014.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Tito N, Frenkel D. Optimizing the Selectivity of Surface-Adsorbing Multivalent Polymers. Macromolecules 2014; 47:7496-7509. [PMID: 25400296 PMCID: PMC4229857 DOI: 10.1021/ma5014918] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 09/22/2014] [Indexed: 01/03/2023]
Abstract
Multivalent polymers are macromolecules containing multiple chemical moieties designed to bind to complementary moieties on a target; for example, a protein with multiple ligands that have affinity for receptors on a cell surface. Though the individual ligand-receptor bonds are often weak, the combinatorial entropy associated with the different possible ligand-receptor pairs leads to a binding transition that can be very sharp with respect to control parameters, such as temperature or surface receptor concentration. We use mean-field self-consistent field theory to study the binding selectivity of multivalent polymers to receptor-coated surfaces. Polymers that have their ligands clustered into a contiguous domain, either located at the chain end or chain midsection, exhibit cooperative surface adsorption and superselectivity when the polymer concentration is low. On the other hand, when the ligands are uniformly spaced along the chain backbone, selectivity is substantially reduced due to the lack of binding cooperativity and due to crowding of the surface by the inert polymer segments in the chain backbone.
Collapse
Affiliation(s)
- Nicholas
B. Tito
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Daan Frenkel
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| |
Collapse
|
28
|
Danial M, Klok HA. Polymeric anti-HIV therapeutics. Macromol Biosci 2014; 15:9-35. [PMID: 25185484 DOI: 10.1002/mabi.201400298] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 07/14/2014] [Indexed: 11/09/2022]
Abstract
The scope of this review is to highlight the application of polymer therapeutics in an effort to curb the transmission and infection of the human immunodeficiency virus (HIV). Following a description of the HIV life cycle, the use of approved antiretroviral drugs that inhibit critical steps in the HIV infection process is highlighted. After that, a comprehensive overview of the structure and inhibitory properties of polymeric anti-HIV therapeutic agents is presented. This overview will include inhibitors based on polysaccharides, synthetic polymers, dendritic polymers, polymer conjugates as well as polymeric DC-SIGN antagonists. The review will conclude with a section that discusses the applications of polymers and polymer conjugates as systemic and topical anti-HIV therapeutics.
Collapse
Affiliation(s)
- Maarten Danial
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Station 12, Lausanne, CH-1015, Switzerland.
| | | |
Collapse
|
29
|
Smith AAA, Kryger MBL, Wohl BM, Ruiz-Sanchis P, Zuwala K, Tolstrup M, Zelikin AN. Macromolecular (pro)drugs in antiviral research. Polym Chem 2014. [DOI: 10.1039/c4py00624k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
30
|
Bacinello D, Garanger E, Taton D, Tam KC, Lecommandoux S. Enzyme-Degradable Self-Assembled Nanostructures from Polymer–Peptide Hybrids. Biomacromolecules 2014; 15:1882-8. [DOI: 10.1021/bm500296n] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Daniel Bacinello
- Université de Bordeaux, LCPO, UMR 5629, F-33600 Pessac, France
- CNRS, LCPO, UMR 5629, F-33600 Pessac, France
- Department
of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Canada
| | - Elisabeth Garanger
- Université de Bordeaux, LCPO, UMR 5629, F-33600 Pessac, France
- CNRS, LCPO, UMR 5629, F-33600 Pessac, France
- Institut Européen de Chimie et Biologie (IECB), F-33600 Pessac, France
| | - Daniel Taton
- Université de Bordeaux, LCPO, UMR 5629, F-33600 Pessac, France
- CNRS, LCPO, UMR 5629, F-33600 Pessac, France
| | - Kam Chiu Tam
- Department
of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Canada
| | - Sébastien Lecommandoux
- Université de Bordeaux, LCPO, UMR 5629, F-33600 Pessac, France
- CNRS, LCPO, UMR 5629, F-33600 Pessac, France
| |
Collapse
|
31
|
Dubacheva GV, Curk T, Mognetti BM, Auzély-Velty R, Frenkel D, Richter RP. Superselective targeting using multivalent polymers. J Am Chem Soc 2014; 136:1722-5. [PMID: 24400591 PMCID: PMC3919174 DOI: 10.1021/ja411138s] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
Despite
their importance for material and life sciences, multivalent
interactions between polymers and surfaces remain poorly understood.
Combining recent achievements of synthetic chemistry and surface characterization,
we have developed a well-defined and highly specific model system
based on host/guest interactions. We use this model to study the binding
of hyaluronic acid functionalized with host molecules to tunable surfaces
displaying different densities of guest molecules. Remarkably, we
find that the surface density of bound polymer increases faster than
linearly with the surface density of binding sites. Based on predictions
from a simple analytical model, we propose that this superselective
behavior arises from a combination of enthalpic and entropic effects
upon binding of nanoobjects to surfaces, accentuated by the ability
of polymer chains to interpenetrate.
Collapse
Affiliation(s)
- Galina V Dubacheva
- Biosurfaces Unit, CIC biomaGUNE , Paseo Miramon 182, 20009 Donostia-San Sebastian, Spain
| | | | | | | | | | | |
Collapse
|
32
|
Tang W, Becker ML. “Click” reactions: a versatile toolbox for the synthesis of peptide-conjugates. Chem Soc Rev 2014; 43:7013-39. [DOI: 10.1039/c4cs00139g] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Peptides that comprise the functional subunits of proteins have been conjugated to versatile materials (biomolecules, polymers, surfaces and nanoparticles) in an effort to modulate cell responses, specific binding affinity and/or self-assembly behavior.
Collapse
Affiliation(s)
- Wen Tang
- Department of Polymer Science
- The University of Akron
- Akron, USA
| | - Matthew L. Becker
- Department of Polymer Science
- The University of Akron
- Akron, USA
- Department of Biomedical Engineering
- The University of Akron
| |
Collapse
|
33
|
Borchmann DE, Carberry TP, Weck M. "Bio"-macromolecules: polymer-protein conjugates as emerging scaffolds for therapeutics. Macromol Rapid Commun 2013; 35:27-43. [PMID: 24323623 DOI: 10.1002/marc.201300792] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 11/01/2013] [Indexed: 12/26/2022]
Abstract
Polymer-protein conjugates are biohybrid macromolecules derived from covalently connecting synthetic polymers with polypeptides. The resulting materials combine the properties of both worlds: chemists can engineer polymers to stabilize proteins, to add functionality, or to enhance activity; whereas biochemists can exploit the specificity and complexity that Nature has bestowed upon its macromolecules. This has led to a wealth of applications, particularly within the realm of biomedicine. Polymer-protein conjugation has expanded to include scaffolds for drug delivery, tissue engineering, and microbial inhibitors. This feature article reflects upon recent developments in the field and discusses the applications of these hybrids from a biomaterials standpoint.
Collapse
Affiliation(s)
- Dorothee E Borchmann
- Molecular Design Institute and Department of Chemistry, New York University, 100 Washington Sq. E., New York, New York, 10003, USA
| | | | | |
Collapse
|
34
|
Lin F, Yu J, Tang W, Zheng J, Xie S, Becker ML. Postelectrospinning “Click” Modification of Degradable Amino Acid-Based Poly(ester urea) Nanofibers. Macromolecules 2013. [DOI: 10.1021/ma401964e] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fei Lin
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Jiayi Yu
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Wen Tang
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Jukuan Zheng
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Sibai Xie
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Matthew L. Becker
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
- Austen Bioinnovation Institute in Akron, Akron, Ohio 44308, United States
| |
Collapse
|
35
|
Janus cyclic peptide–polymer nanotubes. Nat Commun 2013; 4:2780. [DOI: 10.1038/ncomms3780] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 10/16/2013] [Indexed: 12/23/2022] Open
|
36
|
Huang J, Zhang Q, Li GZ, Haddleton DM, Wallis R, Mitchell D, Heise A, Becer CR. Synthetic Glycopolypeptides as Potential Inhibitory Agents for Dendritic Cells and HIV-1 Trafficking. Macromol Rapid Commun 2013; 34:1542-6. [DOI: 10.1002/marc.201300439] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/09/2013] [Indexed: 01/10/2023]
Affiliation(s)
- Jin Huang
- School of Chemical Science; Dublin City University; Dublin; 9; Ireland
| | - Qiang Zhang
- Department of Chemistry; University of Warwick; Coventry; CV4 7AL; UK
| | - Guang-Zhao Li
- Department of Chemistry; University of Warwick; Coventry; CV4 7AL; UK
| | | | - Russell Wallis
- Department of Biochemistry; University of Leicester; Leicester; LE1 9HN; UK
| | - Daniel Mitchell
- Clinical Sciences Research Institute, Warwick Medical School; University of Warwick; Coventry; CV2 2DX; UK
| | - Andreas Heise
- School of Chemical Science; Dublin City University; Dublin; 9; Ireland
| | | |
Collapse
|
37
|
|
38
|
Drappier C, Wirotius AL, Bathany K, Ibarboure E, Condassamy O, Garanger E, Lecommandoux S. Biofunctional micellar nanoparticles from peptide-b-polymer chimeras. Polym Chem 2013. [DOI: 10.1039/c2py21044d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
39
|
Xu LQ, Chen JC, Wang R, Neoh KG, Kang ET, Fu GD. A poly(vinylidene fluoride)-graft-poly(dopamine acrylamide) copolymer for surface functionalizable membranes. RSC Adv 2013. [DOI: 10.1039/c3ra42782j] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
40
|
Thilakarathne VK, Briand VA, Kasi RM, Kumar CV. Tuning hemoglobin-poly(acrylic acid) interactions by controlled chemical modification with triethylenetetramine. J Phys Chem B 2012; 116:12783-92. [PMID: 23030246 DOI: 10.1021/jp307206h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Protein-polymer interactions play a very important role in a number of applications, but details of these interactions are not fully understood. Chemical modification was introduced here to tune protein-polymer interactions in a systematic manner, where methemoglobin (Hb) and poly(acrylic acid) (PAA) served as a model system. Under similar conditions of pH and ionic strength, the influence of protein charge on Hb/PAA interaction was studied using chemically modified Hb by isothermal titration calorimetry (ITC). A small fraction of COOH groups of Hb were amidated with triethylenetetramine (TETA) or ammonium chloride to produce the corresponding charge ladders of Hb-TETA and Hb-ammonia derivatives, respectively. All the Hb/PAA complexes produced here are bioactive, entirely soluble in water, and indicated the retention of Hb structure to a significant extent. Binding of Hb to PAA was exothermic (ΔH < 0). The binding of Hb-TETA charge ladder to PAA indicated decrease of ΔH from -8 ± 0.2 to -89 ± 4 kcal/mol, at a rate of -3.8 kcal/mol per unit charge introduced via modification. The Hb-ammonia charge ladder, in contrast, showed a decrease of ΔH from -8 ± 0.2 to -17 ± 1.5 kcal/mol, at much slower rate of -1.0 kcal/mol per unit charge. Thus, the amine used for the modification played a strong role in tuning Hb/PAA interactions, even after correcting for the charge, synergistically. Charge clustering may be responsible for this synergy, and this interesting observation may be exploited to construct protein/polymer platforms for advanced biomacromolecular applications.
Collapse
Affiliation(s)
- Vindya K Thilakarathne
- Department of Chemistry, U-3060, University of Connecticut, Storrs, Connecticut 06269-3060, USA
| | | | | | | |
Collapse
|
41
|
Mudhivarthi VK, Cole KS, Novak MJ, Kipphut W, Deshapriya IK, Zhou Y, Kasi RM, Kumar CV. Ultra-stable hemoglobin–poly(acrylic acid) conjugates. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm34434c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|