1
|
Chen S, Wu L, Wu Z, Liu Z, Qiu Z, Chi L. Highly efficient removal of Sr 2+ from aqueous solutions using a polyacrylic acid/crown-ether/graphene oxide hydrogel composite. RSC Adv 2024; 14:7825-7835. [PMID: 38444965 PMCID: PMC10913416 DOI: 10.1039/d3ra08789a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/25/2024] [Indexed: 03/07/2024] Open
Abstract
With the development of nuclear power, efficiently treating nuclear wastes generated during operation has attracted extensive attention. Hydrogels are common adsorbent materials in the treatment of wastewater due to their high swelling rate and easy post-treatment. In this work, a novel polyacrylic acid/crown-ether/graphene oxide (PAA/DB18C6/GO) hydrogel composite was synthesized by a radical cross-linking copolymerization method and characterized using various analytical tools such as SEM, FT-IR, TGA and XPS. The effects of time, pH, initial Sr2+ concentration, and temperature on Sr2+ adsorption onto the PAA/DB18C6/GO were studied. The PAA/DB18C6/GO shows a high adsorption capacity of 379.35 mg g-1 at an initial Sr2+ concentration of 772 mg L-1 due to the unique structure of dibenzo-18-crown-ether-6 and high swelling. The composite has a high selectivity for Sr2+ with a removal rate of 82.4% when concentrations of Na+ and K+ were 10 times higher than that of Sr2+. The pH and temperature have no apparent impact on adsorption performance of the PAA/DB18C6/GO under the experimental conditions. The composite shows excellent reusability with more than 92% removal rate for Sr2+ after five continuous cycles. In addition, the mechanism of Sr2+ adsorption by PAA/DB18C6/GO was analyzed by fitting the adsorption data to the theoretical models and XPS data.
Collapse
Affiliation(s)
- Sheng Chen
- College of Chemistry, Fuzhou University Fuzhou Fujian 350108 China
- Fujian Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, CAS Fuzhou Fujian 350002 China
| | - Lina Wu
- Fujian Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, CAS Fuzhou Fujian 350002 China
| | - Zhicheng Wu
- Fujian Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, CAS Fuzhou Fujian 350002 China
| | - Zhikun Liu
- Fujian Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, CAS Fuzhou Fujian 350002 China
| | - Zhihua Qiu
- Fujian Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, CAS Fuzhou Fujian 350002 China
| | - Lisheng Chi
- Fujian Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, CAS Fuzhou Fujian 350002 China
| |
Collapse
|
2
|
Jafari A, Behjat E, Malektaj H, Mobini F. Alignment behavior of nerve, vascular, muscle, and intestine cells in two- and three-dimensional strategies. WIREs Mech Dis 2023; 15:e1620. [PMID: 37392045 DOI: 10.1002/wsbm.1620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/28/2023] [Accepted: 05/23/2023] [Indexed: 07/02/2023]
Abstract
By harnessing structural hierarchical insights, plausibly simulate better ones imagination to figure out the best choice of methods for reaching out the unprecedented developments of the tissue engineering products as a next level. Constructing a functional tissue that incorporates two-dimensional (2D) or higher dimensions requires overcoming technological or biological limitations in order to orchestrate the structural compilation of one-dimensional and 2D sheets (microstructures) simultaneously (in situ). This approach enables the creation of a layered structure that can be referred to as an ensemble of layers or, after several days of maturation, a direct or indirect joining of layers. Here, we have avoided providing a detailed methodological description of three-dimensional and 2D strategies, except for a few interesting examples that highlight the higher alignment of cells and emphasize rarely remembered facts associated with vascular, peripheral nerve, muscle, and intestine tissues. The effective directionality of cells in conjunction with geometric cues (in the range of micrometers) is well known to affect a variety of cell behaviors. The curvature of a cell's environment is one of the factors that influence the formation of patterns within tissues. The text will cover cell types containing some level of stemness, which will be followed by their consequences for tissue formation. Other important considerations pertain to cytoskeleton traction forces, cell organelle positioning, and cell migration. An overview of cell alignment along with several pivotal molecular and cellular level concepts, such as mechanotransduction, chirality, and curvature of structure effects on cell alignments will be presented. The mechanotransduction term will be used here in the context of the sensing capability that cells show as a result of force-induced changes either at the conformational or the organizational levels, a capability that allows us to modify cell fate by triggering downstream signaling pathways. A discussion of the cells' cytoskeleton and of the stress fibers involvement in altering the cell's circumferential constitution behavior (alignment) based on exposed scaffold radius will be provided. Curvatures with size similarities in the range of cell sizes cause the cell's behavior to act as if it was in an in vivo tissue environment. The revision of the literature, patents, and clinical trials performed for the present study shows that there is a clear need for translational research through the implementation of clinical trial platforms that address the tissue engineering possibilities raised in the current revision. This article is categorized under: Infectious Diseases > Biomedical Engineering Neurological Diseases > Biomedical Engineering Cardiovascular Diseases > Biomedical Engineering.
Collapse
Affiliation(s)
- Amir Jafari
- Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Erfan Behjat
- Department of Biomaterials, School of Metallurgy & Materials Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Haniyeh Malektaj
- Department of Materials and Production, Aalborg University, Aalborg, Denmark
| | - Faezeh Mobini
- Molecular Simulation Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
3
|
Ni X, Xing X, Deng Y, Li Z. Applications of Stimuli-Responsive Hydrogels in Bone and Cartilage Regeneration. Pharmaceutics 2023; 15:pharmaceutics15030982. [PMID: 36986842 PMCID: PMC10056098 DOI: 10.3390/pharmaceutics15030982] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Bone and cartilage regeneration is an area of tremendous interest and need in health care. Tissue engineering is a potential strategy for repairing and regenerating bone and cartilage defects. Hydrogels are among the most attractive biomaterials in bone and cartilage tissue engineering, mainly due to their moderate biocompatibility, hydrophilicity, and 3D network structure. Stimuli-responsive hydrogels have been a hot topic in recent decades. They can respond to external or internal stimulation and are used in the controlled delivery of drugs and tissue engineering. This review summarizes current progress in the use of stimuli-responsive hydrogels in bone and cartilage regeneration. The challenges, disadvantages, and future applications of stimuli-responsive hydrogels are briefly described.
Collapse
Affiliation(s)
- Xiaoqi Ni
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Xin Xing
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yunfan Deng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhi Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
4
|
Sanz-Horta R, Matesanz A, Gallardo A, Reinecke H, Jorcano JL, Acedo P, Velasco D, Elvira C. Technological advances in fibrin for tissue engineering. J Tissue Eng 2023; 14:20417314231190288. [PMID: 37588339 PMCID: PMC10426312 DOI: 10.1177/20417314231190288] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/11/2023] [Indexed: 08/18/2023] Open
Abstract
Fibrin is a promising natural polymer that is widely used for diverse applications, such as hemostatic glue, carrier for drug and cell delivery, and matrix for tissue engineering. Despite the significant advances in the use of fibrin for bioengineering and biomedical applications, some of its characteristics must be improved for suitability for general use. For example, fibrin hydrogels tend to shrink and degrade quickly after polymerization, particularly when they contain embedded cells. In addition, their poor mechanical properties and batch-to-batch variability affect their handling, long-term stability, standardization, and reliability. One of the most widely used approaches to improve their properties has been modification of the structure and composition of fibrin hydrogels. In this review, recent advances in composite fibrin scaffolds, chemically modified fibrin hydrogels, interpenetrated polymer network (IPN) hydrogels composed of fibrin and other synthetic or natural polymers are critically reviewed, focusing on their use for tissue engineering.
Collapse
Affiliation(s)
- Raúl Sanz-Horta
- Department of Applied Macromolecular Chemistry, Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), Madrid, Spain
| | - Ana Matesanz
- Department of Bioengineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
- Department of Electronic Technology, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
| | - Alberto Gallardo
- Department of Applied Macromolecular Chemistry, Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), Madrid, Spain
| | - Helmut Reinecke
- Department of Applied Macromolecular Chemistry, Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), Madrid, Spain
| | - José Luis Jorcano
- Department of Bioengineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Pablo Acedo
- Department of Electronic Technology, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
| | - Diego Velasco
- Department of Bioengineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Carlos Elvira
- Department of Applied Macromolecular Chemistry, Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), Madrid, Spain
| |
Collapse
|
5
|
Heng BC, Bai Y, Li X, Lim LW, Li W, Ge Z, Zhang X, Deng X. Electroactive Biomaterials for Facilitating Bone Defect Repair under Pathological Conditions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204502. [PMID: 36453574 PMCID: PMC9839869 DOI: 10.1002/advs.202204502] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/24/2022] [Indexed: 06/02/2023]
Abstract
Bone degeneration associated with various diseases is increasing due to rapid aging, sedentary lifestyles, and unhealthy diets. Living bone tissue has bioelectric properties critical to bone remodeling, and bone degeneration under various pathological conditions results in significant changes to these bioelectric properties. There is growing interest in utilizing biomimetic electroactive biomaterials that recapitulate the natural electrophysiological microenvironment of healthy bone tissue to promote bone repair. This review first summarizes the etiology of degenerative bone conditions associated with various diseases such as type II diabetes, osteoporosis, periodontitis, osteoarthritis, rheumatoid arthritis, osteomyelitis, and metastatic osteolysis. Next, the diverse array of natural and synthetic electroactive biomaterials with therapeutic potential are discussed. Putative mechanistic pathways by which electroactive biomaterials can mitigate bone degeneration are critically examined, including the enhancement of osteogenesis and angiogenesis, suppression of inflammation and osteoclastogenesis, as well as their anti-bacterial effects. Finally, the limited research on utilization of electroactive biomaterials in the treatment of bone degeneration associated with the aforementioned diseases are examined. Previous studies have mostly focused on using electroactive biomaterials to treat bone traumatic injuries. It is hoped that this review will encourage more research efforts on the use of electroactive biomaterials for treating degenerative bone conditions.
Collapse
Affiliation(s)
- Boon Chin Heng
- Central LaboratoryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- School of Medical and Life SciencesSunway UniversityDarul EhsanSelangor47500Malaysia
| | - Yunyang Bai
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Xiaochan Li
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Lee Wei Lim
- Neuromodulation LaboratorySchool of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong KongP. R. China
| | - Wang Li
- Department of Biomedical EngineeringPeking UniversityBeijing100871P. R. China
| | - Zigang Ge
- Department of Biomedical EngineeringPeking UniversityBeijing100871P. R. China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing CenterPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Engineering Research Center of Oral Biomaterials and Digital Medical DevicesNMPA Key Laboratory for Dental MaterialsBeijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
| | - Xuliang Deng
- Department of Geriatric DentistryPeking University School and Hospital of StomatologyBeijing100081P. R. China
- Department of Dental Materials & Dental Medical Devices Testing CenterPeking University School and Hospital of StomatologyBeijing100081P. R. China
- National Engineering Research Center of Oral Biomaterials and Digital Medical DevicesNMPA Key Laboratory for Dental MaterialsBeijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijing100081P. R. China
| |
Collapse
|
6
|
Dalei G, Das S. Polyacrylic acid-based drug delivery systems: A comprehensive review on the state-of-art. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Tran TS, Balu R, Mettu S, Roy Choudhury N, Dutta NK. 4D Printing of Hydrogels: Innovation in Material Design and Emerging Smart Systems for Drug Delivery. Pharmaceuticals (Basel) 2022; 15:1282. [PMID: 36297394 PMCID: PMC9609121 DOI: 10.3390/ph15101282] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/23/2022] Open
Abstract
Advancements in the material design of smart hydrogels have transformed the way therapeutic agents are encapsulated and released in biological environments. On the other hand, the expeditious development of 3D printing technologies has revolutionized the fabrication of hydrogel systems for biomedical applications. By combining these two aspects, 4D printing (i.e., 3D printing of smart hydrogels) has emerged as a new promising platform for the development of novel controlled drug delivery systems that can adapt and mimic natural physio-mechanical changes over time. This allows printed objects to transform from static to dynamic in response to various physiological and chemical interactions, meeting the needs of the healthcare industry. In this review, we provide an overview of innovation in material design for smart hydrogel systems, current technical approaches toward 4D printing, and emerging 4D printed novel structures for drug delivery applications. Finally, we discuss the existing challenges in 4D printing hydrogels for drug delivery and their prospects.
Collapse
Affiliation(s)
| | | | | | | | - Naba Kumar Dutta
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
8
|
Wu J, Chen T, Wang Y, Bai J, Lao C, Luo M, Chen M, Peng W, Zhi W, Weng J, Wang J. Piezoelectric Effect of Antibacterial Biomimetic Hydrogel Promotes Osteochondral Defect Repair. Biomedicines 2022; 10:biomedicines10051165. [PMID: 35625903 PMCID: PMC9138878 DOI: 10.3390/biomedicines10051165] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 12/10/2022] Open
Abstract
The lack of vascular tissue and the low metabolism and biological activity of mature chondrocytes lead to the low regeneration ability of articular cartilage. People try to solve this problem through various methods, but the effect is not very ideal. Inspired by the piezoelectric effect of collagen in cartilage tissue, this work focused on the design of a biomimetic hydrogel by introducing piezoelectric materials and silver nanowires into hydrogel to endow them with piezoelectric and antibacterial properties to promote tissue regeneration. Additionally, the mechanical and swelling properties of the material were adjusted to match natural articular cartilage. Based on bionic principles, a double-layer piezoelectric hydrogel was prepared and applied for the repair of osteochondral defects. An enhanced repair effect of osteochondral defects has been seen, which has demonstrated potential values for future application in bionics principle- and piezoelectric effect-based osteochondral tissue engineering. Furthermore, piezoelectric effect-induced degradation was observed. These results fully indicated the positive effect of the piezoelectric effect on promoting the regeneration of osteochondral tissue and in vivo degradation of materials.
Collapse
Affiliation(s)
- Jiahang Wu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (J.W.); (T.C.); (Y.W.); (J.B.); (C.L.); (M.L.); (M.C.); (W.Z.); (J.W.)
| | - Taijun Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (J.W.); (T.C.); (Y.W.); (J.B.); (C.L.); (M.L.); (M.C.); (W.Z.); (J.W.)
| | - Yingying Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (J.W.); (T.C.); (Y.W.); (J.B.); (C.L.); (M.L.); (M.C.); (W.Z.); (J.W.)
| | - Jiafan Bai
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (J.W.); (T.C.); (Y.W.); (J.B.); (C.L.); (M.L.); (M.C.); (W.Z.); (J.W.)
| | - Chenwen Lao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (J.W.); (T.C.); (Y.W.); (J.B.); (C.L.); (M.L.); (M.C.); (W.Z.); (J.W.)
| | - Minyue Luo
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (J.W.); (T.C.); (Y.W.); (J.B.); (C.L.); (M.L.); (M.C.); (W.Z.); (J.W.)
| | - Mingxia Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (J.W.); (T.C.); (Y.W.); (J.B.); (C.L.); (M.L.); (M.C.); (W.Z.); (J.W.)
| | - Wenzhen Peng
- Chengdu Yikeda Biotechnology Co., Ltd., Chengdu 610095, China;
| | - Wei Zhi
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (J.W.); (T.C.); (Y.W.); (J.B.); (C.L.); (M.L.); (M.C.); (W.Z.); (J.W.)
| | - Jie Weng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (J.W.); (T.C.); (Y.W.); (J.B.); (C.L.); (M.L.); (M.C.); (W.Z.); (J.W.)
| | - Jianxin Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (J.W.); (T.C.); (Y.W.); (J.B.); (C.L.); (M.L.); (M.C.); (W.Z.); (J.W.)
- Correspondence: ; Tel.: +86-28-87634023
| |
Collapse
|
9
|
Crosby CO, Stern B, Kalkunte N, Pedahzur S, Ramesh S, Zoldan J. Interpenetrating polymer network hydrogels as bioactive scaffolds for tissue engineering. REV CHEM ENG 2022; 38:347-361. [PMID: 35400772 PMCID: PMC8993131 DOI: 10.1515/revce-2020-0039] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Tissue engineering, after decades of exciting progress and monumental breakthroughs, has yet to make a significant impact on patient health. It has become apparent that a dearth of biomaterial scaffolds that possess the material properties of human tissue while remaining bioactive and cytocompatible has been partly responsible for this lack of clinical translation. Herein, we propose the development of interpenetrating polymer network hydrogels as materials that can provide cells with an adhesive extracellular matrix-like 3D microenvironment while possessing the mechanical integrity to withstand physiological forces. These hydrogels can be synthesized from biologically-derived or synthetic polymers, the former polymer offering preservation of adhesion, degradability, and microstructure and the latter polymer offering tunability and superior mechanical properties. We review critical advances in the enhancement of mechanical strength, substrate-scale stiffness, electrical conductivity, and degradation in IPN hydrogels intended as bioactive scaffolds in the past five years. We also highlight the exciting incorporation of IPN hydrogels into state-of-the-art tissue engineering technologies, such as organ-on-a-chip and bioprinting platforms. These materials will be critical in the engineering of functional tissue for transplant, disease modeling, and drug screening.
Collapse
Affiliation(s)
- Cody O. Crosby
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas
| | - Brett Stern
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas
| | - Nikhith Kalkunte
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas
| | - Shahar Pedahzur
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas
| | - Shreya Ramesh
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas
| | - Janet Zoldan
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas
| |
Collapse
|
10
|
Bomkamp C, Skaalure SC, Fernando GF, Ben‐Arye T, Swartz EW, Specht EA. Scaffolding Biomaterials for 3D Cultivated Meat: Prospects and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102908. [PMID: 34786874 PMCID: PMC8787436 DOI: 10.1002/advs.202102908] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/12/2021] [Indexed: 05/03/2023]
Abstract
Cultivating meat from stem cells rather than by raising animals is a promising solution to concerns about the negative externalities of meat production. For cultivated meat to fully mimic conventional meat's organoleptic and nutritional properties, innovations in scaffolding technology are required. Many scaffolding technologies are already developed for use in biomedical tissue engineering. However, cultivated meat production comes with a unique set of constraints related to the scale and cost of production as well as the necessary attributes of the final product, such as texture and food safety. This review discusses the properties of vertebrate skeletal muscle that will need to be replicated in a successful product and the current state of scaffolding innovation within the cultivated meat industry, highlighting promising scaffold materials and techniques that can be applied to cultivated meat development. Recommendations are provided for future research into scaffolds capable of supporting the growth of high-quality meat while minimizing production costs. Although the development of appropriate scaffolds for cultivated meat is challenging, it is also tractable and provides novel opportunities to customize meat properties.
Collapse
Affiliation(s)
- Claire Bomkamp
- The Good Food Institute1380 Monroe St. NW #229WashingtonDC20010USA
| | | | | | - Tom Ben‐Arye
- The Good Food Institute1380 Monroe St. NW #229WashingtonDC20010USA
| | - Elliot W. Swartz
- The Good Food Institute1380 Monroe St. NW #229WashingtonDC20010USA
| | | |
Collapse
|
11
|
Neufeld L, Yeini E, Reisman N, Shtilerman Y, Ben-Shushan D, Pozzi S, Madi A, Tiram G, Eldar-Boock A, Ferber S, Grossman R, Ram Z, Satchi-Fainaro R. Microengineered perfusable 3D-bioprinted glioblastoma model for in vivo mimicry of tumor microenvironment. SCIENCE ADVANCES 2021; 7:eabi9119. [PMID: 34407932 PMCID: PMC8373143 DOI: 10.1126/sciadv.abi9119] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/28/2021] [Indexed: 05/04/2023]
Abstract
Many drugs show promising results in laboratory research but eventually fail clinical trials. We hypothesize that one main reason for this translational gap is that current cancer models are inadequate. Most models lack the tumor-stroma interactions, which are essential for proper representation of cancer complexed biology. Therefore, we recapitulated the tumor heterogenic microenvironment by creating fibrin glioblastoma bioink consisting of patient-derived glioblastoma cells, astrocytes, and microglia. In addition, perfusable blood vessels were created using a sacrificial bioink coated with brain pericytes and endothelial cells. We observed similar growth curves, drug response, and genetic signature of glioblastoma cells grown in our 3D-bioink platform and in orthotopic cancer mouse models as opposed to 2D culture on rigid plastic plates. Our 3D-bioprinted model could be the basis for potentially replacing cell cultures and animal models as a powerful platform for rapid, reproducible, and robust target discovery; personalized therapy screening; and drug development.
Collapse
Affiliation(s)
- Lena Neufeld
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eilam Yeini
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Noa Reisman
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yael Shtilerman
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dikla Ben-Shushan
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sabina Pozzi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Asaf Madi
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Galia Tiram
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Anat Eldar-Boock
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shiran Ferber
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Rachel Grossman
- Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Zvi Ram
- Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
- Sagol School of Neurosciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
12
|
Liu Z, Wan X, Wang ZL, Li L. Electroactive Biomaterials and Systems for Cell Fate Determination and Tissue Regeneration: Design and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007429. [PMID: 34117803 DOI: 10.1002/adma.202007429] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/19/2020] [Indexed: 06/12/2023]
Abstract
During natural tissue regeneration, tissue microenvironment and stem cell niche including cell-cell interaction, soluble factors, and extracellular matrix (ECM) provide a train of biochemical and biophysical cues for modulation of cell behaviors and tissue functions. Design of functional biomaterials to mimic the tissue/cell microenvironment have great potentials for tissue regeneration applications. Recently, electroactive biomaterials have drawn increasing attentions not only as scaffolds for cell adhesion and structural support, but also as modulators to regulate cell/tissue behaviors and function, especially for electrically excitable cells and tissues. More importantly, electrostimulation can further modulate a myriad of biological processes, from cell cycle, migration, proliferation and differentiation to neural conduction, muscle contraction, embryogenesis, and tissue regeneration. In this review, endogenous bioelectricity and piezoelectricity are introduced. Then, design rationale of electroactive biomaterials is discussed for imitating dynamic cell microenvironment, as well as their mediated electrostimulation and the applying pathways. Recent advances in electroactive biomaterials are systematically overviewed for modulation of stem cell fate and tissue regeneration, mainly including nerve regeneration, bone tissue engineering, and cardiac tissue engineering. Finally, the significance for simulating the native tissue microenvironment is emphasized and the open challenges and future perspectives of electroactive biomaterials are concluded.
Collapse
Affiliation(s)
- Zhirong Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xingyi Wan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
13
|
Shin Y, Choi MY, Choi J, Na JH, Kim SY. Design of an Electro-Stimulated Hydrogel Actuator System with Fast Flexible Folding Deformation under a Low Electric Field. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15633-15646. [PMID: 33764732 DOI: 10.1021/acsami.1c00883] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Soft actuators have recently been widely studied due to their significant advantages including light weight, continuous deformability, high environment adaptability, and safe human-robot interactions. In this study, we designed electrically responsive poly(sodium 4-vinylbenzenesulfonate/2-hydroxyethylmethacrylate/acrylamide) (P(VBS/HEMA/AAm)) and poly(sodium 4-vinylbenzenesulfonate/2-hydroxyethyl methacrylate/acrylic acid) (P(VBS/HEMA/AAc)) hydrogels. A series of P(VBS/HEMA/AAm) and P(VBS/HEMA/AAc) hydrogels were prepared by adjusting the monomer composition and cross-linking density to systemically analyze various factors affecting the actuation of hydrogels under an electric field. All hydrogels exhibited more than 65% gel fraction and a high equilibrium water content (EWC) of more than 90%. The EWC of hydrogels gradually increased with decreasing cross-linker content and was also influenced by the monomer composition. The mechanical properties of hydrogels were proportional to the cross-linking density. Particularly, hydrogels showed bending deformation even at low voltages below 10 V, and the electrically responsive bending actuation of hydrogels can be modulated by cross-linking density, monomer composition, applied voltage, ion strength of the electrolyte solution, and geometrical parameters of the hydrogel. By controlling these factors, hydrogels showed a fast response with a bending of more than 100° within a minute. In addition, hydrogels did not show significant cytotoxicity in a biocompatibility test and exhibited more than 84% cell viability. These results indicate that P(VBS/HEMA/AAm) and P(VBS/HEMA/AAc) hydrogels with fast response properties even under a low electric field have the potential to be used in a wide range of soft actuator applications.
Collapse
Affiliation(s)
- Yerin Shin
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Moon-Young Choi
- Department of Convergence System Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jongseon Choi
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jun-Hee Na
- Department of Convergence System Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
- Department of Electrical, Electronics, and Communication Engineering Education, Chungnam National University, Daejeon 34134, Republic of Korea
| | - So Yeon Kim
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
- Department of Chemical Engineering Education, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
14
|
Chimisso V, Aleman Garcia MA, Yorulmaz Avsar S, Dinu IA, Palivan CG. Design of Bio-Conjugated Hydrogels for Regenerative Medicine Applications: From Polymer Scaffold to Biomolecule Choice. Molecules 2020; 25:E4090. [PMID: 32906772 PMCID: PMC7571016 DOI: 10.3390/molecules25184090] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 09/04/2020] [Indexed: 12/26/2022] Open
Abstract
Bio-conjugated hydrogels merge the functionality of a synthetic network with the activity of a biomolecule, becoming thus an interesting class of materials for a variety of biomedical applications. This combination allows the fine tuning of their functionality and activity, whilst retaining biocompatibility, responsivity and displaying tunable chemical and mechanical properties. A complex scenario of molecular factors and conditions have to be taken into account to ensure the correct functionality of the bio-hydrogel as a scaffold or a delivery system, including the polymer backbone and biomolecule choice, polymerization conditions, architecture and biocompatibility. In this review, we present these key factors and conditions that have to match together to ensure the correct functionality of the bio-conjugated hydrogel. We then present recent examples of bio-conjugated hydrogel systems paving the way for regenerative medicine applications.
Collapse
Affiliation(s)
| | | | | | | | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR-1096, 4058 Basel, Switzerland; (V.C.); (M.A.A.G.); (S.Y.A.); (I.A.D.)
| |
Collapse
|
15
|
Dera R, Diliën H, Adriaensens P, Guedens W, Cleij TJ. An Efficient Thermal Elimination Pathway toward Phosphodiester Hydrogels via a Precursor Approach. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.201900466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Rafael Dera
- IMOHasselt University 3590 Diepenbeek Belgium
| | - Hanne Diliën
- Sensor EngineeringFaculty of Science and EngineeringMaastricht University Urmonderbaan 22, Chemelot Center Court Gebouw 200 6167 RD Geleen The Netherlands
| | | | | | - Thomas J. Cleij
- Sensor EngineeringFaculty of Science and EngineeringMaastricht University Urmonderbaan 22, Chemelot Center Court Gebouw 200 6167 RD Geleen The Netherlands
| |
Collapse
|
16
|
Abstract
We explore the design and synthesis of hydrogel scaffolds for tissue engineering from the perspective of the underlying polymer chemistry. The key polymers, properties and architectures used, and their effect on tissue growth are discussed.
Collapse
|
17
|
Mohamed MA, Fallahi A, El-Sokkary AM, Salehi S, Akl MA, Jafari A, Tamayol A, Fenniri H, Khademhosseini A, Andreadis ST, Cheng C. Stimuli-responsive hydrogels for manipulation of cell microenvironment: From chemistry to biofabrication technology. Prog Polym Sci 2019; 98. [DOI: 10.1016/j.progpolymsci.2019.101147] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Dera R, Diliën H, Billen B, Gagliardi M, Rahimi N, Van Den Akker NMS, Molin DGM, Grandfils C, Adriaensens P, Guedens W, Cleij TJ. Phosphodiester Hydrogels for Cell Scaffolding and Drug Release Applications. Macromol Biosci 2019; 19:e1900090. [PMID: 31166090 DOI: 10.1002/mabi.201900090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/17/2019] [Indexed: 12/19/2022]
Abstract
Given the major structural role phosphodiesters play in the organism it is surprising they have not been more widely adopted as a building block in sophisticated biomimetic hydrogels and other biomaterials. The potential benefits are substantial: phosphoester-based materials show excellent compatibility with blood, cells, and a remarkable resistance to protein adsorption that may trigger a foreign-body response. In this work, a novel class of phosphodiester-based ionic hydrogels is presented which are crosslinked via a phosphodiester moiety. The material shows good compatibility with blood, supports the growth and proliferation of tissue and presents opportunities for use as a drug release matrix as shown with fluorescent model compounds. The final gel is produced via base-induced elimination from a phosphotriester precursor, which is made by the free-radical polymerization of a phosphotriester crosslinker. This crosslinker is easily synthesized via multigram one-pot procedures out of common laboratory chemicals. Via the addition of various comonomers the properties of the final gel may be tuned leading to a wide range of novel applications for this exciting class of materials.
Collapse
Affiliation(s)
- Rafael Dera
- IMO, Hasselt University, Agoralaan Gebouw D, 3590, Diepenbeek, Belgium
| | - Hanne Diliën
- Sensor Engineering, Faculty of Science and Engineering, Maastricht University, Urmonderbaan 22, Chemelot Center Court, Gebouw 200, 6167 RD Geleen, The Netherlands
| | - Brecht Billen
- IMO, Hasselt University, Agoralaan Gebouw D, 3590, Diepenbeek, Belgium
| | - Mick Gagliardi
- Department of Physiology, CARIM, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| | - Nastaran Rahimi
- Department of Physiology, CARIM, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| | - Nynke M S Van Den Akker
- Department of Physiology, CARIM, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| | - Daniel G M Molin
- Department of Physiology, CARIM, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| | - Christian Grandfils
- Université de Liège, Allée du 6 Août 11, B-4000, Liège (Sart-Tilman), Belgium
| | - Peter Adriaensens
- IMO, Hasselt University, Agoralaan Gebouw D, 3590, Diepenbeek, Belgium
| | - Wanda Guedens
- IMO, Hasselt University, Agoralaan Gebouw D, 3590, Diepenbeek, Belgium
| | - Thomas J Cleij
- Sensor Engineering, Faculty of Science and Engineering, Maastricht University, Urmonderbaan 22, Chemelot Center Court, Gebouw 200, 6167 RD Geleen, The Netherlands
| |
Collapse
|
19
|
Zheng Y, Yang Y, Deng Y. Dual therapeutic cobalt-incorporated bioceramics accelerate bone tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:770-782. [PMID: 30889752 DOI: 10.1016/j.msec.2019.02.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/16/2019] [Accepted: 02/06/2019] [Indexed: 01/28/2023]
Abstract
Bone grafting on defects caused by trauma or tumor stimulates bone regeneration, a complex process requiring highly orchestrated cell-signal interactions. Bone vascular growth is coupled with osteogenesis, but less is known about the interplay between angiogenesis and osteogenesis. Understanding this relationship is relevant to improved bone regeneration. Here, tricalcium phosphate (TCP) scaffolds doped with varying concentration of cobalt (Co-TCP) were designed to investigate the dosage effect of vascularization on bone formation. The surface structure, phase composition, mechanical features, and chemical composition were investigated. Co doping improved the mechanical properties of TCP. Co-TCP, particularly 2% and 5% Co-TCP, boosted cell viability of bone marrow stromal cells (BMSCs). The 2% Co-TCP promoted alkaline phosphatase activity, matrix mineralization, and expression of osteogenic genes in BMSCs in vitro. However, excessive Co doping decreased TCP-induced osteogenesis. Meanwhile, Co-TCP dose-dependently favored the growth and migration of human umbilical vein endothelial cells (HUVECs), and the expression of vascular endothelial growth factor (VEGF). The 2% Co-TCP significantly shrank the defect area in rat alveolar bone compared with TCP. Smaller bone volume and more abundant blood vessels were observed for 5% Co-TCP compared with 2% Co-TCP. The CD31 immunostaining in the 5% Co-TCP group was more intense than the other two groups, indicating of the increment of endothelium cells. Besides, 5% Co-TCP led to mild inflammatory response in bone defect area. Overall, TCP doped appropriately with Co has positive effect on osteogenesis, while excessive Co suppressed osteoblast differentiation and bone formation. These data indicate that vascularization within a proper range promotes osteogenesis, which may be a design consideration for bone grafts.
Collapse
Affiliation(s)
- Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yuanyi Yang
- Department of Materials Engineering, Sichuan College of Architectural Technology, Deyang 618000, China
| | - Yi Deng
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China; Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
20
|
Xue S, Wu Y, Guo M, Liu D, Zhang T, Lei W. Fabrication of Poly(acrylic acid)/Boron Nitride Composite Hydrogels with Excellent Mechanical Properties and Rapid Self-Healing Through Hierarchically Physical Interactions. NANOSCALE RESEARCH LETTERS 2018; 13:393. [PMID: 30519840 PMCID: PMC6281544 DOI: 10.1186/s11671-018-2800-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 11/14/2018] [Indexed: 05/24/2023]
Abstract
Many living tissues possess excellent mechanical properties and self-healing ability. To mimic these living tissues, a series of novel composite hydrogels, poly(acrylic acid)/surface-modified boron nitride nanosheets (PAA/BNNS-NH2) were fabricated simply through hierarchically physical interactions: molecular-scale metal coordination interaction between -COOH of PAA and Fe3+ and nanoscale H-bond between -COOH of PAA and -NH2 of BNNS-NH2. The composite hydrogels exhibit both excellent mechanical properties (including enhanced fracture stress, elongation, toughness, Young's modulus, and dissipated energy) and rapid healing ability without any external stimulus. Especially, the B0.5P70 (the hydrogel with BNNS concentration of 0.5 mg mL- 1, the water content of 70 wt%) exhibits a fracture stress of ~ 1311 kPa and toughness of ~ 4.7 MJ m- 3, almost ~ 3 times and ~ 8 times to B0P70, respectively. The excellent properties, combined with the simple preparation method, endow these composite hydrogels with potential applications.
Collapse
Affiliation(s)
- Shishan Xue
- School of Materials Science and Engineering, Southwest Petroleum University, Chengdu, 610500 China
| | - Yuanpeng Wu
- School of Materials Science and Engineering, Southwest Petroleum University, Chengdu, 610500 China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500 China
| | - Meiling Guo
- School of Materials Science and Engineering, Southwest Petroleum University, Chengdu, 610500 China
| | - Dan Liu
- Institute for Frontier Materials, Deakin University, Locked Bag 20000, Geelong, Victoria 3220 Australia
| | - Tao Zhang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123 China
| | - Weiwei Lei
- Institute for Frontier Materials, Deakin University, Locked Bag 20000, Geelong, Victoria 3220 Australia
| |
Collapse
|
21
|
Puiggalí-Jou A, Cejudo A, del Valle LJ, Alemán C. Smart Drug Delivery from Electrospun Fibers through Electroresponsive Polymeric Nanoparticles. ACS APPLIED BIO MATERIALS 2018; 1:1594-1605. [DOI: 10.1021/acsabm.8b00459] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anna Puiggalí-Jou
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany, 10-14, 08019 Barcelona, Spain
| | - Alberto Cejudo
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany, 10-14, 08019 Barcelona, Spain
| | - Luis J. del Valle
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany, 10-14, 08019 Barcelona, Spain
| | - Carlos Alemán
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany, 10-14, 08019 Barcelona, Spain
| |
Collapse
|
22
|
Lim LS, Rosli NA, Ahmad I, Mat Lazim A, Mohd Amin MCI. Synthesis and Swelling Behavior of pH-Sensitive Semi-IPN Superabsorbent Hydrogels Based on Poly(acrylic acid) Reinforced with Cellulose Nanocrystals. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E399. [PMID: 29156613 PMCID: PMC5707616 DOI: 10.3390/nano7110399] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 11/16/2022]
Abstract
pH-sensitive poly(acrylic acid) (PAA) hydrogel reinforced with cellulose nanocrystals (CNC) was prepared. Acrylic acid (AA) was subjected to chemical cross-linking using the cross-linking agent MBA (N,N-methylenebisacrylamide) with CNC entrapped in the PAA matrix. The quantity of CNC was varied between 0, 5, 10, 15, 20, and 25 wt %. X-ray diffraction (XRD) data showed an increase in crystallinity with the addition of CNC, while rheology tests demonstrated a significant increase in the storage modulus of the hydrogel with an increase in CNC content. It was found that the hydrogel reached maximum swelling at pH 7. The potential of the resulting hydrogels to act as drug carriers was then evaluated by means of the drug encapsulation efficiency test using theophylline as a model drug. It was observed that 15% CNC/PAA hydrogel showed the potential to be used as drug carrier system.
Collapse
Affiliation(s)
- Lim Sze Lim
- Polymer Research Centre (PORCE), School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi Selangor 43600, Malaysia.
| | - Noor Afizah Rosli
- Polymer Research Centre (PORCE), School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi Selangor 43600, Malaysia.
| | - Ishak Ahmad
- Polymer Research Centre (PORCE), School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi Selangor 43600, Malaysia.
| | - Azwan Mat Lazim
- Polymer Research Centre (PORCE), School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi Selangor 43600, Malaysia.
| | - Mohd Cairul Iqbal Mohd Amin
- Faculty of Pharmacy, University Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia.
| |
Collapse
|
23
|
Eslahi N, Abdorahim M, Simchi A. Smart Polymeric Hydrogels for Cartilage Tissue Engineering: A Review on the Chemistry and Biological Functions. Biomacromolecules 2016; 17:3441-3463. [PMID: 27775329 DOI: 10.1021/acs.biomac.6b01235] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Stimuli responsive hydrogels (SRHs) are attractive bioscaffolds for tissue engineering. The structural similarity of SRHs to the extracellular matrix (ECM) of many tissues offers great advantages for a minimally invasive tissue repair. Among various potential applications of SRHs, cartilage regeneration has attracted significant attention. The repair of cartilage damage is challenging in orthopedics owing to its low repair capacity. Recent advances include development of injectable hydrogels to minimize invasive surgery with nanostructured features and rapid stimuli-responsive characteristics. Nanostructured SRHs with more structural similarity to natural ECM up-regulate cell-material interactions for faster tissue repair and more controlled stimuli-response to environmental changes. This review highlights most recent advances in the development of nanostructured or smart hydrogels for cartilage tissue engineering. Different types of stimuli-responsive hydrogels are introduced and their fabrication processes through physicochemical procedures are reported. The applications and characteristics of natural and synthetic polymers used in SRHs are also reviewed with an outline on clinical considerations and challenges.
Collapse
Affiliation(s)
- Niloofar Eslahi
- Department of Textile Engineering, Science and Research Branch, Islamic Azad University , P.O. Box 14515/775, Tehran, Iran
| | | | | |
Collapse
|
24
|
Tahmasebi Birgani Z, Fennema E, Gijbels MJ, de Boer J, van Blitterswijk CA, Habibovic P. Stimulatory effect of cobalt ions incorporated into calcium phosphate coatings on neovascularization in an in vivo intramuscular model in goats. Acta Biomater 2016; 36:267-76. [PMID: 27000550 DOI: 10.1016/j.actbio.2016.03.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 02/02/2016] [Accepted: 03/17/2016] [Indexed: 01/07/2023]
Abstract
UNLABELLED Rapid vascularization of bone graft substitutes upon implantation is one of the most important challenges to overcome in order to achieve successful regeneration of large, critical-size bone defects. One strategy for stimulating vascularization during the regeneration process is to create a hypoxic microenvironment by either directly lowering the local oxygen tension, or by applying hypoxia-mimicking factors. Cells compensate for the hypoxic condition by releasing angiogenic factors leading to new blood vessel formation. In the present study, we explored the potential of cobalt ions (Co(2+)), known chemical mimickers of hypoxia, to stimulate vascularization within a bone graft substitute in vivo. To this end, Co(2+) ions were incorporated into calcium phosphate (CaPs) coatings deposited on poly(lactic acid) (PLA) particles with their effect on the formation of new blood vessels studied upon intramuscular implantation in goats. PLA particles and CaP-coated particles without Co(2+) ions served as controls. Pathological scoring of the inflammatory response following a 12-week implantation period showed no significant differences between the four types of materials. Based on histological and immunohistochemical analyses, both blood vessel area and number of blood vessels in CaP-coated PLA particles containing Co(2+) were higher than in the uncoated PLA particles and CaP-coated PLA particles without Co(2+). Analysis of blood vessel size distribution indicated abundant formation of small blood vessels in all the samples, while large blood vessels were predominantly found in PLA particles coated with CaP containing Co(2+) ions. The results of this study support the use of CaPs containing Co(2+) ions to enhance vascularization in vivo. STATEMENT OF SIGNIFICANCE In this work, we have investigated the potential of cobalt ions, incorporated into thin calcium phosphate (CaP) coatings that were deposited on particles of poly(lactic acid) (PLA), to induce neovascularization in vivo. Qualitative and quantitative histological and immunohistochemical analyses showed that both the number of blood vessels and the total blood vessel area were higher in CaP-coated PLA particles containing cobalt ions as compared to the uncoated PLA particles and CaP-coated PLA particles without the metallic additive. Furthermore, a wider distribution of blood vessel sizes, varying from very small to large vessels was specifically observed in samples containing cobalt ions. This in vivo study will significantly contribute to the existing knowledge on the use of bioinorganics, which are simple and inexpensive inorganic factors that can be used to control relevant biological process during tissue regeneration, such as vascularization. As such, we are convinced that this manuscript will be of interest to the readers of Acta Biomaterialia.
Collapse
|
25
|
Canillas M, de Lima GG, Rodríguez MA, Nugent MJD, Devine DM. Bioactive composites fabricated by freezing-thawing method for bone regeneration applications. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/polb.23974] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
| | - Gabriel G. de Lima
- Materials Research Institute, Athlone Institute of Technology; Athlone Ireland
| | | | | | - Declan M. Devine
- Materials Research Institute, Athlone Institute of Technology; Athlone Ireland
- Mayo Clinic; Rehabilitation Medicine Centre; Rochester Minnesota
| |
Collapse
|
26
|
Cui N, Qian J, Xu W, Xu M, Zhao N, Liu T, Wang H. Preparation, characterization, and biocompatibility evaluation of poly(Nɛ-acryloyl-L-lysine)/hyaluronic acid interpenetrating network hydrogels. Carbohydr Polym 2015; 136:1017-26. [PMID: 26572442 DOI: 10.1016/j.carbpol.2015.09.095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/23/2015] [Accepted: 09/26/2015] [Indexed: 02/04/2023]
Abstract
In the present study, poly(Nɛ-acryloyl-L-lysine)/hyaluronic acid (pLysAAm/HA) interpenetrating network (IPN) hydrogels were successfully fabricated through the combination of hydrazone bond crosslinking and photo-crosslinking reactions. The HA hydrogel network was first synthesized from 3,3'-dithiodipropionate hydrazide-modified HA and polyethylene glycol dilevulinate by hydrazone bond crosslinking. The pLysAAm hydrogel network was prepared from Nɛ-acryloyl-L-lysine and N,N'-bis(acryloyl)-(L)-cystine by photo-crosslinking. The resultant pLysAAm/HA hydrogels had a good shape recovery property after loading and unloading for 1.5 cycles (up to 90%) and displayed a highly porous microstructure. Their compressive moduli were at least 5 times higher than that of HA hydrogels. The pLysAAm/HA hydrogels had an equilibrium swelling ratio of up to 37.9 and displayed a glutathione-responsive degradation behavior. The results from in vitro biocompatibility evaluation with pre-osteoblasts MC3T3-E1 cells revealed that the pLysAAm/HA hydrogels could support cell viability and proliferation. Hematoxylin and eosin staining indicated that the pLysAAm/HA hydrogels allowed cell and tissue infiltration, confirming their good in vivo biocompatibility. Therefore, the novel pLysAAm/HA IPN hydrogels have great potential for bone tissue engineering applications.
Collapse
Affiliation(s)
- Ning Cui
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Junmin Qian
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Weijun Xu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Minghui Xu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Na Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ting Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongjie Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
27
|
Evaluation of the bacterial anti-adhesive properties of polyacrylic acid, chitosan and heparin-modified medical grade Silicone rubber substrate. JOURNAL OF POLYMER RESEARCH 2015. [DOI: 10.1007/s10965-015-0767-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Hu X, Wei W, Qi X, Yu H, Feng L, Li J, Wang S, Zhang J, Dong W. Preparation and characterization of a novel pH-sensitive Salecan-g-poly(acrylic acid) hydrogel for controlled release of doxorubicin. J Mater Chem B 2015; 3:2685-2697. [PMID: 32262916 DOI: 10.1039/c5tb00264h] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Salecan is a novel water-soluble extracellular β-glucan produced by a salt-tolerant strain Agrobacterium sp. ZX09. Salecan is suitable for the fabrication of hydrogels for biomedical applications due to its excellent physicochemical and biological properties. In this paper, a series of pH-sensitive hydrogels were prepared in aqueous solution by the graft copolymerization of Salecan and acrylic acid (AA) using N,N'-methylene diacrylamide as a crosslinker for controlled drug delivery. The structure and thermal stability of the resulting hydrogels were characterized by FT-IR, XRD and TGA. By SEM analysis, freeze-dried hydrogels displayed an interconnected porous structure with tunable pore size in the range of 23.2-90.3 μm. The swelling behavior of the hydrogels was shown to be highly dependent on the environmental pH, salt type and concentration, as well as the contents of Salecan and BAAm. They are almost unswellable at pH 1.2 and swollen extensively at pH 6.86. Meanwhile, the increase in the content of hydrophilic Salecan could enhance the swelling ratio, whereas the presence of more BAAm reduced the swelling capacity but promoted the water retention to some extent. Rheological tests revealed that storage modulus G' was strongly influenced by the crosslink density of the obtained hydrogel network. Especially, doxorubicin (DOX) as a model anti-cancer drug was very efficiently loaded into the negatively charged hydrogels (up to 69.4 wt%) through electrostatic interactions. More importantly, the release of DOX from this intelligent system exhibited pH-responsive behavior and a sustained release pattern. For SPA2, the cumulative release profile showed a low level of drug release (about 12.3 wt% in 24 h) at pH 7.4, and was significantly accelerated at pH 4.0 (over 40 wt% in 6 h). Cytotoxicity experiments confirmed that all blank hydrogels were non-toxic to A549 cells, while DOX released from the drug-loaded hydrogels remained biologically active and had the capability to kill cancer cells. The preliminary results clearly suggested that the Salecan-g-PAA hydrogels may be promising carriers for controlled drug delivery.
Collapse
Affiliation(s)
- Xinyu Hu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dundua A, Landfester K, Taden A. Water-based adhesives with tailored hydrophobic association: dilution resistance and improved setting behavior. Macromol Rapid Commun 2014; 35:1872-8. [PMID: 25243667 DOI: 10.1002/marc.201400391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/11/2014] [Indexed: 11/06/2022]
Abstract
Hydrophobic association and stimuli-responsiveness is a powerful tool towards water-based adhesives with strongly improved properties, which is demonstrated based on the example of hydrophobically modified alkali-soluble latexes (HASE) with modulated association. Their rheological properties are highly tunable due to the hydrophobic domains that act as physical crosslinking sites of adjustable interaction strength. Ethanol, propanol, and butanol are used as water-soluble model additives with different hydrophobicity in order to specifically target the association sites and impact the viscoelastic properties and stimuli-responsiveness. The rheological and mechanical property response upon dilution with water can be tailored, and dilution-resistant or even dilution-thickening systems are obtained. The investigations are of high importance for water-based adhesives, as our findings provide insight into general structure-property relationships to improve their setting behavior, especially upon contact with wet substrates.
Collapse
Affiliation(s)
- Alexander Dundua
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany; Henkel AG & Co. KGaA, Adhesive Research, Henkelstrasse 67, 40191, Düsseldorf, Germany
| | | | | |
Collapse
|
30
|
Cui H, Liu Y, Cheng Y, Zhang Z, Zhang P, Chen X, Wei Y. In Vitro Study of Electroactive Tetraaniline-Containing Thermosensitive Hydrogels for Cardiac Tissue Engineering. Biomacromolecules 2014; 15:1115-23. [DOI: 10.1021/bm4018963] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Haitao Cui
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| | - Yadong Liu
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Yilong Cheng
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| | - Zhe Zhang
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Peibiao Zhang
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Xuesi Chen
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Yen Wei
- Department
of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
31
|
Li Y, Huang G, Zhang X, Wang L, Du Y, Lu TJ, Xu F. Engineering cell alignment in vitro. Biotechnol Adv 2014; 32:347-65. [DOI: 10.1016/j.biotechadv.2013.11.007] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 11/16/2013] [Accepted: 11/17/2013] [Indexed: 01/03/2023]
|
32
|
Rahimi N, Swennen G, Verbruggen S, Scibiorek M, Molin DG, Post MJ. Short stimulation of electro-responsive PAA/fibrin hydrogel induces collagen production. Tissue Eng Part C Methods 2014; 20:703-13. [PMID: 24341313 DOI: 10.1089/ten.tec.2013.0596] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Acrylic acid/fibrin hydrogel can mechanically stimulate cells when an external electrical field is applied, enabling them to migrate and align throughout the depth of the gel. The ability of electro-responsive polyacrylic acid (PAA)/fibrin hydrogel to promote collagen production and remodeling has been investigated by three-dimensional (3D) culturing and conditioning of smooth muscle cells (SMCs). SMCs-seeded hydrogels were subjected to an alternating electrical field (0.06 V/mm) for 2 h for one, two, or three times per week during 4 weeks of culturing. Fluorescent images of collagen structure and accumulation, assessed by CNA-35 probe, showed increased collagen content (>100-fold at 1× stimulation/week) in the center of the hydrogels after 4 weeks of culture. The increase in collagen production correlated with increasing extracellular matrix gene expression and resulted in significantly improved mechanical properties of the stimulated hydrogels. Matrix metalloproteinase (MMP)-2 activity was also significantly enhanced by stimulation, which probably has a role in the reorganization of the collagen. Short stimulation (2 h) induced a favorable response in the cells and enhanced tissue formation and integrity of the scaffold by inducing collagen production. The presented set up could be used for conditioning and improving the functionality of current tissue-engineered vascular grafts.
Collapse
Affiliation(s)
- Nastaran Rahimi
- 1 Department of Physiology, Maastricht University , Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
33
|
Tai Z, Yang J, Qi Y, Yan X, Xue Q. Synthesis of a graphene oxide–polyacrylic acid nanocomposite hydrogel and its swelling and electroresponsive properties. RSC Adv 2013. [DOI: 10.1039/c3ra22335c] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|