1
|
Gui Q, Ding N, Wu H, Liu J, Geng Y, Zhu J, Gao M, Du A, Yue B, Zhu L. Development of a pH-Responsive Antimicrobial and Potent Antioxidant Hydrogel for Accelerated Wound Healing: A Game Changer in Drug Delivery. Adv Biol (Weinh) 2024:e2400358. [PMID: 39673457 DOI: 10.1002/adbi.202400358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/03/2024] [Indexed: 12/16/2024]
Abstract
Stimuli-responsive hydrogels have the capability to alter their state in response to changes in physiological signals within their application environment, providing distinct benefits in drug delivery applications. Here, the acidic pH typically found in acutely infected wounds can be effectively managed by incorporating a pH-responsive Ag+ loaded system within the hydrogel, thereby ensuring efficient drug use and preventing potential toxicity from the sudden release of silver ions. The antimicrobial composite hydrogel HAMA/GelMA-CA/Ag+ provides some tissue adhesion and accelerates wound healing. GelMA-CA is synthesized by modifying gelatin methacryloyl (GelMA) with caffeic acid (CA), while hyaluronic acid methacryloyl (HAMA) is introduced to prepare a double network hydrogel. Silver nitrate is then introduced to make it pH-responsive through the formation of coordination between the polyphenolic structure of caffeic acid and the silver ions. The composite hydrogel exhibited excellent antioxidant properties and strong antimicrobial activity against both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Furthermore, the composite hydrogel accelerated the promotion of wound healing in a rat model of S. aureus-infected wounds. In conclusion, the HAMA/GelMA-CA/Ag+ hydrogel is a promising bioactive material that can be used as a wound dressing to promote the healing of acutely infected wounds.
Collapse
Affiliation(s)
- Qixiang Gui
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Neng Ding
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
- Department of Burns and Plastic Surgery, the PLA 74th Group Army Hospital, Guangzhou, 510300, China
| | - Haimei Wu
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
- Faculty of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jinyue Liu
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Yingnan Geng
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Jie Zhu
- Department of Plastic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Mingyue Gao
- YanCheng NO.1 People's Hospital, Yancheng, 224006, China
| | - Antong Du
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Bingbing Yue
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Lie Zhu
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| |
Collapse
|
2
|
Al-Musawi MH, Turki S, Al-Naymi HAS, Sameer Al-salman S, Boroujeni VV, Alizadeh M, Sattar M, Sharifianjazi F, Bazli L, Pajooh AMD, Shahriari-Khalaji M, Najafinezhad A, Moghadam FM, Mirhaj M, Tavakoli M. Localized delivery of healing stimulator medicines for enhanced wound treatment. J Drug Deliv Sci Technol 2024; 101:106212. [DOI: 10.1016/j.jddst.2024.106212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Bayrami S, Chamani M, JamaliMoghadamSiahkali S, SeyedAlinaghi S, Shirmard LR, Bayrami S, Javar HA, Ghahremani MH, Amini M, Tehrani MR, Shahsavari S, Dorkoosh FA. Preparation, Characterization and In vitro Evaluation of Insulin-PHBV Nanoparticles/Alginate Hydrogel Composite System for Prolonged Delivery of Insulin. J Pharm Sci 2024; 113:2552-2559. [PMID: 38508339 DOI: 10.1016/j.xphs.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
PURPOSE In the present study, biodegradable poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanoparticles (NPs) containing insulin were loaded in sodium alginate/jeffamine (ALG/jeff) hydrogel for prolonged delivery of insulin. The main aim of this work was to fabricate an efficient insulin delivery system to improve patient adherence by decreasing the repetition of injections. METHODS Swelling and morphological properties and crosslinking efficiency of ALG/jeff hydrogel were assessed. The composite hydrogel was prepared by adding PHBV NPs to ALG/jeff hydrogel concurrently with crosslinking process. The morphology and loading capacity of composite hydrogel were analyzed. RESULTS Circular dichroism measurement demonstrated that insulin remains stable following fabrication process. The release profile exhibited 54.6 % insulin release from composite hydrogel within 31 days with minor initial burst release equated to nanoparticles and hydrogels. MTT cell viability analysis was performed by applying L-929 cell line and no cytotoxic effect was observed. CONCLUSIONS Favorable results clearly introduced fabricated composite hydrogel as an excellent candidate for drug delivery systems and also paves the route for prolonged delivery systems of other proteins.
Collapse
Affiliation(s)
- Samane Bayrami
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Chamani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - SeyedAhmad SeyedAlinaghi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Rezaie Shirmard
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sepide Bayrami
- Islamic Azad University, North Tehran Branch, Faculty of Bioscience, Tehran, Iran
| | - Hamid Akbari Javar
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Toxicology-Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Drug Design and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Rafiee Tehrani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shadab Shahsavari
- Chemical Engineering Department, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Farid Abedin Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Medical Biomaterial Research Centre (MBRC), Tehran University of Medical Sciences, Tehran 14399-56131, Iran.
| |
Collapse
|
4
|
Ou K, Liu Y, Deng L, Chen S, Gu S, Wang B. Covalently grafting polycation to bacterial cellulose for antibacterial and anti-cell adhesive wound dressings. Int J Biol Macromol 2024; 269:132157. [PMID: 38723804 DOI: 10.1016/j.ijbiomac.2024.132157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/28/2023] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Hydrogel-based wound dressings are becoming increasingly important for wound healing. Bacterial cellulose (BC) has been commonly used as wound dressings due to its good in vitro and in vivo biocompatibility. However, pure BC does not possess antibacterial properties. In this regard, polycation gel was grafted onto the BC using a surface-initiated activator regenerated by electron transfer atom transfer radical polymerization (SI-ARGET ATRP) with subsequent quaternization for antibacterial wound dressing. Dimethylethyl methacrylate (DMAEMA) was successfully polymerized on the BC surface which was confirmed by Fourier transform infrared spectroscopy and elemental analysis. The morphology structure, specific surface area, pore size, and mechanical properties were also characterized. The quaternized PDMAEMA grafted on the BC endowed it with excellent antibacterial activity against E. coli (Gram-negative) and S. aureus (Gram-positive) with a killing rate of 89.2 % and 93.4 %, respectively. The number of cells was significantly reduced on QPD/BC hydrogel, demonstrating its good anti-adhesion ability. In vitro cellular evaluation revealed that the antibacterial wound dressing exhibited good biocompatibility. Overall, this study provides a feasible method to develop antibacterial and anti-cell adhesive hydrogel, which has a promising potential for wound healing.
Collapse
Affiliation(s)
- Kangkang Ou
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, PR China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Yang Liu
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Lili Deng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Shiyan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China.
| | - Song Gu
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, PR China.
| | - Baoxiu Wang
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| |
Collapse
|
5
|
Chauhan S, Jhawat V, Singh RP, Yadav A. Topical delivery of insulin using novel organogel formulations: An approach for the management of diabetic wounds. Burns 2024; 50:1068-1082. [PMID: 38350788 DOI: 10.1016/j.burns.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/06/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024]
Abstract
Diabetes mellitus is a growing chronic form of diabetes, with lengthy health implications. It is predicted as poor diabetic wound recovery affects roughly 25% of all diabetes mellitus patients, frequently resulting in lower traumatic injury and severe external factors and emotional expenses. The insulin-resistant condition increases biofilm development, making diabetic wounds harder to treat. Nowadays, medical treatment and management of diabetic wounds, which have a significant amputation rate, a high-frequency rate, and a high death rate, have become a global concern. Topical formulations have played a significant part in diabetic wound management and have been developed to achieve a number of features. Because of its significant biocompatibility, moisture retention, and therapeutic qualities, topical insulin has emerged as an appealing and feasible wound healing process effector. With a greater comprehension of the etiology of diabetic wounds, numerous functionalized topical insulins have been described and shown good outcomes in recent years, which has improved some diabetic injuries. The healing of wounds is a physiological phenomenon that restores skin integrity and heals damaged tissues. Insulin, a powerful wound-healing factor, is also used in several experimental and clinical studies accelerate healing of diverse injuries.
Collapse
Affiliation(s)
- Sunita Chauhan
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Vikas Jhawat
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India.
| | - Rahul Pratap Singh
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Abhishek Yadav
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India
| |
Collapse
|
6
|
Rajalekshmy GP, Ramesan RM, Geetha CS, Pratheesh KV, Shenoy SJ, Anilkumar TV. In Vivo Wound-Healing Efficacy of Insulin-Loaded Strontium-Cross-Linked Alginate-Based Hydrogels in Diabetic Rats. ACS Biomater Sci Eng 2024; 10:2552-2566. [PMID: 38450650 DOI: 10.1021/acsbiomaterials.3c01692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The wound-healing effect of insulin is well studied and reported. However, prolonged topical application of insulin without compromising its biological activity is still a challenge. In this study, the effect of topically delivered insulin on promoting wound healing in diabetic animals was evaluated. Alginate diamine PEG-g-poly(PEGMA) (ADPM2S2) was the material used for the topical delivery of insulin. ADPM2S2 hydrogels release insulin and strontium ions, and they synergistically act to regulate different phases of wound healing. Insulin was released from the ADPM2S2 hydrogel for a period of 48 h, maintaining its structural stability and biological activity. In vitro studies were performed under high-glucose conditions to evaluate the wound-healing potential of insulin. Insulin-loaded ADPM2S2 hydrogels showed significant improvement in cell migration, proliferation, and collagen deposition, compared to control cells under high-glucose conditions. Immunostaining studies in L929 cells showed a reduction in phospho Akt expression under high-glucose conditions, and in the presence of insulin, the expression increased. The gene expression studies revealed that insulin plays an important role in regulating the inflammatory phase and macrophage polarization, which favors accelerated wound closure. In vivo experiments in diabetic rat excision wounds treated with insulin-loaded ADPM2S2 showed 95% wound closure within 14 days compared with 82% in control groups. Thus, both the in vitro and in vivo results signify the therapeutic potential of topically delivered insulin in wound management under high-glucose conditions.
Collapse
Affiliation(s)
- G P Rajalekshmy
- Division of Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram 695012, Kerala, India
| | - Rekha M Ramesan
- Division of Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram 695012, Kerala, India
| | - C Surendran Geetha
- Experimental Pathology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram 695012, Kerala, India
| | - Kanakarajan V Pratheesh
- Experimental Pathology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram 695012, Kerala, India
| | - Sachin J Shenoy
- Division of In Vivo Models and Testing, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram 695012, Kerala, India
| | - Thapasimuthu V Anilkumar
- Experimental Pathology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram 695012, Kerala, India
| |
Collapse
|
7
|
Esquena-Moret J. A Review of Xyloglucan: Self-Aggregation, Hydrogel Formation, Mucoadhesion and Uses in Medical Devices. MACROMOL 2022; 2:562-590. [DOI: 10.3390/macromol2040037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The present paper reviews the self-aggregation, gel-forming and adsorption properties of xyloglucan (XG), and its main applications as a medical device for wound dressings, mucosal protection and ocular lubrication, as well as its uses as an excipient. XG is a branched polysaccharide composed of a central backbone of D-glucose units linked by β(1→4)-glycosidic bonds, decorated with D-xylose units through α(1→6) glycosidic bonds, and with some D-galactose units anchored to these D-xylose units via β(1→2) bonds. XG forms self-aggregates with a hierarchically ordered morphology in aqueous solutions, leading to the formation of nanofibers. Consequently, XG is a hydrogel-forming polymer able to retain large amounts of water. Inside the human digestive tract, XG is enzymatically degalactosylated, but the backbone with xylose side chains remains stable until excretion. Degalactosylated XG undergoes a fully reversible sol–gel transition, forming hydrogels between upper and lower critical temperatures. XG adsorbs on intestinal mucosa and creates a diffusion barrier that reduces permeability and also prevents bacterial infections by reducing their infiltration. Therefore, orally administered XG is considered a mucosa protectant.
Collapse
Affiliation(s)
- J. Esquena-Moret
- Institute of Advanced Chemistry of Catalonia (IQAC), Consejo Superior de Investigaciones Científicas (CSIC), Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona, 18-26, 08034 Barcelona, Spain
| |
Collapse
|
8
|
Mirdamadian SZ, Varshosaz J, Minaiyan M, Taheri A. 3D printed tablets containing oxaliplatin loaded alginate nanoparticles for colon cancer targeted delivery. An in vitro/in vivo study. Int J Biol Macromol 2022; 205:90-109. [PMID: 35182561 DOI: 10.1016/j.ijbiomac.2022.02.080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/31/2022] [Accepted: 02/14/2022] [Indexed: 12/15/2022]
Abstract
This study aimed to develop a colon-targeted tablet of oxaliplatin (OP) using the combination of nanotechnology and fused deposition modeling (FDM) 3D printing to improve its antitumor activity, tumor targetability, and safety profile. Eudragit L100-55 filament containing OP loaded alginate nanoparticles (OP-NPs) were fabricated using hot-melt extrusion method and printed by an FDM printer to 3D printed tablets with good uniformity in the drug content and selective release of OP in the colonic environment. The antitumor effect of 3D printed tablets containing OP-NPs in CT-26 tumor-bearing mice was evaluated compared to intravenous and oral administration of OP solution, and compressed tablets containing OP-NPs, which were prepared by direct compression method with the same formulation. The antitumor effect of 3D printed tablets containing OP-NPs was remarkable and comparable with intravenous OP solution (p ˃ 0.05) with a better safety profile, whereas compressed tablets did not show any significant antitumor effect, probably in terms of non-selective drug release in stomach and upper intestine environments. This study highlights the potential of the combination of nanotechnology and 3D printing in the preparation of colon-specific drug delivery systems of chemotherapeutic drugs with good antitumor activity, tumor targetability, and safety profile for colorectal cancer treatment.
Collapse
Affiliation(s)
- Seyedeh Zahra Mirdamadian
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Minaiyan
- Department of Pharmacology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azade Taheri
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
9
|
Current Trends in Advanced Alginate-Based Wound Dressings for Chronic Wounds. J Pers Med 2021; 11:jpm11090890. [PMID: 34575668 PMCID: PMC8471591 DOI: 10.3390/jpm11090890] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 12/18/2022] Open
Abstract
Chronic wounds represent a major public health issue, with an extremely high cost worldwide. In healthy individuals, the wound healing process takes place in different stages: inflammation, cell proliferation (fibroblasts and keratinocytes of the dermis), and finally remodeling of the extracellular matrix (equilibrium between metalloproteinases and their inhibitors). In chronic wounds, the chronic inflammation favors exudate persistence and bacterial film has a special importance in the dynamics of chronic inflammation in wounds that do not heal. Recent advances in biopolymer-based materials for wound healing highlight the performance of specific alginate forms. An ideal wound dressing should be adherent to the wound surface and not to the wound bed, it should also be non-antigenic, biocompatible, semi-permeable, biodegradable, elastic but resistant, and cost-effective. It has to give protection against bacterial, infectious, mechanical, and thermal agents, to modulate the level of wound moisture, and to entrap and deliver drugs or other molecules This paper explores the roles of alginates in advanced wound-dressing forms with a particular emphasis on hydrogels, nanofibers networks, 3D-scaffolds or sponges entrapping fibroblasts, keratinocytes, or drugs to be released on the wound-bed. The latest research reports are presented and supported with in vitro and in vivo studies from the current literature.
Collapse
|
10
|
Nanocarrier-Mediated Topical Insulin Delivery for Wound Healing. MATERIALS 2021; 14:ma14154257. [PMID: 34361451 PMCID: PMC8348788 DOI: 10.3390/ma14154257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 12/12/2022]
Abstract
Wound care has been clinically demanding due to inefficacious treatment that represents an economic burden for healthcare systems. In Europe, approximately 7 million people are diagnosed with untreated wounds, leading to a cost between 6.000€ and 10.000€ per patient/year. In the United States of America, 1.5 million people over 65 years old suffer from chronic wounds. A promising therapeutic strategy is the use of exogenous growth factors because they are decreased at the wound site, limiting the recovery of the skin. Insulin is one of the cheapest growth factors in the market able to accelerate the re-epithelialization and stimulate angiogenesis and cell migration. However, the effectiveness of topical insulin in wound healing is hampered by the proteases in the wound bed. The encapsulation into nanoparticles improves its stability in the wound, providing adhesion to the mucosal surface and allowing its sustained release. The aim of this review is to perform a standing point about a promising strategy to treat different types of wounds by the topical delivery of insulin-loaded nanocarriers.
Collapse
|
11
|
Ahmad Raus R, Wan Nawawi WMF, Nasaruddin RR. Alginate and alginate composites for biomedical applications. Asian J Pharm Sci 2021; 16:280-306. [PMID: 34276819 PMCID: PMC8261255 DOI: 10.1016/j.ajps.2020.10.001] [Citation(s) in RCA: 235] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/26/2020] [Accepted: 10/07/2020] [Indexed: 12/22/2022] Open
Abstract
Alginate is an edible heteropolysaccharide that abundantly available in the brown seaweed and the capsule of bacteria such as Azotobacter sp. and Pseudomonas sp. Owing to alginate gel forming capability, it is widely used in food, textile and paper industries; and to a lesser extent in biomedical applications as biomaterial to promote wound healing and tissue regeneration. This is evident from the rising use of alginate-based dressing for heavily exuding wound and their mass availability in the market nowadays. However, alginate also has limitation. When in contact with physiological environment, alginate could gelate into softer structure, consequently limits its potential in the soft tissue regeneration and becomes inappropriate for the usage related to load bearing body parts. To cater this problem, wide range of materials have been added to alginate structure, producing sturdy composite materials. For instance, the incorporation of adhesive peptide and natural polymer or synthetic polymer to alginate moieties creates an improved composite material, which not only possesses better mechanical properties compared to native alginate, but also grants additional healing capability and promote better tissue regeneration. In addition, drug release kinetic and cell viability can be further improved when alginate composite is used as encapsulating agent. In this review, preparation of alginate and alginate composite in various forms (fibre, bead, hydrogel, and 3D-printed matrices) used for biomedical application is described first, followed by the discussion of latest trend related to alginate composite utilization in wound dressing, drug delivery, and tissue engineering applications.
Collapse
Affiliation(s)
- Raha Ahmad Raus
- Department of Biotechnology Engineering, International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia
| | - Wan Mohd Fazli Wan Nawawi
- Department of Biotechnology Engineering, International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia
- Nanoscience and Nanotechnology Research Group (NanoRG), International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia
| | - Ricca Rahman Nasaruddin
- Department of Biotechnology Engineering, International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia
- Nanoscience and Nanotechnology Research Group (NanoRG), International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia
| |
Collapse
|
12
|
Controlled-release of free bacteriophage nanoparticles from 3D-plotted hydrogel fibrous structure as potential antibacterial wound dressing. J Control Release 2021; 331:154-163. [DOI: 10.1016/j.jconrel.2021.01.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/03/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022]
|
13
|
Bankoti K, Rameshbabu AP, Datta S, Goswami P, Roy M, Das D, Ghosh SK, Das AK, Mitra A, Pal S, Maulik D, Su B, Ghosh P, Basu B, Dhara S. Dual Functionalized Injectable Hybrid Extracellular Matrix Hydrogel for Burn Wounds. Biomacromolecules 2020; 22:514-533. [PMID: 33289564 DOI: 10.1021/acs.biomac.0c01400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Low strength and rapid biodegradability of acellular dermal matrix (ADM) restrict its wider clinical application as a rapid cell delivery platform in situ for management of burn wounds. Herein, the extracted ADM was modified by a dual cross-linking approach with ionic crosslinking using chitosan and covalent cross-linking using an iodine-modified 2,5-dihydro-2,5-dimethoxy-furan cross-linker, termed as CsADM-Cl. In addition, inherent growth factors and cytokines were found to be preserved in CsADM-Cl, irrespective of ionic/covalent crosslinking. CsADM-Cl demonstrated improvement in post crosslinking stiffness with a decreased biodegradation rate. This hybrid crosslinked hydrogel supported adhesion, proliferation, and migration of human foreskin-derived fibroblasts and keratinocytes. Also, the angiogenic potential of CsADM-Cl was manifested by chick chorioallantoic membrane assay. CsADM-Cl showed excellent antibacterial activity against Escherichia coli and Staphylococcus aureus. Moreover, CsADM-Cl treated full thickness burn wounds and demonstrated rapid healing marked with superior angiogenesis, well-defined dermal-epidermal junctions, mature basket weave collagen deposition, and development of more pronounced secondary appendages. Altogether, the bioactive CsADM-Cl hydrogel established significant clinical potential to support wound healing as an apt injectable antibacterial matrix to encounter unmet challenges concerning critical burn wounds.
Collapse
Affiliation(s)
- Kamakshi Bankoti
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Arun Prabhu Rameshbabu
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sayanti Datta
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Piyali Goswami
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Madhurima Roy
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Dipankar Das
- Polymer Chemistry Laboratory, Department of Applied Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Sudip Kumar Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Analava Mitra
- Natural Products Research Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sagar Pal
- Polymer Chemistry Laboratory, Department of Applied Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Dhrubajyoti Maulik
- Department of Surgery, Bankura Sammilani Medical College, Bankura 722102, India
| | - Bo Su
- Bristol Dental School, University of Bristol, Bristol BS1 2LY, U.K
| | - Paulomi Ghosh
- Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology (CSIR-IICB), 4, Raja S C Mullick Road, Kolkata 700032, India
| | - Bikramajit Basu
- Materials Research Center, Indian Institute of Science, Bangalore 560012, India
| | - Santanu Dhara
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
14
|
Gough CR, Rivera-Galletti A, Cowan DA, Salas-de la Cruz D, Hu X. Protein and Polysaccharide-Based Fiber Materials Generated from Ionic Liquids: A Review. Molecules 2020; 25:E3362. [PMID: 32722182 PMCID: PMC7435976 DOI: 10.3390/molecules25153362] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/19/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Natural biomacromolecules such as structural proteins and polysaccharides are composed of the basic building blocks of life: amino acids and carbohydrates. Understanding their molecular structure, self-assembly and interaction in solvents such as ionic liquids (ILs) is critical for unleashing a flora of new materials, revolutionizing the way we fabricate multi-structural and multi-functional systems with tunable physicochemical properties. Ionic liquids are superior to organic solvents because they do not produce unwanted by-products and are considered green substitutes because of their reusability. In addition, they will significantly improve the miscibility of biopolymers with other materials while maintaining the mechanical properties of the biopolymer in the final product. Understanding and controlling the physicochemical properties of biopolymers in ionic liquids matrices will be crucial for progress leading to the ability to fabricate robust multi-level structural 1D fiber materials. It will also help to predict the relationship between fiber conformation and protein secondary structures or carbohydrate crystallinity, thus creating potential applications for cell growth signaling, ionic conductivity, liquid diffusion and thermal conductivity, and several applications in biomedicine and environmental science. This will also enable the regeneration of biopolymer composite fiber materials with useful functionalities and customizable options critical for additive manufacturing. The specific capabilities of these fiber materials have been shown to vary based on their fabrication methods including electrospinning and post-treatments. This review serves to provide basic knowledge of these commonly utilized protein and polysaccharide biopolymers and their fiber fabrication methods from various ionic liquids, as well as the effect of post-treatments on these fiber materials and their applications in biomedical and pharmaceutical research, wound healing, environmental filters and sustainable and green chemistry research.
Collapse
Affiliation(s)
- Christopher R. Gough
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (C.R.G.); (A.R.-G.); (D.A.C.)
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Ashley Rivera-Galletti
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (C.R.G.); (A.R.-G.); (D.A.C.)
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Darrel A. Cowan
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (C.R.G.); (A.R.-G.); (D.A.C.)
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - David Salas-de la Cruz
- Department of Chemistry, and Center for Computational and Integrative Biology, Camden, NJ 08102, USA;
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (C.R.G.); (A.R.-G.); (D.A.C.)
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
15
|
Wang J, Xu J. Effects of Topical Insulin on Wound Healing: A Review of Animal and Human Evidences. Diabetes Metab Syndr Obes 2020; 13:719-727. [PMID: 32214835 PMCID: PMC7078652 DOI: 10.2147/dmso.s237294] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Wound healing is a complex biological process that repairs damaged tissues and restores skin integrity. Insulin, a potent factor of wound healing, has been reported for nearly a century to induce rapid recovery of various wounds, as shown by numerous human and animal studies. Although many studies have addressed the healing effect of systemic insulin on burn wound, only few have investigated the efficacy of topical insulin. Thus, this study aimed to review evidence of the effects of topical insulin on wound healing, including on diabetic and non-diabetic wounds. The presented animal and clinical studies support that topical insulin improves wound healing through several mechanisms without causing side effects. Additionally, various wound dressings accelerate the wound healing with controlled and sustained delivery of bioactive insulin. Therefore, topical insulin has been appreciated in field of wound healing, and further studies are needed to improve our understanding of the role of insulin in the healing of various wounds.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Correspondence: Jixiong Xu Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng St., Nanchang, Jiangxi Province330006, People’s Republic of ChinaTel +86 13307086069 Email
| |
Collapse
|
16
|
Lee CH, Hung KC, Hsieh MJ, Chang SH, Juang JH, Hsieh IC, Wen MS, Liu SJ. Core-shell insulin-loaded nanofibrous scaffolds for repairing diabetic wounds. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 24:102123. [PMID: 31711999 DOI: 10.1016/j.nano.2019.102123] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/15/2019] [Accepted: 10/30/2019] [Indexed: 12/23/2022]
Abstract
Patients with diabetes mellitus have up to a 15% lifetime risk of non-healing and poorly healing wounds. This work develops core-shell nanofibrous bioactive insulin-loaded poly-D-L-lactide-glycolide (PLGA) scaffolds that release insulin in a sustained manner for repairing wounds in diabetic rats. To prepare the biodegradable core-shell nanofibers, PLGA and insulin solutions were fed into two capillary tubes of different sizes that were coaxially electrospun using two independent pumps. The scaffolds sustainably released insulin for four weeks. The hydrophilicity and water-containing capacity of core-shell nanofibrous insulin/PLGA scaffolds significantly exceeded those of blended nanofibrous scaffolds. The nanofibrous core-shell insulin-loaded scaffold reduced the amount of type I collagen in vitro, increased the transforming growth factor-beta content in vivo, and promoted diabetic would repair. The core-shell insulin-loaded nanofibrous scaffolds prolong the release of insulin and promote diabetic wound healing.
Collapse
Affiliation(s)
- Chen-Hung Lee
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Tao-Yuan, Taiwan.
| | - Kuo-Chun Hung
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Tao-Yuan, Taiwan.
| | - Ming-Jer Hsieh
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Tao-Yuan, Taiwan.
| | - Shang-Hung Chang
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Tao-Yuan, Taiwan.
| | - Jyuhn-Huarng Juang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung University and Chang Gung Memorial Hospital, Tao-Yuan, Taiwan.
| | - I-Chang Hsieh
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Tao-Yuan, Taiwan.
| | - Ming-Shien Wen
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Tao-Yuan, Taiwan.
| | - Shih-Jung Liu
- Department of Mechanical Engineering, Chang Gung University, Tao-Yuan, Taiwan; Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Linkou, Tao-Yuan, Taiwan.
| |
Collapse
|
17
|
Ullah S, Khalil AA, Shaukat F, Song Y. Sources, Extraction and Biomedical Properties of Polysaccharides. Foods 2019; 8:E304. [PMID: 31374889 PMCID: PMC6723881 DOI: 10.3390/foods8080304] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 07/27/2019] [Accepted: 07/28/2019] [Indexed: 12/14/2022] Open
Abstract
In the recent era, bioactive compounds from plants have received great attention because of their vital health-related activities, such as antimicrobial activity, antioxidant activity, anticoagulant activity, anti-diabetic activity, UV protection, antiviral activity, hypoglycemia, etc. Previous studies have already shown that polysaccharides found in plants are not likely to be toxic. Based on these inspirational comments, most research focused on the isolation, identification, and bioactivities of polysaccharides. A large number of biologically active polysaccharides have been isolated with varying structural and biological activities. In this review, a comprehensive summary is provided of the recent developments in the physical and chemical properties as well as biological activities of polysaccharides from a number of important natural sources, such as wheat bran, orange peel, barely, fungi, algae, lichen, etc. This review also focused on biomedical applications of polysaccharides. The contents presented in this review will be useful as a reference for future research as well as for the extraction and application of these bioactive polysaccharides as a therapeutic agent.
Collapse
Affiliation(s)
- Samee Ullah
- Colin Ratledge Center for Microbial Lipids, Center for Functional Foods and Health, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Faryal Shaukat
- Colin Ratledge Center for Microbial Lipids, Center for Functional Foods and Health, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, Center for Functional Foods and Health, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255049, China.
| |
Collapse
|
18
|
Nanotechnology-based delivery systems to release growth factors and other endogenous molecules for chronic wound healing. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Martínez-Jiménez MA, Valadez-Castillo FJ, Aguilar-García J, Ramírez-GarciaLuna JL, Gaitán-Gaona FI, Pierdant-Perez M, Valdes-Rodríguez R, Sánchez-Aguilar JM. Effects of Local Use of Insulin on Wound Healing in Non-diabetic Patients. Plast Surg (Oakv) 2017; 26:75-79. [PMID: 29845043 DOI: 10.1177/2292550317740688] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background Clinical trials have shown the positive effects of local insulin therapy in the formation of new vessels and fibrosis in acute and chronic diabetic wounds without major adverse effects. Objective The aim of this study was to investigate the effects of local insulin use on wound healing in non-diabetic patients. Methods A randomized, split-plot, double-blind, placebo-controlled trial was conducted. Ten non-diabetic patients with full-thickness acute wounds were recruited (5 due to trauma, 3 to burns, and 2 to pressure). All wounds received standard bedside treatment. Each wound was divided into 2 zones. One side received a standard care plus insulin, while the other received standard care plus injection of saline solution. A biopsy specimen was taken from both sites on days 0 and 14. The amount of blood vessel growth and the percentage of fibrosis were evaluated. Results A significant difference in the number of new vessels was observed on the insulin-treated site (70.6 [29.21]) compared to saline only (26.5 [34.3]; P < .04). The percentage of fibrosis (insulin 34.7 [28.02] vs saline 27.8 [29.9]) showed no significant difference. No adverse events related to the study occurred. The clinical implications of this study are considerable in terms of the formation of blood vessels but not fibrosis. Conclusion We suggest that local insulin administration is a safe therapeutic option for angiogenesis in wounds of non-diabetic patients.
Collapse
Affiliation(s)
- Mario Aurelio Martínez-Jiménez
- Division of Plastic and Reconstructive Surgery and Burn Center, Department of Surgery, Hospital Central "Dr Ignacio Morones Prieto", San Luis Potosí, México
| | | | - Jorge Aguilar-García
- Division of Plastic and Reconstructive Surgery and Burn Center, Department of Surgery, Hospital Central "Dr Ignacio Morones Prieto", San Luis Potosí, México
| | | | - Francisco Israel Gaitán-Gaona
- Division of Plastic and Reconstructive Surgery and Burn Center, Department of Surgery, Hospital Central "Dr Ignacio Morones Prieto", San Luis Potosí, México
| | - Mauricio Pierdant-Perez
- Department of Clinic Epidemiology, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | | | - Jesús Martín Sánchez-Aguilar
- Department of Clinic Epidemiology, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| |
Collapse
|
20
|
Abstract
Microparticles with controlled size and morphology are of significant interest in the field of drug delivery. Although advanced nanoparticles have been the object of a substantial number of reviews, fewer have focused on microparticles, especially for the delivery of drugs and growth factors to the wound site. Microparticles show distinct advantages, including ease of production and characterization, extended release properties, high drug loading and little concern about the toxicity as compared with the nanosized systems. This review presents an introduction to the pathophysiology of wound healing and provides an overview of some of the recent advances in microparticle-based drugs and growth factors delivery to wound sites.
Collapse
|
21
|
Ajovalasit A, Sabatino MA, Todaro S, Alessi S, Giacomazza D, Picone P, Di Carlo M, Dispenza C. Xyloglucan-based hydrogel films for wound dressing: Structure-property relationships. Carbohydr Polym 2017; 179:262-272. [PMID: 29111050 DOI: 10.1016/j.carbpol.2017.09.092] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 10/18/2022]
Abstract
Thin xyloglucan-based hydrogel films have been synthetized and characterized in the prospect of producing wound dressings. Polyvinyl alcohol (PVA) and glycerol (Gro) were added to have an optimal combination of softness, conformability and resilience. Physical hydrogels have been transformed into permanent covalent hydrogels by reaction with glutaraldehyde (GA). Network structure-process-property relationships are discussed on the account of the results of several complementary characterizations: FTIR, rheology, thermal analysis, morphological analysis, moisture retention and swelling measurements. Selected formulations were also subjected to preliminary in vitro cytotoxicity tests. The physical and mechanical properties of some of the xyloglucan-based hydrogel films produced, combined with absence of cytotoxicity, make them suitable candidates for integration with sensors to monitor the wound healing process and further biological investigations in animal models.
Collapse
Affiliation(s)
- Alessia Ajovalasit
- Dipartimento dell'Innovazione Industriale e Digitale- Ingegneria Chimica, Gestionale, Informatica, Meccanica (DIID), Università degli Studi di Palermo, Viale delle Scienze, 6, Palermo 90128, Italy
| | - Maria Antonietta Sabatino
- Dipartimento dell'Innovazione Industriale e Digitale- Ingegneria Chimica, Gestionale, Informatica, Meccanica (DIID), Università degli Studi di Palermo, Viale delle Scienze, 6, Palermo 90128, Italy.
| | - Simona Todaro
- Dipartimento dell'Innovazione Industriale e Digitale- Ingegneria Chimica, Gestionale, Informatica, Meccanica (DIID), Università degli Studi di Palermo, Viale delle Scienze, 6, Palermo 90128, Italy
| | - Sabina Alessi
- Dipartimento dell'Innovazione Industriale e Digitale- Ingegneria Chimica, Gestionale, Informatica, Meccanica (DIID), Università degli Studi di Palermo, Viale delle Scienze, 6, Palermo 90128, Italy
| | - Daniela Giacomazza
- Istituto di BioFisica (IBF), Consiglio Nazionale delle Ricerche, Via U. La Malfa, 153, Palermo 90146, Italy
| | - Pasquale Picone
- Istituto di Biomedicina e Immunologia Molecolare (IBIM), Consiglio Nazionale Delle Ricerche,Via U. La Malfa, 153, Palermo 90146, Italy
| | - Marta Di Carlo
- Istituto di Biomedicina e Immunologia Molecolare (IBIM), Consiglio Nazionale Delle Ricerche,Via U. La Malfa, 153, Palermo 90146, Italy
| | - Clelia Dispenza
- Dipartimento dell'Innovazione Industriale e Digitale- Ingegneria Chimica, Gestionale, Informatica, Meccanica (DIID), Università degli Studi di Palermo, Viale delle Scienze, 6, Palermo 90128, Italy; Istituto di BioFisica (IBF), Consiglio Nazionale delle Ricerche, Via U. La Malfa, 153, Palermo 90146, Italy
| |
Collapse
|
22
|
Design of interpenetrating chitosan and poly(ethylene glycol) sponges for potential drug delivery applications. Carbohydr Polym 2017; 170:166-175. [DOI: 10.1016/j.carbpol.2017.04.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/22/2017] [Accepted: 04/21/2017] [Indexed: 12/21/2022]
|
23
|
Tong Z, Chen Y, Liu Y, Tong L, Chu J, Xiao K, Zhou Z, Dong W, Chu X. Preparation, Characterization and Properties of Alginate/Poly(γ-glutamic acid) Composite Microparticles. Mar Drugs 2017; 15:md15040091. [PMID: 28398222 PMCID: PMC5408237 DOI: 10.3390/md15040091] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 03/12/2017] [Accepted: 03/20/2017] [Indexed: 11/16/2022] Open
Abstract
Alginate (Alg) is a renewable polymer with excellent hemostatic properties and biocapability and is widely used for hemostatic wound dressing. However, the swelling properties of alginate-based wound dressings need to be promoted to meet the requirements of wider application. Poly(γ-glutamic acid) (PGA) is a natural polymer with high hydrophility. In the current study, novel Alg/PGA composite microparticles with double network structure were prepared by the emulsification/internal gelation method. It was found from the structure characterization that a double network structure was formed in the composite microparticles due to the ion chelation interaction between Ca2+ and the carboxylate groups of Alg and PGA and the electrostatic interaction between the secondary amine group of PGA and the carboxylate groups of Alg and PGA. The swelling behavior of the composite microparticles was significantly improved due to the high hydrophility of PGA. Influences of the preparing conditions on the swelling behavior of the composites were investigated. The porous microparticles could be formed while compositing of PGA. Thermal stability was studied by thermogravimetric analysis method. Moreover, in vitro cytocompatibility test of microparticles exhibited good biocompatibility with L929 cells. All results indicated that such Alg/PGA composite microparticles are a promising candidate in the field of wound dressing for hemostasis or rapid removal of exudates.
Collapse
Affiliation(s)
- Zongrui Tong
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Yu Chen
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Yang Liu
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Li Tong
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing 100875, China.
| | - Jiamian Chu
- Taizhou Roosin Medical Co., Ltd., Taizhou 225300, China.
| | - Kecen Xiao
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Zhiyu Zhou
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Wenbo Dong
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Xingwu Chu
- Taizhou Roosin Medical Co., Ltd., Taizhou 225300, China.
| |
Collapse
|
24
|
Functionalized silk fibroin dressing with topical bioactive insulin release for accelerated chronic wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 72:394-404. [DOI: 10.1016/j.msec.2016.11.085] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/10/2016] [Accepted: 11/21/2016] [Indexed: 01/17/2023]
|
25
|
Koehler J, Wallmeyer L, Hedtrich S, Goepferich AM, Brandl FP. pH-Modulating Poly(ethylene glycol)/Alginate Hydrogel Dressings for the Treatment of Chronic Wounds. Macromol Biosci 2016; 17. [PMID: 27995736 DOI: 10.1002/mabi.201600369] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/25/2016] [Indexed: 12/20/2022]
Abstract
The development of chronic wounds has been frequently associated with alkaline pH values. The application of pH-modulating wound dressings can, therefore, be a promising treatment option to promote normal wound healing. This study reports on the development and characterization of acidic hydrogel dressings based on interpenetrating poly(ethylene glycol) diacrylate/acrylic acid/alginate networks. The incorporation of ionizable carboxylic acid groups results in high liquid uptake up to 500%. The combination of two separate polymer networks significantly improves the tensile and compressive stability. In a 2D cell migration assay, the application of hydrogels (0% to 1.5% acrylic acid) results in complete "wound" closure; hydrogels with 0.25% acrylic acid significantly increase the cell migration velocity to 19.8 ± 1.9 µm h-1 . The most promising formulation (hydrogels with 0.25% acrylic acid) is tested on 3D human skin constructs, increasing keratinocyte ingrowth into the wound by 164%.
Collapse
Affiliation(s)
- Julia Koehler
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Leonie Wallmeyer
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Sarah Hedtrich
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Achim M Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Ferdinand P Brandl
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| |
Collapse
|
26
|
Effects of insulin on the skin: possible healing benefits for diabetic foot ulcers. Arch Dermatol Res 2016; 308:677-694. [PMID: 27655635 DOI: 10.1007/s00403-016-1686-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/04/2016] [Accepted: 09/12/2016] [Indexed: 12/16/2022]
Abstract
Diabetic foot ulcers affect 15-20 % of all diabetic patients and remain an important challenge since the available therapies have limited efficacy and some of the novel therapeutic approaches, which include growth factors and stem cells, are highly expensive and their safety remains to be evaluated. Despite its low cost and safety, the interest for topical insulin as a healing agent has increased only in the last 20 years. The molecular mechanisms of insulin signaling and its metabolic effects have been well studied in its classical target tissues. However, little is known about the specific effects of insulin in healthy or even diabetic skin. In addition, the mechanisms involved in the effects of insulin on wound healing have been virtually unknown until about 10 years ago. This paper will review the most recent advances in the cellular and molecular mechanisms that underlie the beneficial effects of insulin on skin wound healing in diabetes. Emerging evidence that links dysfunction of key cellular organelles, namely the endoplasmic reticulum and the mitochondria, to changes in the autophagy response, as well as the impaired wound healing in diabetic patients will also be discussed along with the putative mechanisms whereby insulin could regulate/modulate these alterations.
Collapse
|
27
|
Silva JP, Dhall S, Garcia M, Chan A, Costa C, Gama M, Martins-Green M. Improved burn wound healing by the antimicrobial peptide LLKKK18 released from conjugates with dextrin embedded in a carbopol gel. Acta Biomater 2015; 26:249-62. [PMID: 26234490 DOI: 10.1016/j.actbio.2015.07.043] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/12/2015] [Accepted: 07/29/2015] [Indexed: 12/28/2022]
Abstract
Antimicrobial peptides (AMPs) are good candidates to treat burn wounds, a major cause of morbidity, impaired life quality and resources consumption in developed countries. We took advantage of a commercially available hydrogel, Carbopol®, a vehicle for topical administration that maintains a moist environment within the wound site. We hypothesized that the incorporation of LLKKK18 conjugated to dextrin would improve the healing process in rat burns. Whereas the hydrogel improves healing, LLKKK18 released from the dextrin conjugates further accelerated wound closure, and simultaneously improving the quality of healing. Indeed, the release of LLKKK18 reduced oxidative stress and inflammation (low neutrophil and macrophage infiltration and pro-inflammatory cytokines levels). Importantly, it induced a faster resolution of the inflammatory stage through early M2 macrophage recruitment. In addition, LLKKK18 stimulated angiogenesis (increased VEGF and microvessel development in vivo). Moreover, collagen staining evaluated by Masson's Trichrome was visually much more intense after treatment with LLKKK18, suggesting higher collagen deposition. Overall, we generated an effective, safe and inexpensive formulation that maintains a moist environment in the wound, easy to apply and remove, and with potential to prevent infection due to the presence of an antimicrobial peptide. These findings propel us to further study this LLKKK18-containing formulation, setting the foundations towards a potential therapeutic approach for burn wound treatment. STATEMENT OF SIGNIFICANCE This work presents a newly developed formulation that holds great potential as a therapeutic approach for burn treatment. It is based on the sustained delivery of an antimicrobial peptide - LLKKK18 - from conjugates with dextrin, after degradation of dextrin backbone upon exposure to wound α-amylases. Conjugates were further embedded in Carbopol®, a commercially available hydrogel, suitable for topical administration and that provides a moist environment to the wound. Overall, we obtained an efficient, safe and non-expensive formulation that improves burn wound healing, maintains a moist environment within the wound, is easy to apply-and-remove, and has potential to prevent infection due to the presence of an antimicrobial peptide. Importantly, this is the first time the wound healing ability of LLKKK18 is demonstrated and that its main mechanisms of action are identified.
Collapse
Affiliation(s)
- João P Silva
- Department of Cell Biology and Neuroscience, University of California at Riverside, Riverside, CA 92521, United States; CEB - Centre for Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.
| | - Sandeep Dhall
- Department of Cell Biology and Neuroscience, University of California at Riverside, Riverside, CA 92521, United States; Bioengineering Interdepartmental Graduate Program, University of California at Riverside, Riverside, CA 92521, United States
| | - Monika Garcia
- Department of Cell Biology and Neuroscience, University of California at Riverside, Riverside, CA 92521, United States
| | - Alex Chan
- Department of Cell Biology and Neuroscience, University of California at Riverside, Riverside, CA 92521, United States
| | - César Costa
- CEB - Centre for Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Miguel Gama
- CEB - Centre for Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Manuela Martins-Green
- Department of Cell Biology and Neuroscience, University of California at Riverside, Riverside, CA 92521, United States; Bioengineering Interdepartmental Graduate Program, University of California at Riverside, Riverside, CA 92521, United States
| |
Collapse
|
28
|
Boateng J, Catanzano O. Advanced Therapeutic Dressings for Effective Wound Healing--A Review. J Pharm Sci 2015; 104:3653-3680. [PMID: 26308473 DOI: 10.1002/jps.24610] [Citation(s) in RCA: 509] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/20/2015] [Accepted: 07/21/2015] [Indexed: 12/15/2022]
Abstract
Advanced therapeutic dressings that take active part in wound healing to achieve rapid and complete healing of chronic wounds is of current research interest. There is a desire for novel strategies to achieve expeditious wound healing because of the enormous financial burden worldwide. This paper reviews the current state of wound healing and wound management products, with emphasis on the demand for more advanced forms of wound therapy and some of the current challenges and driving forces behind this demand. The paper reviews information mainly from peer-reviewed literature and other publicly available sources such as the US FDA. A major focus is the treatment of chronic wounds including amputations, diabetic and leg ulcers, pressure sores, and surgical and traumatic wounds (e.g., accidents and burns) where patient immunity is low and the risk of infections and complications are high. The main dressings include medicated moist dressings, tissue-engineered substitutes, biomaterials-based biological dressings, biological and naturally derived dressings, medicated sutures, and various combinations of the above classes. Finally, the review briefly discusses possible prospects of advanced wound healing including some of the emerging physical approaches such as hyperbaric oxygen, negative pressure wound therapy and laser wound healing, in routine clinical care.
Collapse
Affiliation(s)
- Joshua Boateng
- Department of Pharmaceutical, Chemical and Environmental Sciences, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK.
| | - Ovidio Catanzano
- Department of Pharmaceutical, Chemical and Environmental Sciences, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK
| |
Collapse
|
29
|
Release of insulin from PLGA-alginate dressing stimulates regenerative healing of burn wounds in rats. Clin Sci (Lond) 2015; 129:1115-29. [PMID: 26310669 DOI: 10.1042/cs20150393] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/26/2015] [Indexed: 12/21/2022]
Abstract
Burn wound healing involves a complex set of overlapping processes in an environment conducive to ischaemia, inflammation and infection costing $7.5 billion/year in the U.S.A. alone, in addition to the morbidity and mortality that occur when the burns are extensive. We previously showed that insulin, when topically applied to skin excision wounds, accelerates re-epithelialization and stimulates angiogenesis. More recently, we developed an alginate sponge dressing (ASD) containing insulin encapsulated in PLGA [poly(D,L-lactic-co-glycolic acid)] microparticles that provides a sustained release of bioactive insulin for >20 days in a moist and protective environment. We hypothesized that insulin-containing ASD accelerates burn healing and stimulates a more regenerative, less scarring healing. Using heat-induced burn injury in rats, we show that burns treated with dressings containing 0.04 mg insulin/cm(2) every 3 days for 9 days have faster closure, a higher rate of disintegration of dead tissue and decreased oxidative stress. In addition, in insulin-treated wounds, the pattern of neutrophil inflammatory response suggests faster clearing of the burned dead tissue. We also observe faster resolution of the pro-inflammatory macrophages. We also found that insulin stimulates collagen deposition and maturation with the fibres organized more like a basket weave (normal skin) than aligned and cross-linked (scar tissue). In summary, application of ASD-containing insulin-loaded PLGA particles on burns every 3 days stimulates faster and more regenerative healing. These results suggest insulin as a potential therapeutic agent in burn healing and, because of its long history of safe use in humans, insulin could become one of the treatments of choice when repair and regeneration are critical for proper tissue function.
Collapse
|
30
|
Hrynyk M, Ellis JP, Haxho F, Allison S, Steele JA, Abdulkhalek S, Neufeld RJ, Szewczuk MR. Therapeutic designed poly (lactic-co-glycolic acid) cylindrical oseltamivir phosphate-loaded implants impede tumor neovascularization, growth and metastasis in mouse model of human pancreatic carcinoma. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:4573-86. [PMID: 26309402 PMCID: PMC4539083 DOI: 10.2147/dddt.s90170] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Poly (lactic-co-glycolic acid) (PLGA) copolymers have been extensively used in cancer research. PLGA can be chemically engineered for conjugation or encapsulation of drugs in a particle formulation. We reported that oseltamivir phosphate (OP) treatment of human pancreatic tumor-bearing mice disrupted the tumor vasculature with daily injections. Here, the controlled release of OP from a biodegradable PLGA cylinder (PLGA-OP) implanted at tumor site was investigated for its role in limiting tumor neovascularization, growth, and metastasis. PLGA-OP cylinders over 30 days in vitro indicated 20%–25% release profiles within 48 hours followed by a continuous metronomic low dose release of 30%–50% OP for an additional 16 days. All OP was released by day 30. Surgically implanted PLGA-OP containing 20 mg OP and blank PLGA cylinders at the tumor site of heterotopic xenografts of human pancreatic PANC1 tumors in RAGxCγ double mutant mice impeded tumor neovascularization, growth rate, and spread to the liver and lungs compared with the untreated cohort. Xenograft tumors from PLGA and PLGA-OP-treated cohorts expressed significant higher levels of human E-cadherin with concomitant reduced N-cadherin and host CD31+ endothelial cells compared with the untreated cohort. These results clearly indicate that OP delivered from PLGA cylinders surgically implanted at the site of the solid tumor show promise as an effective treatment therapy for cancer.
Collapse
Affiliation(s)
- Michael Hrynyk
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada
| | - Jordon P Ellis
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada
| | - Fiona Haxho
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Stephanie Allison
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada
| | - Joseph Am Steele
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada
| | - Samar Abdulkhalek
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Ronald J Neufeld
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada
| | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
31
|
Liu J, Willför S, Xu C. A review of bioactive plant polysaccharides: Biological activities, functionalization, and biomedical applications. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.bcdf.2014.12.001] [Citation(s) in RCA: 370] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
32
|
Hrynyk M, Neufeld RJ. Insulin and wound healing. Burns 2014; 40:1433-46. [PMID: 24810536 DOI: 10.1016/j.burns.2014.03.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 02/27/2014] [Accepted: 03/28/2014] [Indexed: 12/11/2022]
Abstract
Skin is a dynamic and complex organ that relies on the interaction of different cell types, biomacromolecules and signaling molecules. Injury triggers a cascade of events designed to quickly restore skin integrity. Depending on the size and severity of the wound, extensive physiological and metabolic changes can occur, resulting in impaired wound healing and increased morbidity resulting in higher rates of death. While wound dressings provide a temporary barrier, they are inherently incapable of significantly restoring metabolic upsets, post-burn insulin resistance, and impaired wound healing in patients with extensive burns. Exogenous insulin application has therefore been investigated as a potential therapeutic intervention for nearly a century to improve wound recovery. This review will highlight the important achievements that demonstrate insulin's ability to stimulate cellular migration and burn wound recovery, as well as providing a perspective on future therapeutic applications and research directions.
Collapse
Affiliation(s)
- Michael Hrynyk
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Ronald J Neufeld
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| |
Collapse
|
33
|
Bae KH, Wang LS, Kurisawa M. Injectable biodegradable hydrogels: progress and challenges. J Mater Chem B 2013; 1:5371-5388. [PMID: 32261243 DOI: 10.1039/c3tb20940g] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Over the past decades, injectable hydrogels have emerged as promising biomaterials because of their biocompatibility, excellent permeability, minimal invasion, and easy integration into surgical procedures. These systems provide an effective and convenient way to administer a wide variety of bioactive agents such as proteins, genes, and even living cells. Additionally, they can be designed to be degradable and eventually cleared from the body after completing their missions. Given their unique characteristics, injectable biodegradable hydrogels have been actively explored as drug reservoir systems for sustained release of bioactive agents and temporary extracellular matrices for tissue engineering. This review provides an overview of state-of-the-art strategies towards constructing a rational design of injectable biodegradable hydrogels for protein drug delivery and tissue engineering. We also discuss the use of injectable hydrogels for gene delivery systems and biomedical adhesives.
Collapse
Affiliation(s)
- Ki Hyun Bae
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos #04-01, Singapore 138669.
| | | | | |
Collapse
|
34
|
Jhong JF, Venault A, Hou CC, Chen SH, Wei TC, Zheng J, Huang J, Chang Y. Surface zwitterionization of expanded poly(tetrafluoroethylene) membranes via atmospheric plasma-induced polymerization for enhanced skin wound healing. ACS APPLIED MATERIALS & INTERFACES 2013; 5:6732-6742. [PMID: 23795955 DOI: 10.1021/am401669q] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Development of bioinert membranes to prevent blood clotting, tissue adhesion, and bacterial attachment is important for the wound healing process. In this work, two wound-contacting membranes of expanded poly(tetrafluoroethylene) (ePTFE) grafted with zwitterionic poly(sulfobetaine methacrylate) (PSBMA) and hydrophilic poly(ethylene glycol) methacrylate (PEGMA) via atmospheric plasma-induced surface copolymerization were studied. The surface grafting chemical structure, hydrophilicity, and hydration capability of the membranes were determined to illustrate the correlations between bioadhesive properties and wound recovery of PEGylated and zwitterionic ePTFE membranes. Bioadhesive properties of the membranes were evaluated by the plasma protein adsorption, platelet activation, blood cell hemolysis, tissue cell adhesion, and bacterial attachment. It was found that the zwitterionic PSBMA-grafted ePTFE membrane presented high hydration capability and exhibited the best nonbioadhesive character in contact with protein solution, human blood, tissue cells, and bacterial medium. This work shows that zwitterionic membrane dressing provides a moist environment, essential for "deep" skin wound healing observed from the animal rat model in vivo and permits a complete recovery after 14 days, with histology of repaired skin similar to that of normal skin tissue. This work suggests that the bioinert nature of grafted PSBMA polymers obtained by controlling grafting structures gives them great potential in the molecular design of antibioadhesive membranes for use in skin tissue regeneration.
Collapse
Affiliation(s)
- Jheng-Fong Jhong
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li, Taoyuan 320, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Lin N, Bruzzese C, Dufresne A. TEMPO-oxidized nanocellulose participating as crosslinking aid for alginate-based sponges. ACS APPLIED MATERIALS & INTERFACES 2012; 4:4948-59. [PMID: 22950801 DOI: 10.1021/am301325r] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Crosslinked polysaccharide sponges have been prepared by freeze-drying of amorphous alginate-oxidized nanocellulose in the presence of a Ca(2+) ionic crosslinking agent. The new carboxyl groups on the surface of nanocellulose induced by the chemical oxidization provided the possibility of participating in the construction of an alginate-based sponge's structure and played a fundamental role in the structural and mechanical stability of ensuing sponges. Furthermore, enhanced mechanical strength induced by oxidized cellulose nanocrystals and the formation of a semi-interpenetrating polymer network from oxidized microfibrillated cellulose were reported. Together with the facile and ionic crosslinking process, the ultrahigh porosity, promising water absorption and retention, as well as the improved compression strength of the crosslinked sponges should significantly extend the use of this soft material in diverse practical applications.
Collapse
Affiliation(s)
- Ning Lin
- Grenoble Institute of Technology (Grenoble INP), The International School of Paper, Print Media, and Biomaterials (Pagora), BP65, 38402 Saint Martin d'Hères Cedex, France
| | | | | |
Collapse
|