1
|
Sun S, Li R, Sun D, Guo L, Cui B, Zou F. Improving paste stabilities of cassava starch through molecular density after maltogenic amylase and transglucosidase. Food Chem 2025; 462:140993. [PMID: 39197246 DOI: 10.1016/j.foodchem.2024.140993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
To improve paste stability of cassava starch, including acid resistance, high-temperature shear resistance and freeze-thaw stability, cassava starch was modified by sequential maltogenic amylase and transglucosidase to form an optimally denser structure, or branched density (12.76 %), molecular density (15.17 g/mol/nm3), and the proportions of short-branched chains (41.41 % of A chains and 44.01 % of B1 chains). Viscosity stability (88.52 %) of modified starch was higher than that (64.92 %) of native starch. After acidic treatment for 1 h, the viscosity of modified starch and native starch decreased by 56.53 % and 65.70 %, respectively. Compared to native starch, modified starch had lower water loss in freeze-thaw cycles and less viscosity reduction during high-temperature and high-shear processing. So, the appropriate molecular density and denser molecule structure enhanced paste stabilities of modified starch. The outcome expands the food and non-food applications of cassava starch.
Collapse
Affiliation(s)
- Shuo Sun
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ruobing Li
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Dengyue Sun
- State Key Laboratory of Biobased Material and Green Papermaking, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Li Guo
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Bo Cui
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Feixue Zou
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
2
|
Deng C, Geng H, Shi S, Jin Y, Sheng T, Wu Y, Yu Z, Zhou Y. Structure and digestibility changes of Indica and japonica waxy rice starch during in vitro pre-digestion. Int J Biol Macromol 2024; 279:135504. [PMID: 39255884 DOI: 10.1016/j.ijbiomac.2024.135504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/01/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Abstract
The digestion of starch have been of great interest, yet little is known about the structure changes and structure-digestibility relationships of waxy rice starch during digestion. In this study, waxy rice starch from Indica and Japonica cultivars were in vitro pre-digested for different times, and the changes in their structure and properties were investigated, including granule morphology, chain length distribution, short-range ordered structure, crystallinity, thermal properties, and digestibility. Pre-digested Indica and Japonica waxy rice starch had the characteristics of porous starch, showing similar surface erosion and pores. With the prolongation of pre-digestion time, the amylose content decreased by 0.74 %-2.69 %, the proportion of amylopectin short A chain (DP6-12) and B1 chain (DP13-24) decreased, and the proportion of long B2 (DP25-36) and B3 chain (DP ≥ 37) increased, especially in pre-digested Indica waxy rice starch. The short- and long-range ordered structure of pre-digested starch increased, manifested by an increase in the absorbance ratio at 1047/1022 cm-1, a decrease at 1022/995 cm-1, and an increase in relative crystallinity, leading to higher gelatinization temperature and enthalpy. Pre-digested waxy rice starch had a reduced rapidly digestible starch of 18.27 %-33.93 % and an increased resistant starch of 29.51 %-41.32 %, which will be applied in functional starch and healthy starchy foods.
Collapse
Affiliation(s)
- Changyue Deng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Huihui Geng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Sanxu Shi
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Yongqing Jin
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Tao Sheng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Yujie Wu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Zhenyu Yu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China.
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
3
|
Fan P, Wang W, Xu J, Xu F, Li G, Wei H, Zhang H, Liu G. Starch-related structural basis and enzymatic mechanism of the different appearances of soft rice. Int J Biol Macromol 2024; 280:136080. [PMID: 39341319 DOI: 10.1016/j.ijbiomac.2024.136080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/31/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
To investigate the fine starch structure characteristics and formation mechanism of high-quality appearance soft rice, two high-quality and low-quality soft rice varieties (HA-SR and LA-SR, respectively) were selected. Differences in appearance quality, fine starch structure, and activity of key enzymes involved in starch synthesis during the grain-filling stage were compared. The results showed that compared with LA-SR, HA-SR were less chalky, more transparent, had larger starch grains, a lower content of shorter chains (DP 6-24), a higher content of longer chains (DP ≥ 25), lower relative crystallinity, fewer ordered structures, more amorphous structures and larger thicknesses of semi-crystalline lamellae. In terms of amylase activity during the grain-filling stage, the AGPase and GBSS activities of HA-SR were higher, and the SBE activity of HA-SR was lower compared to LA-SR. In conclusion, higher AGPase activity can produce a higher filling rate resulting in fuller starch grain in soft rice. Fuller starch grains reduce the chalkiness of soft rice. Higher AGPase and GBSS activities and lower SBE activity can result in soft rice with more long-branched and less short-branched amylopectin. Thus, soft rice has lower relative crystallinity and less ordered structure. These structures may facilitate reduce grain chalkiness and improve grain transparency.
Collapse
Affiliation(s)
- Peng Fan
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China; Kansas State University, Manhattan 66502, United States
| | - Wenting Wang
- China National Rice Research Institute, Hangzhou 311401, China
| | - Jian Xu
- Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Fangfu Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Guangyan Li
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Haiyan Wei
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China.
| | - Hongcheng Zhang
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China.
| | - Guodong Liu
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
4
|
Sifuentes-Nieves I, Soler A, Flores-Silva PC. Effect of plasma-activated water on the supramolecular structure and techno-functional properties of starch: A review. Food Chem 2024; 456:139997. [PMID: 38865820 DOI: 10.1016/j.foodchem.2024.139997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/06/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
This review discusses the changes in the multi-scale structure and functionality of starch after its hydrothermal modification using plasma-activated water (PAW). PAW contains reactive species that decrease the pH of the water and increase the oxidation-reduction potential, which promotes the oxidation and degradation of the surface of the starch granules to varying extents, depending on the botanical source and treatment conditions. In this article, we compile the information published so far on the effects of using PAW during heat-moisture and annealing treatments and discuss the results of the substitution of water with PAW on the long and short-range crystallinity, helical order, thermal behavior, functional properties, and digestibility. Additionally, we highlighted the possible application of PAW-modified starches. Finally, we provided an overview of future challenges, suggesting several potential directions to understand the mechanisms behind PAW use for developing sustainable modified starches for the food industry.
Collapse
Affiliation(s)
- Israel Sifuentes-Nieves
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, C.P. 25253, Saltillo, Coahuila, Mexico.
| | - Adrian Soler
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Cerro Blanco No. 141, Col. Colinas del Cimatario, C.P. 76090 Santiago de Querétaro, Querétaro, Mexico
| | - Pamela C Flores-Silva
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, C.P. 25253, Saltillo, Coahuila, Mexico.
| |
Collapse
|
5
|
Liu X, Xu Z, Zhang C, Xu Y, Ma M, Sui Z, Corke H. Dynamic development of changes in multi-scale structure during grain filling affect gelatinization properties of rice starch. Carbohydr Polym 2024; 342:122318. [PMID: 39048212 DOI: 10.1016/j.carbpol.2024.122318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/29/2024] [Accepted: 05/24/2024] [Indexed: 07/27/2024]
Abstract
Rice was collected over the entire grain filling period (about 40 days) to explore the multi-structure evolution and gelatinization behavior changes of starch. During the early stage (DAA 6-14), the significant reduction in lamellar repeat distance (10.04 to 9.68 nm) and relative crystallinity (26.6 % to 22.7 %) was due to initial rapid accumulation of amylose (from 9.38 % to 14.05 %) and short amylopectin chains. Meanwhile, the decreased proportion of aggregation structure resulted in a decrease in the gelatinization temperature and a narrowed range of gelatinization temperature also indicated an increase in homogeneity as starch matured. Gelatinization enthalpy was mainly controlled by aggregation structure, which was negatively and positively related to the amylose content and the degree of order respectively. Peak viscosity of starch pasting increased and reached a maximum (924 cP) at DAA-21 due to larger granule size. Amylose and short amylopectin chains with degree of polymerization 6-12 showed positive and negative correlation with short-term retrogradation ability (setback value) respectively. The dynamics of different scale structure during grain filling had varying degrees of impact on gelatinization properties.
Collapse
Affiliation(s)
- Xiaoning Liu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zekun Xu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chuangchuang Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuting Xu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mengting Ma
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zhongquan Sui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Harold Corke
- Department of Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China; Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
6
|
Wu JY, Wu M, Wu C, Zhang G, Fu Y, Liu XF, Zhang N. Effect of ultrafine grinding on the structure and physical properties of pregelatinized rice starch. J Food Sci 2024; 89:5503-5516. [PMID: 39042462 DOI: 10.1111/1750-3841.17226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/30/2024] [Accepted: 06/16/2024] [Indexed: 07/25/2024]
Abstract
This study used a combination method of ultrafine grinding and pregelatinization to modify rice starch (RS) to delay its retrogradation and provide a rationale for prolonging rice product shelf life. The structure and physicochemical properties of the pregelatinized ultrafine grinding rice starch (PURS) were compared with those of RS, ultrafine grinding rice starch (URS), and pregelatinized rice starch (PRS). The microstructure, molecular weight, branched starch length distribution, short-range order, crystal structure, and physical properties of RS, URS, PRS, and PURS were analyzed, respectively. Results showed that RS, URS, PRS, and PURS granules exhibited similar spherical or polygonal shapes, and the content of amylose and short-branched starch in PURS increased compared with RS, URS, and PRS. Furthermore, the cross-polarization of PRS and PURS disappeared. Long-chain amylopectin and average molecular weight of PURS decreased significantly after ultrafine grinding. Our study suggested reduced breakdown value and setback value and improved gel stability, and PURS was beneficial for delaying retrogradation compared to RS, URS, and PRS. The ultrafine grinding method improved the water swelling capacity (WSC), solubility, pasting properties, and gelation properties of PRS. The hardness of PURS was reduced by ultrafine grinding. These suggest that the combination of ultrafine grinding and pregelatinization could improve the properties of RS. Pearson's correlation analysis showed that the structure of PURS significantly influenced the physicochemical properties. The present study was helpful in better understanding the importance of ultrafine grinding in improving the anti-retrogradation of PURS and provided new insights into extending the shelf life of rice products by ultrafine grinding and pregelatinization.
Collapse
Affiliation(s)
- Jun-Ying Wu
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges/Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin, China
| | - Ming Wu
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges/Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin, China
| | - Chenchen Wu
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges/Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin, China
| | - Guang Zhang
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges/Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing, China
| | - Xiao-Fei Liu
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges/Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin, China
| | - Na Zhang
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges/Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin, China
| |
Collapse
|
7
|
Cui Y, Li X, Sun D, Guo L, Cui B, Zou F, Wang J, Sun C. Retrogradation inhibition of starches in staple foods with maltotetraose-forming amylase. Food Chem 2024; 449:139232. [PMID: 38581794 DOI: 10.1016/j.foodchem.2024.139232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
To effectively inhibit the retrogradation of staple foods, the effects of maltotetraose-forming amylase(G4-amylase) on the short and long-term retrogradation of different staple starches such as rice starch (RS), wheat starch (WS), potato starch (PS) were studied. The results indicated that G4-amylase decreased the content of amylose. Amylose contents (21.09%) of WSG4 were higher than that (14.82%) of RSG4 and (13.13%) of PSG4. WS had the most obvious change in the chain length distribution of amylopectin. A chains decreased by 18.99% and the B1 chains decreased by 12.08% after G4-amylase treatment. Compared to RS (662 cP) and WS (693 cP), the setback viscosity of RSG4 (338 cP) and WSG4 (385 cP) decreased. Compared to RS (0.41), WS (0.45), and PS (0.51), the long-term retrogradation rate of RSG4 (0.33), WSG4 (0.31), and PSG4 (0.38) significantly reduced. It indicated that G4-amylase significantly inhibited the long-term retrogradation of WS, followed by RS and PS.
Collapse
Affiliation(s)
- Yunlong Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xueting Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Dengyue Sun
- State Key Laboratory of Biobased Material and Green Papermaking, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Feixue Zou
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Jinpeng Wang
- Shandong Key Laboratory of Starch Bio-based Materials and Green Manufacturing, Shandong Zhucheng Xingmao corn developing Co. Ltd, Zhucheng, China.
| | - Chunrui Sun
- Shandong Key Laboratory of Starch Bio-based Materials and Green Manufacturing, Shandong Zhucheng Xingmao corn developing Co. Ltd, Zhucheng, China
| |
Collapse
|
8
|
Chen R, Zhao J, Sui Z, Danino D, Corke H. Comparative analysis of granular starch hydrolysis and multi-structural changes by diverse α-amylases sources: Insights from waxy rice starch. Food Chem 2024; 444:138622. [PMID: 38310779 DOI: 10.1016/j.foodchem.2024.138622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/15/2024] [Accepted: 01/27/2024] [Indexed: 02/06/2024]
Abstract
Three cultivars of waxy rice starch with different multi-scale structures were subjected to α-amylase hydrolysis to determine amylopectin fine structure, production of oligosaccharides, morphology, and crystallinity of the partially hydrolyzed starch granules. α-amylases hydrolyzed the amylopectin B2 chain during the initial stage of hydrolysis, suggesting that it is primarily located in the outer shell of the granules. For waxy rice starch with loose structure, α-amylases attacked the crystalline and amorphous regions simultaneously in the initial stage, while for starch granules with compact structure, the outer shell blocklet (crystalline structure) can be a hurdle for α-amylases to proceed to hydrolysis of the internal granule structure. The ability of α-amylases from porcine pancreatic α-amylases to attack the outer shell crystalline structure was lower than that of α-amylases from Bacillus amyloliquefaciens and Aspergillus oryzae. These results show that α-amylase source and rice cultivar combinations can be used to generate diverse structures in degraded waxy rice starch.
Collapse
Affiliation(s)
- Ri Chen
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Jingjing Zhao
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Zhongquan Sui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dganit Danino
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Harold Corke
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China.
| |
Collapse
|
9
|
Saklani R, Yadav PK, Tiwari AK, Gawali SL, Hassan PA, Yadav K, Mugale MN, Kalleti N, Rath SK, Mishra DP, Dierking I, Chourasia MK. Synchronized Codelivery of Combination Chemotherapies Intratumorally Using a Lipidic Lyotropic Liquid Crystal System. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29098-29111. [PMID: 38780083 DOI: 10.1021/acsami.4c01432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
In this work, an injectable in situ depot-forming lipidic lyotropic liquid crystal (L3C) system is developed to codeliver a precisely synchronized combination of chemotherapeutics intratumorally. The developed L3C system is composed of amphiphilic lipids and surfactants, including monoolein, phosphatidylcholine, tocopherol acetate, and d-α-tocopherol polyethylene glycol 1000 succinate. Owing to its amphiphilic nature, the developed formulation can coaccommodate both hydrophobic and hydrophilic chemotherapeutic moieties simultaneously. The study presents a proof of concept by designing a combination chemotherapy regimen in vitro and demonstrating its in vivo translation using doxorubicin and paclitaxel as model hydrophilic and hydrophobic drug moieties, respectively. The synchronized combination of the two chemotherapeutics with maximum synergistic activity was identified, coloaded in the developed L3C system at predefined stoichiometric ratios, and evaluated for antitumor efficacy in the 4T1 breast tumor model in BALB/c mice. The drug-loaded L3C formulation is a low-viscosity injectable fluid with a lamellar phase that transforms into a hexagonal mesophase depot system upon intratumoral injection. The drug-loaded depot system locally provides sustained intratumoral delivery of the chemotherapeutics combination at their precisely synchronized ratio for over a period of one month. Results demonstrate that the exposure of the tumor to the precisely synchronized intratumoral chemotherapeutics combination via the developed L3C system resulted in significantly higher antitumor activity and reduced cardiotoxicity compared to the unsynchronized combination chemotherapy or the synchronized but uncoordinated drug delivery administered by a conventional intravenous route. These findings demonstrate the potential of the developed L3C system for achieving synchronized codelivery of the chemotherapeutics combination intratumorally and improving the efficacy of combination chemotherapy.
Collapse
Affiliation(s)
- Ravi Saklani
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pavan K Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amrendra K Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh L Gawali
- Nanotherapeutics and Biosensors Section, Chemistry Division, Bhabha Atomic Research Centre Trombay, Mumbai 400085, India
| | - Puthusserickal A Hassan
- Nanotherapeutics and Biosensors Section, Chemistry Division, Bhabha Atomic Research Centre Trombay, Mumbai 400085, India
| | - Karan Yadav
- Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031 India
| | - Madhav N Mugale
- Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031 India
| | - Navodayam Kalleti
- Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031 India
| | - Srikanta K Rath
- Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031 India
| | - Durga P Mishra
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ingo Dierking
- Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
10
|
Gu X, Wang P, Huang J, Chen S, Li D, Pu S, Li J, Wen J. Structural and physicochemical properties of rice starch from a variety with high resistant starch and low amylose content. Front Nutr 2024; 11:1413923. [PMID: 38860156 PMCID: PMC11163103 DOI: 10.3389/fnut.2024.1413923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/15/2024] [Indexed: 06/12/2024] Open
Abstract
Research on the physicochemical properties of rice-derived endo-sperm high resistant starch (RS) with low amylose content (AC) is limited. In this study, we evaluated the physicochemical characteristics of such a starch variety and revealed that the starch granules exhibit a smoother, more refined surface with distinct edges, increased compactness, higher order of surface, and fewer cavities compared to those of a low RS rice variety. The starch crystal was classified as an A-type, which may be connected to the high amylose-lipid complex content. The branched internal long chains (B2 + B3) were abundant, allowing for easy entanglement with other molecular chains and a compact structure. Differential scanning calorimetry revealed the need for high temperature and energy to disrupt the double helix structure within the crystallization region of starch. Furthermore, starch viscosity analysis revealed a high cold paste viscosity, consistency, and setback value, with recrystallization yielding a stable structure, increased viscosity, and enhanced hydrolysis resistance to enzymes.
Collapse
Affiliation(s)
- Xue Gu
- Rice Research Institute, Yunnan Agricultural University, Kunming, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Peng Wang
- Rice Research Institute, Yunnan Agricultural University, Kunming, China
| | - Juyuan Huang
- Rice Research Institute, Yunnan Agricultural University, Kunming, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Shuangqin Chen
- Rice Research Institute, Yunnan Agricultural University, Kunming, China
| | - Dandan Li
- Rice Research Institute, Yunnan Agricultural University, Kunming, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Shihuang Pu
- Rice Research Institute, Yunnan Agricultural University, Kunming, China
| | - Juan Li
- Rice Research Institute, Yunnan Agricultural University, Kunming, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Jiancheng Wen
- Rice Research Institute, Yunnan Agricultural University, Kunming, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
11
|
Yang H, Chen L, Xiong R, Zeng Y, Jiang Y, Zhang J, Zhang B, Yang T. Experimental Warming Increased Cooked Rice Stickiness and Rice Thermal Stability in Three Major Chinese Rice Cropping Systems. Foods 2024; 13:1605. [PMID: 38890834 PMCID: PMC11171534 DOI: 10.3390/foods13111605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Climate warming is a critical environmental issue affecting rice production. However, its effects on cooked rice texture and rice thermal properties remain unstudied in China. To address this gap, we conducted a two-year multi-site field warming experiment using free-air temperature increase facilities across three major Chinese rice cropping systems. Interestingly, warming had a minimal impact on the hardness of cooked rice, while it significantly increased stickiness by an average of 16.3% under warming conditions. Moreover, compared to control treatments, rice flour exhibited a significant increase in gelatinization enthalpy, onset, peak, and conclusion temperatures under warming conditions, with average increments of 8.7%, 1.00 °C, 1.05 °C, and 1.17 °C, respectively. In addition, warming significantly declined the amylose content, remarkedly elevated the protein content and relative crystallinity, and altered the weight distribution of the debranched starch. Correlation analysis revealed significant relationships between cooked rice stickiness, rice flour thermal properties, amylose content, protein content, and partial starch structures. Therefore, warming-induced alterations in rice composition and starch structure collectively enhanced cooked rice stickiness and rice thermal stability.
Collapse
Affiliation(s)
- Huifang Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The China Academy of Science, Beijing 100093, China
| | - Liming Chen
- Jiangxi Key Laboratory of Plant Resources and Biodiversity, Jingdezhen University, Jingdezhen 333400, China
| | - Ruoyu Xiong
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yanhua Zeng
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yu Jiang
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bin Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Taotao Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
12
|
Wang J, Li Y, Guo X, Zhu K, Wu Z. A Review of the Impact of Starch on the Quality of Wheat-Based Noodles and Pasta: From the View of Starch Structural and Functional Properties and Interaction with Gluten. Foods 2024; 13:1507. [PMID: 38790811 PMCID: PMC11121694 DOI: 10.3390/foods13101507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Starch, as a primary component of wheat, plays a crucial role in determining the quality of noodles and pasta. A deep understanding of the impact of starch on the quality of noodles and pasta is fundamentally important for the industrial progression of these products. The starch structure exerts an influence on the quality of noodles and pasta by affecting its functional attributes and the interaction of starch-gluten proteins. The effects of starch structure (amylopectin structure, amylose content, granules size, damaged starch content) on the quality of noodles and pasta is discussed. The relationship between the functional properties of starch, particularly its swelling power and pasting properties, and the texture of noodles and pasta is discussed. It is important to note that the functional properties of starch can be modified during the processing of noodles and pasta, potentially impacting the quality of the end product, However, this aspect is often overlooked. Additionally, the interaction between starch and gluten is addressed in relation to its impact on the quality of noodles and pasta. Finally, the application of exogenous starch in improving the quality of noodles and pasta is highlighted.
Collapse
Affiliation(s)
- Jinrong Wang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA;
| | - Xiaona Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.G.); (K.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Kexue Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.G.); (K.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zijian Wu
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
- Key Laboratory of Low Carbon Cold Chain for Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin 300134, China
| |
Collapse
|
13
|
Flores-Silva PC, Ramírez-Vargas E, Palma-Rodriguez H, Neira-Velazquez G, Hernandez-Hernandez E, Mendez-Montealvo G, Sifuentes-Nieves I. Impact of plasma-activated water on the supramolecular structure and functionality of small and large starch granules. Int J Biol Macromol 2023; 253:127083. [PMID: 37769757 DOI: 10.1016/j.ijbiomac.2023.127083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/12/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023]
Abstract
Hydrothermal (HMT) and water agitation (WA) treatments using plasma-activated water (PAW) were employed as sustainable methods to modify the molecular and functional performance of small (rice) and large (potato) starch granules. HMT-PAW and WA-PAW treatments resulted in etched and damaged granular surfaces that rearranged the long and short-range crystallinity of the modified starches. Both treatments seemed to predominantly occur in the amorphous region of the rice starch and the crystalline regions of the potato starch, changing the crystallinity values from 22.9 and 14.8 % to 31.8 and 10.4 %, respectively. Thus, the level of the arrangement of chains reached after PAW treatment decreased the ability of rice starch granules to swell (16 to 9 %) and leach out starch molecules from the granules (4.5 to 1.3 %), decreasing the viscosity and pasting profiles as indicated by n and k values. Opposite behavior was observed in the modified potato starches since starch components leached out to a higher extent (1.7 to 5.4 %). The results showed that HMT and WA treatments using PAW are feasible eco-friendly methods for modifying starch granules without chemical reagents. These modified starches could be suitable as functional ingredients or biopolymeric matrices for the food and packaging industry.
Collapse
Affiliation(s)
- Pamela C Flores-Silva
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, C.P. 25253 Saltillo, Coahuila, Mexico.
| | - Eduardo Ramírez-Vargas
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, C.P. 25253 Saltillo, Coahuila, Mexico
| | - Heidi Palma-Rodriguez
- Universidad Autónoma del Estado de Hidalgo, Instituto de Ciencias Agropecuarias, Av. Universidad km 1, Rancho Universitario, C.P. 43600 Tulancingo de Bravo, Hidalgo, Mexico
| | - Guadalupe Neira-Velazquez
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, C.P. 25253 Saltillo, Coahuila, Mexico
| | - Ernesto Hernandez-Hernandez
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, C.P. 25253 Saltillo, Coahuila, Mexico
| | - Guadalupe Mendez-Montealvo
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Cerro Blanco No. 141, Col. Colinas del Cimatario, C.P. 76090 Santiago de Querétaro, Querétaro, Mexico
| | - Israel Sifuentes-Nieves
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, C.P. 25253 Saltillo, Coahuila, Mexico.
| |
Collapse
|
14
|
Shi S, Ma Y, Zhao D, Li L, Cao C, Jiang Y. The differences in metabolites, starch structure, and physicochemical properties of rice were related to the decrease in taste quality under high nitrogen fertilizer application. Int J Biol Macromol 2023; 253:126546. [PMID: 37643670 DOI: 10.1016/j.ijbiomac.2023.126546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/30/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Nitrogen fertilizer application is one of the key cultivation practices to improve rice yields. However, the application of high nitrogen fertilizers often leads to a reduction in the stickiness of the rice after cooking, thus reducing the taste quality of rice. Moreover, there are differences in taste quality among rice varieties, and the mechanism has not been studied in depth. In this study, two rice varieties (Meixiangzhan2hao and Exiang2hao) were planted under two nitrogen fertilizer levels. The physicochemical properties and taste quality of the rice were determined after maturity. Our results showed that high nitrogen fertilizer level alters tryptophan metabolism in rice, increasing most amino acid content and protein content in rice. The high content of protein and the higher short-range ordered structure of starch inhibited the gelatinization characteristics of starch and reduced the taste quality of rice. Under high nitrogen fertilizer application, Exiang2hao showed smaller increases in protein content, lower level of amylose and relative crystallinity, and higher content of lipid metabolites. These differences in chemical substances resulted in a less pronounced reduction in the taste quality of Exiang2hao. In this study, the taste quality of different rice varieties under different levels of nitrogen fertilizer application was analyzed, providing new ideas for future improvement of rice taste quality.
Collapse
Affiliation(s)
- Shijie Shi
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Yingying Ma
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Dan Zhao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Lina Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Cougui Cao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Jiang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
15
|
Yuan X, Luo Y, Yang Y, Chen K, Wen Y, Luo Y, Li B, Ma Y, Guo C, Chen Z, Yang Z, Sun Y, Ma J. Effects of postponing nitrogen topdressing on starch structural properties of superior and inferior grains in hybrid indica rice cultivars with different taste values. FRONTIERS IN PLANT SCIENCE 2023; 14:1251505. [PMID: 37881615 PMCID: PMC10597642 DOI: 10.3389/fpls.2023.1251505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
Introduction Nitrogen (N) fertilizer management, especially postponing N topdressing can affect rice eating quality by regulating starch quality of superior and inferior grains, but the details are unclear. This study aimed to evaluate the effects of N topdressing on starch structure and properties of superior and inferior grains in hybrid indica rice with different tastes and to clarify the relationship between starch structure, properties, and taste quality. Methods Two hybrid indica rice varieties, namely the low-taste Fyou 498 and high-taste Shuangyou 573, were used as experimental materials. Based on 150 kg·N hm-2, three N fertilizer treatments were established: zero N (N0), local farmer practice (basal fertilizer: tillering fertilizer: panicle fertilizer=7:3:0) (N1), postponing N topdressing (basal fertilizer: tillering fertilizer: panicle fertilizer=3:1:6) (N2). Results The starch granules of superior grains were more complete, and the decrease in small granules content and the stability of starch crystals were a certain extent less than those of inferior grains. Compared with N1, under N2, low-taste and high-taste varieties large starch granules content were significantly reduced by 6.89%, 0.74% in superior grains and 4.26%, 2.71% in inferior grains, the (B2 + B3) chains was significantly reduced by 1.61%, 0.98% in superior grains, and 1.18%, 0.97% in inferior grains, both reduced the relative crystallinity and 1045/1022 cm-1, thereby decreasing the stability of the starch crystalline region and the orderliness of starch granules. N2 treatment reduced the ΔHgel of two varieties. These changes ultimately contributed to the enhancement of the taste values in superior and inferior grains in both varieties, especially the inferior grains. Correlation analysis showed that the average starch volume diameter (D[4,3]) and relative crystallinity were significantly positively correlated with the taste value of superior and inferior sgrains, suggesting their potential use as an evaluation index for the simultaneous enhancement of the taste value of rice with superior and inferior grains. Discussion Based on 150 kg·N hm-2, postponing N topdressing (basal fertilizer: tillering fertilizer: panicle fertilizer=3:1:6) promotes the enhancement of the overall taste value and provides theoretical information for the production of rice with high quality.
Collapse
Affiliation(s)
- Xiaojuan Yuan
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yongheng Luo
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yonggang Yang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Kairui Chen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yanfang Wen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yinghan Luo
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bo Li
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yangming Ma
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Changchun Guo
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Southwest Rice Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences, Deyang, China
| | - Zongkui Chen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhiyuan Yang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yongjian Sun
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jun Ma
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
16
|
Li Y, Liang C, Liu J, Zhou C, Wu Z, Guo S, Liu J, A N, Wang S, Xin G, Henry RJ. Moderate Reduction in Nitrogen Fertilizer Results in Improved Rice Quality by Affecting Starch Properties without Causing Yield Loss. Foods 2023; 12:2601. [PMID: 37444339 DOI: 10.3390/foods12132601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
The quality and starch properties of rice are significantly affected by nitrogen. The effect of the nitrogen application rate (0, 180, and 230 kg ha-1) on the texture of cooked rice and the hierarchical structure and physicochemical properties of starch was investigated over two years using two japonica cultivars, Bengal and Shendao505. Nitrogen application contributed to the hardness and stickiness of cooked rice, reducing the texture quality. The amylose content and pasting properties decreased significantly, while the relative crystallinity increased with the increasing nitrogen rates, and the starch granules became smaller with an increase in uneven and pitted surfaces. The proportion of short-chain amylopectin rose, and long-chain amylopectin declined, which increased the external short-range order by 1045/1022 cm-1. These changes in hierarchical structure and grain size, regulated by nitrogen rates, synergistically increased the setback viscosity, gelatinization enthalpy and temperature and reduced the overall viscosity and breakdown viscosity, indicating that gelatinization and pasting properties were the result of the joint action of several factors. All results showed that increasing nitrogen altered the structure and properties of starch, eventually resulting in a deterioration in eating quality and starch functional properties. A moderate reduction in nitrogen application could improve the texture and starch quality of rice while not impacting on the grain yield.
Collapse
Affiliation(s)
- Yimeng Li
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane 4067, Australia
| | - Chao Liang
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Junfeng Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Chanchan Zhou
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhouzhou Wu
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Shimeng Guo
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiaxin Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Na A
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Shu Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Guang Xin
- College of Food Science and Engineering, Shenyang Agricultural University, Shenyang 110866, China
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane 4067, Australia
| |
Collapse
|
17
|
Zhu Q, Yao S, Wu Z, Li D, Ding T, Liu D, Xu E. Hierarchical structural modification of starch via non-thermal plasma: A state-of-the-art review. Carbohydr Polym 2023; 311:120747. [PMID: 37028874 DOI: 10.1016/j.carbpol.2023.120747] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
The hierarchical architecture of natural and processed starches with different surface and internal structures determines their final physicochemical properties. However, the oriented control of starch structure presents a significant challenge, and non-thermal plasma (cold plasma, CP) has gradually been used to design and tailor starch macromolecules, though without clear illustration. In this review, the multi-scale structure (i.e., chain-length distribution, crystal structure, lamellar structure, and particle surface) of starch is summarized by CP treatment. The plasma type, mode, medium gas and mechanism are also illustrated, as well as their sustainable food applications, such as in food taste, safety, and packaging. The effects of CP on the chain-length distribution, lamellar structure, amorphous zone, and particle surface/core of starch includes irregularity due to the complex of CP types, action modes, and reactive conditions. CP-induced chain breaks lead to short-chain distributions in starch, but this rule is no longer useful when CP is combined with other physical treatments. The degree but not type of starch crystals is indirectly influenced by CP through attacking the amorphous region. Furthermore, the CP-induced surface corrosion and channel disintegration of starch cause changes in functional properties for starch-related applications.
Collapse
Affiliation(s)
- Qingqing Zhu
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Siyu Yao
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Dandan Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China.
| |
Collapse
|
18
|
Javaid MA, Jabeen S, Arshad N, Zia KM, Hussain MT, Bhatti IA, Iqbal A, Ahmad S, Ullah I. Development of amylopectin based polyurethanes for sustained drug release studies. Int J Biol Macromol 2023:125224. [PMID: 37285893 DOI: 10.1016/j.ijbiomac.2023.125224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 05/28/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
In this research work, the crosslinked structure of polyurethane has been exploited for sustained drug delivery. Polyurethane composites have been prepared by the reaction of isophorone diisocyanate (IPDI) and polycaprolactone diol (PCL), which were further extended by varying the mole ratios of amylopectin (AMP) and 1,4-butane diol (1,4-BDO) chain extenders. The progress and completion of the reaction of polyurethane (PU) were confirmed using Fourier Transform infrared (FTIR) and nuclear magnetic resonance (1H NMR) spectroscopic techniques. Gel permeation chromatography (GPC) analysis showed that the molecular weights of prepared polymers were increased with the addition of amylopectin into the PU matrix. The molecular weight of AS-4 (Mw ≈ 99,367) was found threefold as compared to amylopectin-free PU (Mw ≈ 37,968). Thermal degradation analysis was done using thermal gravimetric analysis (TGA) and inferred that AS-5 showed stability up to 600 °C which was the maximum among all PUs because AMP has a large number of -OH units for linking with prepolymer resulting in a more cross-linked structure which improved the thermal stability of the AS-5 sample. The samples prepared with AMP showed less drug release (<53 %) as compared to the PU sample prepared without AMP (AS-1).
Collapse
Affiliation(s)
- Muhammad Asif Javaid
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan
| | - Sobia Jabeen
- Department of Chemistry, University of Agriculture, Faisalabad 38040, Pakistan
| | - Noureen Arshad
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan; Liberty Mills Limited, Karachi 75700, Pakistan
| | - Khalid Mahmood Zia
- Department of Chemistry, Government College University, Faisalabad 38030, Pakistan; Department of Applied Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Muhammad Tahir Hussain
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan.
| | - Ijaz Ahmed Bhatti
- Department of Chemistry, University of Agriculture, Faisalabad 38040, Pakistan
| | - Amer Iqbal
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan
| | - Saliha Ahmad
- Department of Applied Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Inam Ullah
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan
| |
Collapse
|
19
|
Lu Y, Lv D, Zhou L, Yang Y, Hao W, Huang L, Fan X, Zhao D, Li Q, Zhang C, Liu Q. Combined effects of SSII-2RNAi and different Wx alleles on rice grain transparency and physicochemical properties. Carbohydr Polym 2023; 308:120651. [PMID: 36813343 DOI: 10.1016/j.carbpol.2023.120651] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Near-isogenic lines Nip(Wxb/SSII-2), Nip(Wxb/ss2-2), Nip(Wxmw/SSII-2), Nip(Wxmw/ss2-2), Nip(Wxmp/SSII-2) and Nip(Wxmp/ss2-2) in the Nipponbare (Nip) background containing the SSII-2RNAi cassette combined with different Waxy (Wx) alleles were investigated in terms of rice grain transparency and quality profiles. Rice lines carrying the SSII-2RNAi cassette displayed downregulation of SSII-2, SSII-3 and Wx genes. Introduction of the SSII-2RNAi cassette decreased apparent amylose content (AAC) in all transgenic lines, but grain transparency differed between low AAC rice lines. Grains from Nip(Wxb/SSII-2) and Nip(Wxb/ss2-2) were transparent, while those of rice were increasingly translucent with decreasing moisture due to cavities within starch granules. Rice grain transparency was positively correlated with grain moisture and AAC, but negatively correlated with cavity area within starch granules. Starch fine structure analysis revealed a marked increase in short amylopectin chains with DP 6-12, but a decrease in intermediate chains with DP 13-24, resulting in decreased gelatinisation temperature. Starch crystalline structure analysis showed that the transgenic rice starches have lower crystallinity and lamellar repeat distance than controls due to differences in starch fine structure. The results highlight the molecular basis underpinning rice grain transparency, and provide strategies for improving rice grain transparency.
Collapse
Affiliation(s)
- Yan Lu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/State Key Laboratory of Hybrid Rice/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Dongjing Lv
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/State Key Laboratory of Hybrid Rice/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Lian Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/State Key Laboratory of Hybrid Rice/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Yong Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/State Key Laboratory of Hybrid Rice/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Weizhuo Hao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/State Key Laboratory of Hybrid Rice/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Lichun Huang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/State Key Laboratory of Hybrid Rice/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Xiaolei Fan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/State Key Laboratory of Hybrid Rice/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Dongsheng Zhao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/State Key Laboratory of Hybrid Rice/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Qianfeng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/State Key Laboratory of Hybrid Rice/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Changquan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/State Key Laboratory of Hybrid Rice/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China.
| | - Qiaoquan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/State Key Laboratory of Hybrid Rice/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
20
|
Wu W, Zhong Y, Liu Y, Xu R, Zhang X, Liu N, Guo D. A new insight into the biosynthesis, structure, and functionality of waxy maize starch under drought stress. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37005332 DOI: 10.1002/jsfa.12599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/11/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Drought stress (DS) is the main abiotic stress that maize suffers during its whole growth period, and maize is also sensitive to DS. It had been demonstrated that DS could improve the quality of normal maize starch. However, waxy maize, which has special properties, has not been explored in depth, which limits the breeding and cultivation of waxy maize varieties and the application of waxy maize starch. Therefore, in this study, we investigated the effects of DS on the biosynthesis, structure, and functionality of waxy maize starch. RESULTS The results showed that DS decreased the expression level of SSIIb, SSIIIa, GBSSIIa, SBEI, SBEIIb, ISAII, and PUL, but increased the expression level of SSI and SBEIIa. DS did not change the average chain length of amylopectin, while increased the relative content of fa chains (RCfa ) and decreased the RCfb1 and RCfb3 . Furthermore, DS decreased the amylose content, amorphous lamellar distance da , semi-crystalline repeat distance, and average particle size, whereas it increased the relative crystallinity, crystalline distance dc , the content of rapidly digested starch in the uncooked system and resistant starch content in both the uncooked and cooked system. CONCLUSIONS For waxy maize, DS could raise the relative expression level of SSI and SBEIIa, thus increasing RCfa . The larger number of RCfa could create steric hindrance, which can lead to producing more resistant starch in waxy maize starch. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenhao Wu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, China
| | - Yuyue Zhong
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Yilin Liu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, China
| | - Renyuan Xu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, China
| | - Xudong Zhang
- Institute of Crop Science, Quality of Plant Products, University of Hohenheim, Stuttgart, Germany
| | - Na Liu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, China
| | - Dongwei Guo
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
21
|
He Y, Ye F, Tao J, Zhang Z, Zhao G. Ozone exposure tunes the physicochemical properties of sweet potato starch by modifying its molecular structure. Int J Biol Macromol 2023; 236:124002. [PMID: 36914058 DOI: 10.1016/j.ijbiomac.2023.124002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
Ozonation is an efficient method for improving the technical performance of some starches, but the feasibility of its use for sweet potato starch remains unknown. The effects of aqueous ozonation on the multi-scale structure and physicochemical properties of sweet potato starch were explored. Structurally, ozonation did not generate significant alterations at the granular level (size, morphology, lamellar structure, and long-range and short-range ordered structures), but led to tremendous changes at the molecular level, including converting hydroxyl groups to carbonyl and carboxyl groups and depolymerizing starch molecules. These structural changes resulted in prominent alternations in the technological performance of sweet potato starch, such as increases in water solubility and paste clarity and decreases in water absorption capacity, paste viscosity, and paste viscoelasticity. For these traits, their amplitudes of variation elevated when the ozonation time was extended and peaked at the longest ozonation time (60 min). The greatest changes in paste setback (30 min), gel hardness (30 min), and the puffing capacity of the dried starch gel (45 min) were observed at moderate ozonation times. In summary, aqueous ozonation is a new method for fabricating sweet potato starch with improved functionality.
Collapse
Affiliation(s)
- Yonglin He
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Jianming Tao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Zehua Zhang
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Engineering Research Center for Sweet Potato, Chongqing 400715, People's Republic of China.
| |
Collapse
|
22
|
Ying Y, Hu Y, Zhang Y, Tappiban P, Zhang Z, Dai G, Deng G, Bao J, Xu F. Identification of a new allele of soluble starch synthase IIIa involved in the elongation of amylopectin long chains in a chalky rice mutant. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 328:111567. [PMID: 36526029 DOI: 10.1016/j.plantsci.2022.111567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/03/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
A chalky endosperm mutant (GM03) induced from an indica rice GLA4 was used to investigate the functional gene in starch biosynthesis. Bulked segregant analysis and sanger sequencing determined that a novel mutation in soluble starch synthase IIIa (SSIIIa) is responsible for the chalky phenotype in GM03. Complementary test by transforming the active SSIIIa gene driven by its native promoter to GM03 recovered the phenotype to its wildtype. The expression of SSIIIa was significantly decreased, while SSIIIa protein was not detected in GM03. The mutation of SSIIIa led to increased expression of most of starch synthesis related genes and elevated the levels of most of proteins in GM03. The CRISPR/Cas9 technology was used for targeted disruption of SSIIIa, and the mutant lines exhibited chalky endosperm which phenocopied the GM03. Additionally, the starch fine structure in the knockout mutant lines ss3a-1 and ss3a-2 was similar with the GM03, which showed increased amylose content, higher proportions of B1 and B2 chains, much lower proportions of B3 chains and decreased degree of crystallinity, leading to altered thermal properties with lower gelatinization temperature and enthalpy. Collectively, these results suggested that SSIIIa plays an important role in starch synthesis by elongating amylopectin long chains in rice.
Collapse
Affiliation(s)
- Yining Ying
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| | - Yaqi Hu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yanni Zhang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Piengtawan Tappiban
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Zhongwei Zhang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Gaoxing Dai
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Guofu Deng
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China.
| | - Feifei Xu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.
| |
Collapse
|
23
|
Efficient Accumulation of Amylopectin and Its Molecular Mechanism in the Submerged Duckweed Mutant. Int J Mol Sci 2023; 24:ijms24032934. [PMID: 36769258 PMCID: PMC9917893 DOI: 10.3390/ijms24032934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Large-scale use of fossil fuels has brought about increasingly serious problems of environmental pollution, development and utilization of renewable energy is one of the effective solutions. Duckweed has the advantages of fast growth, high starch content and no occupation of arable land, so it is a promising starchy energy plant. A new submerged duckweed mutant (sub-1) with abundant starch accumulation was obtained, whose content of amylopectin accounts for 84.04% of the starch granules. Compared with the wild type (Lemna aequinoctialis), the branching degree of starch in sub-1 mutant was significantly increased by 19.6%. Chain length DP 6-12, DP 25-36 and DP > 36 of amylopectin significantly decreased, while chain length DP 13-24 significantly increased. Average chain length of wild-type and sub-1 mutant starches were greater than DP 22. Moreover, the crystal structure and physical properties of starch have changed markedly in sub-1 mutant. For example, the starch crystallinity of sub-1 mutant was only 8.94%, while that of wild-type was 22.3%. Compared with wild type, water solubility of starch was significantly reduced by 29.42%, whereas swelling power significantly increased by 97.07% in sub-1 mutant. In order to further analyze the molecular mechanism of efficient accumulation of amylopectin in sub-1 mutant, metabolome and transcriptome were performed. The results showed that glucose accumulated in sub-1 mutant, then degradation of starch to glucose mainly depends on α-amylase. At night, the down-regulated β-amylase gene resulted in the inhibition of starch degradation. The starch and sucrose metabolism pathways were significantly enriched. Up-regulated expression of SUS, AGPase2, AGPase3, PYG, GPI and GYS provide sufficient substrate for starch synthesis in sub-1 mutant. From the 0H to 16H light treatment, granule-bound starch synthase (GBSS1) gene was inhibited, on the contrary, the starch branching enzyme (SBE) gene was induced. Differential expression of GBSS1 and SBE may be an important reason for the decrease ratio of amylose/amylopectin in sub-1 mutant. Taken together, our results indicated that the sub-1 mutant can accumulate the amylopectin efficiently, potentially through altering the differential expression of AGPase, GBSS1, SBE, and BAM. This study also provides theoretical guidance for creating crop germplasm with high amylopectin by means of synthetic biology in the future.
Collapse
|
24
|
Ai X, Xiong R, Tan X, Wang H, Zeng Y, Huang S, Shang Q, Pan X, Shi Q, Zhang J, Zeng Y. Low temperature and light combined stress after heading on starch fine structure and physicochemical properties of late-season indica rice with different grain quality in southern China. Food Res Int 2023; 164:112320. [PMID: 36737913 DOI: 10.1016/j.foodres.2022.112320] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Late-season indica rice frequently encounters low temperature (LT) along with low light (LL) after heading in southern China, which deteriorates the grain quality by altering starch quality. However, the detailed effects on starch properties of these stressors remain unclear. Herein, two indica rice cultivars with good and poor grain quality were grown under control (CK), LT, and LT + LL conditions after heading and the structural and physicochemical properties of their starch were evaluated. Compared with CK, LT and LT + LL worsened thermal and pasting properties of starch in the two cultivars, mainly because they increased branch chain branching and A chain (DP ≤12), and decreased average branch chain length and crystallinity. Compared with LT, LT + LL deteriorated the pasting properties of the poor-quality cultivar, such as reducing breakdown (BD), final and peak viscosity, which mainly owing to decreasing the starch branching and crystallinity degrees, and increasing the small starch granules (d < 10 μm). Gelatinization enthalpy and BD both had significant and positive correlations with amylose content, the ratio of amylose and amylopectin, B3 chain and crystallinity. Taken together, these results suggest that LT and LT + LL during grain filling can deteriorate the physicochemical properties of starch in late-season indica rice cultivars by disrupting starch multilevel structure, especially upon LT + LL. In particular, while poor-quality cultivar had poorer physicochemical properties, the good-quality cultivar had poorer thermal properties under LT + LL.
Collapse
Affiliation(s)
- Xiaofeng Ai
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Ruoyu Xiong
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xueming Tan
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Haixia Wang
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yongjun Zeng
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shan Huang
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qingyin Shang
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaohua Pan
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qinghua Shi
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jun Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanhua Zeng
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
25
|
Mao Y, Shi J, Cai L, Hwang W, Shi YC. Microstructures of Starch Granules with Different Amylose Contents and Allomorphs as Revealed by Scattering Techniques. Biomacromolecules 2023; 24:1980-1993. [PMID: 36716424 DOI: 10.1021/acs.biomac.2c01240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In this study, as-is (ca. 12% moisture by mass) and hydrated (50% water by mass) granules of waxy potato (WP), waxy wheat (WW), waxy maize, normal maize, and high-amylose maize (HAM) starches were investigated by using small-angle neutron and X-ray scattering (SANS and SAXS), wide-angle X-ray scattering, and ultra-small-angle neutron scattering. The SANS and SAXS data were fitted using the two-phase stacking model of alternating crystalline and amorphous layers. The partial crystalline lamellar structures inside the growth rings of granules were analyzed based on the inter-lamellar distances, thicknesses of the crystalline lamellae and amorphous layers, thickness polydispersities, and water content in each type of layer. Despite having a longer average chain length of amylopectin, the WP and HAM starches, which had B-type allomorph, had a shorter inter-lamellar distance than the other three starches with A-type allomorph. The WP starch had the most uniform crystalline lamellar thickness. After hydration, the amorphous layers were expanded, resulting in an increase of inter-layer distance. The low-angle intensity upturn in SANS and SAXS was attributed to scattering from interfaces/surfaces of larger structures, such as growth rings and macroscopic granule surfaces. Data analysis methods based on model fitting and 1D correlation function were compared. The study emphasized─owing to inherent packing disorder inside granules─that a comprehensive analysis of different parameters was essential in correlating the microstructures with starch properties.
Collapse
Affiliation(s)
- Yimin Mao
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland20742, United States.,NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland20899, United States
| | - Jialiang Shi
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas66506, United States
| | - Liming Cai
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas66506, United States
| | - Wonseok Hwang
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland20742, United States
| | - Yong-Cheng Shi
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas66506, United States
| |
Collapse
|
26
|
Hu Y, Zhang Y, Yu S, Deng G, Dai G, Bao J. Combined Effects of BEIIb and SSIIa Alleles on Amylose Contents, Starch Fine Structures and Physicochemical Properties of Indica Rice. Foods 2022; 12:foods12010119. [PMID: 36613335 PMCID: PMC9818509 DOI: 10.3390/foods12010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Starch branching enzyme IIb (BEIIb) and soluble starch synthase IIa (SSIIa) play important roles in starch biosynthesis in cereals. Deficiency in the BEIIb gene produces the amylose extender (ae) mutant rice strain with increased amylose content (AC) and changes in the amylopectin structure. The SSIIa gene is responsible for the genetic control of gelatinization temperature (GT). The combined effects of BEIIb and SSIIa alleles on the AC, fine structures, and physicochemical properties of starches from 12 rice accessions including 10 recombinant inbred lines (RIL) and their two parents were examined in this study. Under the active BEIIb background, starches with the SSIIa-GC allele showed a higher GT than those with the SSIIa-TT allele, resulting from a lower proportion of A chain and a larger proportion of B1 chains in the amylopectin of SSIIa-GC. However, starch with the BEIIb mutant allele (be2b) in combination with any SSIIa genotype displayed more amylose long chains, higher amylose content, B2 and B3 chains, and molecular order, but smaller relative crystallinity and proportion of amylopectin A and B1 chains than those with BEIIb, leading to a higher GT and lower paste viscosities. These results suggest that BEIIb is more important in determining the structural and physicochemical properties than SSIIa. These results provide additional insights into the structure-function relationship in indica rice rather than that in japonica rice and are useful for breeding rice with high amylose content and high resistant starch.
Collapse
Affiliation(s)
- Yaqi Hu
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| | - Yanni Zhang
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Shouwu Yu
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guofu Deng
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Gaoxing Dai
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
- Correspondence: (G.D.); (J.B.); Tel.: +86-571-86971932 (J.B.)
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
- Correspondence: (G.D.); (J.B.); Tel.: +86-571-86971932 (J.B.)
| |
Collapse
|
27
|
The Effects of Starch Molecular Fine Structure on Thermal and Digestion Properties of Rice Starch. Foods 2022; 11:foods11244012. [PMID: 36553754 PMCID: PMC9778140 DOI: 10.3390/foods11244012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Whole white rice is a major staple food for human consumption, with its starch digestion rate and location in the gastrointestinal tract having a critical role for human health. Starch has a multi-scale structure, which undergoes order-disorder transitions during rice cooking, and this structure is a major determinant of its digestibility. The length distributions of amylose and amylopectin chains are important determinants of rice starch gelatinization properties. Starch chain-length and molecular-size distributions are important determinants of nucleation and crystal growth rates, as well as of intra- and intermolecular interactions during retrogradation. A number of first-order kinetics models have been developed to fit starch digestograms, producing new information on the structural basis for starch digestive characteristics of cooked whole rice. Different starch digestible fractions with distinct digestion patterns have been found for the digestion of rice starch in fully gelatinized and retrograded states, the digestion kinetics of which are largely determined by starch fine molecular structures. Current insights and future directions to better understand digestibility of starch in whole cooked rice are summarized, pointing to ways of developing whole rice into a healthier food by way of having slower starch digestibility.
Collapse
|
28
|
Zhou Y, Cheng Z, Jiang S, Cen J, Wu D, Shu X. High temperature boosts resistant starch content by altering starch structure and lipid content in rice ssIIIa mutants. FRONTIERS IN PLANT SCIENCE 2022; 13:1059749. [PMID: 36466223 PMCID: PMC9715984 DOI: 10.3389/fpls.2022.1059749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/21/2022] [Indexed: 06/12/2023]
Abstract
High temperature (HT) during grain filling had adverse influences on starch synthesis. In this study, the influences of HT on resistant starch (RS) formation in rice were investigated. Most genes in ssIIIa mutants especially in RS4 were upregulated under Normal Temperature (NT) while downregulated under HT when compared with those of wild parent R7954. ssIIIa mutants had higher RS content, more lipid accumulation, higher proportion of short chains of DP 9-15, and less long chains of DP ≥37. ssIIIa mutation exacerbated the influences of HT on starch metabolite and caused larger declines in the expression of BEI, BEIIa, BEIIb, and SSIVb when exposed to HT. HT reduced the contents of total starch and apparent amylose significantly in wild type but not in mutants. Meanwhile, lipids were enriched in all varieties, but the amounts of starch-lipid complexes and the RS content were only heightened in mutants under HT. HT led to greatest declines in the amount of DP 9-15 and increases in the proportion of fb3 (DP ≥37); the declines and increases were all larger in mutants, which resulted in varied starch crystallinity. The increased long-chain amylopectin and lipids may be the major contributor for the elevated RS content in mutants under HT through forming more starch-lipid complexes (RSV).
Collapse
Affiliation(s)
- Yufeng Zhou
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Zhenfeng Cheng
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, China
| | - Shuo Jiang
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Jinxi Cen
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, China
| | - Xiaoli Shu
- State Key Laboratory of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, China
| |
Collapse
|
29
|
Chen R, Ma M, Zhao J, Fang J, Danino D, Sui Z, Corke H. Characterization of multi-scale structure and physicochemical properties of starch from diverse Japonica waxy rice cultivars. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Rice noodle quality is structurally driven by the synergistic effect between amylose chain length and amylopectin unit-chain ratio. Carbohydr Polym 2022; 295:119834. [DOI: 10.1016/j.carbpol.2022.119834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/04/2022] [Accepted: 07/02/2022] [Indexed: 11/23/2022]
|
31
|
Chang D, Hu X, Ma Z. Pea-Resistant Starch with Different Multi-scale Structural Features Attenuates the Obesity-Related Physiological Changes in High-Fat Diet Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11377-11390. [PMID: 36026466 DOI: 10.1021/acs.jafc.2c03289] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The present study compared the modulatory effects of different resistant starches (RSs) isolated from native (NP-RS), acid-hydrolyzed (AHP-RS), and pullulanase debranched (PDP-RS) pea starches on the corresponding in vivo metabolic responses in high fat (HF)-diet-induced obese mice. The biochemical studies on serum lipid profile and antioxidant enzyme activities were supported by histological and gene expression analyses, which suggested a potential therapeutic role for RS in regulating obesity, possibly through the production of short-chain fatty acids and the proliferation of some beneficial colonic bacteria, including Allobaculum, Bifidobacterium, Odoribacter, Clostridium, and Prevotella. Particularly, a more pronounced effect of AHP-RS with a higher proportion of the crystalline region and a more ordered double-helical alignment on improving the hyperlipidemic symptoms in obese mice induced by a HF diet was observed. Our analysis revealed that the RS3 samples seemed to be more effective than RS2 in terms of attenuating obesity in mice that were fed a HF diet.
Collapse
Affiliation(s)
- Danni Chang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Zhen Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| |
Collapse
|
32
|
Ying Y, Zhang Z, Tappiban P, Xu F, Deng G, Dai G, Bao J. Starch fine structure and functional properties during seed development in BEIIb active and deficient rice. Carbohydr Polym 2022; 292:119640. [DOI: 10.1016/j.carbpol.2022.119640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/07/2022] [Accepted: 05/17/2022] [Indexed: 11/02/2022]
|
33
|
Li X, Wang Y, Wu J, Jin Z, Dijkhuizen L, Hachem MA, Bai Y. Thermoproteus uzoniensis 4-α-glucanotransferase catalyzed production of a thermo-reversible potato starch gel with superior rheological properties and freeze-thaw stability. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Zhang Z, Hu Y, Yu S, Zhao X, Dai G, Deng G, Bao J. Effects of drought stress and elevated CO2 on starch fine structures and functional properties in indica rice. Carbohydr Polym 2022; 297:120044. [DOI: 10.1016/j.carbpol.2022.120044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 11/02/2022]
|
35
|
Zang Y, Yao H, Ran L, Zhang R, Duan Y, Yu X, Xiong F. Physicochemical Properties of Wheat Starch under Different Sowing Dates. STARCH-STARKE 2022. [DOI: 10.1002/star.202100290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yong Zang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri‐Product Safety Yangzhou University Yangzhou China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou University Yangzhou China
| | - Huihui Yao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri‐Product Safety Yangzhou University Yangzhou China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou University Yangzhou China
| | - Liping Ran
- Guangling College of Yangzhou University Yangzhou University Yangzhou 225009 China
| | - Rong Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri‐Product Safety Yangzhou University Yangzhou China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou University Yangzhou China
| | - Yuren Duan
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri‐Product Safety Yangzhou University Yangzhou China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou University Yangzhou China
| | - Xurun Yu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri‐Product Safety Yangzhou University Yangzhou China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou University Yangzhou China
| | - Fei Xiong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri‐Product Safety Yangzhou University Yangzhou China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou University Yangzhou China
| |
Collapse
|
36
|
Zhao T, Zhang H, Chen F, Tong P, Cao W, Jiang Y. Study on Structural Changes of Starches with Different Amylose Content during Gelatinization Process. STARCH-STARKE 2022. [DOI: 10.1002/star.202100269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tingting Zhao
- Wilmar Biotechnology R&D Center (Shanghai) Co., Ltd., China No.118 Gaodong Road Pudong New District Shanghai 200137 China
| | - Hongchao Zhang
- Wilmar Biotechnology R&D Center (Shanghai) Co., Ltd., China No.118 Gaodong Road Pudong New District Shanghai 200137 China
| | - Fangfang Chen
- Wilmar Biotechnology R&D Center (Shanghai) Co., Ltd., China No.118 Gaodong Road Pudong New District Shanghai 200137 China
| | - Peijin Tong
- Wilmar Biotechnology R&D Center (Shanghai) Co., Ltd., China No.118 Gaodong Road Pudong New District Shanghai 200137 China
| | - Wenming Cao
- Wilmar Biotechnology R&D Center (Shanghai) Co., Ltd., China No.118 Gaodong Road Pudong New District Shanghai 200137 China
| | - Yuanrong Jiang
- Wilmar Biotechnology R&D Center (Shanghai) Co., Ltd., China No.118 Gaodong Road Pudong New District Shanghai 200137 China
| |
Collapse
|
37
|
Cheng W, Sun Y, Xia X, Yang L, Fan M, Li Y, Wang L, Qian H. Effects of β-amylase treatment conditions on the gelatinization and retrogradation characteristics of wheat starch. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
38
|
Yang T, Yang H, Zeng Y, Wang H, Xiong R, Wu L, Zhang B. Differences in the functional properties and starch structures of early/late season rice between the early and late seasons. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Saklani R, Yadav PK, Nengroo MA, Gawali SL, Hassan PA, Datta D, Mishra DP, Dierking I, Chourasia MK. An Injectable In Situ Depot-Forming Lipidic Lyotropic Liquid Crystal System for Localized Intratumoral Drug Delivery. Mol Pharm 2022; 19:831-842. [PMID: 35191706 DOI: 10.1021/acs.molpharmaceut.1c00782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To address the need for localized chemotherapy against unresectable solid tumors, an injectable in situ depot-forming lipidic lyotropic liquid crystal system (L3CS) is explored that can provide spatiotemporal control over drug delivery. Although liquid crystals have been studied extensively before but their application as an injectable intratumoral depot system for locoregional chemotherapy has not been explored yet. The developed L3CS in the present study is a low-viscosity injectable fluid having a lamellar phase, which transforms into a hexagonal mesophase depot system on subcutaneous or intratumoral injection. The transformed depot system can be preprogrammed to provide tailored drug release intratumorally, over a period of one week to one month. To establish the efficacy of the developed L3CS, doxorubicin is used as a model drug. The drug release mechanism is studied in detail both in vitro and in vivo, and the efficacy of the developed system is investigated in the murine 4T1 tumor model. The direct intratumoral injection of the L3CS provided localized delivery of doxorubicin inside the tumor and restricted its access within the tumor only for a sustained period of time. This led to an over 10-fold reduction in tumor burden, reduced cardiotoxicity, and a significant increase in the median survival rate, compared to the control group. The developed L3CS thus provides an efficient strategy for localized chemotherapy against unresectable solid tumors with a great degree of spatial and temporal control over drug delivery.
Collapse
Affiliation(s)
- Ravi Saklani
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pavan K Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mushtaq A Nengroo
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Santosh L Gawali
- Nanotherapeutics and Biosensors Section, Chemistry Division, Bhabha Atomic Research Centre Trombay, Mumbai 400085, India
| | - Puthusserickal A Hassan
- Nanotherapeutics and Biosensors Section, Chemistry Division, Bhabha Atomic Research Centre Trombay, Mumbai 400085, India
| | - Dipak Datta
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Durga P Mishra
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ingo Dierking
- Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
40
|
The role of different Wx and BEIIb allele combinations on fine structures and functional properties of indica rice starches. Carbohydr Polym 2022; 278:118972. [PMID: 34973786 DOI: 10.1016/j.carbpol.2021.118972] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/21/2021] [Accepted: 11/30/2021] [Indexed: 01/08/2023]
Abstract
This study examined the effects of the combinations of Waxy (Wx) and starch branching enzyme IIb (BEIIb) alleles on starch fine structure and functional properties in indica rice cultivars. The results showed that be2b mutant starches with BEIIb deficiency had higher amylose content, shorter amylose long chains, a higher proportion of amylopectin long chains and molecular order, but a lower proportion of amylopectin short chains and relative crystallinity, resulting in higher gelatinization temperature but lower enthalpy and paste viscosity. Compared with the rice lines carrying Wxb allele, Wxa allele contributed to relatively higher amylose content, longer amylopectin chains, less short-range ordered structure and lower relative crystallinity, leading to a little lower gelatinization enthalpy. This study provides new insight into structure-function relations among rice lines with different allele combinations of starch synthesis related genes, which is a useful strategy for rice quality breeding.
Collapse
|
41
|
Anugerah MP, Faridah DN, Afandi FA, Hunaefi D, Jayanegara A. Annealing processing technique divergently affects starch crystallinity characteristic related to resistant starch content: a literature review and meta‐analysis. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Maria Putri Anugerah
- Departement of Food Science and Technology Faculty of Agricultural Technology IPB University Bogor 16880 Indonesia
| | - Didah Nur Faridah
- Departement of Food Science and Technology Faculty of Agricultural Technology IPB University Bogor 16880 Indonesia
- Department of Food Technology Faculty of Agricultural Technology Southeast Asian Food and Agricultural Science Technology (SEAFAST) Center, Bogor Agricultural University Bogor 16880 Indonesia
| | - Frendy Ahmad Afandi
- Deputy Ministry for Food and Agribusiness Coordinating Ministry for Economic Affairs Republic of Indonesia Jakarta 10710 Indonesia
| | - Dase Hunaefi
- Departement of Food Science and Technology Faculty of Agricultural Technology IPB University Bogor 16880 Indonesia
| | - Anuraga Jayanegara
- Department of Nutrition and Feed Technology Faculty of Animal Science IPB University Bogor 16680 Indonesia
| |
Collapse
|
42
|
Yan Y, Peng B, Niu B, Ji X, He Y, Shi M. Understanding the Structure, Thermal, Pasting, and Rheological Properties of Potato and Pea Starches Affected by Annealing Using Plasma-Activated Water. Front Nutr 2022; 9:842662. [PMID: 35198591 PMCID: PMC8859486 DOI: 10.3389/fnut.2022.842662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
In this research, annealing (ANN) using plasma-activated water (PAW) was first employed to modify potato and pea starches. Compared with the conventional ANN using distilled water (DW), the granular morphology of two starches was not significantly affected by PAW-ANN. The results of X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy showed that PAW-ANN could reduce the long and short-range ordered structure of potato starch while improving the long and short-range ordered structure of pea starch. Differential scanning calorimetry (DSC) analysis indicated that PAW-ANN lowered the gelatinization enthalpy of potato starch and increased the gelatinization enthalpy of pea starch. The analysis of viscosity and dynamic rheological characteristics illustrated that PAW-ANN reduced the peak viscosity and improved the gel strength of starch pastes. PAW-ANN represents a novel modification method for modifying the structure, reducing the viscosity, improving the gel strength of starch, and is very promising for applying in starch-based hydrogels and food additives.
Collapse
Affiliation(s)
- Yizhe Yan
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
- *Correspondence: Yizhe Yan
| | - Baixiang Peng
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Bin Niu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xiaolong Ji
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yuan He
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Miaomiao Shi
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
- Miaomiao Shi
| |
Collapse
|
43
|
Bangar SP, Ashogbon AO, Singh A, Chaudhary V, Whiteside WS. Enzymatic modification of starch: A green approach for starch applications. Carbohydr Polym 2022; 287:119265. [DOI: 10.1016/j.carbpol.2022.119265] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/02/2022]
|
44
|
Yang T, Yang H, Zhang B, Wu L, Huang Q, Zou J, Jiang Y, Zhang N. Effects of warming on starch structure, rice flour pasting property, and cooked rice texture in a double rice cropping system. Cereal Chem 2022. [DOI: 10.1002/cche.10529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Taotao Yang
- Rice Research Institute Guangdong Academy of Agricultural Sciences Guangzhou 510640 China
| | - Huifang Yang
- Key Laboratory of Plant Molecular Physiology Institute of Botany The China Academy of Science Beijing 100093 China
| | - Bin Zhang
- Rice Research Institute Guangdong Academy of Agricultural Sciences Guangzhou 510640 China
| | - Longmei Wu
- Rice Research Institute Guangdong Academy of Agricultural Sciences Guangzhou 510640 China
| | - Qing Huang
- Rice Research Institute Guangdong Academy of Agricultural Sciences Guangzhou 510640 China
| | - Jixiang Zou
- Rice Research Institute Guangdong Academy of Agricultural Sciences Guangzhou 510640 China
| | - Yu Jiang
- Jiangsu Collaborative Innovation Center for Modern Crop Production Nanjing Agricultural University Nanjing 210095 China
| | - Nan Zhang
- Jiangsu Collaborative Innovation Center for Modern Crop Production Nanjing Agricultural University Nanjing 210095 China
| |
Collapse
|
45
|
Yuan T, Ye F, Chen T, Li M, Zhao G. Structural characteristics and physicochemical properties of starches from winter squash (Cucurbita maxima Duch.) and pumpkin (Cucurbita moschata Duch. ex Poir.). Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
46
|
Xu J, Li Z, Zhong Y, Zhou Q, Lv Q, Chen L, Blennow A, Liu X. The effects of molecular fine structure on rice starch granule gelatinization dynamics as investigated by in situ small-angle X-ray scattering. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
47
|
Shi L, Li Y, Lin L, Bian X, Wei C. Effects of Variety and Growing Location on Physicochemical Properties of Starch from Sweet Potato Root Tuber. Molecules 2021; 26:7137. [PMID: 34885720 PMCID: PMC8659240 DOI: 10.3390/molecules26237137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
Three sweet potato varieties with purple-, yellow-, and white-fleshed root tubers were planted in four growing locations. Starches were isolated from their root tubers, their physicochemical properties (size, iodine absorption, amylose content, crystalline structure, ordered degree, lamellar thickness, swelling power, water solubility, and pasting, thermal and digestion properties) were determined to investigate the effects of variety and growing location on starch properties in sweet potato. The results showed that granule size (D[4,3]) ranged from 12.1 to 18.2 μm, the iodine absorption parameters varied from 0.260 to 0.361 for OD620, from 0.243 to 0.326 for OD680 and from 1.128 to 1.252 for OD620/550, and amylose content varied from 16.4% to 21.2% among starches from three varieties and four growing locations. Starches exhibited C-type X-ray diffraction patterns, and had ordered degrees from 0.634 to 0.726 and lamellar thicknesses from 9.72 to 10.21 nm. Starches had significantly different swelling powers, water solubilities, pasting viscosities, and thermal properties. Native starches had rapidly digestible starch (RDS) from 2.2% to 10.9% and resistant starch (RS) from 58.2% to 89.1%, and gelatinized starches had RDS from 70.5% to 81.4% and RS from 10.8% to 23.3%. Two-way ANOVA analysis showed that starch physicochemical properties were affected significantly by variety, growing location, and their interaction in sweet potato.
Collapse
Affiliation(s)
- Laiquan Shi
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China; (L.S.); (Y.L.); (L.L.)
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Yibo Li
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China; (L.S.); (Y.L.); (L.L.)
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Lingshang Lin
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China; (L.S.); (Y.L.); (L.L.)
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Xiaofeng Bian
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Cunxu Wei
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China; (L.S.); (Y.L.); (L.L.)
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
48
|
Abstract
Nature has developed starch granules varying in size from less than 1 μm to more than 100 μm. The granule size is an important factor affecting the functional properties and the applicability of starch for food and non-food applications. Within the same botanical species, the range of starch granule size can be up to sevenfold. This review critically evaluated the biological and environmental factors affecting the size of starch granules, the methods for the separation of starch granules and the measurement of size distribution. Further, the structure at different length scales and properties of starch-based on the granule size is elucidated by specifying the typical applications of granules with varying sizes. An amylopectin cluster model showing the arrangement of amylopectin from inside toward the granule surface is proposed with the hypothesis that the steric hindrance for the growth of lamellar structure may limit the size of starch granules.
Collapse
Affiliation(s)
- Ming Li
- Laboratory of Cereal Processing and Quality Control, Institute of Food Science and Technology, CAAS/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Venea Dara Daygon
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
| | - Vicky Solah
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Sushil Dhital
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
49
|
Zhang J, Ma R, Ding X, Huang M, Shen K, Zhao S, Xiao Z, Xiu C. Association among starch storage, metabolism, related genes and growth of Moso bamboo (Phyllostachys heterocycla) shoots. BMC PLANT BIOLOGY 2021; 21:477. [PMID: 34670492 PMCID: PMC8527747 DOI: 10.1186/s12870-021-03257-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 10/08/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND Both underground rhizomes/buds and above-ground Moso bamboo (Phyllostachys heterocycla) shoots/culms/branches are connected together into a close inter-connecting system in which nutrients are transported and shared among each organ. However, the starch storage and utilization mechanisms during bamboo shoot growth remain unclear. This study aimed to reveal in which organs starch was stored, how carbohydrates were transformed among each organ, and how the expression of key genes was regulated during bamboo shoot growth and developmental stages which should lay a foundation for developing new theoretical techniques for bamboo cultivation. RESULTS Based on changes of the NSC content, starch metabolism-related enzyme activity and gene expression from S0 to S3, we observed that starch grains were mainly elliptical in shape and proliferated through budding and constriction. Content of both soluble sugar and starch in bamboo shoot peaked at S0, in which the former decreased gradually, and the latter initially decreased and then increased as shoots grew. Starch synthesis-related enzymes (AGPase, GBSS and SBE) and starch hydrolase (α-amylase and β-amylase) activities exhibited the same dynamic change patterns as those of the starch content. From S0 to S3, the activity of starch synthesis-related enzyme and starch amylase in bamboo rhizome was significantly higher than that in bamboo shoot, while the NSC content in rhizomes was obviously lower than that in bamboo shoots. It was revealed by the comparative transcriptome analysis that the expression of starch synthesis-related enzyme-encoding genes were increased at S0, but reduced thereafter, with almost the same dynamic change tendency as the starch content and metabolism-related enzymes, especially during S0 and S1. It was revealed by the gene interaction analysis that AGPase and SBE were core genes for the starch and sucrose metabolism pathway. CONCLUSIONS Bamboo shoots were the main organ in which starch was stored, while bamboo rhizome should be mainly functioned as a carbohydrate transportation channel and the second carbohydrate sink. Starch metabolism-related genes were expressed at the transcriptional level during underground growth, but at the post-transcriptional level during above-ground growth. It may be possible to enhance edible bamboo shoot quality for an alternative starch source through genetic engineering.
Collapse
Affiliation(s)
- Jiajia Zhang
- China National Bamboo Research Center, Hangzhou, 310012, Zhejiang Province, China
- Chinese Academy of Forestry, Beijing, 100089, China
| | - Ruixiang Ma
- China National Bamboo Research Center, Hangzhou, 310012, Zhejiang Province, China
- Chinese Academy of Forestry, Beijing, 100089, China
| | - Xingcui Ding
- China National Bamboo Research Center, Hangzhou, 310012, Zhejiang Province, China.
- Chinese Academy of Forestry, Beijing, 100089, China.
| | - Manchang Huang
- China National Bamboo Research Center, Hangzhou, 310012, Zhejiang Province, China
- Chinese Academy of Forestry, Beijing, 100089, China
| | - Kai Shen
- China National Bamboo Research Center, Hangzhou, 310012, Zhejiang Province, China
- Chinese Academy of Forestry, Beijing, 100089, China
| | - Siqi Zhao
- China National Bamboo Research Center, Hangzhou, 310012, Zhejiang Province, China
- Chinese Academy of Forestry, Beijing, 100089, China
| | - Zizhang Xiao
- China National Bamboo Research Center, Hangzhou, 310012, Zhejiang Province, China
- Chinese Academy of Forestry, Beijing, 100089, China
| | - Chengming Xiu
- China National Bamboo Research Center, Hangzhou, 310012, Zhejiang Province, China
- Chinese Academy of Forestry, Beijing, 100089, China
| |
Collapse
|
50
|
Li G, Hemar Y, Zhu F. Relationships between supramolecular organization and amylopectin fine structure of quinoa starch. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106685] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|