1
|
Cheng Y, Watrelot AA. Synergetic effect of Accentuated Cut Edges (ACE) and macerating enzymes on the phenolic composition of Marquette red wines. Food Res Int 2024; 195:114968. [PMID: 39277237 DOI: 10.1016/j.foodres.2024.114968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
One of the challenges of cold-hardy grape cultivars is their typical low content of tannins, alongside the presence of anthocyanin diglucoside and high acidity, which can lead to unbalanced red wines. This study hypothesized that the combination of Accentuated Cut Edges (ACE) and macerating enzymes would improve phenolics extraction from grape skins after disruption. The effects of those two winemaking techniques, either used separately or together, on red wine quality characteristics were investigated at crushing, bottling, and after six or nine months of aging. Overall, the combination of treatments improved the concentration of monomeric phenolics (20 %) and tannins (21 %) after nine months of aging. ACE or enzyme treatment separately applied had little impact on phenolics extraction in finished wines. This study exhibited a potential strategy to modify phenolics profile through the synergistic effect of ACE and macerating enzymes by causing cellular breakdown in a cold-hardy red grape cultivar.
Collapse
Affiliation(s)
- Yiliang Cheng
- Department of Food Science and Human Nutrition, Iowa State University, 536 Farm House Lane, Ames, IA 50011, USA
| | - Aude A Watrelot
- Department of Food Science and Human Nutrition, Iowa State University, 536 Farm House Lane, Ames, IA 50011, USA.
| |
Collapse
|
2
|
Li J, Li R, Peng Y, Tian J, Zhou L. Effect of high-pressure-homogenisation on the interaction between pomegranate peel pectin fractions and anthocyanins in acidic environment. Food Chem 2024; 457:140110. [PMID: 38905822 DOI: 10.1016/j.foodchem.2024.140110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/29/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
In this study, changes in the basic composition and structural characterisation of water-soluble pectin (WSP), homogalacturonan (HG) and rhamnogalacturonan-I (RG-I) from pomegranate peel were investigated after high-pressure-homogenisation (HPH) at 50 MPa and 300 MPa. The interactions between three pectin and anthocyanin (ACN) complex were also studied. The three pectin fractions were mainly composed of galacturonic acid (34.95%-87.69%), all with low degrees of methyl-esterification ≤41.20%. HPH at 300 MPa increased the binding ratios of ACN to three pectin fractions by 34.22%-34.59%. Changes in the structural characterisation results of pectin confirmed that the depolymerisation and breakdown of the side chains of pectin after HPH promoted electrostatic interactions, hydrogen bond and hydrophobic interaction between pectin and ACN. Correspondingly, the thermal and storage stabilities of ACN in the complex was boosted after HPH at 300 MPa. This study provides insights into the interaction between pectin and ACN under HPH.
Collapse
Affiliation(s)
- Jian Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming, Yunnan Province 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, China; College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, China.
| | - Rongping Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming, Yunnan Province 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, China
| | - Yijin Peng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming, Yunnan Province 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, China
| | - Jun Tian
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming, Yunnan Province 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, China
| | - Linyan Zhou
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming, Yunnan Province 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, China.
| |
Collapse
|
3
|
Campbell JR, Scholasch T, Waterhouse AL, Kennedy JA. Napa Valley Cabernet Sauvignon Proanthocyanidin Changes During Fruit Ripening: A Multi-Appellation Survey. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38833680 DOI: 10.1021/acs.jafc.4c02146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
In 2015, an experiment was designed to investigate the distribution and variance of in winegrape flavonoids across the ripening phase in the Napa Valley. This Cabernet Sauvignon experiment was intended to evaluate the polyphenol differences across Napa Valley in order to understand parameters controlling "proanthocyanidin activity." This method has shown promise in understanding proanthocyanidin (PA) astringency based on size distribution, pigmentation, conformation, and composition. Results from whole berry partial extractions showed that seed PA material was driving PA activity early in the ripening phase, while the formation of the pigmented polymer led to a decrease later in the growing season. Multivariate analysis showed that the main drivers of changes across the ripening phase were the molecular masses of PAs and the amount of pigmentation. Given the high amount of variability seen in the experiment between sites in such a small geographical area, the results suggest that manipulation of PA activity may be possible in the vineyard, perhaps explaining variations in wine mouthfeel attributes between locations. These results can be used to develop furthermore controlled experiments targeting the variables responsible for PA activity changes.
Collapse
Affiliation(s)
- James R Campbell
- Department of Viticulture and Enology, University of California Davis, One Shields Ave., Davis, California 95616, United States
- California State University, 2360 East Barstow Avenue MS VR89, Fresno, California 93740-8003, United States
| | | | - Andrew L Waterhouse
- Department of Viticulture and Enology, University of California Davis, One Shields Ave., Davis, California 95616, United States
| | - James A Kennedy
- California State University, 2360 East Barstow Avenue MS VR89, Fresno, California 93740-8003, United States
- Functional Phenolics LLC, Corvallis, Oregon 97330, United States
| |
Collapse
|
4
|
Lopez-Rodulfo IM, Tsochatzis ED, Stentoft EW, Martinez-Carrasco P, Bechtner JD, Martinez MM. Partitioning and in vitro bioaccessibility of apple polyphenols during mechanical and physiological extraction: A hierarchical clustering analysis with LC-ESI-QTOF-MS/MS. Food Chem 2024; 441:138320. [PMID: 38199101 DOI: 10.1016/j.foodchem.2023.138320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/09/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
Polyphenol partitioning during mechanical (cold-pressing) and physiological (digestion) extraction at the individual polyphenol and subclass level was investigated. UHPLC-ESI-QTOF-MS/MS analysis yielded a comprehensive identification of 45 polyphenols whose semi-quantification revealed a hierarchical clustering strongly determined by polyphenol structure and their location within the apple tissue. For instance, pomace retained most flavonols and flavanols (degree of polymerization DP 5-7), which were highly hydrophobic, hydroxylated, or large (>434 Da), and more abundant in peel. In vitro digestion UHPLC-ESI-QTOF-MS/MS analysis of whole apple (and its corresponding matrix-free extract) clustered polyphenols into five main groups according to their interaction with plant cell walls (PCWs) during each digestion phase. This grouping was not reproduced in pomace, which exhibited a greater matrix effect than whole apple during oral and gastric digestion. Nevertheless, the interaction between most polyphenol groups, including dihydrochalcones, flavanols (DP 1-4) and hydroxycinnamic acid derivatives, and pomace PCWs was lost during intestinal digestion.
Collapse
Affiliation(s)
- Ivan M Lopez-Rodulfo
- Centre for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark
| | - Emmanouil D Tsochatzis
- Centre for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark
| | - Emil W Stentoft
- Centre for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark
| | - Pamela Martinez-Carrasco
- Centre for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark
| | - Julia D Bechtner
- Centre for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark
| | - Mario M Martinez
- Centre for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark.
| |
Collapse
|
5
|
Cheng Y, Wimalasiri PM, Tian B, Watrelot AA. Influence of Grape Flesh on the Retention and Composition of Polyphenols from Skins and Seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38597640 DOI: 10.1021/acs.jafc.4c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
This study examined the impact of grape flesh polysaccharide, protein, and amino acid contents on polyphenol retention from skins and seeds in Pinot noir (Vitis vinifera) and cold-hardy interspecific cultivars Marquette and Frontenac (Vitis spp.). After isolating grape tissues (skin, seed, and flesh), they were soaked either individually or combined with other tissues in a wine-like solution for up to 7 days. Findings revealed that flesh significantly reduces the concentration of condensed tannin, and mono- and diglucoside forms of anthocyanins in the supernatants, due to its rich content in polysaccharides and proteins. Frontenac skin and flesh tissues were the main sources of soluble proteins, amino acids, and soluble polysaccharides. Surprisingly, Marquette exhibited a higher retention of skin tannin than Pinot noir, likely due to its smaller tannin molecular mass, and a potential competitive effect with anthocyanins for the binding sites of flesh.
Collapse
Affiliation(s)
- Yiliang Cheng
- Department of Food Science and Human Nutrition, Iowa State University, 536 Farm House Lane, Ames, Iowa 50011, United States
| | - Pradeep M Wimalasiri
- Department of Wine Food & Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand
| | - Bin Tian
- Department of Wine Food & Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand
| | - Aude A Watrelot
- Department of Food Science and Human Nutrition, Iowa State University, 536 Farm House Lane, Ames, Iowa 50011, United States
| |
Collapse
|
6
|
Brandão E, Jesus M, Guerreiro C, Maricato É, Coimbra MA, Mateus N, de Freitas V, Soares S. Development of a cell-based quaternary system to unveil the effect of pectic polysaccharides on oral astringency. Carbohydr Polym 2024; 323:121378. [PMID: 37940274 DOI: 10.1016/j.carbpol.2023.121378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 11/10/2023]
Abstract
Phenolic compounds are responsible for food unpleasant taste properties, including astringency, due to their ability to interact with salivary proteins and oral constituents. Astringency is a crucial attribute for consumer's acceptability. To fulfill the demand for both healthy and tasty food, polysaccharides raise as a good alternative to modulate astringency. In this work, a cell-based quaternary system was developed to evaluate the ability of polysaccharides to reduce the interaction between two classes of hydrolysable tannins - gallotannins (tannic acid) and ellagitannins (punicalagin) - and oral constituents (cells, salivary proteins and mucosal pellicle). So, pectic polysaccharide fractions isolated from grape skins, imidazole soluble polysaccharides (ISP) and carbonate soluble polysaccharides (CSP), as well as a commercial pectin, were tested. Results showed that the polysaccharide's effect depends on the structural features of the molecules involved. CSP fraction and pectin were the most effective, reducing the interactions between both tannins and the oral constituents, mainly in the complete oral model. The highest uronic acid content and the presence of methyl esterified groups could explain their high reduction ability. For tannic acid, the reduction effect increased along with the galloylation degree, while the interaction of β-punicalagin with the oral constituents was practically inhibited at 3.0 mg.mL-1.
Collapse
Affiliation(s)
- Elsa Brandão
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 689, Porto, Portugal.
| | - Mónica Jesus
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 689, Porto, Portugal.
| | - Carlos Guerreiro
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 689, Porto, Portugal.
| | - Élia Maricato
- QOPNA and LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.
| | - Manuel A Coimbra
- QOPNA and LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.
| | - Nuno Mateus
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 689, Porto, Portugal.
| | - Victor de Freitas
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 689, Porto, Portugal.
| | - Susana Soares
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 689, Porto, Portugal.
| |
Collapse
|
7
|
Nastasi JR, Fitzgerald MA, Kontogiorgos V. Tuning the mechanical properties of pectin films with polyphenol-rich plant extracts. Int J Biol Macromol 2023; 253:127536. [PMID: 37863131 DOI: 10.1016/j.ijbiomac.2023.127536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
The mechanical properties of pectin films enhanced with polyphenol-rich fruit extracts were investigated. The scavenging and reducing activity of plant extracts incorporated into the pectin films were determined using bench assays, and their antioxidant activity was correlated with a high presence of polyphenols, which were predominantly comprised of flavonoids and anthocyanins. The pectin films generated from the extracts exhibited a range of mechanical properties; tensile strength (4.99 MPa - 6.91 MPa), elongation at break (45.8 % - 52.3 %), and stiffness (1835 g mm-1 - 2765 g mm-1). To investigate the underlying relationships between plant extract composition and mechanical properties, Projection to Latent Structures (PLS) models were developed. The PLS models revealed that extracts containing high sugar and polyphenol content increase the tensile strength and moisture content of films. The elongation at break of the films was improved or diminished depending on the profile of sugar, acids, and polyphenols in the fruit extracts. Furthermore, the structures and concentration of anthocyanins and flavonoids were identified to strongly influenced the elongation at break differences. By modifying the concentration of sugars, organic acids, and polyphenols, the mechanical properties of pectin-based films can be tuned for tailored applications as food packaging materials.
Collapse
Affiliation(s)
- Joseph Robert Nastasi
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia.
| | - Melissa A Fitzgerald
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Vassilis Kontogiorgos
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Wu Q, Zhang F, Niu M, Yan J, Shi L, Liang Y, Tan J, Xu Y, Xu J, Wang J, Feng N. Extraction Methods, Properties, Functions, and Interactions with Other Nutrients of Lotus Procyanidins: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14413-14431. [PMID: 37754221 DOI: 10.1021/acs.jafc.3c05305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Lotus procyanidins, natural polyphenolic compounds isolated from the lotus plant family, are widely recognized as potent antioxidants that scavenge free radicals in the human body and exhibit various pharmacological effects, such as anti-inflammatory, anticancer, antiobesity, and hypoglycemic. With promising applications in food and healthcare, lotus procyanidins have attracted extensive attention in recent years. This review provides a comprehensive summary of current research on lotus procyanidins, including extraction methods, properties, functions, and interactions with other nutrient components. Furthermore, this review offers an outlook on future research directions, providing ideas and references for the exploitation and utilization of lotus.
Collapse
Affiliation(s)
- Qian Wu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Fen Zhang
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Mengyao Niu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jia Yan
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Lin Shi
- Wuhan Caidian District Public Inspection and Testing Center, Wuhan, Hubei 430100, China
| | - Yinggang Liang
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jiangying Tan
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Yang Xu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jianhua Xu
- Pinyuan (Suizhou) Modern Agriculture Development Co., Ltd., Suizhou, Hubei 441300, China
| | - Jingyi Wang
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Nianjie Feng
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| |
Collapse
|
9
|
Liu C, Chen F. Study on the Stability Mechanism of Peanut OBs Extracted with the Aqueous Enzymatic Method. Foods 2023; 12:3446. [PMID: 37761154 PMCID: PMC10527780 DOI: 10.3390/foods12183446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
In this study, the internal relationships among oil bodies (OBs), the protein-phospholipid interactions in aqueous phase, oil-water interface behavior, and the stability of reconstituted OBs were analyzed from the bulk phase, interface, and macro perspectives, and the stability mechanism of OBs was discussed. OB proteins and phospholipids were combined through hydrophobic and electrostatic interactions, resulting in the stretching of protein conformation. OB proteins and phospholipids act synergistically to increase interface pressure and the rate of increase in interface pressure with relatively stable elastic behavior, which is beneficial to the formation and stability of interfacial films. When OBs were reconstituted by an OB protein-phospholipid complex system, phospholipids bound to OB proteins through hydrophobic and electrostatic interactions. OB proteins and phospholipids uniformly covered the oil droplet surface of reconstituted OBs to form a stable interfacial film, which maintained the stability of OBs. The addition of phospholipids significantly reduced the particle size of OBs prepared by OB proteins in a dose-dependent manner, and particle size decreased with the increase in phospholipid content (p < 0.05). Phospholipids increased the net surface charge, enhanced electrostatic repulsion, and improved the physicochemical stability of reconstituted OBs. The stability mechanism elucidated in this study provides a theoretical basis for the demulsification of peanut OBs.
Collapse
Affiliation(s)
- Chen Liu
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China;
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
10
|
Das T, Chatterjee N, Capanoglu E, Lorenzo JM, Das AK, Dhar P. The synergistic ramification of insoluble dietary fiber and associated non-extractable polyphenols on gut microbial population escorting alleviation of lifestyle diseases. Food Chem X 2023; 18:100697. [PMID: 37206320 PMCID: PMC10189415 DOI: 10.1016/j.fochx.2023.100697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/21/2023] Open
Abstract
Most of the pertinent research which aims at exploring the therapeutic effects of polyphenols usually misapprehends a large fraction of non-extractable polyphenols due to their poor aqueous-organic solvent extractability. These polymeric polyphenols (i.e., proanthocyanins, hydrolysable tannins and phenolic acids) possess a unique property to adhere to the food matrix polysaccharides and protein sowing to their structural complexity with high glycosylation, degree of polymerization, and plenty of hydroxyl groups. Surprisingly resistance to intestinal absorption does not hinder its bioactivity but accelerates its functionality manifolds due to the colonic microbial catabolism in the gastrointestinal tract, thereby protecting the body from local and systemic inflammatory diseases. This review highlights not only the chemistry, digestion, colonic metabolism of non-extractable polyphenols (NEPP) but also summarises the synergistic effect of matrix-bound NEPP exerting local as well as systemic health benefits.
Collapse
Affiliation(s)
- Trina Das
- Laboratory of Food Science and Technology, Food and Nutrition Division, Department of Home Science, University of Calcutta, 20B Judges Court Road, Alipore, Kolkata 700027, West Bengal, India
| | - Niloy Chatterjee
- Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata 700 098, India
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical & Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Universidade de Vigo, Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, 32004 Ourense, Spain
- Corresponding authors at: Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain (E. Capanoglu).
| | - Arun K. Das
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata-700037, West Bengal, India
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, Department of Home Science, University of Calcutta, 20B Judges Court Road, Alipore, Kolkata 700027, West Bengal, India
- Corresponding authors at: Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain (E. Capanoglu).
| |
Collapse
|
11
|
Hu J, Bi J, Li X, Wu X, Wang W, Yu Q. Understanding the impact of pectin on browning of polyphenol oxidation system in thermal and storage processing. Carbohydr Polym 2023; 307:120641. [PMID: 36781270 DOI: 10.1016/j.carbpol.2023.120641] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/05/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
Browning of some processed fruit products was affected not only by polyphenol oxidation but also by cell wall polysaccharides (pectin). The study was performed to understand the mechanism of browning in the pectin system. The catechin/chlorogenic acid oxidation system in three pectins significantly enhanced their browning during thermal storage with pectin structure- and concentration-dependent. Particularly, the structural and physicochemical properties of pectin were examined to determine its effects on the kinetics of polyphenol oxidation and the stability of free polyphenols. Moreover, pectin impacted the fluorescence characteristics of polyphenols by cross-linking with the aromatic ring of polyphenols. In turn, the interaction between polyphenols and pectin impacted the chemical bond vibration of pectin, thereby affecting its optical features and browning. The correlation analysis revealed that the monosaccharide composition, Ratio 1, Ratio 2, Ratio 3, methyl esterification, ζ-potential, and polydispersity index of pectin were significantly correlated with the browning of the pectin-polyphenol oxidation system.
Collapse
Affiliation(s)
- Jiaxing Hu
- Institute of Food Science and Technology, CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100193, China
| | - Jinfeng Bi
- Institute of Food Science and Technology, CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100193, China.
| | - Xuan Li
- Institute of Food Science and Technology, CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100193, China.
| | - Xinye Wu
- Institute of Food Science and Technology, CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100193, China
| | - Wenyue Wang
- Institute of Food Science and Technology, CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100193, China
| | - Qingting Yu
- Institute of Food Science and Technology, CAAS, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100193, China
| |
Collapse
|
12
|
Boulet JC, Abi-Habib E, Carrillo S, Roi S, Veran F, Verbaere A, Meudec E, Rattier A, Ducasse MA, Jørgensen B, Hansen J, Gall SL, Poncet-Legrand C, Cheynier V, Doco T, Vernhet A. Focus on the relationships between the cell wall composition in the extraction of anthocyanins and tannins from grape berries. Food Chem 2023; 406:135023. [PMID: 36470080 DOI: 10.1016/j.foodchem.2022.135023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/26/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
Concentrations of anthocyanins and tannins after extraction from berries in wines and from skin macerations in model solutions have been studied for two grape varieties, two maturation levels and two vintages berries. Characterization of the cell wall polysaccharides has also been performed, the classical method based on the analysis of the neutral sugars after depolymerization being completed by a comprehensive microarray polymer profiling (CoMPP). Extraction was lower in model solutions than in wines, with the same ranking: non acylated anthocyanins> tannins > p-coumaroylated anthocyanins. The polysaccharidic composition suggested a role of homogalacturonans, rhamnogalacturonans and extensins in the extraction process. A global explanation of the interactions between anthocyanins, tannins and polysaccharides is proposed.
Collapse
Affiliation(s)
- Jean-Claude Boulet
- Univ Montpellier, SPO, INRAE, Institut Agro Montpellier Supagro, 34070 Montpellier, France; INRAE, PROBE Research Infrastructure, PFP Polyphenols Analysis Facility, 34070 Montpellier, France.
| | - Elissa Abi-Habib
- Univ Montpellier, SPO, INRAE, Institut Agro Montpellier Supagro, 34070 Montpellier, France
| | - Stéphanie Carrillo
- Univ Montpellier, SPO, INRAE, Institut Agro Montpellier Supagro, 34070 Montpellier, France.
| | - Stéphanie Roi
- Univ Montpellier, SPO, INRAE, Institut Agro Montpellier Supagro, 34070 Montpellier, France.
| | - Fréderic Veran
- Univ Montpellier, SPO, INRAE, Institut Agro Montpellier Supagro, 34070 Montpellier, France.
| | - Arnaud Verbaere
- Univ Montpellier, SPO, INRAE, Institut Agro Montpellier Supagro, 34070 Montpellier, France; INRAE, PROBE Research Infrastructure, PFP Polyphenols Analysis Facility, 34070 Montpellier, France.
| | - Emmanuelle Meudec
- Univ Montpellier, SPO, INRAE, Institut Agro Montpellier Supagro, 34070 Montpellier, France; INRAE, PROBE Research Infrastructure, PFP Polyphenols Analysis Facility, 34070 Montpellier, France.
| | - Anais Rattier
- Univ Montpellier, SPO, INRAE, Institut Agro Montpellier Supagro, 34070 Montpellier, France; INRAE, PROBE Research Infrastructure, PFP Polyphenols Analysis Facility, 34070 Montpellier, France.
| | | | - Bodil Jørgensen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark.
| | - Jeanett Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark.
| | - Sophie Le Gall
- INRAE, UR BIA, 44316 Nantes, France; INRAE, PROBE Research Infrastructure, BIBS Biopolymers Analysis Facility, 44316 Nantes, France.
| | - Céline Poncet-Legrand
- Univ Montpellier, SPO, INRAE, Institut Agro Montpellier Supagro, 34070 Montpellier, France.
| | - Véronique Cheynier
- Univ Montpellier, SPO, INRAE, Institut Agro Montpellier Supagro, 34070 Montpellier, France; INRAE, PROBE Research Infrastructure, PFP Polyphenols Analysis Facility, 34070 Montpellier, France.
| | - Thierry Doco
- Univ Montpellier, SPO, INRAE, Institut Agro Montpellier Supagro, 34070 Montpellier, France.
| | - Aude Vernhet
- Univ Montpellier, SPO, INRAE, Institut Agro Montpellier Supagro, 34070 Montpellier, France.
| |
Collapse
|
13
|
Manjón E, Li S, Dueñas M, García-Estévez I, Escribano-Bailón MT. Effect of the addition of soluble polysaccharides from red and white grape skins on the polyphenolic composition and sensory properties of Tempranillo red wines. Food Chem 2023; 400:134110. [PMID: 36096051 DOI: 10.1016/j.foodchem.2022.134110] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/08/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022]
Abstract
Soluble polysaccharides from white (PSW) and red (PSR) grape skins were obtained to be evaluated as potential modulators of the unbalanced astringency of a Tempranillo red wine. The modulation of astringency was evaluated by a sensory panel and it seemed to be related to the changes in the polyphenolic profile. Isothermal Titration Calorimetry (ITC) studies, employed to characterize flavan-3-ol-polysaccharide interactions, showed that PSR decreased noticeably wine astringency causing a great flavan-3-ol loss (ca. 40 %), since they interacted more spontaneously with the flavan-3-ols (ca. ΔGtotal = -2.14 × 104 cal/mol) than PSW (ca. ΔGtotal = -1.32 × 104 cal/mol). The strength of these interactions seems to be related to the polysaccharide molecular size and to the presence of arabinogalactans in the structure. On the contrary, PSW showed no relevant effects on wine astringency. Furthermore, potential variations of color were also assessed and no deleterious effect was observed after the addition of any polysaccharide.
Collapse
Affiliation(s)
- Elvira Manjón
- Grupo de Investigación en Polifenoles, Facultad de Farmacia, Universidad de Salamanca, Salamanca E37007, Spain
| | - Siyu Li
- Grupo de Investigación en Polifenoles, Facultad de Farmacia, Universidad de Salamanca, Salamanca E37007, Spain; Institute for Horticultural Plants, College of Horticulture, China Agricultural University, Beijing 100083, China
| | - Montserrat Dueñas
- Grupo de Investigación en Polifenoles, Facultad de Farmacia, Universidad de Salamanca, Salamanca E37007, Spain
| | - Ignacio García-Estévez
- Grupo de Investigación en Polifenoles, Facultad de Farmacia, Universidad de Salamanca, Salamanca E37007, Spain.
| | | |
Collapse
|
14
|
Chowdhury J, Ferdous J, Lihavainen J, Albrectsen BR, Lundberg-Felten J. Fluorogenic properties of 4-dimethylaminocinnamaldehyde (DMACA) enable high resolution imaging of cell-wall-bound proanthocyanidins in plant root tissues. FRONTIERS IN PLANT SCIENCE 2023; 13:1060804. [PMID: 36726681 PMCID: PMC9884812 DOI: 10.3389/fpls.2022.1060804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Proanthocyanidins (PAs) are polymeric phenolic compounds found in plants and used in many industrial applications. Despite strong evidence of herbivore and pathogen resistance-related properties of PAs, their in planta function is not fully understood. Determining the location and dynamics of PAs in plant tissues and cellular compartments is crucial to understand their mode of action. Such an approach requires microscopic localization with fluorescent dyes that specifically bind to PAs. Such dyes have hitherto been lacking. Here, we show that 4-dimethylaminocinnamaldehyde (DMACA) can be used as a PA-specific fluorescent dye that allows localization of PAs at high resolution in cell walls and inside cells using confocal microscopy, revealing features of previously unreported wall-bound PAs. We demonstrate several novel usages of DMACA as a fluorophore by taking advantage of its double staining compatibility with other fluorescent dyes. We illustrate the use of the dye alone and its co-localization with cell wall polymers in different Populus root tissues. The easy-to-use fluorescent staining method, together with its high photostability and compatibility with other fluorogenic dyes, makes DMACA a valuable tool for uncovering the biological function of PAs at a cellular level in plant tissues. DMACA can also be used in other plant tissues than roots, however care needs to be taken when tissues contain compounds that autofluoresce in the red spectral region which can be confounded with the PA-specific DMACA signal.
Collapse
Affiliation(s)
- Jamil Chowdhury
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Jannatul Ferdous
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Jenna Lihavainen
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | | | - Judith Lundberg-Felten
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
15
|
Gong W, Zhao X, Manickam S, Liu X, Li D, Han Y, Kiani H, Feng C, Tao Y. Impact of cell wall adsorption behaviours on phenolic stability under air drying of blackberry with and without contact ultrasound assistance. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Tsurunaga Y, Takahashi T, Kanou M, Onda M, Ishigaki M. Removal of astringency from persimmon paste via polysaccharide treatment. Heliyon 2022; 8:e10716. [PMID: 36185145 PMCID: PMC9519491 DOI: 10.1016/j.heliyon.2022.e10716] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/31/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
Abstract
Non-astringent persimmon (Diospyros kaki Thunb.) paste is typically produced by treating astringent persimmon fruit with alcohol or dry ice (to remove tannins) followed by abrasion. However, considering the large yield of astringent persimmons harvested in a short time, this long, laborious method has hindered the use of persimmon paste in food processing. Herein, the addition of polysaccharides was used to produce a non-astringent persimmon paste while maintaining its quality. Among the nine evaluated polysaccharides, high- (HM) and low-methoxyl (LM) pectins, carrageenan, xanthan gum, and sodium alginate exhibited high astringency removal efficiencies. No astringency recurrence was observed after freezing when HM or LM pectin, guar gum, carrageenan, or sodium alginate were added. Moreover, the addition of HM pectin, or LM pectin, or sodium alginate prevented astringency upon heating. Additionally, guar, xanthan, tara gum, or carrageenan effectively inhibited syneresis. Thus, high-quality pastes could be easily and efficiently produced using a combination of polysaccharides.
Collapse
Affiliation(s)
- Yoko Tsurunaga
- Faculty of Human Science, Shimane University, 1060 Nishikawatsu-cho, Matsue City, Shimane 690-8504, Japan
| | - Tetsuya Takahashi
- Faculty of Human Science, Shimane University, 1060 Nishikawatsu-cho, Matsue City, Shimane 690-8504, Japan
| | - Mina Kanou
- Graduate School of Human and Social Sciences, Shimane University, 1060 Nishikawatsu-cho, Matsue City, Shimane 690-8504, Japan
| | - Misaki Onda
- Faculty of Education, Shimane University, 1060 Nishikawatsu-cho, Matsue City, Shimane 690-8504, Japan
| | - Mika Ishigaki
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue City, Shimane 690-8504, Japan
| |
Collapse
|
17
|
Watrelot AA, Bouska L. Optimization of the ultrasound-assisted extraction of polyphenols from Aronia and grapes. Food Chem 2022; 386:132703. [PMID: 35334320 DOI: 10.1016/j.foodchem.2022.132703] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 01/21/2023]
Abstract
The extraction of phenolics and tannins from cold-hardy grapes is not maximized with the current methods, which lead to unbalanced wines. This study aims to investigate high-power sonication to improve polyphenolic content in cold-hardy grape juice in comparison with chokeberry juice. Three solid to solvent ratios and times were applied on chokeberry and 'Marquette' grape berries using 50% ethanol or 13% acidified ethanol and compared to a conventional extraction technique. Iron-reactive phenolic compounds, tannins content, and color were analyzed during the extractions using UV-Visible spectrophotometry, and anthocyanin content was analyzed using HPLC-DAD. At the 1:2 solid to solvent ratio, the color intensity, phenolics, and tannins content were improved using the ultrasound-assisted extraction on chokeberries. However, the tannin content of 'Marquette' berries remained the same with both techniques and solvents, suggesting that the plant cell wall structure may have a strong impact on the retention of tannins from cold-hardy grapes.
Collapse
Affiliation(s)
- Aude A Watrelot
- Department of Food Science and Human Nutrition, Iowa State University, 536 Farm House Lane, Ames, IA 50011-1054, USA.
| | - Lindsey Bouska
- Department of Food Science and Human Nutrition, Iowa State University, 536 Farm House Lane, Ames, IA 50011-1054, USA
| |
Collapse
|
18
|
Patova OA, Feltsinger LS, Khramova DS, Chelpanova TI, Golovchenko VV. Effect of in vitro gastric digestion conditions on physicochemical properties of raw apple fruit cell wall polysaccharides. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Abi-Habib E, Vernhet A, Roi S, Carrillo S, Jørgensen B, Hansen J, Doco T, Poncet-Legrand C. Impact of the variety on the adsorption of anthocyanins and tannins on grape flesh cell walls. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3379-3392. [PMID: 34820844 DOI: 10.1002/jsfa.11685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/15/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND During winemaking, after extraction from the skins, anthocyanins and tannins adsorb onto the pulp flesh cell walls. The present study aimed to quantify the amounts adsorbed and their impact on wine composition, the impact of variety and ethanol on adsorption, and whether the presence of anthocyanins plays a role and impacts tannin adsorption. RESULTS Anthocyanin and tannin fractions obtained by mimicking winemaking conditions were mixed with fresh flesh cell walls of two varieties: Carignan and Grenache. Adsorption isotherms were measured. Adsorption of tannins was higher with Carignan than with Grenache and decreased when the ethanol content increased. In comparison, anthocyanins were adsorbed in small amounts, and their mixing with tannins had no impact on their adsorption. The differences were related to differences in pulp cell wall composition, particularly in terms of extensins and arabinans. CONCLUSION Adsorption of tannins, which can reach 50% of the initial amount, depends on the pulp cell wall composition. This needs to be investigated further. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Elissa Abi-Habib
- SPO, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Aude Vernhet
- SPO, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Stéphanie Roi
- SPO, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Stéphanie Carrillo
- SPO, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Bodil Jørgensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Jeanett Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Thierry Doco
- SPO, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | | |
Collapse
|
20
|
Younes A, Li M, Karboune S. Cocoa bean shells: a review into the chemical profile, the bioactivity and the biotransformation to enhance their potential applications in foods. Crit Rev Food Sci Nutr 2022; 63:9111-9135. [PMID: 35467453 DOI: 10.1080/10408398.2022.2065659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During processing, cocoa bean shells (CBS) are de-hulled from the bean and discarded as waste. Undermined by its chemical and bioactive composition, CBS is abundant in dietary fiber and phenolic compounds that may serve the valorization purpose of this by-product material into prebiotic and functional ingredients. In addition, the cell-wall components of CBS can be combined through enzymatic feruloylation to obtain feruloylated oligo- and polysaccharides (FOs), further enhancing the techno-functional properties. FOs have attracted scientific attention due to their prebiotic, antimicrobial, anti-inflammatory and antioxidant functions inherent to their structural features. This review covers the chemical and bioactive compositions of CBS as well as their modifications upon cocoa processing. Physical, chemical, and enzymatic approaches to extract and bio-transform bioactive components from the cell wall matrix of CBS were also discussed. Although nonspecific to CBS, studies were compiled to investigate efforts done to extract and produce feruloylated oligo- and polysaccharides from the cell wall materials.
Collapse
Affiliation(s)
- Amalie Younes
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, Québec, Canada
| | - Mingqin Li
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, Québec, Canada
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, Québec, Canada
| |
Collapse
|
21
|
Herrera-Rocha KM, Rocha-Guzmán NE, Gallegos-Infante JA, González-Laredo RF, Larrosa-Pérez M, Moreno-Jiménez MR. Phenolic Acids and Flavonoids in Acetonic Extract from Quince ( Cydonia oblonga Mill.): Nutraceuticals with Antioxidant and Anti-Inflammatory Potential. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082462. [PMID: 35458657 PMCID: PMC9027093 DOI: 10.3390/molecules27082462] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022]
Abstract
Quince (Cydonia oblonga Mill.) is a potential source of polyphenolic compounds related with beneficial biological processes. In this study polyphenols from quince fruit were extracted with aqueous acetone at different ratios. A polyphenol profile was identified and quantified by LC-ESI-QqQ. The antioxidant capacity (ORAC and DPPH) and anti-inflammatory effect (inhibition of COX-2 cyclooxygenase) were evaluated in vitro. The results indicated an effect of the aqueous acetone ratio on the extraction of polyphenolic compounds. The higher extraction yields of polyphenolic compounds were attained with 60-75% aqueous acetone. However, extracts obtained with 85% aqueous acetone promoted higher antioxidant and anti-inflammatory effects. Optimal scaling analysis indicated that hydroxycinnamic acids (quinic and chlorogenic), hydroxybenzoic acids (vanillic and syringic), flavonoids (quercetin and kaempferol), dihydrochalcones (neohesperidin) and flavones (acacetin) are related to the antioxidant activity of quince. While phenolic acids, flavonols (kaempferol-3-O-glucoside and rutin) and flavanols (epicatechin) generated the anti-inflammatory effect by inhibiting 52.3% of the COX-2 enzyme. Therefore, a selective extraction of phenolic mix can reduce oxidative stress or inflammatory processes. This suggests the use of quince as a natural source with significant nutraceutical potential.
Collapse
Affiliation(s)
- Karen Marlenne Herrera-Rocha
- Research Group on Functional Foods and Nutraceuticals, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Mexico; (K.M.H.-R.); (J.A.G.-I.); (R.F.G.-L.)
| | - Nuria Elizabeth Rocha-Guzmán
- Research Group on Functional Foods and Nutraceuticals, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Mexico; (K.M.H.-R.); (J.A.G.-I.); (R.F.G.-L.)
- Correspondence: (N.E.R.-G.); (M.R.M.-J.); Tel.: +52-618-818-5402 or +52-618-818-6936 (ext. 118) (M.R.M.-J.)
| | - José Alberto Gallegos-Infante
- Research Group on Functional Foods and Nutraceuticals, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Mexico; (K.M.H.-R.); (J.A.G.-I.); (R.F.G.-L.)
| | - Rubén Francisco González-Laredo
- Research Group on Functional Foods and Nutraceuticals, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Mexico; (K.M.H.-R.); (J.A.G.-I.); (R.F.G.-L.)
| | - Mar Larrosa-Pérez
- Department of Nutrition and Food Science, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Martha Rocío Moreno-Jiménez
- Research Group on Functional Foods and Nutraceuticals, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., Durango 34080, Mexico; (K.M.H.-R.); (J.A.G.-I.); (R.F.G.-L.)
- Correspondence: (N.E.R.-G.); (M.R.M.-J.); Tel.: +52-618-818-5402 or +52-618-818-6936 (ext. 118) (M.R.M.-J.)
| |
Collapse
|
22
|
Liu X, Li J, Rolland-Sabaté A, Perez S, Le Bourvellec C, Renard CM. Experimental and theoretical investigation on interactions between xylose-containing hemicelluloses and procyanidins. Carbohydr Polym 2022; 281:119086. [DOI: 10.1016/j.carbpol.2021.119086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 11/29/2022]
|
23
|
Duan B, Chen G, Jin X, Chang W, Lan T, Zhao Y, Sun X, Liu X. Prediction of tannin profile in grape (Vitis vinifera L.) skins during berry maturation using a rapid mechanical puncture approach. Food Chem 2022; 385:132666. [PMID: 35287102 DOI: 10.1016/j.foodchem.2022.132666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/04/2022] [Accepted: 03/07/2022] [Indexed: 11/04/2022]
Abstract
Tannin structure and composition are variable during grape maturation, and crucially determine perceived astringency, body structure and aging capacity of red wines. This study investigated the evolution of condensed tannins (CTs) in grape skins as maturation progressed and the feasibility of using a rapid mechanical puncture approach for assessing the CTs profile. The results showed that the mean degree of polymerization (mDP), molecular mass (MM), and proportions of (-)-epigallocatechin in extension subunits (EGC_ext) and (-)-epicatechin-3-O-gallate in terminal subunits (ECG_term) of skins increased during grape maturation, while CTs content and the proportion of (-)-epicatechin-3-O-gallate in extension subunits decreased. The predictive models built by random forest for CTs content based on skin weight, mDP, MM_subunit, EGC_ext, and ECG_term obtained good results with high squared correlation coefficients of prediction and calibration (R2_P > 0.85 and R2_C ≈ 0.95). In addition, the classifications of CTs characteristics obtained from ripe and unripe samples were observed in different principal component spaces. This study indicated that the mechanical properties were useful for predicting skin CTs profile, estimating tannin maturity stages, and providing information for optimal harvesting and winemaking protocols.
Collapse
Affiliation(s)
- Bingbing Duan
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Guoqiao Chen
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoduo Jin
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wei Chang
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tian Lan
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yimei Zhao
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China; Department of Brewing Engineering, Moutai College, Renhuai 564507, Guizhou, China
| | - Xiangyu Sun
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China; Shaanxi Key Laboratory of Wine, Yangling 712100, Shaanxi, China.
| | - Xu Liu
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China; Shaanxi Key Laboratory of Wine, Yangling 712100, Shaanxi, China; Ningxia Eastern Foot of Helan Mountain Wine Station, Northwest A&F University, Yinchuan, China.
| |
Collapse
|
24
|
The interactions of wine polysaccharides with aroma compounds, tannins, and proteins, and their importance to winemaking. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107150] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Effect of the Application Time of Accentuated Cut Edges (ACE) on Marquette Wine Phenolic Compounds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020542. [PMID: 35056854 PMCID: PMC8779630 DOI: 10.3390/molecules27020542] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 11/26/2022]
Abstract
Cold-hardy interspecific hybrid grape varieties (Vitis spp.) have distinctive chemical compositions such as high acidity, a high content of anthocyanin diglucoside and a low condensed tannins content, compared to Vitis vinifera varieties. Considering the importance of phenolic compounds on the quality of red wine, a mechanical maceration technique, accentuated cut edges (ACE), has been evaluated when applied directly to crushed grapes (ACE-C), and 24 h before pressing (ACE-P), to improve the extraction of phenolic compounds. Samples were collected at crushing, bottling, and after five months of aging. Phenolic compounds and color characteristics of the wines were analyzed by high-performance liquid chromatography (HPLC) with diode array and fluorescence detectors and UV-Visible spectrophotometry. The color intensity, non-anthocyanin monomeric compounds and total iron-reactive phenolics content increased after applying ACE, compared to the control (CTL) after aging, and was significantly higher (37%) after ACE-C, compared to ACE-P. However, the concentration of condensed tannins was below the limit of detection in all the samples, indicating that ACE did not help their extraction or further interactions occurred with disrupted cell wall material. Applying ACE at crushing was considered as the optimum time to achieve a higher color stability in Marquette red wines.
Collapse
|
26
|
Garrido-Bañuelos G, Buica A, Kuhlman B, Schückel J, Zietsman AJJ, Willats WGT, Moore JP, du Toit WJ. Untangling the impact of red wine maceration times on wine ageing. A multidisciplinary approach focusing on extended maceration in Shiraz wines. Food Res Int 2021; 150:110697. [PMID: 34865745 DOI: 10.1016/j.foodres.2021.110697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/04/2021] [Accepted: 09/01/2021] [Indexed: 11/15/2022]
Abstract
Phenolic composition of young red wines has been shown to play an important role in their ageing potential. Therefore, the modulation of phenolic extraction during maceration may influence the subsequent phenolic evolution of these wines. The present work aimed to evaluate the impact of three different maceration times on the phenolic levels and evolution observed over time, using spectrophotometric and chromatography methods, and the effect on the aroma, taste, and mouthfeel sensory properties using Projective Mapping. Additionally, grape cell wall deconstruction was monitored during the extended maceration phase by GC-MS and Comprehensive Comprehensive Microarray Polymer Profiling (CoMPP). Our findings demonstrated that longer maceration times did not always correspond to an increase in wine phenolic concentration, although the level of complexity of these molecules seemed to be higher. Additionally, continuous depectination and possible solubilisation of the pectin is observed during the extended maceration which may be influencing the sensory perception of these wines. Maceration time was also shown to influence the evolution of the polymeric fraction and sensory perception of the wines.
Collapse
Affiliation(s)
- Gonzalo Garrido-Bañuelos
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7062, South Africa
| | - Astrid Buica
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7062, South Africa.
| | - Brock Kuhlman
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7062, South Africa
| | - Julia Schückel
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1001, Denmark
| | - Anscha J J Zietsman
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7062, South Africa
| | - William G T Willats
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1001, Denmark; School of Agriculture, Food and Rural Development, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John P Moore
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7062, South Africa
| | - Wessel J du Toit
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7062, South Africa
| |
Collapse
|
27
|
Liu X, Renard CM, Bureau S, Le Bourvellec C. Interactions between heterogeneous cell walls and two procyanidins: Insights from the effects of chemical composition and physical structure. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Dridi W, Bordenave N. Influence of polysaccharide concentration on polyphenol-polysaccharide interactions. Carbohydr Polym 2021; 274:118670. [PMID: 34702486 DOI: 10.1016/j.carbpol.2021.118670] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 01/21/2023]
Abstract
Non-covalent interactions between polysaccharides and phenolics affect the physical properties of polysaccharide solutions. These interactions may in turn be influenced by polysaccharide-polysaccharide interactions. To test this hypothesis, we studied the influence of polysaccharide concentration (with guar, β-glucans, and xanthan) on the variations of rheological and water-binding properties upon addition of phenolics compounds (vanillin, caffeic acid, gallic acid, and epigallocatechin gallate). Addition of phenolics led to increased flow behavior index and decreased flow consistency index, with maximum effects at polysaccharide concentrations ranging between 0.6 × C* and 1.4 × C*, where C* is the critical overlap concentration of each polysaccharide. Water mobility was generally not significantly influenced by the addition of phenolics. The results showed that the ability of phenolic compounds to induce aggregation of polysaccharides in solution was strongly influenced by polysaccharide concentration around C* and therefore by polysaccharide-polysaccharide interactions.
Collapse
Affiliation(s)
- Wafa Dridi
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Canada
| | - Nicolas Bordenave
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Canada; School of Chemistry and Biomolecular Sciences, Faculty of Sciences, University of Ottawa, Canada.
| |
Collapse
|
29
|
Watrelot AA. Tannin Content in Vitis Species Red Wines Quantified Using Three Analytical Methods. Molecules 2021; 26:molecules26164923. [PMID: 34443511 PMCID: PMC8400854 DOI: 10.3390/molecules26164923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Tannin content in red wines is positively correlated with astringency perception and wine grade; however, tannin quantification is one of the main challenges. In this study, tannin content was quantified using three analytical methods in commercial red wines from Vitis vinifera and interspecific cold-hardy hybrids including Marquette, Frontenac, and Petite pearl cultivars. Protein (PP) and methylcellulose precipitation (MCP) methods were compared to a HPLC-DAD method, which is based on the interaction between tannins and a hydrophobic surface (RPC). Frontenac wines were the poorest in tannins and Cabernet sauvignon wines were the richest regardless of the method used. In cold-hardy red wines, the tannin content was higher in Marquette with high alcohol content, which suggested that the tannins were extracted from seeds rather than skins. The high limit of quantification of the PP method and the presence of anthocyanin di-glucosides in cold-hardy wines were parameters suggesting that protein and methylcellulose precipitation methods were neither suitable nor reliable for the quantification of tannins in cold-hardy red wines. The tannin content quantified by RPC was positively correlated to tannin quantified by MCP, suggesting that the RPC method would be relevant for the quantification of tannins in red wines.
Collapse
Affiliation(s)
- Aude A Watrelot
- Department of Food Science and Human Nutrition, Iowa State University, 536 Farm House Lane, Ames, IA 50011-1054, USA
| |
Collapse
|
30
|
Li SY, Duan CQ, Han ZH. Grape polysaccharides: compositional changes in grapes and wines, possible effects on wine organoleptic properties, and practical control during winemaking. Crit Rev Food Sci Nutr 2021; 63:1119-1142. [PMID: 34342521 DOI: 10.1080/10408398.2021.1960476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Polysaccharides present in grapes interact with wine sensory-active compounds (polyphenols and volatile compounds) via different mechanisms and can affect wine organoleptic qualities such as astringency, color and aroma. Studies on the role that grape polysaccharides play in wines are reviewed in this paper. First, the composition of grape polysaccharides and their changes during grape ripening, winemaking and aging are introduced. Second, different interaction mechanisms of grape polysaccharides and wine sensory-active compounds (flavanols, anthocyanins and volatiles) are introduced, and the possible effects on wine astringency, color and aroma caused by these interactions are illustrated. Finally, the control of the grape polysaccharide content in practice is discussed, including classical winemaking methods (applying different maceration enzymes, temperature control, co-fermentation, blending), modern vinification technologies (pulsed electric field, ultrasound treatment), and the development of new grape polysaccharide products.
Collapse
Affiliation(s)
- Si-Yu Li
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Beijing, China.,College of Horticulture, China Agricultural University, Beijing, China.,Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Ministry of Agriculture and Rural Affairs, Key Laboratory of Viticulture and Enology, Beijing, China
| | - Chang-Qing Duan
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Ministry of Agriculture and Rural Affairs, Key Laboratory of Viticulture and Enology, Beijing, China
| | - Zhen-Hai Han
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Beijing, China.,College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
31
|
Xu A, Lai W, Chen P, Awasthi MK, Chen X, Wang Y, Xu P. A comprehensive review on polysaccharide conjugates derived from tea leaves: Composition, structure, function and application. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Liu X, Le Bourvellec C, Guyot S, Renard CMGC. Reactivity of flavanols: Their fate in physical food processing and recent advances in their analysis by depolymerization. Compr Rev Food Sci Food Saf 2021; 20:4841-4880. [PMID: 34288366 DOI: 10.1111/1541-4337.12797] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/22/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022]
Abstract
Flavanols, a subgroup of polyphenols, are secondary metabolites with antioxidant properties naturally produced in various plants (e.g., green tea, cocoa, grapes, and apples); they are a major polyphenol class in human foods and beverages, and have recognized effect on maintaining human health. Therefore, it is necessary to evaluate their changes (i.e., oxidation, polymerization, degradation, and epimerization) during various physical processing (i.e., heating, drying, mechanical shearing, high-pressure, ultrasound, and radiation) to improve the nutritional value of food products. However, the roles of flavanols, in particular for their polymerized forms, are often underestimated, for a large part because of analytical challenges: they are difficult to extract quantitatively, and their quantification demands chemical reactions. This review examines the existing data on the effects of different physical processing techniques on the content of flavanols and highlights the changes in epimerization and degree of polymerization, as well as some of the latest acidolysis methods for proanthocyanidin characterization and quantification. More and more evidence show that physical processing can affect content but also modify the structure of flavanols by promoting a series of internal reactions. The most important reactivity of flavanols in processing includes oxidative coupling and rearrangements, chain cleavage, structural rearrangements (e.g., polymerization, degradation, and epimerization), and addition to other macromolecules, that is, proteins and polysaccharides. Some acidolysis methods for the analysis of polymeric proanthocyanidins have been updated, which has contributed to complete analysis of proanthocyanidin structures in particular regarding their proportion of A-type proanthocyanidins and their degree of polymerization in various plants. However, future research is also needed to better extract and characterize high-polymer proanthocyanidins, whether in their native or modified forms.
Collapse
Affiliation(s)
- Xuwei Liu
- INRAE, Avignon University, UMR408 SQPOV, Avignon, France
| | | | - Sylvain Guyot
- INRAE, UR1268 BIA, Team Polyphenol, Reactivity & Processing (PRP), Le Rheu, France
| | - Catherine M G C Renard
- INRAE, Avignon University, UMR408 SQPOV, Avignon, France.,INRAE, TRANSFORM, Nantes, France
| |
Collapse
|
33
|
Campbell JR, Grosnickel F, Kennedy JA, Waterhouse AL. Anthocyanin Addition Alters Tannin Extraction from Grape Skins in Model Solutions via Chemical Reactions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7687-7697. [PMID: 34180657 DOI: 10.1021/acs.jafc.1c00112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Condensed tannin extraction and stable color formation are two of the cornerstones of red wine production. Without condensed tannin, red wine would lack the tactile feeling of astringency, and without the formation of modified pigments, it would lack color stability for long-term aging. To understand how malvidin-3,5-diglucoside interacts with condensed tannin under nonoxidative conditions, an experiment was designed conducting model-wine skin extractions of Sauvignon blanc grapes harvested at various dates of maturity. Monomeric malvidin-3,5-diglucoside was isolated from color concentrate and added during these extractions. Following a 72 h extraction, solutions were evaluated for recovery of monomeric anthocyanins, skin tannin concentration, skin tannin extractability, and impact of anthocyanins on condensed tannin size. Anthocyanins showed a significant impact on the extraction of flavan-3-ol material in the early stages of ripening that declined in the latter stages of ripening. Furthermore, anthocyanins significantly decreased the size of the condensed tannin extracted. These results suggest that anthocyanins are not only enhancing the extractability of condensed tannin but also readily incorporating into the polymeric material, leading to a decrease in the average molecular mass of the condensed tannin polymer. The extent of reaction in 72 h suggests that the rate of interflavan bond cleavage may be higher than previously reported and merits closer scrutiny.
Collapse
Affiliation(s)
- James R Campbell
- Department of Viticulture and Enology, University of California, One Shields Ave., Davis, California 95616, United States
| | - Florian Grosnickel
- Université Bourgogne Franche-Comté, AgroSup Dijon, F-21000 Dijon, France
| | - James A Kennedy
- Functional Phenolics LLC, PO Box 1443, Corvallis, Oregon 97339, United States
| | - Andrew L Waterhouse
- Department of Viticulture and Enology, University of California, One Shields Ave., Davis, California 95616, United States
| |
Collapse
|
34
|
Abi-Habib E, Poncet-Legrand C, Roi S, Carrillo S, Doco T, Vernhet A. Impact of grape variety, berry maturity and size on the extractability of skin polyphenols during model wine-like maceration experiments. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3257-3269. [PMID: 33222281 DOI: 10.1002/jsfa.10955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/15/2020] [Accepted: 11/22/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Skin cell walls modulate anthocyanin and tannin extraction from grape skins. However, relationships between the composition of alcohol-insoluble cell wall solids (AIS) and extraction are still unclear. Our objectives were to characterize the impact of variety, berry size and ripeness on skin AIS composition (polysaccharides, proteins) and polyphenol extraction during maceration. RESULTS Grape skin composition and its impact on polyphenol extraction was compared for two varieties - Carignan and Grenache - with skins of berries sorted according to their size and density. Extractions were performed under model wine-like maceration conditions. Fresh skins had similar content of polymeric tannins, but strongly differed in their anthocyanin content (higher in Carignan and in the ripest berries) and composition (higher proportions in coumaroylated anthocyanins in Carignan). Anthocyanin extraction was proportionally much higher in Grenache, which was not just related to the Carignan's higher levels in coumaroylated anthocyanins. Chemical reactions decreased anthocyanin concentrations in solution for both varieties. Tannin extraction for Grenache was slightly higher and faster than for Carignan. Skin AISs differed slightly between the two varieties in their carbohydrate composition and protein content, but not between modalities. Polyphenol analyses in the precipitates evidenced at the end of the maceration and in residual skins highlighted differences between the two varieties and between berries with different ripeness. CONCLUSION Structural information on the cell wall network and on its changes during maceration, along with a better understanding of the chemical reactions of anthocyanins and tannins, is needed to better relate grape and wine polyphenol composition. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Elissa Abi-Habib
- UMR SPO, Institut Agro - Montpellier SupAgro, INRAE, Université de Montpellier, Montpellier, France
| | - Céline Poncet-Legrand
- UMR SPO, Institut Agro - Montpellier SupAgro, INRAE, Université de Montpellier, Montpellier, France
| | - Stéphanie Roi
- UMR SPO, Institut Agro - Montpellier SupAgro, INRAE, Université de Montpellier, Montpellier, France
| | - Stéphanie Carrillo
- UMR SPO, Institut Agro - Montpellier SupAgro, INRAE, Université de Montpellier, Montpellier, France
| | - Thierry Doco
- UMR SPO, Institut Agro - Montpellier SupAgro, INRAE, Université de Montpellier, Montpellier, France
| | - Aude Vernhet
- UMR SPO, Institut Agro - Montpellier SupAgro, INRAE, Université de Montpellier, Montpellier, France
| |
Collapse
|
35
|
Liang T, Jiao S, Jing P. Molecular interaction between pectin and catechin/procyanidin in simulative juice model: Insights from spectroscopic, morphology, and antioxidant activity. J Food Sci 2021; 86:2445-2456. [PMID: 33963549 DOI: 10.1111/1750-3841.15743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/12/2021] [Accepted: 03/28/2021] [Indexed: 11/30/2022]
Abstract
The interactions between polysaccharides and phenolics in foods affect their physicochemical properties and bioactivity. Pectin and catechin/procyanidin present in plants ubiquitously and attracting more attentions for the potential health benefits. This work investigates the interactions between high methoxyl pectin and catechin/procyanidin in a simulative juice model using multiple microscopic and spectroscopic approaches and their influences on the antioxidant activity of phenolics were evaluated in the Caco-2 cells model. The results showed that pectin with either of phenolic compunds exhibited lower transmittance, zeta potential, viscosity, and larger particle size than it alone. The morphology of pectin complexes with either of phenolics under experimental conditions (pH = 3.5) was observed. The ΔH° (-6.821 kJ mol-1 ) and ΔS° (6.357×10-2 kJ mol-1 ) indicated that pectin interacts with procyanidin via electrostatic interaction, whereas hydrophobic interaction was the dominant drive force between pectin and catechin (ΔH° = 1.422 kJ mol-1 ; ΔS° = 13.048 × 10-2 kJ mol-1 ). The antioxidant activities of catechin/procyanidin decreased while binding with pectin based on indexes of glutathione peroxidase, total superoxide dismutase, total antioxidant capacity, and malondialdehyde. PRACTICAL APPLICATION: The findings of this work indicated that the physicochemical property of pectin and the antioxidant activity of catechin/procyanidin were influenced by the interactions between pectin and catechin/procyanidin in a simulative food system. This study provides insights into the molecular interactions between pectin and phenolics in a simulative food system.
Collapse
Affiliation(s)
- Tisong Liang
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture Ministry of Agriculture, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shunshan Jiao
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture Ministry of Agriculture, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pu Jing
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture Ministry of Agriculture, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
36
|
Jones-Moore HR, Jelley RE, Marangon M, Fedrizzi B. The polysaccharides of winemaking: From grape to wine. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Liu X, Renard CM, Rolland-Sabaté A, Le Bourvellec C. Exploring interactions between pectins and procyanidins: Structure-function relationships. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106498] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Xavier Machado TDO, Portugal IBM, Padilha CVDS, Ferreira Padilha F, Dos Santos Lima M. New trends in the use of enzymes for the recovery of polyphenols in grape byproducts. J Food Biochem 2021; 45:e13712. [PMID: 33786844 DOI: 10.1111/jfbc.13712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 12/17/2022]
Abstract
Residues from wine and juice processing still contain about 70% of the phenolic compounds in grapes. These compounds are valued for having several bioactive properties that are explored in the pharmaceutical and food sectors. This paper aims to summarize the most recent advances in the use of enzymatic techniques for the recovery of bioactive compounds from GP for industrial application. For this, we analyzed scientific articles and patent applications from the last 20 years in the main indexed and patent databases. Among the most used enzymes in the recovery of bioactive compounds in wastes, cellulases, pectinases, tannases, glucoamylases, and proteases such as trypsin and chymotrypsin, are the most important. As a result, extracts are obtained with greater retrieval of compounds such as anthocyanins, gallic acid, catechins, epicatechins, and trans-resveratrol and the improvement of coloring, anti-inflammatory, antioxidant and vasoprotective properties. Although the use of enzymes for the recovery of phenolics is an old strategy, the number of studies focusing on the functional characteristics and industrial applicability of the extracts obtained has been recently growing. PRACTICAL APPLICATIONS: Phenolic compounds have acted as anti-inflammatories, antioxidants, anticarcinogens, and antimicrobials, being additives or relevant ingredients for various products in the food and pharmaceutical industry. Although there are several techniques for extracting/recovering phenolics from grape pomace, there is still no agreement on which method is ideal. In recent years, several extractions methods have been applied in seeking optimized conditions to recover phenolics from grape residues. Among them, the use of enzymes has been gaining attention for being considered a green and promising technology. The present study aims to carry out a review that would bring a new perspective to the recovery of bioactive compounds from grape residues by enzymatic techniques, with a view to industrial purpose.
Collapse
Affiliation(s)
| | | | | | | | - Marcos Dos Santos Lima
- Departamento de Tecnologia em Alimentos, Instituto Federal do Sertão Pernambucano, Petrolina, Brazil
| |
Collapse
|
39
|
Liu X, Renard CMGC, Bureau S, Le Bourvellec C. Revisiting the contribution of ATR-FTIR spectroscopy to characterize plant cell wall polysaccharides. Carbohydr Polym 2021; 262:117935. [PMID: 33838812 DOI: 10.1016/j.carbpol.2021.117935] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 12/23/2022]
Abstract
The contribution of ATR-FTIR spectroscopy to study cell wall polysaccharides (CWPs) was carefully investigated. The region 1800-800 cm-1 was exploited using principal component analysis and hierarchical clustering on a large range of different powders of CWPs based on their precise chemical characterization. Relevant wavenumbers were highlighted for each CWP: 1035 cm-1 was attributed to xylose-containing hemicelluloses, 1065 and 807 cm-1 to mannose-containing hemicelluloses, 988 cm-1 to cellulose, 1740 and 1600 cm-1 to homogalacturonans according to the degree of methylation. Some band positions were affected by macromolecular arrangements (especially hemicellulose-cellulose interactions). However, as arabinan and galactan did not reveal distinctive absorption bands, ATR-FTIR spectroscopy did not allow the discrimination of cell walls differing by the abundance of these polysaccharides, e.g., those extracted from apple and beet. Therefore, the application of ATR-FTIR could remain sometimes limited due to the complexity of overlapping spectra bands and vibrational coupling from the large diversity of CWP chemical bonds.
Collapse
Affiliation(s)
- Xuwei Liu
- INRAE, Avignon University, UMR SQPOV, F-84000, Avignon, France.
| | - Catherine M G C Renard
- INRAE, Avignon University, UMR SQPOV, F-84000, Avignon, France; INRAE, TRANSFORM, F-44000, Nantes, France.
| | - Sylvie Bureau
- INRAE, Avignon University, UMR SQPOV, F-84000, Avignon, France.
| | | |
Collapse
|
40
|
Wang Y, Yang F, Yang J, Bai Y, Li B. Synergistic stabilization of oil in water emulsion with chitin particles and tannic acid. Carbohydr Polym 2021; 254:117292. [PMID: 33357861 DOI: 10.1016/j.carbpol.2020.117292] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 02/01/2023]
Abstract
The aim of the present study was to explore the effect of CP and TA on stability of oil in water emulsion stabilized by the two components, so as to fabricate the most efficient chitin based emulsifying agents. It was found that there was synergistic effect for CP and TA in stabilizing emulsion, specifically, the complex of chitin particles (CP) (3 g/L) with tannic acid (TA) (2 g/L) produced the most physically and oxidatively stable oil-in-water emulsion compared with other groups in this study. This is because CP-TA (3/5) complex had the lowest zeta potential, the lowest the oil water interfacial tension, the highest viscosity and the highest content of TA with excellent antioxidant activity. Furthermore, this is because there was intense interaction between CP and TA in CP-TA complex from results of FTIR, XRD and ITC, which then result in the formation of large CP-TA particles.
Collapse
Affiliation(s)
- Yuntao Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou, 450001, China
| | - Fang Yang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou, 450001, China
| | - Jinchu Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, 450000, Henan, China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou, 450001, China.
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
41
|
Osete-Alcaraz A, Gómez-Plaza E, Martínez-Pérez P, Weiller F, Schückel J, Willats WG, Moore JP, Ros-García JM, Bautista-Ortín AB. The Influence of Hydrolytic Enzymes on Tannin Adsorption-Desorption onto Grape Cell Walls in a Wine-Like Matrix. Molecules 2021; 26:molecules26030770. [PMID: 33540867 PMCID: PMC7867368 DOI: 10.3390/molecules26030770] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 11/16/2022] Open
Abstract
This study evaluates the capacity of four hydrolytic enzymes to limit the interactions between grape cell-walls and tannins and/or to favor tannin desorption. Adsorption and desorption tests were conducted by mixing a commercial seed tannin with purified skin cell-walls from Syrah grapes, in the presence or absence of hydrolytic enzymes, in a model-wine solution. The effects of the enzymes were evaluated by measuring the tannins in solution by High Performance Liquid Chromatography (HPLC) and the changes in the cell wall polysaccharide network by Comprehensive Microarray Polymer Profiling (COMPP) while the polysaccharides liberated from cell walls were analyzed by Size Exclusion Chromatography (SEC). The results showed that the enzymes limited the interaction between tannins and cell walls, especially cellulase, pectinase and xylanase, an effect associated with the cell wall structural modifications caused by the enzymes, which reduced their capacity to bind tannins. With regards to the tannin desorption process, enzymes did not play a significant role in liberating bound tannins. Those enzymes that showed the highest effect in limiting the adsorption of tannins and in disorganizing the cell wall structure, cellulase and pectinase, did not lead to a desorption of bound tannins, although they still showed a capacity of affecting cell wall structure. The results indicate that enzymes are not able to access those polysaccharides where tannins are bound, thus, they are not a useful tool for desorbing tannins from cell walls. The practical importance implications of these findings are discussed in the manuscript.
Collapse
Affiliation(s)
- Andrea Osete-Alcaraz
- Department of Food Science and Technology, Faculty of Veterinary Science, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain; (A.O.-A.); (P.M.-P.); (J.M.R.-G.); (A.B.B.-O.)
| | - Encarna Gómez-Plaza
- Department of Food Science and Technology, Faculty of Veterinary Science, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain; (A.O.-A.); (P.M.-P.); (J.M.R.-G.); (A.B.B.-O.)
- Correspondence:
| | - Pilar Martínez-Pérez
- Department of Food Science and Technology, Faculty of Veterinary Science, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain; (A.O.-A.); (P.M.-P.); (J.M.R.-G.); (A.B.B.-O.)
| | - Florent Weiller
- Department of Viticulture and Oenology, Faculty of AgriSciences, South African Grape and Wine Research Institute, Stellenbosch University, Matieland 7602, South Africa; (F.W.); (J.P.M.)
| | - Julia Schückel
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1001 Copenhagen, Denmark;
- Glycospot R&D, Thorvaldsensvej 40, B102, DK-1871 Frederiksberg, Denmark
| | - William G.T. Willats
- School of Agriculture, Food and Rural Development, Newcastle University, Newcastle-upon-Tyne NE1 4LB, UK;
| | - John P. Moore
- Department of Viticulture and Oenology, Faculty of AgriSciences, South African Grape and Wine Research Institute, Stellenbosch University, Matieland 7602, South Africa; (F.W.); (J.P.M.)
| | - José M. Ros-García
- Department of Food Science and Technology, Faculty of Veterinary Science, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain; (A.O.-A.); (P.M.-P.); (J.M.R.-G.); (A.B.B.-O.)
| | - Ana B. Bautista-Ortín
- Department of Food Science and Technology, Faculty of Veterinary Science, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain; (A.O.-A.); (P.M.-P.); (J.M.R.-G.); (A.B.B.-O.)
| |
Collapse
|
42
|
Effects of high hydrostatic pressure on the binding capacity, interaction, and antioxidant activity of the binding products of cyanidin-3-glucoside and blueberry pectin. Food Chem 2020; 344:128731. [PMID: 33280959 DOI: 10.1016/j.foodchem.2020.128731] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/05/2020] [Accepted: 11/21/2020] [Indexed: 11/21/2022]
Abstract
In this study, the effects of high hydrostatic pressure (HP) treatment on the binding capacity, interaction, and antioxidant activity of the binding products of blueberry pectin (BP) and cyanidin-3-glucoside (C3G) were assessed. HP was found to significantly improve the adsorption between C3G and BP. After binding, the C3G concentration was found to be the highest (382.1 ± 13.2 μg/mg for BP) when using a C3G-BP mass ratio of 1:2, a pressure of 400 MPa, and a holding time of 15 min. HP processing decreased particle size and altered the characteristics of C3G-BP complexes. The main binding form of the complexes before HP treatment was pectin-wrapped C3G by hydrogen bond interaction, while HP caused charged groups in pectin to be more exposed and improve the electrostatic interaction between C3G and BP. The antioxidant activity results showed that the presence of BP could protect the ferric-reducing antioxidant power of C3G after HP treatment.
Collapse
|
43
|
Liu X, Le Bourvellec C, Renard CMGC. Interactions between cell wall polysaccharides and polyphenols: Effect of molecular internal structure. Compr Rev Food Sci Food Saf 2020; 19:3574-3617. [PMID: 33337054 DOI: 10.1111/1541-4337.12632] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/27/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022]
Abstract
Cell wall polysaccharides (CPSs) and polyphenols are major constituents of the dietary fiber complex in plant-based foods. Their digestion (by gut microbiota) and bioefficacy depend not only on their structure and quantity, but also on their intermolecular interactions. The composition and structure of these compounds vary with their dietary source (i.e., fruit or vegetable of origin) and can be further modified by food processing. Various components and structures of CPSs and polyphenols have been observed to demonstrate common and characteristic behaviors during interactions. However, at a fundamental level, the mechanisms that ultimately drive these interactions are still not fully understood. This review summarizes the current state of knowledge on the internal factors that influence CPS-polyphenol interactions, describes the different ways in which these interactions can be mediated by molecular composition or structure, and introduces the main methods for the analysis of these interactions, as well as the mechanisms involved. Furthermore, a comprehensive overview is provided of recent key findings in the area of CPS-polyphenol interactions. It is becoming clear that these interactions are shaped by a multitude of factors, the most important of which are the physicochemical properties of the partners: their morphology (surface area and porosity/pore shape), chemical composition (sugar ratio, solubility, and non-sugar components), and molecular architecture (molecular weight, degree of esterification, functional groups, and conformation). An improved understanding of the molecular mechanisms that drive interactions between CPSs and polyphenols may allow us to better establish a bridge between food processing and the bioavailability of colonic fermentation products from CPSs and antioxidant polyphenols, which could ultimately lead to the development of new guidelines for the design of healthier and more nutritious foods.
Collapse
Affiliation(s)
- Xuwei Liu
- INRAE, Avignon University, UMR SQPOV, F-84000, Avignon, France
| | | | - Catherine M G C Renard
- INRAE, Avignon University, UMR SQPOV, F-84000, Avignon, France.,INRAE, TRANSFORM, F-44000, Nantes, France
| |
Collapse
|
44
|
Soares S, Brandão E, Guerreiro C, Soares S, Mateus N, de Freitas V. Tannins in Food: Insights into the Molecular Perception of Astringency and Bitter Taste. Molecules 2020; 25:E2590. [PMID: 32498458 PMCID: PMC7321337 DOI: 10.3390/molecules25112590] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Astringency and bitterness are organoleptic properties widely linked to tannin compounds. Due to their significance to food chemistry, the food industry, and to human nutrition and health, these tannins' taste properties have been a line of worldwide research. In recent years, significant advances have been made in understanding the molecular perception of astringency pointing to the contribution of different oral key players. Regarding bitterness, several polyphenols have been identified has new agonists of these receptors. This review summarizes the last data about the knowledge of these taste properties perceived by tannins. Ultimately, tannins' astringency and bitterness are hand-in-hand taste properties, and future studies should be adapted to understand how the proper perception of one taste could affect the perception of the other one.
Collapse
Affiliation(s)
- Susana Soares
- REQUIMTE/LAQV, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 689, 4169-007 Porto, Portugal; (E.B.); (C.G.); (S.S.); (N.M.)
| | | | | | | | | | - Victor de Freitas
- REQUIMTE/LAQV, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 689, 4169-007 Porto, Portugal; (E.B.); (C.G.); (S.S.); (N.M.)
| |
Collapse
|
45
|
Brandão E, Fernandes A, Guerreiro C, Coimbra MA, Mateus N, de Freitas V, Soares S. The effect of pectic polysaccharides from grape skins on salivary protein – procyanidin interactions. Carbohydr Polym 2020; 236:116044. [DOI: 10.1016/j.carbpol.2020.116044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/31/2020] [Accepted: 02/19/2020] [Indexed: 01/15/2023]
|
46
|
Fernandes A, Oliveira J, Fonseca F, Ferreira-da-Silva F, Mateus N, Vincken JP, de Freitas V. Molecular binding between anthocyanins and pectic polysaccharides – Unveiling the role of pectic polysaccharides structure. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105625] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
47
|
Watrelot AA, Norton EL. Chemistry and Reactivity of Tannins in Vitis spp.: A Review. Molecules 2020; 25:molecules25092110. [PMID: 32365968 PMCID: PMC7248762 DOI: 10.3390/molecules25092110] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 11/24/2022] Open
Abstract
Tannins are a group of polyphenols found in fruits, leaves, trees, etc., well known in the leather industry and in apples, persimmons and grapes, because of their capacity to interact with other polyphenols or other components either from the food product or from saliva. Prior to being able to interact with other compounds, tannins have to be extracted from the food matrix, which depends on their chemistry, as well as the chemical structure of other components, such as cell wall material and proteins. Vitis vinifera grapes are commonly grown around the world and are used in winemaking, providing good quality wines with different levels of tannins responsible for the final wine’s astringency. Many studies have focused on tannins extractability and retention with cell wall material, and the reactivity of tannins with proteins in Vitis vinifera grapes and wine, but there are very few reports for other Vitis species. However, depending on the environmental characteristics of certain regions, Vitis hybrid grapes are grown and used to produce wines more and more. This review focuses on the comparison of the chemistry of tannins, and their reactivity with other macromolecules in Vitis species.
Collapse
Affiliation(s)
- Aude A. Watrelot
- Department of Food Science and Human Nutrition, Iowa State University, 536 Farm House Lane, Ames, IA 50011-1054, USA;
- Correspondence: ; Tel.: +1-515-294-0343
| | - Erin L. Norton
- Department of Food Science and Human Nutrition, Iowa State University, 536 Farm House Lane, Ames, IA 50011-1054, USA;
- Midwest Grape and Wine Industry Institute, Iowa State University, 536 Farm House Lane, Ames, IA 50011-1054, USA
| |
Collapse
|
48
|
Tudorache M, McDonald JL, Bordenave N. Gallic acid reduces the viscosity and water binding capacity of soluble dietary fibers. Food Funct 2020; 11:5866-5874. [DOI: 10.1039/d0fo01200a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Water binding capacity and viscosity of soluble dietary fibers are known to be essential drivers of their nutritional benefits.
Collapse
Affiliation(s)
- Mihaela Tudorache
- School of Chemistry and Biomolecular Sciences
- Faculty of Sciences
- University of Ottawa
- Canada
| | - Jean-Luc McDonald
- School of Nutrition Sciences
- Faculty of Health Sciences
- University of Ottawa
- Canada
| | - Nicolas Bordenave
- School of Chemistry and Biomolecular Sciences
- Faculty of Sciences
- University of Ottawa
- Canada
- School of Nutrition Sciences
| |
Collapse
|
49
|
Interactions of arabinan-rich pectic polysaccharides with polyphenols. Carbohydr Polym 2019; 230:115644. [PMID: 31887907 DOI: 10.1016/j.carbpol.2019.115644] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/11/2019] [Accepted: 11/18/2019] [Indexed: 11/22/2022]
Abstract
Given the high prevalence of arabinan side chains in pectic polysaccharides, this work aims to unveil the impact of their structural diversity on pectic polysaccharides-polyphenol interactions. To assess the effect of arabinan branching degree, sugar beet arabinans (branched and debranched) were used and compared to the well-known structure of apple arabinan and other pectic polysaccharides. Furthermore, arabinans contribution to pectic polysaccharides/polyphenol interactions was assessed. The interactions were evaluated using chlorogenic acid, phloridzin and procyanidins (degree of polymerization of 9). Linear arabinans had 8-fold and 2-fold higher retention for chlorogenic acid and phloridzin, respectively, than branched arabinans. This trend was also observed for the interaction of arabinans with procyanidins. However, arabinans with covalently linked polyphenols showed lower interactions. The interactions involved between arabinans and polyphenols explained 1-28 % of the interactions of pectic polysaccharides, allowing us to conclude that the whole polysaccharide structure is more relevant for polyphenol interactions than each part.
Collapse
|
50
|
Sun L, Warren FJ, Gidley MJ. Natural products for glycaemic control: Polyphenols as inhibitors of alpha-amylase. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.07.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|