1
|
Alrushaid N, Khan FA, Al-Suhaimi EA, Elaissari A. Nanotechnology in Cancer Diagnosis and Treatment. Pharmaceutics 2023; 15:pharmaceutics15031025. [PMID: 36986885 PMCID: PMC10052895 DOI: 10.3390/pharmaceutics15031025] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Traditional cancer diagnosis has been aided by the application of nanoparticles (NPs), which have made the process easier and faster. NPs possess exceptional properties such as a larger surface area, higher volume proportion, and better targeting capabilities. Additionally, their low toxic effect on healthy cells enhances their bioavailability and t-half by allowing them to functionally penetrate the fenestration of epithelium and tissues. These particles have attracted attention in multidisciplinary areas, making them the most promising materials in many biomedical applications, especially in the treatment and diagnosis of various diseases. Today, many drugs are presented or coated with nanoparticles for the direct targeting of tumors or diseased organs without harming normal tissues/cells. Many types of nanoparticles, such as metallic, magnetic, polymeric, metal oxide, quantum dots, graphene, fullerene, liposomes, carbon nanotubes, and dendrimers, have potential applications in cancer treatment and diagnosis. In many studies, nanoparticles have been reported to show intrinsic anticancer activity due to their antioxidant action and cause an inhibitory effect on the growth of tumors. Moreover, nanoparticles can facilitate the controlled release of drugs and increase drug release efficiency with fewer side effects. Nanomaterials such as microbubbles are used as molecular imaging agents for ultrasound imaging. This review discusses the various types of nanoparticles that are commonly used in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Noor Alrushaid
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Univ. Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69622 Lyon, France
| | - Firdos Alam Khan
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ebtesam Abdullah Al-Suhaimi
- Biology Department, College of Science, Institute of Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Abdelhamid Elaissari
- Univ. Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69622 Lyon, France
| |
Collapse
|
2
|
Chen H, Wu J, Rahman MSU, Li S, Wang J, Li S, Wu Y, Liu Y, Xu S. Dual drug-loaded PLGA fibrous scaffolds for effective treatment of breast cancer in situ. BIOMATERIALS ADVANCES 2023; 148:213358. [PMID: 36878024 DOI: 10.1016/j.bioadv.2023.213358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/08/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023]
Abstract
Advanced metastatic breast cancer remains nearly an incurable disease. In situ therapy may help patients with worse prognoses have better clinical outcomes by significantly reducing systematic toxicity. Dural-drug fibrous scaffold was created and assessed using an in-situ therapeutic strategy, simulating the preferred regimens advised by the National Comprehensive Cancer Network. DOX, a once-used chemotherapy drug is embedded into scaffolds and produces a fast release for two cycles to kill tumor cells. PTX, a hydrophobic drug is continuously injected and produces a gradual release for up to two cycles to treat long cycles. Chosen drug loading system and the designated fabrication parameter controlled the releasing profile. Drug carrier system complied with the clinical regimen. It demonstrated both in vitro and in vivo anti-proliferative effects on the breast cancer model. The dosage of an intratumoral injection to drug capsules, the local tissue toxicity could be significantly reduced. To optimized intravenous injection with dual drugs, fewer side effects and a higher survival rate were seen even in the large tumor model (450-550 mm3). Drug delivery system makes the precise accumulation of the topical drug concentration possible, simulating clinically successful therapy and possibly offering better clinical treatment options for solid tumors.
Collapse
Affiliation(s)
- Hao Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jiaen Wu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Muhammad Saif Ur Rahman
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shengmei Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jie Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Shilin Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafet y & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Yan Wu
- Instrumental Analysis Center, Shenzhen University, Shenzhen 518060, China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafet y & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; GBA National Institute for Nanotechnology Innovation, Guangdong 510700, China.
| | - Shanshan Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
3
|
Huang S, Zhang Y, Wang C, Xia Q, Saif Ur Rahman M, Chen H, Han C, Liu Y, Xu S. Mechanisms Affecting Physical Aging and Swelling by Blending an Amphiphilic Component. Int J Mol Sci 2022; 23:ijms23042185. [PMID: 35216296 PMCID: PMC8880760 DOI: 10.3390/ijms23042185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 11/23/2022] Open
Abstract
Polymer blending is a promising method to overcome stability obstacles induced by physical aging and swelling of implant scaffolds prepared from amorphous polymers in biomedical application, since it will not bring potential toxicity compared with chemical modification. However, the mechanism of polymer blending still remains unclearly explained in existing studies that fail to provide theoretical references in material R&D processes for stability improvement of the scaffold during ethylene oxide (EtO) sterilization, long-term storage, and clinical application. In this study, amphiphilic poly(ethylene glycol)-co-poly(lactic acid) (PELA) was blended with amorphous poly(lactic-co-glycolic acid) (PLGA) because of its good miscibility so as to adjust the glass transition temperature (Tg) and hydrophilicity of electrospun PLGA membranes. By characterizing the morphological stability and mechanical performance, the chain movement and the glass transition behavior of the polymer during the physical aging and swelling process were studied. This study revealed the modification mechanism of polymer blending at the molecular chain level, which will contribute to stability improvement and performance adjustment of implant scaffolds in biomedical application.
Collapse
Affiliation(s)
- Shifen Huang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (S.H.); (M.S.U.R.); (H.C.); (C.H.)
| | - Yiming Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China;
| | - Chenhong Wang
- State Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory of Polymer Science and Materials, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
- Correspondence: (C.W.); (Y.L.); (S.X.); Tel.: +86-10-8254-3785 (Y.L.); +86-755-2653-1165 (S.X.)
| | - Qinghua Xia
- State Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory of Polymer Science and Materials, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
| | - Muhammad Saif Ur Rahman
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (S.H.); (M.S.U.R.); (H.C.); (C.H.)
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hao Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (S.H.); (M.S.U.R.); (H.C.); (C.H.)
| | - Charles Han
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (S.H.); (M.S.U.R.); (H.C.); (C.H.)
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China;
- GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China
- Correspondence: (C.W.); (Y.L.); (S.X.); Tel.: +86-10-8254-3785 (Y.L.); +86-755-2653-1165 (S.X.)
| | - Shanshan Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (S.H.); (M.S.U.R.); (H.C.); (C.H.)
- Correspondence: (C.W.); (Y.L.); (S.X.); Tel.: +86-10-8254-3785 (Y.L.); +86-755-2653-1165 (S.X.)
| |
Collapse
|
4
|
Ding Q, Zhuang T, Fu P, Zhou Q, Luo L, Dong Z, Li H, Tang S. Alpha-terpineol grafted acetylated lentinan as an anti-bacterial adhesion agent. Carbohydr Polym 2022; 277:118825. [PMID: 34893242 DOI: 10.1016/j.carbpol.2021.118825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/12/2021] [Accepted: 10/25/2021] [Indexed: 12/16/2022]
Abstract
Biomedical implants-associated bacterial infections have become a major threat to human health. Therefore, it is meaningful to develop new antibacterial strategies to solve this problem. In this study, we conjugated acetylated lentinan (AceLNT) with α-terpineol (AceLNT-g-α-ter), a highly effective natural antibacterial compound, to constitute a novel AceLNT-g-α-ter membrane (AceLNT-g-α-terM). Compared with AceLNT membrane (AceLNTM), the adhesion amount of E. coli and P. aeruginosa in AceLNT-g-α-terM decreased by 80% and 85% after 7 d incubation in fluid bacterial medium. Moreover, the number of E. coli and P. aeruginosa biofilm on AceLNT-g-α-terM surface decreased by 70% and 71%. At the meanwhile, α-terpineol grafting modification of AceLNT had limited effect on its stimulating activity on macrophages and had no more cytotoxicity. In summary, our study firstly confirmed that AceLNT-g-α-terM could effectively inhibit gram-negative bacteria adhesion and biofilm formation, and provided a novel strategy for preventing infection of biomedical implants.
Collapse
Affiliation(s)
- Qiang Ding
- Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Tingting Zhuang
- Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Pengcheng Fu
- Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qing Zhou
- Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Luo
- Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zixuan Dong
- Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hang Li
- Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shunqing Tang
- Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
5
|
Fatehi Hassanabad A, Zarzycki AN, Jeon K, Dundas JA, Vasanthan V, Deniset JF, Fedak PWM. Prevention of Post-Operative Adhesions: A Comprehensive Review of Present and Emerging Strategies. Biomolecules 2021; 11:biom11071027. [PMID: 34356652 PMCID: PMC8301806 DOI: 10.3390/biom11071027] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Post-operative adhesions affect patients undergoing all types of surgeries. They are associated with serious complications, including higher risk of morbidity and mortality. Given increased hospitalization, longer operative times, and longer length of hospital stay, post-surgical adhesions also pose a great financial burden. Although our knowledge of some of the underlying mechanisms driving adhesion formation has significantly improved over the past two decades, literature has yet to fully explain the pathogenesis and etiology of post-surgical adhesions. As a result, finding an ideal preventative strategy and leveraging appropriate tissue engineering strategies has proven to be difficult. Different products have been developed and enjoyed various levels of success along the translational tissue engineering research spectrum, but their clinical translation has been limited. Herein, we comprehensively review the agents and products that have been developed to mitigate post-operative adhesion formation. We also assess emerging strategies that aid in facilitating precision and personalized medicine to improve outcomes for patients and our healthcare system.
Collapse
Affiliation(s)
- Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.A.D.); (V.V.); (J.F.D.)
| | - Anna N. Zarzycki
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.A.D.); (V.V.); (J.F.D.)
| | - Kristina Jeon
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada;
| | - Jameson A. Dundas
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.A.D.); (V.V.); (J.F.D.)
| | - Vishnu Vasanthan
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.A.D.); (V.V.); (J.F.D.)
| | - Justin F. Deniset
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.A.D.); (V.V.); (J.F.D.)
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Paul W. M. Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.A.D.); (V.V.); (J.F.D.)
- Correspondence:
| |
Collapse
|
6
|
Kheilnezhad B, Hadjizadeh A. A review: progress in preventing tissue adhesions from a biomaterial perspective. Biomater Sci 2021; 9:2850-2873. [PMID: 33710194 DOI: 10.1039/d0bm02023k] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Postoperative adhesions (POA) are one of the main problems suffered by patients and are a common complaint. It is considered to be closely associated with the healing mechanism of damaged tissues. Tissue adhesions accompany other symptoms such as inflammation, pain, and even dyskinesia under certain conditions, compromising the patients' quality of life. On the other hand, common treatments involve high costs, re-surgery or long-term hospital stays. Therefore, alternative approaches need to be formulated so that aforementioned problems can be resolved. To this end, a review of recent advances in this context is imperative. In this review, we have highlighted the mechanism of adhesion formation, advances in common therapeutic approaches, and prospective treatments in preventing tissue adhesions. Based on the literature, it can be determined that the disadvantages of available commercial products in the treatment of tissue adhesion have led researchers to utilize alternative methods for designing anti-adhesive products with different structures such as electrospun fibrous mats, hydrogels, and nanospheres. These studies are on the fast track in producing optimal anti-adhesion materials. We hope that this article can attract attention by showing various mechanisms and solutions involved in adhesion problems and inspire the further development of anti-adhesion biomaterials.
Collapse
Affiliation(s)
| | - Afra Hadjizadeh
- Department of Biomedical Engineering, Amirkabir University, Tehran, Iran.
| |
Collapse
|
7
|
Wu J, Xu S, Han CC, Yuan G. Controlled drug release: On the evolution of physically entrapped drug inside the electrospun poly(lactic-co-glycolic acid) matrix. J Control Release 2021; 331:472-479. [PMID: 33549717 DOI: 10.1016/j.jconrel.2021.01.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022]
Abstract
The drug loading and releasing properties of poly(lactic-co-glycolic acid) (PLGA) were approached with the application of neutron techniques. The neutron reflection (NR) study on the response of PLGA material to vapor and to bulk water revealed that the hydration of PLGA origins from the molecular compatibility between water and PLGA. Hydration is reversible with regard to the change in humidity and temperature. Capecitabine as drug was embedded in the electrospun PLGA fibers. Small angle neutron scattering (SANS) was able to disclose the domain of entrapped drug inside the fibers and trace its evolution over time when the electrospun membrane was incubated in D2O buffer solution. The evolution of drug domains is discussed in terms of the concentration dependence, the temperature dependence, and the relevance between the drug diffusion inside the polymer matrix and the drug release out to the medium. It was observed that, at 20 °C the drug-related domains are relatively small (~ 100 Å) and relax extremely slow while at 37 °C the drug-related domains are relatively larger (~ 200 Å) and relax faster. These behaviors can be related to the glassy property of structural material. The transportation of drug through the polymer matrix relies on the global relaxation of PLGA chains. The variation of fiber diameter vs. incubation time was followed by ultra-small angle neutron scattering (USANS). The bi-phasic or tri-phasic release kinetics from a series of fibers with different drug loading (2%, 5%, 10%, 20%, 30%, 40%, 50%) were discussed based on the SANS and USANS discovery.
Collapse
Affiliation(s)
- Jiaen Wu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Shanshan Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA.
| | - Charles C Han
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Guangcui Yuan
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA; Department of Physics, Georgetown University, Washington, D. C., 20057, USA.
| |
Collapse
|
8
|
Bhattacharya S, Kim D, Gopal S, Tice A, Lang K, Dordick JS, Plawsky JL, Linhardt RJ. Antimicrobial effects of positively charged, conductive electrospun polymer fibers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111247. [PMID: 32806282 PMCID: PMC7438602 DOI: 10.1016/j.msec.2020.111247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/05/2020] [Accepted: 06/28/2020] [Indexed: 10/24/2022]
Abstract
In recent years, electrospun polymer fibers have gained attention for various antibacterial applications. In this work, the effect of positively charged polymer fiber mats as antibacterial gauze is studied using electrospun poly(caprolactone) and polyaniline nanofibers. Chloroxylenol, an established anti-microbial agent is used for the first time as a secondary dopant to polyaniline during the electrospinning process to make the surface of the polyaniline fiber positively charged. Both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli are used to investigate the antibacterial activity of the positively charged and uncharged polymer surfaces. The results surprisingly show that the polyaniline surface can inhibit the growth of both bacteria even when chloroxylenol is used below its minimum inhibitory concentration. This study provides new insights allowing the better understanding of dopant-based, intrinsically conducting polymer surfaces for use as antibacterial fiber mats.
Collapse
Affiliation(s)
- Somdatta Bhattacharya
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Domyoung Kim
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Sneha Gopal
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Aaron Tice
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
| | - Kening Lang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
| | - Jonathan S Dordick
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Joel L Plawsky
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Robert J Linhardt
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA.
| |
Collapse
|
9
|
Xie S, Li G, Hou Y, Yang M, Li F, Li J, Li D, Du Y. A synergistic bactericidal effect of low-frequency and low-intensity ultrasound combined with levofloxacin-loaded PLGA nanoparticles on M. smegmatis in macrophages. J Nanobiotechnology 2020; 18:107. [PMID: 32727616 PMCID: PMC7388535 DOI: 10.1186/s12951-020-00658-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose Tuberculosis (TB) is a highly infectious disease caused by Mycobacterium tuberculosis (Mtb), which often parasites in macrophages. This study is performed to investigate the bactericidal effect and underlying mechanisms of low-frequency and low-intensity ultrasound (LFLIU) combined with levofloxacin-loaded PLGA nanoparticles (LEV-NPs) on M. smegmatis (a surrogate of Mtb) in macrophages. Methods and results The LEV-NPs were prepared using a double emulsification method. The average diameter, zeta potential, polydispersity index, morphology, and drug release efficiency in vitro of the LEV-NPs were investigated. M. smegmatis in macrophages was treated using the LEV-NPs combined with 42 kHz ultrasound irradiation at an intensity of 0.13 W/cm2 for 10 min. The results showed that ultrasound significantly promoted the phagocytosis of nanoparticles by macrophages (P < 0.05). In addition, further ultrasound combined with the LEV-NPs promoted the production of reactive oxygen species (ROS) in macrophage, and the apoptosis rate of the macrophages was significantly higher than that of the control (P < 0.05). The transmission electronic microscope showed that the cell wall of M. smegmatis was ruptured, the cell structure was incomplete, and the bacteria received severe damage in the ultrasound combined with the LEV-NPs group. Activity assays showed that ultrasound combined with the LEV-NPs exhibited a tenfold higher antibacterial activity against M. smegmatis residing inside macrophages compared with the free drug. Conclusion These data demonstrated that ultrasound combined with LEV-NPs has great potential as a therapeutic agent for TB.![]()
Collapse
Affiliation(s)
- Shuang Xie
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Gangjing Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Yuru Hou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Min Yang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Fahui Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Jianhu Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Dairong Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuzhong District, Chongqing, 400016, China.
| | - Yonghong Du
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China. .,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
10
|
Wu J, Zhang Z, Gu J, Zhou W, Liang X, Zhou G, Han CC, Xu S, Liu Y. Mechanism of a long-term controlled drug release system based on simple blended electrospun fibers. J Control Release 2020; 320:337-346. [PMID: 31931048 DOI: 10.1016/j.jconrel.2020.01.020] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/27/2019] [Accepted: 01/09/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Drug delivery systems based on electrospun fibers have been under development for many years. However, studies of controllable long-term drug release from electrospun membrane systems and the underlying release mechanisms have seldom been reported. METHODS In this study, electrospun membrane drug delivery systems consisting of the antibiotic ciprofloxacin hydrochloride and FDA-approved polymers are fabricated. Different second-component polymers are introduced to change the properties of a poly(d,l-lactide-co-glycolide) (PLGA) matrix, thereby altering the drug release behavior. On the basis of observations of morphology, cumulative release profiles, and determinations of release duration, the drug release kinetics and critical characteristics influencing drug release behavior are discussed. RESULTS It is found that the drug release profiles can be divided into three stages according to the rate of drug release. Stage I is controlled by fiber swelling and diffusion according to Fick's second law. Stage II is controlled by diffusion through a fused membrane structure, which results in very slow drug release. Stage III is controlled by polymer degradation and involves release of the remaining drug. CONCLUSIONS The results of this study of release mechanisms should provide a basis for adjustments of drug release dosage and duration, thereby contributing to the development of drug delivery systems satisfying clinical requirements.
Collapse
Affiliation(s)
- Jiaen Wu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Zixin Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory of Polymer Science and Materials, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jin'ge Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; Hebei University, Hebei Province, Baoding 071002, China
| | - Weixian Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Xiaoyu Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; Zhengzhou University, He'nan Province, Zhengzhou 450001, China
| | - Guoqiang Zhou
- Hebei University, Hebei Province, Baoding 071002, China
| | - Charles C Han
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Department of Materials Science and Engineering, A. James Clark School of Engineering, University of Maryland, College Park, MD 20742, USA
| | - Shanshan Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; Zhengzhou University, He'nan Province, Zhengzhou 450001, China.
| |
Collapse
|
11
|
Wang X, Liu Q, Sui J, Ramakrishna S, Yu M, Zhou Y, Jiang X, Long Y. Recent Advances in Hemostasis at the Nanoscale. Adv Healthc Mater 2019; 8:e1900823. [PMID: 31697456 DOI: 10.1002/adhm.201900823] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/17/2019] [Indexed: 01/13/2023]
Abstract
Rapid and effective hemostatic materials have received wide attention not only in the battlefield but also in hospitals and clinics. Traditional hemostasis relies on materials with little designability which has many limitations. Nanohemostasis has been proposed since the use of peptides in hemostasis. Nanomaterials exhibit excellent adhesion, versatility, and designability compared to traditional materials, laying a good foundation for future hemostatic materials. This review first summarizes current hemostatic methods and materials, and then introduces several cutting-edge designs and applications of nanohemostatic materials such as polypeptide assembly, electrospinning of cyanoacrylate, and nanochitosan. Particularly, their advantages and working mechanisms are introduced. Finally, the challenges and prospects of nanohemostasis are discussed.
Collapse
Affiliation(s)
- Xiao‐Xiong Wang
- Collaborative Innovation Center for Nanomaterials & DevicesCollege of PhysicsQingdao University Qingdao 266071 China
| | - Qi Liu
- Collaborative Innovation Center for Nanomaterials & DevicesCollege of PhysicsQingdao University Qingdao 266071 China
| | - Jin‐Xia Sui
- Collaborative Innovation Center for Nanomaterials & DevicesCollege of PhysicsQingdao University Qingdao 266071 China
| | - Seeram Ramakrishna
- Collaborative Innovation Center for Nanomaterials & DevicesCollege of PhysicsQingdao University Qingdao 266071 China
- Center for Nanofibers & NanotechnologyNational University of Singapore Singapore 119077 Singapore
| | - Miao Yu
- Collaborative Innovation Center for Nanomaterials & DevicesCollege of PhysicsQingdao University Qingdao 266071 China
- Department of Mechanical EngineeringColumbia University New York NY 10027 USA
| | - Yu Zhou
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesQingdao University Qingdao 266071 China
| | - Xing‐Yu Jiang
- Laboratory for Biological Effects of Nanomaterials & NanosafetyNational Center for Nanoscience & Technology Beijing 100190 China
| | - Yun‐Ze Long
- Collaborative Innovation Center for Nanomaterials & DevicesCollege of PhysicsQingdao University Qingdao 266071 China
| |
Collapse
|
12
|
Chen J, Ai J, Chen S, Xu Z, Lin J, Liu H, Chen Q. Synergistic enhancement of hemostatic performance of mesoporous silica by hydrocaffeic acid and chitosan. Int J Biol Macromol 2019; 139:1203-1211. [DOI: 10.1016/j.ijbiomac.2019.08.091] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 01/17/2023]
|
13
|
Arbade GK, Jathar S, Tripathi V, Patro TU. Antibacterial, sustained drug release and biocompatibility studies of electrospun poly(
ε
-caprolactone)/chloramphenicol blend nanofiber scaffolds. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aac1a4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Chen X, Yan Y, Li H, Wang X, Tang S, Li Q, Wei J, Su J. Evaluation of absorbable hemostatic agents of polyelectrolyte complexes using carboxymethyl starch and chitosan oligosaccharide both in vitro and in vivo. Biomater Sci 2018; 6:3332-3344. [PMID: 30357165 DOI: 10.1039/c8bm00628h] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
CMS/COS PECs with a suitable COS content were promising absorbable hemostatic agents for internal use.
Collapse
Affiliation(s)
- Xingtao Chen
- College of Physical Science and Technology
- Sichuan University
- Chengdu 610064
- China
| | - Yonggang Yan
- College of Physical Science and Technology
- Sichuan University
- Chengdu 610064
- China
| | - Hong Li
- College of Physical Science and Technology
- Sichuan University
- Chengdu 610064
- China
| | - Xuehong Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- 200237 Shanghai
- China
| | - Songchao Tang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- 200237 Shanghai
- China
| | - Quan Li
- Department of Orthopaedics Trauma
- Changhai Hospital
- Second Military Medical University
- Shanghai 200433
- China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- 200237 Shanghai
- China
| | - Jiacan Su
- Department of Orthopaedics Trauma
- Changhai Hospital
- Second Military Medical University
- Shanghai 200433
- China
| |
Collapse
|
15
|
Aydemir Sezer U, Sanko V, Gulmez M, Sayman E, Aru B, Yuksekdag ZN, Aktekin A, Vardar Aker F, Sezer S. A Polypropylene-Integrated Bilayer Composite Mesh with Bactericidal and Antiadhesive Efficiency for Hernia Operations. ACS Biomater Sci Eng 2017; 3:3662-3674. [DOI: 10.1021/acsbiomaterials.7b00757] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
| | | | | | | | - Basak Aru
- Department
of Immunology Section, School of Medicine, Yeditepe University, Istanbul 34755, Turkey
| | - Zehra Nur Yuksekdag
- Faculty
of
Sciences, Department of Biology, Gazi University, Ankara 06500, Turkey
| | | | | | | |
Collapse
|
16
|
Wang YC, Bai MY, Hsu WY, Yu MH. Evaluation of a series of silk fibroin protein-based nonwoven mats for use as an anti-adhesion patch for wound management in robotic surgery. J Biomed Mater Res A 2017; 106:221-230. [PMID: 28884506 DOI: 10.1002/jbm.a.36225] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/21/2017] [Accepted: 07/28/2017] [Indexed: 11/08/2022]
Abstract
A novel anti-adhesion nonwoven mat mainly composed of silk fibroin protein (SFP) was fabricated via the single-spinneret electrospinning technique. A series of SFP-based electrospun nonwoven mats containing additives of different synthetic polymer ratios, such as pure SFP, SFP/poly(vinyl alcohol) (PVA), SFP/polyethylene glycol (PEG), and SFP/polyethylene oxide (PEO) were produced and compared. All membranes were porous and had diameters of 324.02 ± 113.7, 308.86 ± 74.02, 366.22 ± 115.81, and 341.82 ± 119.42 nm, respectively. The average pore size for each membrane was 1.132 ± 0.99, 0.811 ± 0.424, 0.975 ± 0.741, and 0.784 ± 0.497 μm2 . No nonwoven mats showed significant cytotoxicity toward fibroblast cells based on the results of MTT assays. Surprisingly, for all groups of SFP-based nonwoven mats, nitrate formation was reduced by up to 94.55 ± 14.50%, 92.16 ± 19.38%, 91.28 ± 28.375%, and 92.00 ± 12.64% in lipopolysaccharide-induced RAW 264.7 macrophages model. Tissue anti-adhesion potential was evaluated in an in vitro fibroblast cell adhesion model and in vivo wounded mice model. In vitro, the mean cell anti-adhesion percentage of fibroblast cells changed over time in the following order: PVA/SFP > SFP > PEG/SFP∼PEO/SFP. In vivo, SFP and PVA/SFP-treated groups both showed superior collagen regeneration and wound closure. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 221-230, 2018.
Collapse
Affiliation(s)
- Yu-Chi Wang
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, City, Taiwan
| | - Meng-Yi Bai
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan (Republic of China).,Adjunct appointment to the Department of Biomedical Engineering, National Defense Medical Center, Taipei, 114, Taiwan (Republic of China)
| | - Wan-Yuan Hsu
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan (Republic of China)
| | - Mu-Hsien Yu
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, City, Taiwan
| |
Collapse
|
17
|
Polymer materials for prevention of postoperative adhesion. Acta Biomater 2017; 61:21-40. [PMID: 28780432 DOI: 10.1016/j.actbio.2017.08.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/12/2017] [Accepted: 08/01/2017] [Indexed: 01/23/2023]
Abstract
Postoperative adhesion (POA) is a common complication that often occurs after a variety of surgeries, such as plastic surgery, repair operations of abdominal, pelvic, and tendon, and so forth. Moreover, POA leads to chronic abdominal pain, secondary infertility in women, intestinal obstruction, and other severe complications, which significantly reduce the life quality of patients. In order to prevent the formation of POA, a number of strategies have been developed, among which an emerging method is physical barriers consisting of polymer materials. This review highlights the most commonly used natural and synthetic polymer materials in anti-adhesion physical barriers. The specific features of polymer materials are analyzed and compared, and the possible prospect is also predicted. STATEMENT OF SIGNIFICANCE Postoperative adhesion (POA) is a serious complication accompanied with various surgeries. Polymer material-based physical barriers have attracted a large amount of attention in POA prevention. The polymer barriers can effectively avoid the formation of fibrous tissues among normal organs by reducing the interconnection of injured tissues. In this review, specific features of the natural and synthetic polymer materials for application in POA prevention were presented, and the possible prospects were predicted. All in all, our work can provide inspiration for researchers to choose proper polymer materials for preclinical and even clinical anti-adhesion studies.
Collapse
|
18
|
Liu M, Duan XP, Li YM, Yang DP, Long YZ. Electrospun nanofibers for wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:1413-1423. [PMID: 28482508 DOI: 10.1016/j.msec.2017.03.034] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 03/04/2017] [Indexed: 12/22/2022]
Abstract
Electrospinning has been widely used as a nanofiber fabrication technique. Its simple process, cost effectiveness and versatility have appealed to materials scientists globally. Pristine polymeric nanofibers or composite nanofibers with dissimilar morphologies and multidimensional assemblies ranging from one dimension (1D) to three dimensions (3D) can be obtained from electrospinning. Critically, these as-prepared nanofibers possessing high surface area to volume ratio, tunable porosity and facile surface functionalization present numerous possibilities for applications, particularly in biomedical field. This review gives us an overview of some recent advances of electrospinning-based nanomaterials in biomedical applications such as antibacterial mats, patches for rapid hemostasis, wound dressings, drug delivery systems, as well as tissue engineering. We further highlight the current challenges and future perspectives of electrospinning-based nanomaterials in the field of biomedicine.
Collapse
Affiliation(s)
- Minghuan Liu
- College of Chemical Engineering & Materials Science, Quanzhou Normal University, Quanzhou, China
| | - Xiao-Peng Duan
- College of Chemical Engineering & Materials Science, Quanzhou Normal University, Quanzhou, China; Collaborative Innovation Center for Nanomaterials & Optoelectronic Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Ye-Ming Li
- Collaborative Innovation Center for Nanomaterials & Optoelectronic Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Da-Peng Yang
- College of Chemical Engineering & Materials Science, Quanzhou Normal University, Quanzhou, China.
| | - Yun-Ze Long
- College of Chemical Engineering & Materials Science, Quanzhou Normal University, Quanzhou, China; Collaborative Innovation Center for Nanomaterials & Optoelectronic Devices, College of Physics, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
19
|
Wang B, Liu H, Wang Z, Shi S, Nan K, Xu Q, Ye Z, Chen H. A self-defensive antibacterial coating acting through the bacteria-triggered release of a hydrophobic antibiotic from layer-by-layer films. J Mater Chem B 2017; 5:1498-1506. [PMID: 32264640 DOI: 10.1039/c6tb02614a] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Drug delivery systems play important roles in the construction of antibacterial coatings on the surfaces of biomaterials. However, excessive release of antibiotics in the environment can lead to the generation of resistant bacteria. A methoxy poly(ethylene glycol)-poly(ε-caprolactone)-chitosan (MPEG-PCL-CS) block polymer was prepared through covalent grafting of CS onto MPEG-PCL. MPEG-PCL-CS micelles were prepared and showed a high load capacity for the hydrophobic antibiotic triclosan (TCA) (∼5 wt%). Multilayer films were constructed through self-assembling TCA/MPEG-PCL-CS cationic micelles with poly(acrylic acid) (PAA). Transmission and scanning electron microscopy analyses confirmed the presence of micelles on the surface (20-40 nm). As barriers for the antibiotic, the (TCA/MPEG-PCL-CS)/PAA multilayer films contained a high load of TCA (255 μg cm-2). Importantly, the multilayer films showed both bacteria-triggered and pH-responsive release properties and can be used as self-defensive antibacterial coatings. Bacterial adhesion caused a local acidic environment and altered the permeability of the multilayer films, promoting drug release. Both in vitro and in vivo antibacterial tests indicated a high bactericidal activity of drug-loaded multilayer films against both E. coli and S. aureus.
Collapse
Affiliation(s)
- Bailiang Wang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Li D, Nie W, Chen L, Miao Y, Zhang X, Chen F, Yu B, Ao R, Yu B, He C. Fabrication of curcumin-loaded mesoporous silica incorporated polyvinyl pyrrolidone nanofibers for rapid hemostasis and antibacterial treatment. RSC Adv 2017. [DOI: 10.1039/c6ra27319j] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A new hemostasis material composed of curcumin-loaded mesoporous silica and polyvinyl pyrrolidone nanofibers with rapid hemostasis and antibacterial ability.
Collapse
|
21
|
Li J, Ding J, Liu T, Liu JF, Yan L, Chen X. Poly(lactic acid) Controlled Drug Delivery. INDUSTRIAL APPLICATIONS OF POLY(LACTIC ACID) 2017. [DOI: 10.1007/12_2017_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Chen W, EI-Hamshary H, Al-Deyab SS, Mo X. A Method to Control Curcumin Release from PELA Fibers by Heat Treatment. ADVANCES IN POLYMER TECHNOLOGY 2016. [DOI: 10.1002/adv.21705] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Weiming Chen
- College of Chemistry, Chemical Engineering and Biotechnology; Donghua University; Shanghai 201620 China
| | - Hany EI-Hamshary
- Petrochemical Research Chair; Department of Chemistry; College of Science; King Saud University; Riyadh 11451 Saudi Arabia
- Department of Chemistry; Faculty of Science; Tanta University; Tanta 31527 Egypt
| | - Salem S. Al-Deyab
- Department of Chemistry; Faculty of Science; Tanta University; Tanta 31527 Egypt
| | - Xiumei Mo
- College of Chemistry, Chemical Engineering and Biotechnology; Donghua University; Shanghai 201620 China
| |
Collapse
|
23
|
Sheu C, Shalumon KT, Chen CH, Kuo CY, Fong YT, Chen JP. Dual crosslinked hyaluronic acid nanofibrous membranes for prolonged prevention of post-surgical peritoneal adhesion. J Mater Chem B 2016; 4:6680-6693. [DOI: 10.1039/c6tb01376g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A HA NFM crosslinked with FeCl3and BDDE shows prolonged degradation to prevent peritoneal adhesion.
Collapse
Affiliation(s)
- Chialin Sheu
- Department of Chemical and Materials Engineering
- Chang Gung University
- Taoyuan 33302
- Republic of China
| | - K. T. Shalumon
- Department of Chemical and Materials Engineering
- Chang Gung University
- Taoyuan 33302
- Republic of China
| | - Chih-Hao Chen
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center
- Chang Gung Memorial Hospital
- Taoyuan 33305
- Republic of China
| | - Chang-Yi Kuo
- Department of Chemical and Materials Engineering
- Chang Gung University
- Taoyuan 33302
- Republic of China
| | - Yi Teng Fong
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center
- Chang Gung Memorial Hospital
- Taoyuan 33305
- Republic of China
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering
- Chang Gung University
- Taoyuan 33302
- Republic of China
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center
| |
Collapse
|
24
|
Cheng F, He J, Yan T, Liu C, Wei X, Li J, Huang Y. Antibacterial and hemostatic composite gauze of N,O-carboxymethyl chitosan/oxidized regenerated cellulose. RSC Adv 2016. [DOI: 10.1039/c6ra15983d] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Viscose gauze was oxidized with NO2/CCl4 to prepare Oxidized Regenerated Cellulose (ORC).
Collapse
Affiliation(s)
- Feng Cheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- People's Republic of China
| | - Jinmei He
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- People's Republic of China
| | - Tingsheng Yan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- People's Republic of China
| | - Changyu Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- People's Republic of China
| | - Xinjing Wei
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- People's Republic of China
| | - Jiwei Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- People's Republic of China
| | - Yudong Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- People's Republic of China
| |
Collapse
|
25
|
Zhang Z, Tang J, Wang H, Xia Q, Xu S, Han CC. Controlled Antibiotics Release System through Simple Blended Electrospun Fibers for Sustained Antibacterial Effects. ACS APPLIED MATERIALS & INTERFACES 2015; 7:26400-26404. [PMID: 26596498 DOI: 10.1021/acsami.5b09820] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Implantation of sustained antibacterial system after abdominal surgery could effectively prevent complicated intra-abdominal infection. In this study, a simple blended electrospun membrane made of poly(D,L-lactic-co-glycolide) (PLGA)/poly(dioxanone) (PDO)/Ciprofloxacin hydrochloride (CiH) could easily result in approximately linear drug release profile and sustained antibacterial activity against both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The addition of PDO changed the stack structure of PLGA, which in turn influenced the fiber swelling and created drug diffusion channels. It could be a good candidate for reducing postoperative infection or be associated with other implant to resist biofilm formation.
Collapse
Affiliation(s)
- Zixin Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory of Polymer Science and Materials, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Jianxiong Tang
- Huadong Hospital affiliated to Fudan University , Shanghai 200040, P. R. China
| | - Heran Wang
- Torch High Technology Industry Development Center, Ministry of Science and Technology , Beijing 100045, P. R. China
| | - Qinghua Xia
- State Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory of Polymer Science and Materials, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Shanshan Xu
- State Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory of Polymer Science and Materials, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Charles C Han
- State Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory of Polymer Science and Materials, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| |
Collapse
|
26
|
Xia Q, Liu Z, Wang C, Zhang Z, Xu S, Han CC. A Biodegradable Trilayered Barrier Membrane Composed of Sponge and Electrospun Layers: Hemostasis and Antiadhesion. Biomacromolecules 2015; 16:3083-92. [DOI: 10.1021/acs.biomac.5b01099] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qinghua Xia
- State
Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory
of Polymer Science and Materials, Beijing National Laboratory for
Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ziwen Liu
- Department
of General Surgery, Peking Union Medical College Hospital, Chinese
Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, P. R. China
| | - Chenhong Wang
- State
Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory
of Polymer Science and Materials, Beijing National Laboratory for
Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zixin Zhang
- State
Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory
of Polymer Science and Materials, Beijing National Laboratory for
Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shanshan Xu
- State
Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory
of Polymer Science and Materials, Beijing National Laboratory for
Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Charles C. Han
- State
Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory
of Polymer Science and Materials, Beijing National Laboratory for
Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
27
|
Kessler M, Esser E, Groll J, Tessmar J. Bilateral PLA/alginate membranes for the prevention of postsurgical adhesions. J Biomed Mater Res B Appl Biomater 2015; 104:1563-1570. [DOI: 10.1002/jbm.b.33503] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/29/2015] [Accepted: 07/30/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Martina Kessler
- Department for Functional Materials in Medicine and Dentistry; University of Wuerzburg; Pleicherwall 2 97070 Wuerzburg Germany
| | - Eva Esser
- Department for Functional Materials in Medicine and Dentistry; University of Wuerzburg; Pleicherwall 2 97070 Wuerzburg Germany
| | - Jürgen Groll
- Department for Functional Materials in Medicine and Dentistry; University of Wuerzburg; Pleicherwall 2 97070 Wuerzburg Germany
| | - Jörg Tessmar
- Department for Functional Materials in Medicine and Dentistry; University of Wuerzburg; Pleicherwall 2 97070 Wuerzburg Germany
| |
Collapse
|
28
|
Basagaoglu Demirekin Z, Aydemir Sezer U, Ulusoy Karatopuk D, Sezer S. Development of Metal Ion Binded Oxidized Regenerated Cellulose Powder as Hemostatic Agent: A Comparative Study with in Vivo Performance. Ind Eng Chem Res 2015. [DOI: 10.1021/ie504985b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zeynep Basagaoglu Demirekin
- Faculty of Dentistry, Department of Prosthodontics and ‡Faculty of Medicine,
Department of
Histology and Embryology, Suleyman Demirel University, 32260 Isparta, Turkey
- Materials
Institute and ⊥Chemistry Institute, TUBITAK Marmara Research Center, 41470 Kocaeli, Turkey
| | - Umran Aydemir Sezer
- Faculty of Dentistry, Department of Prosthodontics and ‡Faculty of Medicine,
Department of
Histology and Embryology, Suleyman Demirel University, 32260 Isparta, Turkey
- Materials
Institute and ⊥Chemistry Institute, TUBITAK Marmara Research Center, 41470 Kocaeli, Turkey
| | - Dilek Ulusoy Karatopuk
- Faculty of Dentistry, Department of Prosthodontics and ‡Faculty of Medicine,
Department of
Histology and Embryology, Suleyman Demirel University, 32260 Isparta, Turkey
- Materials
Institute and ⊥Chemistry Institute, TUBITAK Marmara Research Center, 41470 Kocaeli, Turkey
| | - Serdar Sezer
- Faculty of Dentistry, Department of Prosthodontics and ‡Faculty of Medicine,
Department of
Histology and Embryology, Suleyman Demirel University, 32260 Isparta, Turkey
- Materials
Institute and ⊥Chemistry Institute, TUBITAK Marmara Research Center, 41470 Kocaeli, Turkey
| |
Collapse
|
29
|
Wang C, Zhang K, Wang H, Xu S, Han CC. Evaluation of biodegradability of poly (DL-lactic-co-glycolic acid) scaffolds for post-surgical adhesion prevention: In vitro, in rats and in pigs. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Hu X, Zheng Y, Wu G, Liu J, Zhu M, Zhou H, Zhai Y, Wu L, Shen-Tu J. Optimization of solid phase extraction clean up and validation of quantitative determination of carbazochrome sodium sulfonate in human plasma by liquid chromatography-electrospray ionization tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 951-952:1-6. [DOI: 10.1016/j.jchromb.2014.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 01/08/2014] [Accepted: 01/09/2014] [Indexed: 11/17/2022]
|
31
|
Kim HS, Yoo HS. Therapeutic application of electrospun nanofibrous meshes. Nanomedicine (Lond) 2014; 9:517-33. [DOI: 10.2217/nnm.13.224] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fabricating tissue architecture-mimicking scaffolds is one of the major challenges in the field of tissue engineering. Electrospun nanofibers have been considered as potent techniques for fabricating fibrous scaffolds biomimicking extracellular frameworks. Therapeutic agent-incorporated nanofibrous meshes have widely served as excellent substrates for adhesion, proliferation and differentiation. Many drugs, proteins and nucleic acids were incorporated into the scaffolds for regeneration of skin, musculoskeletal, neural and vascular tissue engineering in aims to control the release of the therapeutic agents. In the current article, we focus on introducing various fabrication techniques for electrospun nanofiber-based scaffolds and subsequent functionalization of nanofibers for therapeutic purposes. We also detail how the therapeutic nanofibrous meshes can be employed in the field of tissue engineering.
Collapse
Affiliation(s)
- Hye Sung Kim
- Department of Biomedical Materials Engineering, School of Bioscience & Bioengineering, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering, School of Bioscience & Bioengineering, Kangwon National University, Chuncheon 200-701, Republic of Korea
- Institute of Bioscience & Biotechnology, Kangwon National University, Republic of Korea
| |
Collapse
|
32
|
Cheng M, Wang H, Zhang Z, Li N, Fang X, Xu S. Gold nanorod-embedded electrospun fibrous membrane as a photothermal therapy platform. ACS APPLIED MATERIALS & INTERFACES 2014; 6:1569-75. [PMID: 24432724 DOI: 10.1021/am405839b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A strategy of using a gold nanorod (GNR)-loaded electrospun membrane as a photothermal therapy platform of cancer is reported. The strategy takes both the advantages of the excellent photothermal properties of GNRs to selectively kill the cancerous cells, and the widely used biodegradable electrospun membrane to serve as GNR-carrier and surgical recovery material. PEG modified GNRs were embedded into the electrospun fibrous membrane which was composed of PLGA and PLA-b-PEG with an 85:15 ratio. After incubation with the cells in the cell culture medium, the PEG-GNRs were released from the membrane and taken up by cancer cells, allowing the generation of heat upon NIR irradiation to induce cancer cell death. We have demonstrated that the use of PEG-GNR-embedded membrane selectively killed the cancerous cells and effectively inhibited cancer cell proliferation though in vitro experiments. The PEG-GNRs-loaded membrane is a promising material for postsurgical recovery of cancer.
Collapse
Affiliation(s)
- Ming Cheng
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Key Laboratory of Molecular Nanostructures and Nanotechnology, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | | | | | | | | | | |
Collapse
|
33
|
Wang H, Cheng M, Hu J, Wang C, Xu S, Han CC. Preparation and optimization of silver nanoparticles embedded electrospun membrane for implant associated infections prevention. ACS APPLIED MATERIALS & INTERFACES 2013; 5:11014-11021. [PMID: 24117175 DOI: 10.1021/am403250t] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A strategy of using silver nanoparticle (AgNP)-loaded electrospun membrane as a novel coating material for preventing implant associated infections is reported. The strategy takes both the advantages of the excellent antibacterial as well as no drug resistance properties of AgNPs, and the widely used biodegradable electrospun membrane to serve as AgNP carrier and physical obstruction of bacteria adhesion. However, AgNPs have not been applied in clinical treatment yet because the concern of the potential toxicity. For the first time, we systematically investigated toxicity of AgNP-based coating materials in vitro and in vivo. Three dosages (0.1, 0.5, and 1.0 wt %) of silver nanoparticles (AgNPs) were embedded in biodegradable PLGA electrospun membranes as treatment devices to determine the precise concentration of AgNPs, minimize the dosage, and consequently reduced the toxicity in clinical applications. On the basis of antibacterial results and toxicity evaluations, PLGA electrospun membranes containing 0.5 wt % of AgNPs was considered as the most suitable combination, which is safe and effective for clinical application.
Collapse
Affiliation(s)
- Heran Wang
- State Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory of Polymer Science and Materials, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | | | | | | | | | | |
Collapse
|