1
|
Nosrati Z, Chen YA, Bergamo M, Rodríguez‐Rodríguez C, Chan J, Shojania K, Kherani RB, Chin C, Kelsall JT, Dehghan N, Colwill AM, Collins D, Saatchi K, Häfeli UO. Prodrug Nanomedicine for Synovium Targeted Therapy of Inflammatory Arthritis: Insights from Animal Model and Human Synovial Joint Fluid. Adv Healthc Mater 2024; 13:e2401936. [PMID: 39380387 PMCID: PMC11616258 DOI: 10.1002/adhm.202401936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/29/2024] [Indexed: 10/10/2024]
Abstract
Many patients cannot tolerate low-dose weekly methotrexate (MTX) therapy for inflammatory arthritis treatment due to life-threatening toxicity. Although biologics offer a target-specific therapy, it raises the risk of serious infections and even cancer due to immune system suppression. We introduce an anti-inflammatory arthritis MTX ester prodrug using a long-circulating biocompatible polymeric macromolecule: folic acid (FA) functionalized hyperbranched polyglycerol (HPG). In vitro the drug MTX is incrementally released through pH and enzymatic degradation over 2 weeks. The role of matrix metalloproteinases (MMPs) in site-specific prodrug activation was verified using synovial fluid (SF) of 26 rheumatology patients and 4 healthy controls. Elevated levels of specific MMPs-markers of joint inflammation-positively correlated with enhanced prodrug release explained by acid-catalyzed hydrolysis of esters by proteases. Intravenously administered 111In-radiolabeled prodrug confirmed by SPECT/CT imaging that it accumulated preferentially in inflamed joints while reducing off-target side-effects in a mouse model of rheumatoid arthritis (RA). Added FA as a targeting vector prolonged prodrug action; prodrug with 4x less MTX applied every 2 weeks was as effective as weekly MTX therapy. The preclinical results suggest a prodrug-based strategy for the treatment of inflammatory joint diseases, with potential for other chronic inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Zeynab Nosrati
- Faculty of Pharmaceutical SciencesUniversity of British Columbia2405 Wesbrook MallVancouverBCV5Z 3P2Canada
| | - Yun An Chen
- Faculty of Pharmaceutical SciencesUniversity of British Columbia2405 Wesbrook MallVancouverBCV5Z 3P2Canada
| | - Marta Bergamo
- Faculty of Pharmaceutical SciencesUniversity of British Columbia2405 Wesbrook MallVancouverBCV5Z 3P2Canada
| | | | - Jonathan Chan
- Department of Medicine – RheumatologyUniversity of British Columbia2775 Laurel StVancouverBCV5Z 1M9Canada
| | - Kam Shojania
- Department of Medicine – RheumatologyUniversity of British Columbia2775 Laurel StVancouverBCV5Z 1M9Canada
| | - Raheem B. Kherani
- Department of Medicine – RheumatologyUniversity of British Columbia2775 Laurel StVancouverBCV5Z 1M9Canada
| | - Carson Chin
- Burnaby Medical and Surgical SpecialistsBurnabyBCV3J 1M2Canada
| | - John T. Kelsall
- Department of Medicine – RheumatologyUniversity of British Columbia2775 Laurel StVancouverBCV5Z 1M9Canada
| | | | | | - David Collins
- Department of Medicine – RheumatologyUniversity of British Columbia2775 Laurel StVancouverBCV5Z 1M9Canada
| | - Katayoun Saatchi
- Faculty of Pharmaceutical SciencesUniversity of British Columbia2405 Wesbrook MallVancouverBCV5Z 3P2Canada
| | - Urs O. Häfeli
- Faculty of Pharmaceutical SciencesUniversity of British Columbia2405 Wesbrook MallVancouverBCV5Z 3P2Canada
- Department of PharmacyFaculty of Health and Medical SciencesUniversity of CopenhagenUniversitetsparken 2CopenhagenDenmark2100
| |
Collapse
|
2
|
Zhou Z, Liu Y, Xie P, Yin Z. A ROS-responsive multifunctional targeted prodrug micelle for atherosclerosis treatment. Int J Pharm 2024; 660:124352. [PMID: 38901540 DOI: 10.1016/j.ijpharm.2024.124352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024]
Abstract
Atherosclerosis is a chronic multifactorial cardiovascular disease. To combat atherosclerosis effectively, it is necessary to develop precision and targeted therapy in the early stages of plaque formation. In this study, a simvastatin (SV)-containing prodrug micelle SPCPV was developed by incorporating a peroxalate ester bond (PO). SPCPV could specifically target VCAM-1 overexpressed at atherosclerotic lesions. SPCPV contains a carrier (CP) composed of cyclodextrin (CD) and polyethylene glycol (PEG). At the lesions, CP and SV exerted multifaceted anti-atherosclerotic effects. In vitro studies demonstrated that intracellular reactive oxygen species (ROS) could induce the release of SV from SPCPV. The uptake of SPCPV was higher in inflammatory cells than in normal cells. Furthermore, in vitro experiments showed that SPCPV effectively reduced ROS levels, possessed anti-inflammatory properties, inhibited foam cell formation, and promoted cholesterol efflux. In vivo studies using atherosclerotic rats showed that SPCPV reduced the thickness of the vascular wall and low-density lipoprotein (LDL). This study developed a drug delivery strategy that could target atherosclerotic plaques and treat atherosclerosis by integrating the carrier with SV. The findings demonstrated that SPCPV possessed high stability and safety and had great therapeutic potential for treating early-stage atherosclerosis.
Collapse
Affiliation(s)
- Zishuo Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yaxue Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Pei Xie
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zongning Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Castillo-Pérez LJ, Ponce-Hernández A, Alonso-Castro AJ, Solano R, Fortanelli-Martínez J, Lagunez-Rivera L, Carranza-Álvarez C. Medicinal Orchids of Mexico: A Review. Pharmaceuticals (Basel) 2024; 17:907. [PMID: 39065757 PMCID: PMC11279439 DOI: 10.3390/ph17070907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Some species of the Orchidaceae family are used in Mexican traditional medicine. However, there are no current and critical compilations of the medicinal uses and pharmacological effects of the members of the Orchidaceae family. This review provides a current, critical, and comprehensive analysis of the traditional medicinal uses, pharmacological reports, and active compounds isolated from Mexican orchids. A total of 62 Mexican orchids with medicinal potential have been recorded, of which 14 have scientific evidence. The remaining 48 plant species have ethnomedicinal information but have not been validated with scientific studies. These orchids are distributed in 14 states of the Mexican Republic, mainly in the southern region of Mexico. The most common pharmacological activities reported are anti-inflammatory, vasorelaxant, antinociceptive, antioxidant, spasmolytic, antihypertensive, and hallucinogenic activities. It is necessary to increase the number of pharmacological, phytochemical, and toxicological studies with medicinal orchids from Mexico because there are scientific studies on only 22.5% of these species. In further studies, it will be possible to evaluate the pharmacological effects of Mexican orchids in clinical trials. In addition, the mechanisms of action by which plant extracts and their active compounds exert medicinal effects remain to be studied. Plant extracts from orchids and their active compounds show promising antinociceptive and spasmolytic effects, respectively.
Collapse
Affiliation(s)
- Luis J. Castillo-Pérez
- Programa Multidisciplinario de Posgrado en Ciencias Ambientales, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78290, Mexico;
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Ciudad Valles 79060, Mexico
| | - Amauri Ponce-Hernández
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78290, Mexico;
| | - Angel Josabad Alonso-Castro
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico
| | - Rodolfo Solano
- Laboratorio de Extracción y Análisis de Productos Naturales Vegetales, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Oaxaca, Instituto Politécnico Nacional, Santa Cruz Xoxocotlán 71230, Mexico; (R.S.); (L.L.-R.)
| | - Javier Fortanelli-Martínez
- Instituto de Investigación de Zonas Desérticas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78290, Mexico;
| | - Luicita Lagunez-Rivera
- Laboratorio de Extracción y Análisis de Productos Naturales Vegetales, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Oaxaca, Instituto Politécnico Nacional, Santa Cruz Xoxocotlán 71230, Mexico; (R.S.); (L.L.-R.)
| | - Candy Carranza-Álvarez
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Ciudad Valles 79060, Mexico
| |
Collapse
|
4
|
Forenzo C, Larsen J. Bridging clinical radiotherapy and space radiation therapeutics through reactive oxygen species (ROS)-triggered delivery. Free Radic Biol Med 2024; 219:88-103. [PMID: 38631648 DOI: 10.1016/j.freeradbiomed.2024.04.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/15/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
This review explores the convergence of clinical radiotherapy and space radiation therapeutics, focusing on ionizing radiation (IR)-generated reactive oxygen species (ROS). IR, with high-energy particles, induces precise cellular damage, particularly in cancer treatments. The paper discusses parallels between clinical and space IR, highlighting unique characteristics of high-charge and energy particles in space and potential health risks for astronauts. Emphasizing the parallel occurrence of ROS generation in both clinical and space contexts, the review identifies ROS as a crucial factor with dual roles in cellular responses and potential disease initiation. The analysis covers ROS generation mechanisms, variations, and similarities in terrestrial and extraterrestrial environments leading to innovative ROS-responsive delivery systems adaptable for both clinical and space applications. The paper concludes by discussing applications of personalized ROS-triggered therapeutic approaches and discussing the challenges and prospects of implementing these strategies in clinical radiotherapy and extraterrestrial missions. Overall, it underscores the potential of ROS-targeted delivery for advancing therapeutic strategies in terrestrial clinical settings and space exploration, contributing to human health improvement on Earth and beyond.
Collapse
Affiliation(s)
- Chloe Forenzo
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, 29631, USA
| | - Jessica Larsen
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, 29631, USA; Department of Bioengineering, Clemson University, Clemson, SC, 29631, USA.
| |
Collapse
|
5
|
Li X, Gao J, Wu C, Wang C, Zhang R, He J, Xia ZJ, Joshi N, Karp JM, Kuai R. Precise modulation and use of reactive oxygen species for immunotherapy. SCIENCE ADVANCES 2024; 10:eadl0479. [PMID: 38748805 PMCID: PMC11095489 DOI: 10.1126/sciadv.adl0479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/10/2024] [Indexed: 05/19/2024]
Abstract
Reactive oxygen species (ROS) play an important role in regulating the immune system by affecting pathogens, cancer cells, and immune cells. Recent advances in biomaterials have leveraged this mechanism to precisely modulate ROS levels in target tissues for improving the effectiveness of immunotherapies in infectious diseases, cancer, and autoimmune diseases. Moreover, ROS-responsive biomaterials can trigger the release of immunotherapeutics and provide tunable release kinetics, which can further boost their efficacy. This review will discuss the latest biomaterial-based approaches for both precise modulation of ROS levels and using ROS as a stimulus to control the release kinetics of immunotherapeutics. Finally, we will discuss the existing challenges and potential solutions for clinical translation of ROS-modulating and ROS-responsive approaches for immunotherapy, and provide an outlook for future research.
Collapse
Affiliation(s)
- Xinyan Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jingjing Gao
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Biomedical Engineering, Material Science and Engineering Graduate Program and The Center for Bioactive Delivery-Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Chengcheng Wu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Chaoyu Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Ruoshi Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jia He
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Ziting Judy Xia
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nitin Joshi
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey M. Karp
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rui Kuai
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
6
|
Wei X, Liu C, Li Z, Gu Z, Yang J, Luo K. Chitosan-based hydrogel dressings for diabetic wound healing via promoting M2 macrophage-polarization. Carbohydr Polym 2024; 331:121873. [PMID: 38388059 DOI: 10.1016/j.carbpol.2024.121873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024]
Abstract
A long-term inflammatory phase of diabetic wounds is the primary cause to prevent their effective healing. Bacterial infection, excess reactive oxygen species (ROS), especially failure of M2-phenotype macrophage polarization can hinder the transition of diabetic wounds from an inflammation phase to a proliferation one. Herein, a chitosan-based hydrogel dressing with the ability of regulating M2 macrophage polarization was reported. The PAAc/CFCS-Vanillin hydrogel dressing was synthesized by one step thermal polymerization of catechol-functionalized chitosan (CFCS), acrylic acid, catechol functional methacryloyl chitosan‑silver nanoparticles (CFMC-Ag NPs) and bioactive vanillin. The PAAc/CFCS-Vanillin hydrogel possessed sufficient mechanical strength and excellent adhesion properties, which helped rapidly block bleeding of wounds. Thanks to CFCS, CFMC-Ag NPs and vanillin in the hydrogel, it displayed excellent antibacterial infection in the wounds. Vanillin helped scavenge excess ROS and regulate the levels of inflammatory factors to facilitate the polarization of macrophages into the M2 phenotype. A full-thickness skin defect diabetic wound model showed that the wounds treated by the PAAc/CFCS-Vanillin hydrogel exhibited the smallest wound area, and superior granulation tissue regeneration, remarkable collagen deposition, and angiogenesis were observed in the wound tissue. Therefore, the PAAc/CFCS-Vanillin hydrogel could hold promising potential as a dressing for the treatment of diabetic chronic wounds.
Collapse
Affiliation(s)
- Xuelian Wei
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Caikun Liu
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, China
| | - Zhiqian Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhengxiang Gu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junxiao Yang
- State Key Laboratory of Environmental-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China.
| |
Collapse
|
7
|
Chen R, Xia Y, Ma Z, Ke Y, Shi Q, Ataullakhanov FI, Panteleev M. H 2O 2-Responsive Polymeric Micelles of Biodegradable Aliphatic Poly(carbonate)s as Promising Therapeutic Agents for Inflammatory Diseases. Macromol Biosci 2024; 24:e2300409. [PMID: 37975742 DOI: 10.1002/mabi.202300409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Excessive amounts of reactive oxygen species (ROS) cause various biological damages and are involved in many diseases, such as cancer, inflammatory and thrombotic complications, and neurodegenerative diseases. Thus, ROS-responsive polymers with inherent ROS scavenging activity and biodegradability are extremely needed for the efficient treatment of ROS-related diseases. Here, this work fabricates the amphiphilic diblock copolymer PEG-b-PBC via ring-opening polymerization (ROP) of phenylboronic acid ester conjugated cyclic carbonate monomer. The copolymer easily forms micelles (BCM) and scavenges ROS rapidly. BCM not only releases the delivered drug but degrades to produce the small molecules p-hydroxybenzyl alcohol (HBA) with anti-inflammatory capability in the presence of H2O2. BCM can reduce the oxidative stress of human umbilical vein endothelial cells (HUVEC) and the levels of inflammatory factors secreted by macrophages, showing antioxidative and anti-inflammatory activity. Finally, BCM exerts a significant capability to reduce the complications of inflammation and thrombosis in vivo. The biodegradable aliphatic poly(carbonate)s have the potential to be used for drug delivery systems (DDS) for diseases induced by reactive oxygen species.
Collapse
Affiliation(s)
- Runhai Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Yu Xia
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhifang Ma
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Yue Ke
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, Suzhou, 215123, China
| | - Fazly I Ataullakhanov
- Dmitry Rogachev Natl Res Ctr Pediat Hematol Oncol, 1 Samory Mashela St, Moscow, 117198, Russia
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1, build. 2, GSP-1, Moscow, 119991, Russia
| | - Mikhail Panteleev
- Dmitry Rogachev Natl Res Ctr Pediat Hematol Oncol, 1 Samory Mashela St, Moscow, 117198, Russia
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1, build. 2, GSP-1, Moscow, 119991, Russia
| |
Collapse
|
8
|
Kim DS, Jo NG, Lee DW, Ko MH, Seo JH, Kim GW. Ultrasonographic Contrast and Therapeutic Effects of Hydrogen Peroxide-Responsive Nanoparticles in a Rat Model with Sciatic Neuritis. Int J Nanomedicine 2024; 19:3031-3044. [PMID: 38562612 PMCID: PMC10982809 DOI: 10.2147/ijn.s447691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
Purpose Peripheral nerve damage lacks an appropriate diagnosis consistent with the patient's symptoms, despite expensive magnetic resonance imaging or electrodiagnostic assessments, which cause discomfort. Ultrasonography is valuable for diagnosing and treating nerve lesions; however, it is unsuitable for detecting small lesions. Poly(vanillin-oxalate) (PVO) nanoparticles are prepared from vanillin, a phytochemical with antioxidant and anti-inflammatory properties. Previously, PVO nanoparticles were cleaved by H2O2 to release vanillin, exert therapeutic efficacy, and generate CO2 to increase ultrasound contrast. However, the role of PVO nanoparticles in peripheral nerve lesion models is still unknown. Herein, we aimed to determine whether PVO nanoparticles can function as contrast and therapeutic agents for nerve lesions. Methods To induce sciatic neuritis, rats were administered a perineural injection of carrageenan using a nerve stimulator under ultrasonographic guidance, and PVO nanoparticles were injected perineurally to evaluate ultrasonographic contrast and therapeutic effects. Reverse transcription-quantitative PCR was performed to detect mRNA levels of pro-inflammatory cytokines, ie, tumor necrosis factor-α, interleukin-6, and cyclooxygenase-2. Results In the rat model of sciatic neuritis, PVO nanoparticles generated CO2 bubbles to increase ultrasonographic contrast, and a single perineural injection of PVO nanoparticles suppressed the expression of tumor necrosis factor-α, interleukin-6, and cyclooxygenase-2, reduced the expression of F4/80, and increased the expression of GAP43. Conclusion The results of the current study suggest that PVO nanoparticles could be developed as ultrasonographic contrast agents and therapeutic agents for nerve lesions.
Collapse
Affiliation(s)
- Da-Sol Kim
- Department of Physical Medicine & Rehabilitation, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Nam-Gyu Jo
- Department of Physical Medicine and Rehabilitation, Hansol Convalescence Rehabilitation Hospital, Jeonju, Republic of Korea
| | - Dong-Won Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Polymer Nano Science and Technology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Myoung-Hwan Ko
- Department of Physical Medicine & Rehabilitation, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Jeong-Hwan Seo
- Department of Physical Medicine & Rehabilitation, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Gi-Wook Kim
- Department of Physical Medicine & Rehabilitation, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
9
|
Chi T, Sang T, Wang Y, Ye Z. Cleavage and Noncleavage Chemistry in Reactive Oxygen Species (ROS)-Responsive Materials for Smart Drug Delivery. Bioconjug Chem 2024; 35:1-21. [PMID: 38118277 DOI: 10.1021/acs.bioconjchem.3c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The design and development of advanced drug delivery systems targeting reactive oxygen species (ROS) have gained significant interest in recent years for treating various diseases, including cancer, psychiatric diseases, cardiovascular diseases, neurological diseases, metabolic diseases, and chronic inflammations. Integrating specific chemical bonds capable of effectively responding to ROS and triggering drug release into the delivery system is crucial. In this Review, we discuss commonly used conjugation linkers (chemical bonds) and categorize them into two groups: cleavable linkers and noncleavable linkers. Our goal is to clarify their unique drug release mechanisms from a chemical perspective and provide practical organic synthesis approaches for their efficient production. We showcase numerous significant examples to demonstrate their synthesis routes and diverse applications. Ultimately, we strive to present a comprehensive overview of cleavage and noncleavage chemistry, offering insights into the development of smart drug delivery systems that respond to ROS.
Collapse
Affiliation(s)
- Teng Chi
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ting Sang
- School of Stomatology of Nanchang University & Jiangxi Province Clinical Research Center for Oral Diseases & The Key Laboratory of Oral Biomedicine, Nanchang 330006, China
| | - Yanjing Wang
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Zhou Ye
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong S.A.R. 999077, China
| |
Collapse
|
10
|
Mathew J, Ru-Hung, Le TN, Pham HP, Kumar P, Lee CK, Shunmugam R, Rao NV. ROS-responsive camptothecin-linked thioketal drug delivery system based on ring-closing polymerization. Eur Polym J 2024; 202:112646. [DOI: 10.1016/j.eurpolymj.2023.112646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
|
11
|
Yu H, Ge Y, Ding H, Yan Y, Wang L. Vanillin cross-linked chitosan/gelatin bio-polymer film with antioxidant, water resistance and ultraviolet-proof properties. Int J Biol Macromol 2023; 253:126726. [PMID: 37689296 DOI: 10.1016/j.ijbiomac.2023.126726] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
Cross-linking is the most promising method for preparing high-performance chitosan/gelatin bio-polymer film. In this work, vanillin cross-linked chitosan/gelatin bio-polymer (CGGV) film with good mechanics, water resistance, antioxidant and ultraviolet-proof property was prepared. The micro-structure, physical and functional properties of CGGV film were studied. Results showed that vanillin as a cross-linking agent provided a compact inner micro-structure through Schiff base and hydrogen bond interaction. Moderate cross-linking significantly improved mechanical strength, thermal ability, hydrophobicity of the films and reduced the water vapor permeability, swelling ratio and water solubility. Especially, CGGV films showed stronger ultraviolet-proof properties and possessed potent radical scavenging activity. Therefore, CGGV film is suitable to protect per-mature fruits and could be used as novel multifunctional packaging in the agriculture and foods industry.
Collapse
Affiliation(s)
- Huanyang Yu
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, PR China.
| | - Yuan Ge
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, PR China
| | - Huanqi Ding
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, PR China
| | - Yongtai Yan
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, PR China
| | - Liyan Wang
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, PR China; Key Laboratory of Building Energy-Saving Technology Engineering of Jilin Provincial, School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, PR China
| |
Collapse
|
12
|
Kim DS, Song N, Lee D, Kim GW. Comparison of Ultrasound Contrast between H 2O 2-Responsive Nanoparticles and Microbubble Contrast According to Muscle Injury in Rat Models. Diagnostics (Basel) 2023; 13:3320. [PMID: 37958215 PMCID: PMC10649825 DOI: 10.3390/diagnostics13213320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Ultrasound contrast agents are clinically used for diagnosis of internal organs, but ultrasound contrast agents are rarely applied clinically in musculoskeletal disorders. Our study aims to comparatively analyze the differences between ultrasonographic images through peri-injury injection of the clinically used microbubble and researched nanoparticle contrast agents in various muscular injury models. To compare contrast-enhanced images in different muscle injury models, we prepared groups of rats with sham, laceration, punch, contusion, and toxin injection injuries. We measured H2O2 levels using the Amplex Red assay by extracting tissue from the damaged area. As comparative contrast agents, SonoVue®, a commercially available microbubble contrast agent, and poly(vanillinoxalte) (PVO) nanoparticles, which are H2O2-responsive nanoparticles, were used. The difference in contrast between the two contrast agents was recorded as an ultrasound movie, and J-image software 1.53p was used to quantify and analyze the maximum and minimum echogenicity values of the images after contrast enhancement. In the Amplex red assay for the highest H2O2 level in each muscle injury model, the maximum level showed 24 h after the modeling. In the sham rats, PVO injection showed no increased echogenicity except at the needle insertion site, but SonoVue® injection showed increased echo signal throughout the injected muscle immediately after injection. One day after the preparation of the lesion, PVO and SonoVue® were injected into the lesion site and ultrasound was performed on the lesion site. After the injection of PVO nanoparticles, contrast enhancement was observed at the lesion site immediately. SonoVue® injections, on the other hand, showed a widespread pattern of echo signals and an increase in echo retention only at the lesion site over time, but this was not clear. There were statistically significant differences between the highest and lowest echogenicity in PVO and SonoVue® contrast-enhanced images in all models. Contrast enhancement lasted more than 3 h in the PVO injection, but disappeared within 3 h in the SonoVue® injection. PVO nanoparticles showed the possibility of physiologic contrast by CO2 generated by conjugation with H2O2 generated by muscle injuries, and SonoVue® injection observed the possibility of microbubble contrast as a contrast agent with a pooling effect that lasts longer on the lesion. Further research is needed to investigate the use of various ultrasound contrast agents, including nanoparticles, in musculoskeletal disorders, as well as the potential for further utilities of microbubble contrast agents.
Collapse
Affiliation(s)
- Da-Sol Kim
- Department of Physical Medicine and Rehabilitation, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea;
- Research Institute of Clinical Medicine—Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Nanhee Song
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea; (N.S.); (D.L.)
- Department of Polymer Nano Science and Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Dongwon Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea; (N.S.); (D.L.)
- Department of Polymer Nano Science and Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Gi-Wook Kim
- Department of Physical Medicine and Rehabilitation, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea;
- Research Institute of Clinical Medicine—Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea; (N.S.); (D.L.)
| |
Collapse
|
13
|
Responsive Nanostructure for Targeted Drug Delivery. JOURNAL OF NANOTHERANOSTICS 2023. [DOI: 10.3390/jnt4010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Currently, intelligent, responsive biomaterials have been widely explored, considering the fact that responsive biomaterials provide controlled and predictable results in various biomedical systems. Responsive nanostructures undergo reversible or irreversible changes in the presence of a stimulus, and that stimuli can be temperature, a magnetic field, ultrasound, pH, humidity, pressure, light, electric field, etc. Different types of stimuli being used in drug delivery shall be explained here. Recent research progress in the design, development and applications of biomaterials comprising responsive nanostructures is also described here. More emphasis will be given on the various nanostructures explored for the smart stimuli responsive drug delivery at the target site such as wound healing, cancer therapy, inflammation, and pain management in order to achieve the improved efficacy and sustainability with the lowest side effects. However, it is still a big challenge to develop well-defined responsive nanostructures with ordered output; thus, challenges faced during the design and development of these nanostructures shall also be included in this article. Clinical perspectives and applicability of the responsive nanostructures in the targeted drug delivery shall be discussed here.
Collapse
|
14
|
Mandal D, Kushwaha K, Gupta J. Emerging nano-strategies against tumour microenvironment (TME): a review. OPENNANO 2023. [DOI: 10.1016/j.onano.2022.100112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Choi S, Haam CE, Oh EY, Byeon S, Choi SK, Lee YH. Vanillin Induces Relaxation in Rat Mesenteric Resistance Arteries by Inhibiting Extracellular Ca 2+ Influx. Molecules 2022; 28:molecules28010288. [PMID: 36615485 PMCID: PMC9822298 DOI: 10.3390/molecules28010288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Vanillin is a phenolic aldehyde, which is found in plant species of the Vanilla genus. Although recent studies have suggested that vanillin has various beneficial properties, the effect of vanillin on blood vessels has not been studied well. In the present study, we investigated whether vanillin has vascular effects in rat mesenteric resistance arteries. To examine the vascular effect of vanillin, we measured the isometric tension of arteries using a multi-wire myograph system. After the arteries were pre-contracted with high K+ (70 mM) or phenylephrine (5 µM), vanillin was administered. Vanillin induced concentration-dependent vasodilation. Endothelial denudation or treatment of eNOS inhibitor (L-NNA, 300 μM) did not affect the vasodilation induced by vanillin. Treatment of K+ channel inhibitor (TEA, 10 mM) or sGC inhibitor (ODQ, 10 μM) or COX-2 inhibitor (indomethacin, 10 μM) did not affect the vanillin-induced vasodilation either. The treatment of vanillin decreased the contractile responses induced by Ca2+ addition. Furthermore, vanillin significantly reduced vascular contraction induced by BAY K 8644 (30 nM). Vanillin induced concentration-dependent vascular relaxation in rat mesenteric resistance arteries, which was endothelium-independent. Inhibition of extracellular Ca2+ influx was involved in vanillin-induced vasodilation. Treatment of vanillin reduced phopsho-MLC20 in vascular smooth muscle cells. These results suggest the possibility of vanillin as a potent vasodilatory molecule.
Collapse
Affiliation(s)
| | | | | | | | - Soo-Kyoung Choi
- Correspondence: (S.-K.C.); (Y.-H.L.); Tel.: +82-2-2228-1722 (S.-K.C.); +82-2-2228-1708 (Y.-H.L.); Fax: +82-2-393-0203 (S.-K.C. & Y.-H.L.)
| | - Young-Ho Lee
- Correspondence: (S.-K.C.); (Y.-H.L.); Tel.: +82-2-2228-1722 (S.-K.C.); +82-2-2228-1708 (Y.-H.L.); Fax: +82-2-393-0203 (S.-K.C. & Y.-H.L.)
| |
Collapse
|
16
|
Wen L, Xie D, Wu J, Liang Y, Zhang Y, Li J, Xu C, Lin B. Humidity-/Sweat-Sensitive Electronic Skin with Antibacterial, Antioxidation, and Ultraviolet-Proof Functions Constructed by a Cross-Linked Network. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56074-56086. [PMID: 36508579 DOI: 10.1021/acsami.2c15876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Most electronic skins (e-skins) show unique performance or possess sensory functions. The raw materials used for their preparation are potentially toxic or harmful, and there may be problems such as poor compatibility between the conductive fillers and polymers. In this paper, a silver-loaded nanocomposite film (PVA/CMS/vanillin/nanoAg) was prepared by the in situ reduction method in a greener route. The mechanical properties of this nanocomposite film had improved with a tensile strength of 30.95 MPa, an elongation at break of 101.9%, and a Young's modulus of 10.62 MPa. In the composite matrix, a cross-linked network was constructed based on the coordination and hydrogen bonds, which was conducive to the stability of the reduced AgNPs and AgNWs. When applied as an e-skin in humidity/sweat sensors and wearable electronics, the nanocomposite film responds to humidity within 60 s and records the electric signals of human joint movements and skin sweating with a response range of 0-140% to strain at 93% RH. This kind of e-skin has excellent antibacterial and antioxidant activities and shows an outstanding ultraviolet-proof performance, which provides a greener promising reference route for the design of wearable e-skins to monitor the health and movements of humans.
Collapse
Affiliation(s)
- Lishan Wen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning530004, PR China
| | - Donghong Xie
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning530004, PR China
| | - Jia Wu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning530004, PR China
| | - Yuntong Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning530004, PR China
| | - Yuancheng Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning530004, PR China
| | - Jianfang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning530004, PR China
| | - Chuanhui Xu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning530004, PR China
| | - Baofeng Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning530004, PR China
| |
Collapse
|
17
|
Wang T, Zhang J, Zhang H, Bai W, Dong J, Yang Z, Yang P, Gu Z, Li Y, Chen X, Xu Y. Antioxidative myricetin-enriched nanoparticles towards acute liver injury. J Mater Chem B 2022; 10:7875-7883. [PMID: 36093595 DOI: 10.1039/d2tb01505f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acute liver injury (ALI) could severely destroy the liver function and cause inevitable damage to human health. Studies have demonstrated that excessive reactive oxygen species (ROS) and accompanying inflammatory factors play vital roles in the ALI disease. Herein, we fabricated a kind of nature-inspired myricetin-enriched nanomaterial via Michael addition and Schiff base reaction, which possessed uniform morphology, tunable component ratios, great stabilities, promising free radical scavenging abilities, biocompatibility and protective effects towards cells under oxidative stress. Additionally, the therapeutic effects were demonstrated using an ALI model by down-regulating ROS and inflammatory levels and restoring the liver function. This study could provide a strategy to construct robust and antioxidative nanomaterials using naturally occurring molecules against intractable diseases.
Collapse
Affiliation(s)
- Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jianhua Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Hengjie Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Wanjie Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jinhong Dong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhen Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Peng Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Xianchun Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yuanting Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
18
|
Shin H, Jeong S, Lee Y, Jeon C, Kwon G, Kim S, Lee D. H 2O 2-Activatable Antioxidant Polymeric Prodrug Nanoparticles for the Prevention of Renal Ischemia/Reperfusion Injury. Biomacromolecules 2022; 23:3810-3821. [PMID: 35929737 DOI: 10.1021/acs.biomac.2c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Renal ischemia-reperfusion (IR) injury is an inevitable complication in various clinical settings including kidney transplantation and major vascular surgeries. Renal IR injury is a major risk factor for acute kidney injury, which still remains a major clinical challenge without effective therapy. The main cause of renal IR injury is the massive production of reactive oxygen species (ROS) including hydrogen peroxide (H2O2) that initiate inflammatory signaling pathways, leading to renal cell death. In this study, we developed fucoidan-coated polymeric prodrug (Fu-PVU73) nanoparticles as renal IR-targeting nanotherapeutics that can rapidly eliminate H2O2 and exert anti-inflammatory and antiapoptotic effects. Fu-PVU73 nanoparticles were composed of H2O2-activatable antioxidant and anti-inflammatory polymeric prodrug (PVU73) that incorporated H2O2-responsive peroxalate linkages, ursodeoxycholic acid (UDCA), and vanillyl alcohol (VA) in its backbone. Fu-PVU73 nanoparticles rapidly scavenged H2O2 and released UDCA and VA during H2O2-triggered degradation. In the study of renal IR injury mouse models, Fu-PVU73 nanoparticles preferentially accumulated in the IR injury-induced kidney and markedly protected the kidney from IR injury by suppressing the generation of ROS and the expression of proinflammatory cytokines. We anticipate that Fu-PVU73 nanoparticles have tremendous therapeutic potential for not only renal IR injury but also various ROS-associated inflammatory diseases.
Collapse
Affiliation(s)
- Hyeonbin Shin
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Seungwon Jeong
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Yeongjong Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Chanhee Jeon
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Gayoung Kwon
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Sooyeon Kim
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Dongwon Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea.,Department of Polymer Nano Science and Technology, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| |
Collapse
|
19
|
Seidi F, Zhong Y, Xiao H, Jin Y, Crespy D. Degradable polyprodrugs: design and therapeutic efficiency. Chem Soc Rev 2022; 51:6652-6703. [PMID: 35796314 DOI: 10.1039/d2cs00099g] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Prodrugs are developed to increase the therapeutic properties of drugs and reduce their side effects. Polyprodrugs emerged as highly efficient prodrugs produced by the polymerization of one or several drug monomers. Polyprodrugs can be gradually degraded to release therapeutic agents. The complete degradation of polyprodrugs is an important factor to guarantee the successful disposal of the drug delivery system from the body. The degradation of polyprodrugs and release rate of the drugs can be controlled by the type of covalent bonds linking the monomer drug units in the polymer structure. Therefore, various types of polyprodrugs have been developed based on polyesters, polyanhydrides, polycarbonates, polyurethanes, polyamides, polyketals, polymetallodrugs, polyphosphazenes, and polyimines. Furthermore, the presence of stimuli-responsive groups, such as redox-responsive linkages (disulfide, boronate ester, metal-complex, and oxalate), pH-responsive linkages (ester, imine, hydrazone, acetal, orthoester, P-O and P-N), light-responsive (metal-complex, o-nitrophenyl groups) and enzyme-responsive linkages (ester, peptides) allow for a selective degradation of the polymer backbone in targeted tumors. We envision that new strategies providing a more efficient synergistic therapy will be developed by combining polyprodrugs with gene delivery segments and targeting moieties.
Collapse
Affiliation(s)
- Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China. .,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | - Yajie Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| |
Collapse
|
20
|
Facile synthesis of self-dispersed β-cyclodextrin-coupled cellulose microgel for sustained release of vanillin. Int J Biol Macromol 2022; 208:70-79. [DOI: 10.1016/j.ijbiomac.2022.03.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/12/2022] [Accepted: 03/11/2022] [Indexed: 02/03/2023]
|
21
|
Jung E, Song N, Lee Y, Kwon G, Kwon S, Lee D. H2O2-activatable hybrid prodrug nanoassemblies as a pure nanodrug for hepatic ischemia/reperfusion injury. Biomaterials 2022; 284:121515. [DOI: 10.1016/j.biomaterials.2022.121515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 11/02/2022]
|
22
|
Tripathi AS, Awasthi S, Maurya R, Yasir M, Mohapatra L, Srivastav V. Protective effect of vanillin on the management of cecal ligation and puncture induced sepsis rat model. Microb Pathog 2022; 165:105493. [PMID: 35307600 DOI: 10.1016/j.micpath.2022.105493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/06/2022] [Accepted: 03/16/2022] [Indexed: 11/25/2022]
|
23
|
Zhao J, Zhang Q, Wang J, Zhang Q, Li H, Du Y. Advances in the Scavenging Materials for Reactive Oxygen Species. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Liu M, Huang Q, Zhu Y, Chen L, Li Y, Gong Z, Ai K. Harnessing reactive oxygen/nitrogen species and inflammation: Nanodrugs for liver injury. Mater Today Bio 2022; 13:100215. [PMID: 35198963 PMCID: PMC8850330 DOI: 10.1016/j.mtbio.2022.100215] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 12/11/2022] Open
Abstract
Overall, 12% of the global population (800 million) suffers from liver disease, which causes 2 million deaths every year. Liver injury involving characteristic reactive oxygen/nitrogen species (RONS) and inflammation plays a key role in progression of liver disease. As a key metabolic organ of the human body, the liver is susceptible to injury from various sources, including COVID-19 infection. Owing to unique structural features and functions of the liver, most current antioxidants and anti-inflammatory drugs are limited against liver injury. However, the characteristics of the liver could be utilized in the development of nanodrugs to achieve specific enrichment in the liver and consequently targeted treatment. Nanodrugs have shown significant potential in eliminating RONS and regulating inflammation, presenting an attractive therapeutic tool for liver disease through controlling liver injury. Therefore, the main aim of the current review is to provide a comprehensive summary of the latest developments contributing to our understanding of the mechanisms underlying nanodrugs in the treatment of liver injury via harnessing RONS and inflammation. Meanwhile, the prospects of nanodrugs for liver injury therapy are systematically discussed, which provides a sound platform for novel therapeutic insights and inspiration for design of nanodrugs to treat liver disease.
Collapse
Affiliation(s)
- Min Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yan Zhu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Li Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yumei Li
- Department of Assisted Reproduction, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| |
Collapse
|
25
|
Sato K, Watanabe K, Sugiyama K, Komatsu S, Fujimura T. Electrochemical Cleavage of the Carbon-Boron Bond in p-Acetamidophenylboronic Acid at Neutral pH Conditions. Chem Pharm Bull (Tokyo) 2021; 69:1206-1208. [PMID: 34853288 DOI: 10.1248/cpb.c21-00485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Herein, it is reported that p-acetamidophenylboronic acid can be electrolytic cleavage of the carbon-boron bond to p-acetamidophenol at an electric potential of 1.2 V vs. Ag/AgCl in 100 mM phosphate buffer of pH 7.4 (containing 10% acetonirile). The electrochemical reaction was investigated by HPLC, LC with tandem mass spectrometry, and cyclic voltammetry. This electrochemical reaction could be useful in the development of electrical controlled drug delivery systems under neutral pH conditions.
Collapse
Affiliation(s)
- Katsuhiko Sato
- Faculty of Pharmaceutical Science, Tohoku Medical and Pharmaceutical University.,Department of Creative Engineering, National Institute of Technology, Tsuruoka College
| | - Kazuhiro Watanabe
- Faculty of Pharmaceutical Science, Tohoku Medical and Pharmaceutical University
| | - Kyoko Sugiyama
- Faculty of Pharmaceutical Science, Tohoku Medical and Pharmaceutical University
| | - Sachiko Komatsu
- Faculty of Pharmaceutical Science, Tohoku Medical and Pharmaceutical University
| | - Tsutomu Fujimura
- Faculty of Pharmaceutical Science, Tohoku Medical and Pharmaceutical University
| |
Collapse
|
26
|
Li Q, Liu Y, Dai X, Jiang W, Zhao H. Nanozymes Regulate Redox Homeostasis in ROS-Related Inflammation. Front Chem 2021; 9:740607. [PMID: 34746091 PMCID: PMC8567209 DOI: 10.3389/fchem.2021.740607] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/05/2021] [Indexed: 12/17/2022] Open
Abstract
Reactive oxygen species (ROS), in moderate amounts, play an essential role in regulating different physiological functions in organisms. However, increased amounts of ROS may cause oxidative stress and damage to biomolecules, leading to a variety of diseases including inflammation and even cancer. Therefore, ROS scavenging reagents are needed to maintain healthy levels of ROS. With considerable advances in nanotechnology, nanozymes possess SOD or CAT-like activities with outstanding free radical scavenging activity, facile synthesis conditions, and excellent biocompatibility. Based on these extraordinary properties, nanozymes has been used to modulate the redox homeostasis and relieve the ROS-related injury. This has led to the emergence of nanozyme-based therapies. In the current review, we presented recently developed applications of nanozymes to treat ROS-dependent disorders with an emphasis on inflammatory and brain diseases.
Collapse
Affiliation(s)
- Qing Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou, Zhengzhou, China
- Application Center for Precision Medicine, Department of Molecular Pathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Liu
- Application Center for Precision Medicine, Department of Molecular Pathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xianglin Dai
- Department of Oncology, The First Affiliated Hospital of Zhengzhou, Zhengzhou, China
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wei Jiang
- Application Center for Precision Medicine, Department of Molecular Pathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Huan Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou, Zhengzhou, China
| |
Collapse
|
27
|
Diagnosis and Simultaneous Treatment of Musculoskeletal Injury Using H 2O 2-Triggered Echogenic Antioxidant Polymer Nanoparticles in a Rat Model of Contusion Injury. NANOMATERIALS 2021; 11:nano11102571. [PMID: 34685012 PMCID: PMC8537538 DOI: 10.3390/nano11102571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 01/06/2023]
Abstract
Ultrasound is clinically used for diagnosis and interventions for musculoskeletal injuries like muscle contusion, but contrast of ultrasonography still remains a challenge in the field of the musculoskeletal system. A level of hydrogen peroxide (H2O2) is known to be elevated during mechanical tissue damage and therefore H2O2 can be exploited as a diagnostic and therapeutic marker for mechanical injuries in the musculoskeletal system. We previously developed poly(vanillin-oxalate) (PVO) as an inflammation-responsive polymeric prodrug of vanillin, which is designed to rapidly respond to H2O2 and exert antioxidant and anti-inflammatory activities. The primary aim of this study is to verify whether PVO nanoparticles could serve as contrast agents as well as therapeutic agents for musculoskeletal injuries simultaneously. In a rat model of contusion-induced muscle injury, PVO nanoparticles generated CO2 bubbles to enhance the ultrasound contrast in the injury site. A single intramuscular injection of PVO nanoparticles also suppressed contusion-induced muscle damages by inhibiting the expression of pro-inflammatory cytokines and inflammatory cell infiltration. We, therefore, anticipate that PVO nanoparticles have great translational potential as not only ultrasound imaging agents but also therapeutic agents for the musculoskeletal disorders such as contusion.
Collapse
|
28
|
Ji H, Peng R, Jin L, Ma J, Yang Q, Sun D, Wu W. Recent Advances in ROS-Sensitive Nano-Formulations for Atherosclerosis Applications. Pharmaceutics 2021; 13:1452. [PMID: 34575528 PMCID: PMC8468237 DOI: 10.3390/pharmaceutics13091452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 12/31/2022] Open
Abstract
Over the past decade, ROS-sensitive formulations have been widely used in atherosclerosis applications such as ROS scavenging, drug delivery, gene delivery, and imaging. The intensified interest in ROS-sensitive formulations is attributed to their unique self-adaptive properties, involving the main molecular mechanisms of solubility switch and degradation under the pathological ROS differences in atherosclerosis. This review outlines the advances in the use of ROS-sensitive formulations in atherosclerosis applications during the past decade, especially highlighting the general design requirements in relation to biomedical functional performance.
Collapse
Affiliation(s)
- Hao Ji
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.J.); (R.P.); (L.J.); (J.M.)
| | - Renyi Peng
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.J.); (R.P.); (L.J.); (J.M.)
| | - Libo Jin
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.J.); (R.P.); (L.J.); (J.M.)
| | - Jiahui Ma
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.J.); (R.P.); (L.J.); (J.M.)
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China;
| | - Da Sun
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.J.); (R.P.); (L.J.); (J.M.)
| | - Wei Wu
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.J.); (R.P.); (L.J.); (J.M.)
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| |
Collapse
|
29
|
Zhang Q, Song M, Xu Y, Wang W, Wang Z, Zhang L. Bio-based polyesters: Recent progress and future prospects. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101430] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Baker A, Khan MS, Iqbal MZ, Khan MS. Tumor-targeted Drug Delivery by Nanocomposites. Curr Drug Metab 2021; 21:599-613. [PMID: 32433002 DOI: 10.2174/1389200221666200520092333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/30/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Tumor-targeted delivery by nanoparticles is a great achievement towards the use of highly effective drug at very low doses. The conventional development of tumor-targeted delivery by nanoparticles is based on enhanced permeability and retention (EPR) effect and endocytosis based on receptor-mediated are very demanding due to the biological and natural complications of tumors as well as the restrictions on the design of the accurate nanoparticle delivery systems. METHODS Different tumor environment stimuli are responsible for triggered multistage drug delivery systems (MSDDS) for tumor therapy and imaging. Physicochemical properties, such as size, hydrophobicity and potential transform by MSDDS because of the physiological blood circulation different, intracellular tumor environment. This system accomplishes tumor penetration, cellular uptake improved, discharge of drugs on accurate time, and endosomal discharge. RESULTS Maximum drug delivery by MSDDS mechanism to target therapeutic cells and also tumor tissues and sub cellular organism. Poorly soluble compounds and bioavailability issues have been faced by pharmaceutical industries, which are resolved by nanoparticle formulation. CONCLUSION In our review, we illustrate different types of triggered moods and stimuli of the tumor environment, which help in smart multistage drug delivery systems by nanoparticles, basically a multi-stimuli sensitive delivery system, and elaborate their function, effects, and diagnosis.
Collapse
Affiliation(s)
- Abu Baker
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, 226026, India
| | - Mohd Salman Khan
- Clinical Biochemistry & Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, 226026, India
| | - Muhammad Zafar Iqbal
- Department of Studies and Research in Zoology, Government First Grade College, Karwar, 581301, India
| | - Mohd Sajid Khan
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, 226026, India
| |
Collapse
|
31
|
He P, Tang B, Li Y, Zhang Y, Liu X, Guo X, Wang D, She P, Xiao C. Effective Oxidation-Responsive Polyester Nanocarriers for Anti-Inflammatory Drug Delivery. Int J Nanomedicine 2021; 16:5053-5064. [PMID: 34349508 PMCID: PMC8326227 DOI: 10.2147/ijn.s311718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/14/2021] [Indexed: 12/21/2022] Open
Abstract
Background High levels of oxidants, such as reactive oxygen species (ROS) and reactive nitrogen species (RNS), are typical characteristics of an inflammatory microenvironment and are closely associated with a various inflammatory pathologies, eg, cancer, diabetes, atherosclerosis, and neurodegenerative diseases. Therefore, the delivery of anti-inflammatory drugs by oxidation-responsive smart systems would be an efficient anti-inflammatory strategy that benefits from the selective drug release in an inflammatory site, a lower treatment dose, and minimizes side effects. Purpose In this study, we present the feasibility of an oxidation-sensitive PEGylated alternating polyester, methoxyl poly(ethylene glycol)-block-poly(phthalic anhydride-alter-glycidyl propargyl ether) (mPEG-b-P(PA-alt-GPBAe)), as novel nanocarrier for curcumin (CUR), and explore the application in anti-inflammatory therapy. Methods The copolymers used were obtained by combining a click reaction and a ring-opening-polymerization method. CUR was loaded by self-assembly. The in vitro drug release, cytotoxicity toward RAW 264.7 cells and cellular uptake were investigated. Furthermore, the anti-inflammatory effects of CUR-loaded polymeric nanoparticles (NPs-CUR) were investigated in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and tested in a murine model of ankle inflammation. Results Fast drug release from NPs-CUR was observed in trigger of 1 mM H2O2 in PBS. Compared with NPs and free drugs, the significant anti-inflammatory potential of NPs-CUR was proven in activated RAW 264.7 cells by inhibiting the production of TNF-α, IL-1β, and IL-6 and increasing the level of an anti-inflammatory cytokine IL-10. Finally, a local injection of NPs-CUR at a dose of 0.25 mg/kg suppressed the acute ankle inflammatory response in mice by histological observation and further reduced the expression of pro-inflammatory cytokines in the affected ankle joints compared to that of free CUR. Conclusion Both the significant in vitro and in vivo anti-inflammatory results indicated that our oxidation responsive polymeric nanoparticles are promising drug delivery systems for anti-inflammatory therapy.
Collapse
Affiliation(s)
- Pan He
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
| | - Bingtong Tang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
| | - Yusheng Li
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
| | - Yu Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
| | - Xinming Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
| | - Xin Guo
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
| | - Dong Wang
- Department of Orthopaedics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, People's Republic of China
| | - Peng She
- Department of Orthopaedics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, People's Republic of China.,Joint Surgery Department, The First Hospital, Jilin University, Changchun, 130021, People's Republic of China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
| |
Collapse
|
32
|
He M, Yang B, Huo F, Xie L, Yang M, Tian W. A novel coating with universal adhesion and inflammation-responsive drug release functions to manipulate the osteoimmunomodulation of implants. J Mater Chem B 2021; 9:5272-5283. [PMID: 34137425 DOI: 10.1039/d1tb00953b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The immune response elicited by the bone endoprosthesis is currently considered an important factor that affects its interfacial osteointegration. In this work, a metal-phenolic-based drug-loaded coating with universal adhesion properties and intelligent drug delivery feature was created to promote osteointegration by manipulating a beneficial osteoimmune microenvironment. A novel pro-drug with inflammation-responsive release function was firstly synthesized via the esterification reaction between tannic acid (TA) and indometacin (IND), and then the coating was developed by chelating it with Fe3+. In the normal biological environment, the coating was stable, while, in the inflammatory environment, the release of TA and IND motifs could be triggered by the overexpressed esterase. The released TA and IND displayed synergistic effects on macrophage polarization, leading to a downregulation expression of pro-inflammatory cytokines, and an upregulation expression of anti-inflammatory cytokines and osteogenic-related factors. When stimulated by a conditioned medium generated by macrophages seeded onto the coating, the osteogenic differentiation potential of BMSCs was significantly enhanced. Finally, the designed coating significantly promoted the osteointegration of the implant, demonstrated by the increase of the bone-implant contact by two times. Additionally, the coating was substrate-independent and can be formed within seconds without special equipment, thus, it showed great potential applications to endow advanced hard tissue implants with favorable osteoimmunomodulation.
Collapse
Affiliation(s)
- Min He
- State Key Laboratory of Oral Diseases, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China. and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bo Yang
- State Key Laboratory of Oral Diseases, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China. and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fangjun Huo
- State Key Laboratory of Oral Diseases, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China. and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Xie
- State Key Laboratory of Oral Diseases, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China. and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China. and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
33
|
Guan Y, Yao W, Yi K, Zheng C, Lv S, Tao Y, Hei Z, Li M. Nanotheranostics for the Management of Hepatic Ischemia-Reperfusion Injury. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007727. [PMID: 33852769 DOI: 10.1002/smll.202007727] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Hepatic ischemia-reperfusion injury (IRI), in which an insufficient oxygen supply followed by reperfusion leads to an inflammatory network and oxidative stress in disease tissue to cause cell death, always occurs after liver transplantations and sections. Although pharmacological treatments favorably prevent or protect the liver against experimental IRI, there have been few successes in clinical applications for patient benefits because of the incomprehension of complicated IRI-induced signaling events as well as short blood circulation time, poor solubility, and severe side reactions of most antioxidants and anti-inflammatory drugs. Nanomaterials can achieve targeted delivery and controllable release of contrast agents and therapeutic drugs in desired hepatic IRI regions for enhanced imaging sensitivity and improved therapeutic effects, emerging as novel alternative approaches for hepatic IRI diagnosis and therapy. In this review, the application of nanotechnology is summarized in the management of hepatic IRI, including nanomaterial-assisted hepatic IRI diagnosis, nanoparticulate systems-mediated remission of reactive oxygen species-induced tissue injury, and nanoparticle-based targeted drug delivery systems for the alleviation of IRI-related inflammation. The current challenges and future perspectives of these nanoenabled strategies for hepatic IRI treatment are also discussed.
Collapse
Affiliation(s)
- Yu Guan
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Weifeng Yao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Ke Yi
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Chunxiong Zheng
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Shixian Lv
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Ziqing Hei
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| |
Collapse
|
34
|
Swami Vetha BS, Adam AG, Aileru A. Redox Responsive Copolyoxalate Smart Polymers for Inflammation and Other Aging-Associated Diseases. Int J Mol Sci 2021; 22:ijms22115607. [PMID: 34070585 PMCID: PMC8198274 DOI: 10.3390/ijms22115607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 01/22/2023] Open
Abstract
Polyoxalate (POx) and copolyoxalate (CPOx) smart polymers are topics of interest the field of inflammation. This is due to their drug delivery ability and their potential to target reactive oxygen species (ROS) and to accommodate small molecules such as curcumin, vanilline, and p-Hydroxybenzyl alcohol. Their biocompatibility, ultra-size tunable characteristics and bioimaging features are remarkable. In this review we discuss the genesis and concept of oxylate smart polymer-based particles and a few innovative systemic delivery methods that is designed to counteract the inflammation and other aging-associated diseases (AADs). First, we introduce the ROS and its role in human physiology. Second, we discuss the polymers and methods of incorporating small molecule in oxalate backbone and its drug delivery application. Finally, we revealed some novel proof of concepts which were proven effective in disease models and discussed the challenges of oxylate polymers.
Collapse
Affiliation(s)
- Berwin Singh Swami Vetha
- Department of Foundational Sciences and Research, School of Dental Medicine, East Carolina University, 1851 MacGregor Downs Road, MS 701, Greenville, NC 27834, USA;
| | - Angela Guma Adam
- Physio/Biochem/New Product Development Division, Cocoa Research Center Institute of Ghana, P.O. Box 8, New Tafo-Akim 0233, Eastern Region, Ghana;
| | - Azeez Aileru
- Department of Foundational Sciences and Research, School of Dental Medicine, East Carolina University, 1851 MacGregor Downs Road, MS 701, Greenville, NC 27834, USA;
- Correspondence: ; Tel.: +252-737-7125
| |
Collapse
|
35
|
Redox Control in Acute Lymphoblastic Leukemia: From Physiology to Pathology and Therapeutic Opportunities. Cells 2021; 10:cells10051218. [PMID: 34067520 PMCID: PMC8155968 DOI: 10.3390/cells10051218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a hematological malignancy originating from B- or T-lymphoid progenitor cells. Recent studies have shown that redox dysregulation caused by overproduction of reactive oxygen species (ROS) has an important role in the development and progression of leukemia. The application of pro-oxidant therapy, which targets redox dysregulation, has achieved satisfactory results in alleviating the conditions of and improving the survival rate for patients with ALL. However, drug resistance and side effects are two major challenges that must be addressed in pro-oxidant therapy. Oxidative stress can activate a variety of antioxidant mechanisms to help leukemia cells escape the damage caused by pro-oxidant drugs and develop drug resistance. Hematopoietic stem cells (HSCs) are extremely sensitive to oxidative stress due to their low levels of differentiation, and the use of pro-oxidant drugs inevitably causes damage to HSCs and may even cause severe bone marrow suppression. In this article, we reviewed research progress regarding the generation and regulation of ROS in normal HSCs and ALL cells as well as the impact of ROS on the biological behavior and fate of cells. An in-depth understanding of the regulatory mechanisms of redox homeostasis in normal and malignant HSCs is conducive to the formulation of rational targeted treatment plans to effectively reduce oxidative damage to normal HSCs while eradicating ALL cells.
Collapse
|
36
|
Xue Y, Bai H, Peng B, Fang B, Baell J, Li L, Huang W, Voelcker NH. Stimulus-cleavable chemistry in the field of controlled drug delivery. Chem Soc Rev 2021; 50:4872-4931. [PMID: 33734247 DOI: 10.1039/d0cs01061h] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Stimulus-cleavable nanoscale drug delivery systems are receiving significant attention owing to their capability of achieving exquisite control over drug release via the exposure to specific stimuli. Central to the construction of such systems is the integration of cleavable linkers showing susceptibility to one stimulus or several stimuli with drugs, prodrugs or fluorogenic probes on the one hand, and nanocarriers on the other hand. This review summarises recent advances in stimulus-cleavable linkers from various research areas and the corresponding mechanisms of linker cleavage and biological applications. The feasibility of extending their applications to the majority of nanoscale drug carriers including nanomaterials, polymers and antibodies are further highlighted and discussed. This review also provides general design guidelines to incorporate stimulus-cleavable linkers into nanocarrier-based drug delivery systems, which will hopefully spark new ideas and applications.
Collapse
Affiliation(s)
- Yufei Xue
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - Bin Fang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Jonathan Baell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - Lin Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Nicolas Hans Voelcker
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. and Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia and Department of Materials Science & Engineering, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
37
|
Liguori F, Moreno-Marrodan C, Barbaro P. Biomass-derived chemical substitutes for bisphenol A: recent advancements in catalytic synthesis. Chem Soc Rev 2021; 49:6329-6363. [PMID: 32749443 DOI: 10.1039/d0cs00179a] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bisphenol A is an oil-derived, large market volume chemical with a wide spectrum of applications in plastics, adhesives and thermal papers. However, bisphenol A is not considered safe due to its endocrine disrupting properties and reproductive toxicity. Several functional substitutes of bisphenol A have been proposed in the literature, produced from plant biomass. Unless otherwise specified, the present review covers the most significant contributions that appeared in the time span January 2015-August 2019, describing the sustainable catalytic synthesis of rigid diols from biomass derivatives. The focus is thereupon on heterogeneous catalysis, use of green solvents and mild conditions, cascade processes in one-pot, and continuous flow setups. More than 500 up-to-date references describe the various substitutes proposed and the catalytic methods for their manufacture, broken down according to the main biomass types from which they originate.
Collapse
Affiliation(s)
- Francesca Liguori
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Carmen Moreno-Marrodan
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Pierluigi Barbaro
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
38
|
Hong S, Lee Y, Shin H, Kim T, Jung E, Lee D. Nanoassemblies of Disulfide-Bridged Bile Acid Dimers as Therapeutics Agents for Hepatic Ischemia/Reperfusion Injury. ACS APPLIED BIO MATERIALS 2021; 4:3145-3154. [PMID: 35014402 DOI: 10.1021/acsabm.0c01554] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ischemia/reperfusion (IR) injury is induced by the restoration of blood flow to the prolonged ischemic tissues and is considered as the paradoxical exacerbation of ischemic damages. A large amount of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) produced immediately after reperfusion induces oxidative stress, which plays an essential role in the pathogenesis of IR injury. It is therefore critical to suppress oxidative stress for the prevention and treatment of IR injury. Ursodeoxycholic acid (UDCA), one of the tertiary bile acids, promotes the generation of antioxidant glutathione (GSH) and also exerts hepatoprotective, cytoprotective, and antiapoptotic effects. However, the clinical uses of UDCA are limited mainly by its poor water solubility and low bioavailability. In this study, by exploiting the concept of self-assembling disulfide-bridged dimeric prodrugs, we developed a disulfide-bridged UDCA dimer (ssUDCA) as a therapeutic agent of hepatic IR injury. ssUDCA could self-assemble into stable nanospheres under aqueous conditions, scavenge H2O2, and exert anti-inflammatory and antiapoptotic activities. In a mouse model of hepatic IR injury, ssUDCA (5 mg/kg) significantly alleviated the IR injury by suppressing ROS production and inhibiting proinflammatory cytokines. Therefore, our findings offer a promising strategy for the effective treatment of hepatic IR injury and also provide deep insights into the impact of disulfide-bridged UDCA nanoassemblies in pharmaceutical applications.
Collapse
Affiliation(s)
- Seri Hong
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju 54896, Jeonbuk, Republic of Korea
| | - Yeongjong Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju 54896, Jeonbuk, Republic of Korea
| | - Hyeonbin Shin
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju 54896, Jeonbuk, Republic of Korea
| | - Taeeon Kim
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju 54896, Jeonbuk, Republic of Korea
| | - Eunkyeong Jung
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju 54896, Jeonbuk, Republic of Korea
| | - Dongwon Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju 54896, Jeonbuk, Republic of Korea.,Department of Polymer Nano Science and Technology, Jeonbuk National University, Jeonju 54896, Jeonbuk, Republic of Korea
| |
Collapse
|
39
|
Deng Z, Liu S. Inflammation-responsive delivery systems for the treatment of chronic inflammatory diseases. Drug Deliv Transl Res 2021; 11:1475-1497. [PMID: 33860447 PMCID: PMC8048351 DOI: 10.1007/s13346-021-00977-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2021] [Indexed: 12/30/2022]
Abstract
Inflammation is the biological response of immune system to protect living organisms from injurious factors. However, excessive and uncontrolled inflammation is implicated in a variety of devastating chronic diseases including atherosclerosis, inflammatory bowel disease (IBD), and rheumatoid arthritis (RA). Improved understanding of inflammatory response has unveiled a rich assortment of anti-inflammatory therapeutics for the treatment and management of relevant chronic diseases. Notwithstanding these successes, clinical outcomes are variable among patients and serious adverse effects are often observed. Moreover, there exist some limitations for clinical anti-inflammatory therapeutics such as aqueous insolubility, low bioavailability, off-target effects, and poor accessibility to subcellular compartments. To address these challenges, the rational design of inflammation-specific drug delivery systems (DDSs) holds significant promise. Moreover, as compared to normal tissues, inflamed tissue-associated pathological milieu (e.g., oxidative stress, acidic pH, and overexpressed enzymes) provides vital biochemical stimuli for triggered delivery of anti-inflammatory agents in a spatiotemporally controlled manner. In this review, we summarize recent advances in the development of anti-inflammatory DDSs with built-in pathological inflammation-specific responsiveness for the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Zhengyu Deng
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences At the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, Anhui Province, China
| | - Shiyong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences At the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, Anhui Province, China.
| |
Collapse
|
40
|
The Role of Nanomaterials in Stroke Treatment: Targeting Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8857486. [PMID: 33815664 PMCID: PMC7990543 DOI: 10.1155/2021/8857486] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/22/2020] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
Stroke has a high rate of morbidity and disability, which seriously endangers human health. In stroke, oxidative stress leads to further damage to the brain tissue. Therefore, treatment for oxidative stress is urgently needed. However, antioxidative drugs have demonstrated obvious protective effects in preclinical studies, but the clinical studies have not seen breakthroughs. Nanomaterials, with their characteristically small size, can be used to deliver drugs and have demonstrated excellent performance in treating various diseases. Additionally, some nanomaterials have shown potential in scavenging reactive oxygen species (ROS) in stroke according to the nature of nanomaterials. The drugs' delivery ability of nanomaterials has great significance for the clinical translation and application of antioxidants. It increases drug blood concentration and half-life and targets the ischemic brain to protect cells from oxidative stress-induced death. This review summarizes the characteristics and progress of nanomaterials in the application of antioxidant therapy in stroke, including ischemic stroke, hemorrhagic stroke, and neural regeneration. We also discuss the prospect of nanomaterials for the treatment of oxidative stress in stroke and the challenges in their application, such as the toxicity and the off-target effects of nanomaterials.
Collapse
|
41
|
Yeo J, Lee J, Lee S, Kim WJ. Polymeric Antioxidant Materials for Treatment of Inflammatory Disorders. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jiwon Yeo
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Junseok Lee
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
- OmniaMed Co, Ltd Pohang 37673 Republic of Korea
| | - Sanggi Lee
- School of Interdisciplinary Bioscience and Bioengineering (I‐Bio) Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Won Jong Kim
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
- OmniaMed Co, Ltd Pohang 37673 Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering (I‐Bio) Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| |
Collapse
|
42
|
Hayashi S, Tachibana Y, Tabata N, Kasuya KI. Chemically recyclable bio-based polyester composed of bifuran and glycerol acetal. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
43
|
Lee N, Kim YT, Lee J. Recent Advances in Renewable Polymer Production from Lignin-Derived Aldehydes. Polymers (Basel) 2021; 13:364. [PMID: 33498847 PMCID: PMC7865860 DOI: 10.3390/polym13030364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 11/25/2022] Open
Abstract
Lignin directly derived from lignocellulosic biomass has been named a promising source of platform chemicals for the production of bio-based polymers. This review discusses potentially relevant routes to produce renewable aromatic aldehydes (e.g., syringaldehyde and vanillin) from lignin feedstocks (pre-isolated lignin or lignocellulose) that are used to synthesize a range of bio-based polymers. To do this, the processes to make aromatic aldehydes from lignin with their highest available yields are first presented. After that, the routes from such aldehydes to different polymers are explored. Challenges and perspectives of the production the lignin-derived renewable chemicals and polymers are also highlighted.
Collapse
Affiliation(s)
- Nahyeon Lee
- Department of Energy Systems Research, Ajou University, 206 Worldcup-ro, Suwon 16499, Korea;
| | - Yong Tae Kim
- C1 Gas & Carbon Convergent Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Daejeon 34114, Korea;
| | - Jechan Lee
- Department of Energy Systems Research, Ajou University, 206 Worldcup-ro, Suwon 16499, Korea;
- Department of Environmental and Safety Engineering, Ajou University, 206 Worldcup-ro, Suwon 16499, Korea
| |
Collapse
|
44
|
Andrade-Gagnon B, Bélanger-Bouliga M, Trang Nguyen P, Nguyen THD, Bourgault S, Nazemi A. Degradable Spirocyclic Polyacetal-Based Core-Amphiphilic Assemblies for Encapsulation and Release of Hydrophobic Cargo. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:E161. [PMID: 33435172 PMCID: PMC7826923 DOI: 10.3390/nano11010161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/01/2021] [Accepted: 01/07/2021] [Indexed: 11/16/2022]
Abstract
Polymeric nanomaterials that degrade in acidic environments have gained considerable attention in nanomedicine for intracellular drug delivery and cancer therapy. Among various acid-degradable linkages, spirocyclic acetals have rarely been used to fabricate such vehicles. In addition to acid sensitivity, they benefit from conformational rigidity that is otherwise not attainable by their non-spirocyclic analogs. Herein, amphiphilic spirocyclic polyacetals are synthesized by Cu-catalyzed alkyne-azide "click" polymerization. Unlike conventional block copolymers, which often form core-shell structures, these polymers self-assemble to form core amphiphilic assemblies capable of encapsulating Nile red as a hydrophobic model drug. In vitro experiments show that while release from these materials can occur at neutral pH with preservation of their integrity, acidic pH accelerates efficient cargo release and leads to the complete degradation of assemblies. Moreover, cellular assays reveal that these materials are fully cytocompatible, interact with the plasma membrane, and can be internalized by cells, rendering them as potential candidates for cancer therapy and/or drug delivery.
Collapse
Affiliation(s)
| | | | | | | | | | - Ali Nazemi
- Department of Chemistry, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal, QC H3C 3P8, Canada; (B.A.-G.); (M.B.-B.); (P.T.N.); (T.H.D.N.); (S.B.)
| |
Collapse
|
45
|
Arya SS, Rookes JE, Cahill DM, Lenka SK. Vanillin: a review on the therapeutic prospects of a popular flavouring molecule. ADVANCES IN TRADITIONAL MEDICINE 2021. [PMCID: PMC7790484 DOI: 10.1007/s13596-020-00531-w] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract Graphic abstract
Collapse
Affiliation(s)
- Sagar S. Arya
- TERI-Deakin NanoBiotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana 122001 India
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC 3216 Australia
| | - James E. Rookes
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC 3216 Australia
| | - David M. Cahill
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC 3216 Australia
| | - Sangram K. Lenka
- TERI-Deakin NanoBiotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana 122001 India
| |
Collapse
|
46
|
Ge M, Miao JT, Zhang K, Wu Y, Zheng L, Wu L. Building biobased, degradable, flexible polymer networks from vanillin via thiol–ene “click” photopolymerization. Polym Chem 2021. [DOI: 10.1039/d0py01407a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A new biobased allyl ether monomer with acetal groups is synthesized from renewable vanillin for building flexible transparent thiol–ene networks with good degradability under mild acidic conditions.
Collapse
Affiliation(s)
- Meiying Ge
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures
- Fujian Key Laboratory of Nanomaterials
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
| | - Jia-Tao Miao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures
- Fujian Key Laboratory of Nanomaterials
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
| | - Kai Zhang
- Zhicheng College
- Fuzhou University
- Fuzhou 350002
- China
| | - Yadong Wu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures
- Fujian Key Laboratory of Nanomaterials
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
| | - Longhui Zheng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures
- Fujian Key Laboratory of Nanomaterials
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
| | - Lixin Wu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures
- Fujian Key Laboratory of Nanomaterials
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
| |
Collapse
|
47
|
Liu J, Li Y, Chen S, Lin Y, Lai H, Chen B, Chen T. Biomedical Application of Reactive Oxygen Species-Responsive Nanocarriers in Cancer, Inflammation, and Neurodegenerative Diseases. Front Chem 2020; 8:838. [PMID: 33062637 PMCID: PMC7530259 DOI: 10.3389/fchem.2020.00838] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/11/2020] [Indexed: 12/18/2022] Open
Abstract
Numerous pathological conditions, including cancer, inflammatory diseases, and neurodegenerative diseases, are accompanied by overproduction of reactive oxygen species (ROS). This makes ROS vital flagging molecules in disease pathology. ROS-responsive drug delivery platforms have been developed. Nanotechnology has been broadly applied in the field of biomedicine leading to the progress of ROS-responsive nanoparticles. In this review, we focused on the production and physiological/pathophysiological impact of ROS. Particular emphasis is put on the mechanisms and effects of abnormal ROS levels on oxidative stress diseases, including cancer, inflammatory disease, and neurodegenerative diseases. Finally, we summarized the potential biomedical applications of ROS-responsive nanocarriers in these oxidative stress diseases. We provide insights that will help in the designing of new ROS-responsive nanocarriers for various applications.
Collapse
Affiliation(s)
- Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongjin Li
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Song Chen
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongpeng Lin
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haoqiang Lai
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Bolai Chen
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou, China
| |
Collapse
|
48
|
Costa-Nunes JP, Gorlova A, Pavlov D, Cespuglio R, Gorovaya A, Proshin A, Umriukhin A, Ponomarev ED, Kalueff AV, Strekalova T, Schroeter CA. Ultrasound stress compromises the correlates of emotional-like states and brain AMPAR expression in mice: effects of antioxidant and anti-inflammatory herbal treatment. Stress 2020; 23:481-495. [PMID: 31900023 DOI: 10.1080/10253890.2019.1709435] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The modern lifestyle is associated with exposure to "psychological" or "emotional" stress. A growing portion of the population is exposed to emotional stress that results in a high incidence of anxiety disorders, a serious social problem. With this rise, there is a need for understanding the neurobiological causes of stress-induced anxiety and to offer safe remedies for this condition. Side effects of existing pharmaceuticals necessitate the search for alternatives. Having fewer adverse effects than classic remedies, natural extract-based therapies can be a promising solution. Here, we applied a model of emotional stress in BALB/c mice using ultrasound exposure to evoke the signs of anxiety-like behavior. We examined the behavioral and molecular impact of ultrasound and administration of herbal antioxidant/anti-inflammatory treatment (HAT) on AMPA receptor expression, markers of plasticity, inflammation and oxidative stress. A 3-week ultrasound exposure increased scores of anxiety-like behaviors in the standard tests and altered hippocampal expression as well as internalization of AMPA receptor subunits GluA1-A3. Concomitant treatment with HAT has prevented increases of anxiety-like behaviors and other behavioral changes, normalized hippocampal malondialdehyde content, GSK3β and pro-inflammatory cytokines Il-1β and Il-6, and the number of Ki67-positive cells. Levels of malondialdehyde, a common measure of oxidative stress, significantly correlated with the investigated end-points in stressed, but not in non-stressed animals. Our results emphasize the role of oxidative stress in neurobiological abnormalities associated with experimentally induced condition mimicking emotional stress in rodents and highlight the potential therapeutic use of anti-oxidants like herbal compositions for management of stress-related emotional disturbances within the community.
Collapse
Affiliation(s)
- João Pedro Costa-Nunes
- Faculdade de Medicina da Universidade de Lisboa, Instituto de Medicina Molecular João Lobo Antunes, Lisboa, Portugal
- Institute of Molecular Medicine, Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Anna Gorlova
- Institute of Molecular Medicine, Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Dmitrii Pavlov
- Institute of Molecular Medicine, Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Raymond Cespuglio
- Institute of Molecular Medicine, Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Neuroscience Research Center of Lyon, C. Bernard University of Lyon, Bron, France
| | - Anna Gorovaya
- Institute of Molecular Medicine, Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Andrei Proshin
- Laboratory of Emotional Stress, Federal State Budgetary Scientific Institution "P.K. Anokhin Research Institute of Normal Physiology", Moscow, Russia
| | - Aleksei Umriukhin
- Institute of Molecular Medicine, Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Emotional Stress, Federal State Budgetary Scientific Institution "P.K. Anokhin Research Institute of Normal Physiology", Moscow, Russia
| | - Eugene D Ponomarev
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Alan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China
- Institute of Translational Biomedicine, St.Petersburg State University, St.-Petersburg, Russia
| | - Tatyana Strekalova
- Institute of Molecular Medicine, Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Careen A Schroeter
- Department of Preventive Medicine, Maastricht Medical Center Annadal, Maastricht, The Netherlands
| |
Collapse
|
49
|
Lee HJ, Jeong B. ROS-Sensitive Degradable PEG-PCL-PEG Micellar Thermogel. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903045. [PMID: 31523921 DOI: 10.1002/smll.201903045] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/05/2019] [Indexed: 06/10/2023]
Abstract
A reactive oxygen species (ROS)-sensitive degradable polymer would be a promising material in designing a disease-responsive system or accelerating degradation of polymers with slow hydrolysis kinetics. Here, a thermogelling poly(ethylene glycol)-polycaprolactone-poly(ethylene glycol) (PEG-PCL-PEG or EG12 -CL20 -EG12 ) triblock copolymer with an oxalate group at the middle of the polymer is reported. The polymers form micelles with an average size of 100 nm in water. Thermogelation is observed in a concentration range of 8.0-37.0 wt%. In particular, the aqueous PEG-PCL-PEG triblock copolymer solutions are in a gel state at 37 °C in a concentration range of 25.0-37.0 wt%, whereas the aqueous PEG-PCL diblock copolymer solutions are in a sol state in the same concentration range at 37 °C. Thus, the gel depot could dissolve out once degradation of the triblock copolymers occurs at the oxalate group as confirmed by the in vitro experiment. In vivo gel formation is confirmed by injecting an aqueous PEG-PCL-PEG solution (36.0 wt%) into the subcutaneous layer of rats. The gel completely disappears in 21 d. A model polypeptide drug (cyclosporine A) is released over 21 d from the in situ formed gel. The micelle-based thermogel of PEG-PCL-PEG with ROS-triggering degradability is a promising injectable material for biomedical applications.
Collapse
Affiliation(s)
- Hyun Jung Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| |
Collapse
|
50
|
Iron oxide nanoparticle core-shell magnetic microspheres: Applications toward targeted drug delivery. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 24:102134. [DOI: 10.1016/j.nano.2019.102134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 12/27/2022]
|