1
|
Dextrans and dextran derivatives as polyelectrolytes in layer-by-layer processing materials – A review. Carbohydr Polym 2022; 293:119700. [DOI: 10.1016/j.carbpol.2022.119700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/19/2022]
|
2
|
Exploiting the layer-by-layer nanoarchitectonics for the fabrication of polymer capsules: A toolbox to provide multifunctional properties to target complex pathologies. Adv Colloid Interface Sci 2022; 304:102680. [PMID: 35468354 DOI: 10.1016/j.cis.2022.102680] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 01/12/2023]
Abstract
Polymer capsules fabricated via the layer-by-layer (LbL) approach have attracted a great deal of attention for biomedical applications thanks to their tunable architecture. Compared to alternative methods, in which the precise control over the final properties of the systems is usually limited, the intrinsic versatility of the LbL approach allows the functionalization of all the constituents of the polymeric capsules following relatively simple protocols. In fact, the final properties of the capsules can be adjusted from the inner cavity to the outer layer through the polymeric shell, resulting in therapeutic, diagnostic, or theranostic (i.e., combination of therapeutic and diagnostic) agents that can be adapted to the particular characteristics of the patient and face the challenges encountered in complex pathologies. The biomedical industry demands novel biomaterials capable of targeting several mechanisms and/or cellular pathways simultaneously while being tracked by minimally invasive techniques, thus highlighting the need to shift from monofunctional to multifunctional polymer capsules. In the present review, those strategies that permit the advanced functionalization of polymer capsules are accordingly introduced. Each of the constituents of the capsule (i.e., cavity, multilayer membrane and outer layer) is thoroughly analyzed and a final overview of the combination of all the strategies toward the fabrication of multifunctional capsules is presented. Special emphasis is given to the potential biomedical applications of these multifunctional capsules, including particular examples of the performed in vitro and in vivo validation studies. Finally, the challenges in the fabrication process and the future perspective for their safe translation into the clinic are summarized.
Collapse
|
3
|
Vikulina AS, Campbell J. Biopolymer-Based Multilayer Capsules and Beads Made via Templating: Advantages, Hurdles and Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2502. [PMID: 34684943 PMCID: PMC8537085 DOI: 10.3390/nano11102502] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
One of the undeniable trends in modern bioengineering and nanotechnology is the use of various biomolecules, primarily of a polymeric nature, for the design and formulation of novel functional materials for controlled and targeted drug delivery, bioimaging and theranostics, tissue engineering, and other bioapplications. Biocompatibility, biodegradability, the possibility of replicating natural cellular microenvironments, and the minimal toxicity typical of biogenic polymers are features that have secured a growing interest in them as the building blocks for biomaterials of the fourth generation. Many recent studies showed the promise of the hard-templating approach for the fabrication of nano- and microparticles utilizing biopolymers. This review covers these studies, bringing together up-to-date knowledge on biopolymer-based multilayer capsules and beads, critically assessing the progress made in this field of research, and outlining the current challenges and perspectives of these architectures. According to the classification of the templates, the review sequentially considers biopolymer structures templated on non-porous particles, porous particles, and crystal drugs. Opportunities for the functionalization of biopolymer-based capsules to tailor them toward specific bioapplications is highlighted in a separate section.
Collapse
Affiliation(s)
- Anna S. Vikulina
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg, 1, 14476 Potsdam, Germany
- Bavarian Polymer Institute, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Dr.-Mack-Straße, 77, 90762 Fürth, Germany
| | - Jack Campbell
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK;
| |
Collapse
|
4
|
Martinelli H, Tasca E, Andreozzi P, Libertone S, Ritacco H, Giustini M, Moya SE. Polarity studies of single polyelectrolyte layers in polyelectrolyte multilayers probed by steady state and life time doxorubicin fluorescence. J Colloid Interface Sci 2021; 607:153-162. [PMID: 34506997 DOI: 10.1016/j.jcis.2021.08.207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 11/27/2022]
Abstract
HYPOTHESIS Polarity in polyelectrolyte multilayers (PEMs) may vary from the inner to the top layers of the film as the charge compensation of the layers is more effective inside the PEMs than in outer layers. Doxorubicin hydrochloride (DX) is used here to sense polarity at the single polyelectrolyte level inside PEMS. EXPERIMENTAL DX is complexed electrostatically to a polyanion, either polystyrene sulfonate (PSS) or polyacrylic acid (PAA) and assembled at selected positions in a multilayer of the polyanion and polyallylamine hydrochloride (PAH) as polycation. Local polarity in the layer domain is evaluated through changes in the intensity ratio of the first to second band of spectra of DX (I1/I2 ratio) by steady state fluorescence, and by Lifetime fluorescence. FINDINGS PAH/PSS multilayers, show a polarity similar to water with DX/PSS as top layer, decreasing to I1/I2 ratios similar to organic solvents as the number of polyelectrolyte layers assembled on top increases. For PAH/PAA multilayers, polarity values reflect a more polar environment than water when DX/PAA is the top layer, remaining unaltered by the assembly of polyelectrolyte layers on top. Results show that different polar environments may be present in a PEM when considering polarity at the single layer level.
Collapse
Affiliation(s)
- Hernan Martinelli
- Instituto de Física del Sur (IFISUR-CONICET), Av. Alem 1253, Bahía Blanca (8000), Argentina; Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014 San Sebastián, Guipúzcoa, Spain
| | - Elisamaria Tasca
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014 San Sebastián, Guipúzcoa, Spain; Chemistry Department, University "La Sapienza", P.le Aldo Moro 5, 00185 Rome, Italy
| | - Patrizia Andreozzi
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014 San Sebastián, Guipúzcoa, Spain; Consorzio Sistemi a Grande Interfase, Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Sara Libertone
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014 San Sebastián, Guipúzcoa, Spain
| | - Hernan Ritacco
- Instituto de Física del Sur (IFISUR-CONICET), Av. Alem 1253, Bahía Blanca (8000), Argentina
| | - Mauro Giustini
- Chemistry Department, University "La Sapienza", P.le Aldo Moro 5, 00185 Rome, Italy; Consorzio Sistemi a Grande Interfase, Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy.
| | - Sergio E Moya
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014 San Sebastián, Guipúzcoa, Spain; Chemistry Department, University "La Sapienza", P.le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
5
|
Ermakov AV, Verkhovskii RA, Babushkina IV, Trushina DB, Inozemtseva OA, Lukyanets EA, Ulyanov VJ, Gorin DA, Belyakov S, Antipina MN. In Vitro Bioeffects of Polyelectrolyte Multilayer Microcapsules Post-Loaded with Water-Soluble Cationic Photosensitizer. Pharmaceutics 2020; 12:E610. [PMID: 32629864 PMCID: PMC7408512 DOI: 10.3390/pharmaceutics12070610] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 12/20/2022] Open
Abstract
Microencapsulation and targeted delivery of cytotoxic and antibacterial agents of photodynamic therapy (PDT) improve the treatment outcomes for infectious diseases and cancer. In many cases, the loss of activity, poor encapsulation efficiency, and inadequate drug dosing hamper the success of this strategy. Therefore, the development of novel and reliable microencapsulated drug formulations granting high efficacy is of paramount importance. Here we report the in vitro delivery of a water-soluble cationic PDT drug, zinc phthalocyanine choline derivative (Cholosens), by biodegradable microcapsules assembled from dextran sulfate (DS) and poly-l-arginine (PArg). A photosensitizer was loaded in pre-formed [DS/PArg]4 hollow microcapsules with or without exposure to heat. Loading efficacy and drug release were quantitatively studied depending on the capsule concentration to emphasize the interactions between the DS/PArg multilayer network and Cholosens. The loading data were used to determine the dosage for heated and intact capsules to measure their PDT activity in vitro. The capsules were tested using human cervical adenocarcinoma (HeLa) and normal human dermal fibroblast (NHDF) cell lines, and two bacterial strains, Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. Our results provide compelling evidence that encapsulated forms of Cholosens are efficient as PDT drugs for both eukaryotic cells and bacteria at specified capsule-to-cell ratios.
Collapse
Affiliation(s)
- Alexey V. Ermakov
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore;
- Saratov State University, Astrakhanskaya St 83, 410012 Saratov, Russia; (R.A.V.); (O.A.I.)
- I.M. Sechenov First Moscow State Medical University, Bol’shaya Pirogovskaya St 19c1, 119146 Moscow, Russia;
| | - Roman A. Verkhovskii
- Saratov State University, Astrakhanskaya St 83, 410012 Saratov, Russia; (R.A.V.); (O.A.I.)
- Yuri Gagarin State Technical University of Saratov, Politehnicheskaya St 77, 410054 Saratov, Russia
| | - Irina V. Babushkina
- Institute of Traumatology and Orthopedics, Saratov Medical State University, Chernyshevskaya St 148, 410002 Saratov, Russia; (I.V.B.); (V.J.U.)
| | - Daria B. Trushina
- I.M. Sechenov First Moscow State Medical University, Bol’shaya Pirogovskaya St 19c1, 119146 Moscow, Russia;
- A.V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Leninskiy Prospekt 59, 119333 Moscow, Russia
| | - Olga A. Inozemtseva
- Saratov State University, Astrakhanskaya St 83, 410012 Saratov, Russia; (R.A.V.); (O.A.I.)
| | - Evgeny A. Lukyanets
- Organic Intermediates and Dyes Institute, B. Sadovaya St ¼, 101999 Moscow, Russia;
| | - Vladimir J. Ulyanov
- Institute of Traumatology and Orthopedics, Saratov Medical State University, Chernyshevskaya St 148, 410002 Saratov, Russia; (I.V.B.); (V.J.U.)
| | - Dmitry A. Gorin
- Skolkovo Institute of Science and Technology, Bolshoy Blvd 30, bld. 1, 121205 Moscow, Russia;
| | - Sergei Belyakov
- Theracross Technologies Pte Ltd, 250p Pasir Panjang Rd, Singapore 117452, Singapore;
| | - Maria N. Antipina
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore;
| |
Collapse
|
6
|
Mays EA, Kallakuri SS, Sundararaghavan HG. Heparin-hyaluronic acid nanofibers for growth factor sequestration in spinal cord repair. J Biomed Mater Res A 2020; 108:2023-2031. [PMID: 32319183 DOI: 10.1002/jbm.a.36962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/24/2020] [Accepted: 03/28/2020] [Indexed: 12/18/2022]
Abstract
Growth factor (GF) delivery is a common strategy for spinal cord injury repair, however, GF degradation can impede long-term therapies. GF sequestration via heparin is known to protect bioactivity after delivery. We tested two heparin modifications, methacrylated heparin and thiolated heparin, and electrospun these with methacrylated hyaluronic acid (MeHA) to form HepMAHA and HepSHHA nanofibers. For loaded conditions, MeHA, HepMAHA, and HepSHHA fibers were incubated with soluble basic fibroblast growth factor (bFGF) or nerve growth factor (NGF) and rinsed with PBS. Control groups were hydrated in PBS. L929 fibroblast proliferation was analyzed after 24 hr of culture in either growth media or bFGF-supplemented media. Dissociated chick dorsal root ganglia neurites were measured after 3 days of cell culture in serum free media (SFM) or NGF-supplemented SFM (SFM + NGF). In growth media, fibroblast proliferation was significantly increased in loaded HepMAHA (α < .05) compared to other groups. In SFM, loaded HepMAHA had the longest average neurite length compared to all other groups. In SFM + NGF, HepMAHA and HepSHHA had increased neurite lengths compared to MeHA, regardless of loading (α < .01), suggesting active sequestration of soluble NGF. HepMAHA is a promising biomaterial for sequestering released GFs in a spinal cord injury environment and will be combined with GF filled microspheres for future studies.
Collapse
Affiliation(s)
- Elizabeth A Mays
- Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| | | | | |
Collapse
|
7
|
Han U, Hong J. Structure of a Multilayer Nanofilm To Increase the Encapsulation Efficiency of Basic Fibroblast Growth Factor. Mol Pharm 2018; 15:1277-1283. [DOI: 10.1021/acs.molpharmaceut.7b01099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Uiyoung Han
- School of Chemical Engineering and Material Science, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Jinkee Hong
- School of Chemical Engineering and Material Science, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
8
|
Ran J, Xiao L, Wu W, Liu Y, Qiu W, Wu J. Zeolitic imidazolate framework-8 (ZIF-8) as a sacrificial template: one-pot synthesis of hollow poly(dopamine) nanocapsules and yolk-structured poly(dopamine) nanocomposites. NANOTECHNOLOGY 2017; 28:055604. [PMID: 28032614 DOI: 10.1088/1361-6528/28/5/055604] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Hollow poly(dopamine) (PDA) nanocapsules and yolk-structured PDA nanocomposites were prepared by an aqueous one-pot synthesis method utilizing zeolitic imidazolate framework-8 (ZIF-8) nanocrystals as a sacrificial template without any special etchant. The resulting PDA nanocapsules show negligible cytotoxicity in HeLa cells after incubation for 48 h at various doses, which implies their potential as candidates for practical applications in drug transport and targeting.
Collapse
Affiliation(s)
- Jingyu Ran
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550003, People's Republic of China. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China. Photoelectric Institute of Functional Materials, Guizhou Institute of Technology, Guiyang 550003, People's Republic of China
| | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Vilela C, Figueiredo ARP, Silvestre AJD, Freire CSR. Multilayered materials based on biopolymers as drug delivery systems. Expert Opin Drug Deliv 2016; 14:189-200. [DOI: 10.1080/17425247.2016.1214568] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Carla Vilela
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Ana R. P. Figueiredo
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Armando J. D. Silvestre
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Carmen S. R. Freire
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
11
|
In vitro studies of biocompatible thermo-responsive hydrogels with controlled-release basic fibroblast growth factor. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2016.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Naves AF, Motay M, Mérindol R, Davi CP, Felix O, Catalani LH, Decher G. Layer-by-Layer assembled growth factor reservoirs for steering the response of 3T3-cells. Colloids Surf B Biointerfaces 2015; 139:79-86. [PMID: 26700236 DOI: 10.1016/j.colsurfb.2015.11.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 11/05/2015] [Accepted: 11/10/2015] [Indexed: 01/07/2023]
Abstract
Layer-by-Layer (LbL) assemblies of heparin (Hep) and chitosan (Chi) were prepared for use as reservoirs for acidic and basic fibroblast growth factors (aFGFs and bFGFs, respectively). The effects of the architecture and composition of the reservoirs on the viability and proliferation of NIH-3T3 fibroblast cells were studied under starvation conditions. The reservoir stability was monitored by ellipsometry. The aFGF and bFGF loadings were determined using a dissipation-enhanced quartz crystal microbalance (QCM-D). Stability and release assays were performed in a phosphate buffer at physiological conditions. The results demonstrated that the amount of aFGF and bFGF loaded into and released from LbL reservoirs composed of 3 and 6 layer pairs could be controlled. Cell culture assays in low serum culture medium (LSCM) demonstrated that incorporating very small amounts of aFGF and bFGF into the (Hep/Chi)n multilayers significantly improved the proliferation of the NIH-3T3 fibroblasts. The cells did not proliferate on (Hep/Chi)n assemblies prepared in the absence of FGF under identical conditions. The LbL reservoirs were highly effective for the long-term storage (up to 9 months) of aFGF and bFGF. This work demonstrates the potential of LbL reservoirs for use as biomaterial coatings.
Collapse
Affiliation(s)
- Alliny F Naves
- C.N.R.S., Institut Charles Sadron, 23 rue du Loess, F-67034 Strasbourg, France; Université de Strasbourg, Faculté de Chimie, 1 rue Blaise Pascal, F-67008 Strasbourg, France.
| | - Marvin Motay
- C.N.R.S., Institut Charles Sadron, 23 rue du Loess, F-67034 Strasbourg, France; Université de Strasbourg, Faculté de Chimie, 1 rue Blaise Pascal, F-67008 Strasbourg, France
| | - Rémi Mérindol
- C.N.R.S., Institut Charles Sadron, 23 rue du Loess, F-67034 Strasbourg, France; Université de Strasbourg, Faculté de Chimie, 1 rue Blaise Pascal, F-67008 Strasbourg, France
| | - Christiane P Davi
- C.N.R.S., Institut Charles Sadron, 23 rue du Loess, F-67034 Strasbourg, France; Centro de Ciências Naturais e Humanas CCNH, Universidade Federal do ABC, Rua Santa Adélia, 166, 09210-170, Santo André, Brazil
| | - Olivier Felix
- C.N.R.S., Institut Charles Sadron, 23 rue du Loess, F-67034 Strasbourg, France
| | - Luiz H Catalani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, CP 26077, 05513-970 São Paulo, Brazil
| | - Gero Decher
- C.N.R.S., Institut Charles Sadron, 23 rue du Loess, F-67034 Strasbourg, France; Université de Strasbourg, Faculté de Chimie, 1 rue Blaise Pascal, F-67008 Strasbourg, France; International Center for Frontier Research in Chemistry, 8 allée Gaspard Monge, F-67083 Strasbourg, France.
| |
Collapse
|
13
|
Zuo Q, Guo R, Liu Q, Hong A, Shi Y, Kong Q, Huang Y, He L, Xue W. Heparin-conjugated alginate multilayered microspheres for controlled release of bFGF. Biomed Mater 2015; 10:035008. [DOI: 10.1088/1748-6041/10/3/035008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Jiang C, Luo C, Liu X, Shao L, Dong Y, Zhang Y, Shi F. Adjusting the Ion Permeability of Polyelectrolyte Multilayers through Layer-by-Layer Assembly under a High Gravity Field. ACS APPLIED MATERIALS & INTERFACES 2015; 7:10920-10927. [PMID: 25951984 DOI: 10.1021/acsami.5b02179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The layer-by-layer (LbL) assembled multilayer has been widely used as good barrier film or capsule due to the advantages of its flexible tailoring of film permeability and compactness. Although many specific systems have been proposed for film design, developing a versatile strategy to control film compactness remains a challenge. We introduced the simple mechanical energy of a high gravity field to the LbL assembly process to tailor the multilayer permeability through adjusting film compactness. By taking poly(diallyldimethylammonium chloride) (PDDA) and poly{1-4[4-(3-carboxy-4-hydroxyphenylazo)benzenesulfonamido]-1,2-ethanediyl sodium salt} (PAzo) as a model system, we investigated the LbL assembly process under a high gravity field. The results showed that the high gravity field introduced effectively accelerated the multilayer deposition process by 20-fold compared with conventional dipping assembly; the adsorption rate was positively dependent on the rotating speed of the high gravity equipment and the concentration of the building block solutions. More interestingly, the film compactness of the PDDA/PAzo multilayer prepared under the high gravity field increased remarkably with the growing rotational speed of the high gravity equipment, as demonstrated through comparisons of surface morphology, cyclic voltammetry curves, and photoisomerization kinetics of PDDA/PAzo multilayers fabricated through the conventional dipping method and through LbL assembly under a high gravity field, respectively. In this way, we have introduced a simple and versatile external form of mechanical energy into the LbL assembling process to improve film compactness, which should be useful for further applications in controlled ion permeability, anticorrosion, and drug loading.
Collapse
Affiliation(s)
| | | | | | | | - Youqing Dong
- §College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027 China
| | | | | |
Collapse
|
15
|
Bacterial protease triggered release of biocides from microspheres with an oily core. Colloids Surf B Biointerfaces 2015; 127:200-5. [DOI: 10.1016/j.colsurfb.2015.01.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/13/2015] [Accepted: 01/21/2015] [Indexed: 12/17/2022]
|
16
|
Teekamp N, Duque LF, Frijlink HW, Hinrichs WLJ, Olinga P. Production methods and stabilization strategies for polymer-based nanoparticles and microparticles for parenteral delivery of peptides and proteins. Expert Opin Drug Deliv 2015; 12:1311-31. [DOI: 10.1517/17425247.2015.1003807] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Borges J, Mano JF. Molecular Interactions Driving the Layer-by-Layer Assembly of Multilayers. Chem Rev 2014; 114:8883-942. [DOI: 10.1021/cr400531v] [Citation(s) in RCA: 609] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- João Borges
- 3B’s
Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra,
S. Cláudio do Barco 4806-909 Caldas das Taipas, Guimarães, Portugal
- ICVS/3B’s
− PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João F. Mano
- 3B’s
Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra,
S. Cláudio do Barco 4806-909 Caldas das Taipas, Guimarães, Portugal
- ICVS/3B’s
− PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
18
|
Hsu BB, Jamieson KS, Hagerman SR, Holler E, Ljubimova JY, Hammond PT. Ordered and kinetically discrete sequential protein release from biodegradable thin films. Angew Chem Int Ed Engl 2014; 53:8093-8. [PMID: 24938739 PMCID: PMC4387866 DOI: 10.1002/anie.201403702] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Indexed: 11/09/2022]
Abstract
Multidrug regimens can sometimes treat recalcitrant diseases when single-drug therapies fail. Recapitulating complex multidrug administration from controlled release films for localized delivery remains challenging because their release kinetics are frequently intertwined, and an initial burst release of each drug is usually uncontrollable. Kinetic control over protein release is demonstrated by cross-linking layer-by-layer films during the assembly process. We used biodegradable and naturally derived components and relied on copper-free click chemistry for bioorthogonal covalent cross-links throughout the film that entrap but do not modify the embedded protein. We found that this strategy restricted the interdiffusion of protein while maintaining its activity. By depositing a barrier layer and a second protein-containing layer atop this construct, we generated well-defined sequential protein release with minimal overlap that follows their spatial distribution within the film.
Collapse
Affiliation(s)
- Bryan B. Hsu
- Koch Institute for Integrative Cancer Research and the Institute for Soldier Nanotechnologies, Massachusetts Institute for Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA, Department of Chemistry, Massachusetts Institute for Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Kelsey S. Jamieson
- Department of Chemical Engineering, Massachusetts Institute for Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Samantha R. Hagerman
- Department of Chemical Engineering, Massachusetts Institute for Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Eggehard Holler
- Nanomedicine Research Center; Department of Neurosurgery, Cedars Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048 USA
| | - Julia Y. Ljubimova
- Nanomedicine Research Center; Department of Neurosurgery, Cedars Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048 USA
| | - Paula T. Hammond
- Koch Institute for Integrative Cancer Research and the Institute for Soldier Nanotechnologies, Massachusetts Institute for Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA, Department of Chemical Engineering, Massachusetts Institute for Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| |
Collapse
|
19
|
Ordered and Kinetically Discrete Sequential Protein Release from Biodegradable Thin Films. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
del Mercato LL, Ferraro MM, Baldassarre F, Mancarella S, Greco V, Rinaldi R, Leporatti S. Biological applications of LbL multilayer capsules: from drug delivery to sensing. Adv Colloid Interface Sci 2014; 207:139-54. [PMID: 24625331 DOI: 10.1016/j.cis.2014.02.014] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/15/2014] [Accepted: 02/15/2014] [Indexed: 11/24/2022]
Abstract
Polyelectrolyte multilayer (PEM) capsules engineered with active elements for targeting, labeling, sensing and delivery hold great promise for the controlled delivery of drugs and the development of new sensing platforms. PEM capsules composed of biodegradable polyelectrolytes are fabricated for intracellular delivery of encapsulated cargo (for example peptides, enzymes, DNA, and drugs) through gradual biodegradation of the shell components. PEM capsules with shells responsive to environmental or physical stimuli are exploited to control drug release. In the presence of appropriate triggers (e.g., pH variation or light irradiation) the pores of the multilayer shell are unlocked, leading to the controlled release of encapsulated cargos. By loading sensing elements in the capsules interior, PEM capsules sensitive to biological analytes, such as ions and metabolites, are assembled and used to detect analyte concentration changes in the surrounding environment. This Review aims to evaluate the current state of PEM capsules for drug delivery and sensing applications.
Collapse
|
21
|
Choi J, Konno T, Ishihara K. Multilayered phospholipid polymer hydrogels for releasing cell growth factors. ACTA ACUST UNITED AC 2014. [DOI: 10.12989/bme.2014.1.1.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Tronci G, Ajiro H, Russell SJ, Wood DJ, Akashi M. Tunable drug-loading capability of chitosan hydrogels with varied network architectures. Acta Biomater 2014; 10:821-30. [PMID: 24157693 DOI: 10.1016/j.actbio.2013.10.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/17/2013] [Accepted: 10/14/2013] [Indexed: 01/22/2023]
Abstract
Advanced bioactive systems with defined macroscopic properties and spatio-temporal sequestration of extracellular biomacromolecules are highly desirable for next generation therapeutics. Here, chitosan (CT) hydrogels were prepared with neutral or negatively charged cross-linkers in order to promote selective electrostatic complexation with charged drugs. CT was functionalized with varied dicarboxylic acids, such as tartaric acid, poly(ethylene glycol) bis(carboxymethyl) ether, 1,4-phenylenediacetic acid and 5-sulfoisophthalic acid monosodium salt (PhS), whereby PhS was hypothesized to act as a simple mimetic of heparin. Attenuated total reflectance Fourier transform infrared spectroscopy showed the presence of CO amide I, N-H amide II and CO ester bands, providing evidence of covalent network formation. The cross-linker content was reversely quantified by proton nuclear magnetic resonance on partially degraded network oligomers, so that 18 mol.% PhS was exemplarily determined. Swellability (SR: 299 ± 65-1054 ± 121 wt.%), compressibility (E: 2.1 ± 0.9-9.2 ± 2.3 kPa), material morphology and drug-loading capability were successfully adjusted based on the selected network architecture. Here, hydrogel incubation with model drugs of varied electrostatic charge, i.e. allura red (AR, doubly negatively charged), methyl orange (MO, negatively charged) or methylene blue (MB, positively charged), resulted in direct hydrogel-dye electrostatic complexation. Importantly, the cationic compound, MB, showed different incorporation behaviours, depending on the electrostatic character of the selected cross-linker. In light of this tunable drug-loading capability, these CT hydrogels would be highly attractive as drug reservoirs towards e.g. the fabrication of tissue models in vitro.
Collapse
Affiliation(s)
- Giuseppe Tronci
- Biomaterials and Tissue Engineering Research Group, School of Dentistry, University of Leeds, Clarendon Way, Leeds LS2 9LU, UK; Nonwovens Research Group, Centre for Technical Textiles, School of Design, University of Leeds, Leeds LS2 9JT, UK
| | - Hiroharu Ajiro
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Stephen J Russell
- Nonwovens Research Group, Centre for Technical Textiles, School of Design, University of Leeds, Leeds LS2 9JT, UK
| | - David J Wood
- Biomaterials and Tissue Engineering Research Group, School of Dentistry, University of Leeds, Clarendon Way, Leeds LS2 9LU, UK
| | - Mitsuru Akashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
23
|
Lin H, Xiao W, Qin SY, Cheng SX, Zhang XZ. Switch on/off microcapsules for controllable photosensitive drug release in a ‘release-cease-recommence’ mode. Polym Chem 2014. [DOI: 10.1039/c4py00564c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Suarez S, Grover GN, Braden RL, Christman KL, Almutairi A. Tunable protein release from acetalated dextran microparticles: a platform for delivery of protein therapeutics to the heart post-MI. Biomacromolecules 2013; 14:3927-35. [PMID: 24053580 PMCID: PMC3910395 DOI: 10.1021/bm401050j] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The leading cause of death in the United States is cardiovascular disease. The majority of these cases result from heart failure post-myocardial infarction (MI). We present data providing evidence for use of acetalated dextran (AcDex) microparticles as a delivery vehicle for therapeutics to the heart post-MI. We harnessed the tunable degradation and acid-sensitivity of AcDex in the design of microparticles for intramyocardial injection. The particles released a model protein, myoglobin, and a sensitive growth factor, basic fibroblast growth factor (bFGF), over a wide range of time frames (from days to weeks) based on the percentage of cyclic acetals in the AcDex, which was easily controlled with acetalation reaction time. The release was shown in low pH environments, similar to what is found in an infarcted heart. bFGF maintained activity after release from the microparticles. Finally, biocompatibility of the microparticles was assessed.
Collapse
Affiliation(s)
- Sophia Suarez
- Department of Bioengineering and Sanford Consortium of Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gregory N. Grover
- Department of Bioengineering and Sanford Consortium of Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| | - Rebecca L. Braden
- Department of Bioengineering and Sanford Consortium of Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| | - Karen L Christman
- Department of Bioengineering and Sanford Consortium of Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| | - Adah Almutairi
- Skaggs School of Pharmacy and Pharmaceutical Sciences and KACST UCSD Center of Excellence in Nanomedicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
25
|
Balabushevich NG, Izumrudov VA, Larionova NI. Protein microparticles with controlled stability prepared via layer-by-layer adsorption of biopolyelectrolytes. POLYMER SCIENCE SERIES A 2012. [DOI: 10.1134/s0965545x12040098] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
She Z, Wang C, Li J, Sukhorukov GB, Antipina MN. Encapsulation of Basic Fibroblast Growth Factor by Polyelectrolyte Multilayer Microcapsules and Its Controlled Release for Enhancing Cell Proliferation. Biomacromolecules 2012; 13:2174-80. [DOI: 10.1021/bm3005879] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Zhen She
- Department of Bioengineering,
Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore
- NUS Graduate School for Integrative Sciences & Engineering (NGS), National University of Singapore, Centre for Life Sciences, 28 Medical Drive, Singapore 117456, Singapore
- Institute of Materials Research
and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602, Singapore
| | - Chunxia Wang
- Department of Bioengineering,
Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore
| | - Jun Li
- Department of Bioengineering,
Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore
- NUS Graduate School for Integrative Sciences & Engineering (NGS), National University of Singapore, Centre for Life Sciences, 28 Medical Drive, Singapore 117456, Singapore
- Institute of Materials Research
and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602, Singapore
| | - Gleb B. Sukhorukov
- Institute of Materials Research
and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602, Singapore
- School of Engineering and Materials
Science Queen Mary, University of London, Mile End Road, London, E1 4NS, United Kingdom
| | - Maria N. Antipina
- Institute of Materials Research
and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602, Singapore
| |
Collapse
|
27
|
De Temmerman ML, Demeester J, De Smedt SC, Rejman J. Tailoring layer-by-layer capsules for biomedical applications. Nanomedicine (Lond) 2012; 7:771-88. [DOI: 10.2217/nnm.12.48] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Polymeric capsules have attracted great interest as versatile carrier systems in the area of medicine and pharmaceutics. These capsules are made by stepwise layer-by-layer adsorption of polymers onto a template core, which can be removed to produce hollow capsules. The cavity of these capsules can host various cargo molecules while the capsules’ wall can be functionalized towards desired properties by embedding specific moieties into the multilayers. Tuning of the capsules’ properties influences their interaction with cells and tissues and paves the way towards the development of stimuli-responsive capsules releasing their payload at a target site. In this review, we describe the generation of tailored layer-by-layer capsules and focus hereby on numerous potential applications of this multifunctional delivery platform in biomedical settings. We review the current status in the field and discuss the opportunities, as well as the hurdles, to be overcome to successfully transfer this technology to therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Marie-Luce De Temmerman
- Laboratory of General Biochemistry & Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| | - Jo Demeester
- Laboratory of General Biochemistry & Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry & Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| | - Joanna Rejman
- Laboratory of General Biochemistry & Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| |
Collapse
|
28
|
Zuo Q, Lu J, Hong A, Zhong D, Xie S, Liu Q, Huang Y, Shi Y, He L, Xue W. Preparation and characterization of PEM-coated alginate microgels for controlled release of protein. Biomed Mater 2012; 7:035012. [DOI: 10.1088/1748-6041/7/3/035012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Matsusaki M, Matsumoto M, Waku T, Akashi M. Self-Assembled Structure of Peptide Nanospheres Induces High Stability against Hydrolysis and Sterilization. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 22:1035-48. [PMID: 20566072 DOI: 10.1163/092050610x497890] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Michiya Matsusaki
- a Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi 332-0012, Japan
| | - Masahiro Matsumoto
- b Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Tomonori Waku
- c Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan; Department of Bio-molecular Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585, Japan
| | - Mitsuru Akashi
- d Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi 332-0012, Japan.
| |
Collapse
|
30
|
Matsusaki M, Ajiro H, Kida T, Serizawa T, Akashi M. Layer-by-layer assembly through weak interactions and their biomedical applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:454-474. [PMID: 22213201 DOI: 10.1002/adma.201103698] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Indexed: 05/31/2023]
Abstract
The surface design and control of substrates with nanometer- or micrometer-sized polymer films are of considerable interest for both fundamental and applied studies in the biomedical field because of the required surface properties. The layer-by-layer (LbL) technique was discovered in 1991 by Decher and co-workers for the fabrication of polymer multilayers constructed mainly through electrostatic interaction. The scope and applicability of this LbL assembly has been extended by introducing molecularly regular conformations of polymers or proteins by employing, for the first time, weak interactions such as van der Waals interactions and biological recognition. Since these weak interactions are the sum of the attractive or repulsive forces between parts of the same molecule, they allow macromolecules to be easily arranged into the most stable conformation in a LbL film. By applying this characteristic feature, the template polymerization of stereoregular polymers, stereoregular control of surface biological properties, drastic morphological control of biodegradable nano materials, and the development of three-dimensional cellular multilayers as a tissue model were successfully achieved. It is expected that LbL assembly using weak interactions will promote further interest into fundamental and applied studies on the design of surface chemistry in the biomedical field.
Collapse
Affiliation(s)
- Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
31
|
De Koker S, Hoogenboom R, De Geest BG. Polymeric multilayer capsules for drug delivery. Chem Soc Rev 2012; 41:2867-84. [DOI: 10.1039/c2cs15296g] [Citation(s) in RCA: 324] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Esser-Kahn AP, Odom SA, Sottos NR, White SR, Moore JS. Triggered Release from Polymer Capsules. Macromolecules 2011. [DOI: 10.1021/ma201014n] [Citation(s) in RCA: 494] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Aaron P. Esser-Kahn
- Beckman Institute for Advanced Science and Technology, ‡Department of Chemistry, §Department of Materials Science and Engineering, and ∥Department of Aerospace Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Susan A. Odom
- Beckman Institute for Advanced Science and Technology, ‡Department of Chemistry, §Department of Materials Science and Engineering, and ∥Department of Aerospace Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Nancy R. Sottos
- Beckman Institute for Advanced Science and Technology, ‡Department of Chemistry, §Department of Materials Science and Engineering, and ∥Department of Aerospace Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Scott R. White
- Beckman Institute for Advanced Science and Technology, ‡Department of Chemistry, §Department of Materials Science and Engineering, and ∥Department of Aerospace Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jeffrey S. Moore
- Beckman Institute for Advanced Science and Technology, ‡Department of Chemistry, §Department of Materials Science and Engineering, and ∥Department of Aerospace Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
33
|
|
34
|
Loh XJ, Nam Nguyen VP, Kuo N, Li J. Encapsulation of basic fibroblast growth factor in thermogelling copolymers preserves its bioactivity. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm03051a] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
35
|
Shi D, Matsusaki M, Akashi M. Photo-tunable protein release from biodegradable nanoparticles composed of cinnamic acid derivatives. J Control Release 2011; 149:182-9. [DOI: 10.1016/j.jconrel.2010.08.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/16/2010] [Accepted: 08/08/2010] [Indexed: 11/24/2022]
|
36
|
De Cock LJ, Lenoir J, De Koker S, Vermeersch V, Skirtach AG, Dubruel P, Adriaens E, Vervaet C, Remon JP, De Geest BG. Mucosal irritation potential of polyelectrolyte multilayer capsules. Biomaterials 2010; 32:1967-77. [PMID: 21126762 DOI: 10.1016/j.biomaterials.2010.11.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 11/06/2010] [Indexed: 12/20/2022]
Abstract
Polyelectrolyte multilayer capsules have recently gained interest as carriers for drug delivery. When envisioning mucosal administration, one is focused with potential concerns such as tissue irritation and tissue damage, induced by the carrier itself. In this paper we demonstrate the use of a slug-based (Arion lusitanicus) assay to evaluate the mucosal irritation potential of different types of polyelectrolytes, their complexes and multilayer capsules. This assay allows to assess in a simple yet efficient way mucosal tissue irritation without using large numbers of vertebrates such as mice, rabbits or non-human primates. We found that although single polyelectrolyte components do induce tissue irritation, this response is dramatically reduced upon complexation with an oppositely charged polyelectrolyte, rendering fairly inert polyelectrolyte complexes. These findings put polyelectrolyte multilayer capsules further en route towards drug delivery applications.
Collapse
Affiliation(s)
- Liesbeth J De Cock
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Du P, Liu P, Mu B, Wang Y. Monodisperse superparamagnetic pH-sensitive single-layer chitosan hollow microspheres with controllable structure. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/pola.24294] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Bai MY, Xia Y. Facile Synthesis of Double-Shelled Polypyrrole Hollow Particles with a Structure Similar to That of a Thermal Bottle. Macromol Rapid Commun 2010; 31:1863-8. [DOI: 10.1002/marc.201000385] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Indexed: 11/10/2022]
|
39
|
De Cock LJ, De Koker S, De Geest BG, Grooten J, Vervaet C, Remon JP, Sukhorukov GB, Antipina MN. Wirkstoffverabreichung mithilfe polymerer Mehrschichtkapseln. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200906266] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Boddohi S, Kipper MJ. Engineering nanoassemblies of polysaccharides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2010; 22:2998-3016. [PMID: 20593437 DOI: 10.1002/adma.200903790] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Polysaccharides offer a wealth of biochemical and biomechanical functionality that can be used to develop new biomaterials. In mammalian tissues, polysaccharides often exhibit a hierarchy of structure, which includes assembly at the nanometer length scale. Furthermore, their biochemical function is determined by their nanoscale organization. These biological nanostructures provide the inspiration for developing techniques to tune the assembly of polysaccharides at the nanoscale. These new polysaccharide nanostructures are being used for the stabilization and delivery of drugs, proteins, and genes, the engineering of cells and tissues, and as new platforms on which to study biochemistry. In biological systems polysaccharide nanostructures are assembled via bottom-up processes. Many biologically derived polysaccharides behave as polyelectrolytes, and their polyelectrolyte nature can be used to tune their bottom-up assembly. New techniques designed to tune the structure and composition of polysaccharides at the nanoscale are enabling researchers to study in detail the emergent biological properties that arise from the nanoassembly of these important biological macromolecules.
Collapse
Affiliation(s)
- Soheil Boddohi
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
41
|
De Cock LJ, De Koker S, De Geest BG, Grooten J, Vervaet C, Remon JP, Sukhorukov GB, Antipina MN. Polymeric Multilayer Capsules in Drug Delivery. Angew Chem Int Ed Engl 2010; 49:6954-73. [DOI: 10.1002/anie.200906266] [Citation(s) in RCA: 396] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Pavinatto FJ, Caseli L, Oliveira ON. Chitosan in Nanostructured Thin Films. Biomacromolecules 2010; 11:1897-908. [DOI: 10.1021/bm1004838] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Felippe J. Pavinatto
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brasil, and Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Diadema, SP, Brasil
| | - Luciano Caseli
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brasil, and Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Diadema, SP, Brasil
| | - Osvaldo N. Oliveira
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brasil, and Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Diadema, SP, Brasil
| |
Collapse
|
43
|
Jaganathan H, Ivanisevic A. In vitro cytotoxic evaluation of metallic and magnetic DNA-templated nanostructures. ACS APPLIED MATERIALS & INTERFACES 2010; 2:1407-1413. [PMID: 20426463 DOI: 10.1021/am1000568] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We evaluate the potential in vitro cytotoxicity that may arise from metallic and magnetic DNA-templated nanostructures. By using a fluorescence-based assay, the viability of cells was examined after treatment with DNA-templated nanostructures. Inductively coupled plasma mass spectrometry (ICP-MS) was used to quantify the amount of nanoparticles internalized by the cells. Cell uptake of DNA-templated nanostructures was enhanced after encapsulating the nanostructure with layers of polyelectrolytes (PSS and PAH) and targeting ligands. Transmission electron microscope (TEM) images provided evidence that the nanostructures were localized in vesicles in the cytoplasm of the cells. The results from this study suggest that gold, iron oxide, and cobalt iron oxide DNA-templated nanostructures do not induce in vitro toxicity.
Collapse
Affiliation(s)
- Hamsa Jaganathan
- Weldon School of Biomedical Engineering and Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, USA
| | | |
Collapse
|
44
|
del Mercato LL, Rivera-Gil P, Abbasi AZ, Ochs M, Ganas C, Zins I, Sönnichsen C, Parak WJ. LbL multilayer capsules: recent progress and future outlook for their use in life sciences. NANOSCALE 2010; 2:458-467. [PMID: 20644746 DOI: 10.1039/b9nr00341j] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In this review we provide an overview of the recent progress in designing composite polymer capsules based on the Layer-by-Layer (LbL) technology demonstrated so far in material science, focusing on their potential applications in medicine, drug delivery and catalysis. The benefits and limits of current systems are discussed and the perspectives on emerging strategies for designing novel classes of therapeutic vehicles are highlighted.
Collapse
Affiliation(s)
- Loretta L del Mercato
- Fachbereich Physik and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps Universität Marburg, Renthof 7, 35037, Marburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Matsusaki M, Akashi M. Functional multilayered capsules for targeting and local drug delivery. Expert Opin Drug Deliv 2010; 6:1207-17. [PMID: 19831583 DOI: 10.1517/17425240903280414] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
One of the key challenges in the field of bio-nanotechnology for drug delivery systems (DDS) is the development of nano- or micro-sized delivery carriers possessing both targeting functionalities for specific tissues or cells, and controlled release properties for encapsulated drug molecules, proteins and genes. Hollow capsules developed by layer-by-layer (LbL) assembly have attracted much attention over the past few years owing to their ability to be modified, their capacity to encapsulate a wide range of chemicals, and the variety of functionalities with which they can be enhanced. Current research on LbL capsules focuses on the development of functionalized capsules for specific targeting of cancer or immune cells, and on controlling their release properties by environmental stimuli. This review discusses recent advances in DDS using functional hollow capsules specific for the cellular and tissue-targeted delivery, as well as stimuli-responsive controlled release. DDS based on functional hollow capsules may contribute to the development of new nano-medicines.
Collapse
Affiliation(s)
- Michiya Matsusaki
- Osaka University, Graduate School of Engineering, Department of Applied Chemistry, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|
46
|
Amemori S, Matsusaki M, Akashi M. Biocompatible and Highly Sensitive Nitric Oxide Sensor Particles Prepared by Layer-by-layer Assembly. CHEM LETT 2010. [DOI: 10.1246/cl.2010.42] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
47
|
Rivera-Gil P, De Koker S, De Geest BG, Parak WJ. Intracellular processing of proteins mediated by biodegradable polyelectrolyte capsules. NANO LETTERS 2009; 9:4398-4402. [PMID: 19860453 DOI: 10.1021/nl902697j] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Multilayer polyelectrolyte capsules made by layer-by-layer assembly of oppositely charged biodegradable polyelectrolytes were filled with a model of a nonactive prodrug, a self-quenched fluorescence-labeled protein. After capsule uptake by living cells, the walls of the capsules were actively degraded and digested by intracellular proteases. Upon capsule wall degradation, intracellular proteases could reach the protein cargo in the cavity of the capsules. Enzymatic fragmentation of the self-quenched fluorescence-labeled protein by proteases led to individual fluorescence-labeled peptides and thus revoked self-quenching of the dye. In this way nonactive (nonfluorescent) molecules were converted into active (fluorescent) molecules. The data demonstrates that biodegradable capsules are able to convert nonactive molecules (prodrugs) to active molecules (drugs) specifically only inside cells where appropriate enzymes are at hand. In this way only cargo inside the capsules reaching cells is activated, but not the cargo in capsules which remain extracellular. The peptide fragments undergo further processing inside the cells, leading ultimately to exocytosis.
Collapse
Affiliation(s)
- Pilar Rivera-Gil
- Fachbereich Physik und Wissenschaftliches Zentrum für Materialwissenschaften, Philipps Universität Marburg, Renthof 7, 35037 Marburg, Germany
| | | | | | | |
Collapse
|
48
|
Zhang S, Uludağ H. Nanoparticulate systems for growth factor delivery. Pharm Res 2009; 26:1561-80. [PMID: 19415467 DOI: 10.1007/s11095-009-9897-z] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 04/11/2009] [Indexed: 01/21/2023]
Abstract
The field of nanotechnology, which aims to control and utilize matter generally in 1-100 nm range, has been at the forefront of pharmaceutical development. Nanoparticulate delivery systems, with their potential to control drug release profiles, prolonging the presence of drugs in circulation, and to target drugs to a specific site, hold tremendous promise as delivery strategies for therapeutics. Growth factors are endogenous polypeptides that initiate intracellular signals to regulate cellular activities, such as proliferation, migration and differentiation. With improved understanding of their roles in physiopathology and expansion of their availability through recombinant technologies, growth factors are becoming leading therapeutic candidates for tissue engineering approaches. However, the outcome of growth factor therapeutics largely depends on the mode of their delivery due to their rapid degradation in vivo, and non-specific distribution after systemic administration. In order to overcome these impediments, nanoparticulate delivery systems are being harnessed for spatiotemporal controlled delivery of growth factors. This review presents recent advances and some disadvantages of various nanoparticulate systems designed for effective intact growth factor delivery. The therapeutic applications of growth factors delivered by such systems are reviewed, especially for bone, skin and nerve regeneration as well as angiogenesis. Finally, future challenges and directions in the field are presented in addition to the current limitations.
Collapse
Affiliation(s)
- Sufeng Zhang
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, #830, Chemical & Materials Engineering Building, Edmonton, Alberta T6G2G6, Canada
| | | |
Collapse
|
49
|
Qi W, Yan X, Fei J, Wang A, Cui Y, Li J. Triggered release of insulin from glucose-sensitive enzyme multilayer shells. Biomaterials 2009; 30:2799-806. [DOI: 10.1016/j.biomaterials.2009.01.027] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2008] [Accepted: 01/08/2009] [Indexed: 10/21/2022]
|
50
|
Parakhonskiy B, Andreeva D, Möhwald H, Shchukin DG. Hollow polypyrrole containers with regulated uptake/release properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:4780-4786. [PMID: 19239223 DOI: 10.1021/la804002x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Polypyrrole microcontainers were successfully prepared by electrochemical polymerization of pyrrole on the surface of stainless steel electrodes. The size of the nanocontainers and the thickness of the polypyrrole shell (up to complete filling of the container with grown polypyrrole) can be varied by changing both the scan speed of the electrode potential and potential range. Polypyrrole surfaces with high redox current due to their increased surface area are obtained; for optimized conditions, also microcontainers are obtained. The polypyrrole microcontainers with a size of less than 20 microm can be easily detached from the electrode surface and polypyrrole films during several minutes of sonication in an ultrasonic bath. The polypyrrole shell of the microcontainers exhibits very strong barrier properties in acidic media at 2<pH<7 and a high permeability at pH>7, providing effective encapsulation of low molecular weight species at low pH values.
Collapse
|