1
|
Huang J, Fu K, Fang Z, Luo J. Enhanced selective removal of PFAS at trace level using quaternized cellulose-functionalized polymer resin: Performance and mechanism. WATER RESEARCH 2025; 272:122937. [PMID: 39674139 DOI: 10.1016/j.watres.2024.122937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/25/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
The effective protocol for treating per- and polyfluoroalkyl substances (PFAS) in water at environmentally relevant concentrations (∼ ng L-1) has received unprecedented attention due to the stringent drinking water standards. In order to ensure safe water treatment, sorption using quaternary ammonium functionalized strong-base anion exchange resins (SB-AERs) is considered a viable option for treating PFAS when compared to commercialized activated carbon, as SB-AERs can be in situ regenerated with long-term operation capabilities. However, the harsh conditions required for traditional direct synthesis of SB-AERs (such as prolonged reaction times, complex processes, and environmental pollution caused by the organic reagents used) limit their applications. In this study, we present a novel indirect synthesis method that can effectively pre-functionalizes cellulose for quaternization. This modified cellulose is subsequently loaded onto chloromethylated polystyrene to produce a quaternized cellulose-functionalized polymer resin (QC-CMPS). The process is straightforward to implement, reduces the use of toxic chemicals, and effectively mitigates water safety risks associated with hazardous reagent leaks. As results, the prepared QC-CMPS demonstrates exceptional selective capability for PFAS removal in real environmental water matrices, achieving over 99 % removal efficiency at an initial concentration of 1000 ng L-1. Additionally, QC-CMPS demonstrates low sensitivity to pH and background ions, effectively removing PFAS from both tap water and lake water with efficiency rates exceeding 95 %. The exhausted QC-CMPS can be readily rejuvenated by rinsing with 1 % NaCl and MeOH (V/V=3/7) mixture, as demonstrated by five successful consecutive cycles. The fixed-bed column test confirmed that ∼ 11,000 bed volumes (∼ 292.70 L) of the feed streams (∼250 ng L-1) can be effectively treated with the enrichment factor of 26.42, 25.16, 27.77 and 21.17 for PFOA, PFOS, PFBS, and GenX, respectively, highlighting significant potential for practical applications.
Collapse
Affiliation(s)
- Jinjing Huang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Kaixing Fu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Zhuoya Fang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jinming Luo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
2
|
Asadnia M, Sadat-Shojai M. Recent perspective of synthesis and modification strategies of cellulose nanocrystals and cellulose nanofibrils and their beneficial impact in scaffold-based tissue engineering: A review. Int J Biol Macromol 2025; 293:139409. [PMID: 39746422 DOI: 10.1016/j.ijbiomac.2024.139409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/09/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Outstanding properties of nanocellulose provide opportunities for novel applications in various fields, particularly tissue engineering. Despite of numerous useful characteristics of nanocellulose, its production methods suffer from the lack of control of morphology, high cost, and the use of organic solvents. On the other hand, hydrophilicity of nanocellulose is a significant challenge for its dispersion as a reinforcement in hydrophobic polymers matrix. Therefore, sustainable production methods and well-tuning interfacial characteristics of nanocellulose have been identified as critical steps in their development. This review article discusses the numerous preparation methods and surface modification strategies of cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) to help nanocellulose users obtain the appropriate material for their desired application. We also cover various polymer/nanocellulose scaffolds that are reported in the literature and investigate the effect of CNC and CNF on their mechanical, thermal and biological properties. Moreover, we provide several scientific figures and tables for a better understanding of the explored topics. Finally, we evaluate the opportunities and challenges of nanocellulose industrialization in the field of tissue engineering. Overall, this review guides researchers towards a deeper understanding of nanocellulose production processes, changing their properties using surface modification methods, and subsequently their performance in scaffold-based tissue engineering.
Collapse
Affiliation(s)
- Milad Asadnia
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| | - Mehdi Sadat-Shojai
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran.
| |
Collapse
|
3
|
Yang L, Wang L, Zhang Z, Zhang S, He Y, Wang Y, Li B, Zhou J, Hong L. Homogeneous synthesis of cationic celluloses with broad-spectrum antibacterial activities for the treatment of vaginitis in mice. Carbohydr Polym 2025; 349:122950. [PMID: 39643416 DOI: 10.1016/j.carbpol.2024.122950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/24/2024] [Accepted: 11/04/2024] [Indexed: 12/09/2024]
Abstract
Microbial infection is a significant health issue for humans. Despite the development of numerous antibiotics, the continuous rise of drug-resistant bacteria highlights the urgent need for new materials to combat these problems. In this study, four water-soluble quaternized cellulose (QC) derivatives with degrees of substitution (DS) ranging from 0.23 to 0.45 were synthesized homogeneously from cellulose carbamate (CC) in NaOH/ZnO aqueous solution. The QC derivatives exhibited broad-spectrum antibacterial activity against gram-negative/positive bacteria, fungi and drug-resistance bacteria. Models of bacterial vaginitis (BV) and vulvovaginal candidiasis (VVC) were used to evaluate the application of QC derivatives visually. Secretion smears and tissue section staining revealed that treatment with QC derivatives led to a reduction in mycelia and spores in the vagina and secretions in the VVC model, along with improved inflammation. In the BV model, vaginal secretions were reduced, clue cells in smears significantly decreased, and inflammation markedly improved. Additionally, cell experiments and staining of mouse organ tissue sections demonstrated that QC derivatives exhibited good biocompatibility. Therefore, using QC derivatives in flushing douches represents a novel approach for treating vaginitis and could serve as a benchmark for addressing other infectious diseases.
Collapse
Affiliation(s)
- Lian Yang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, China; Affiliated Hospital of Xiangnan University, Chenzhou, Hunan Province, 423000, China
| | - Lujie Wang
- Hubei Engineering Center of Natural Polymers-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zihui Zhang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, China; Department of Gynecology and Obstetrics, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang 443003, China
| | - Shufei Zhang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yong He
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ying Wang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bingshu Li
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jinping Zhou
- Hubei Engineering Center of Natural Polymers-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China; Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430071, China.
| | - Li Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
4
|
Sjölund J, Westman G, Wågberg L, Larsson PA. On the determination of charge and nitrogen content in cellulose fibres modified to contain quaternary amine functionality. Carbohydr Polym 2025; 347:122734. [PMID: 39486964 DOI: 10.1016/j.carbpol.2024.122734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/20/2024] [Accepted: 09/08/2024] [Indexed: 11/04/2024]
Abstract
Research interest in quaternization of cellulose fibres has increased considerably over the past decades. However, there is little or no consensus regarding how to characterize the material in terms of degree of substitution (DS), and the literature suggests a range of different methods focusing on charge determination as well as nitrogen content quantification. This work aims to fill the knowledge gap regarding how the different methods perform in relation to each other, and for what cellulosic systems each method has advantages, disadvantages and even potential pitfalls. FT-IR and NMR measurements are used to establish successful modification and determine the relative number of substituent groups. Another six methods are compared for the determination of the DS of cellulosic fibres and nanofibrils. The methods include Kjeldahl measurements, nitrogen determination by chemiluminescence, determination of molecular nitrogen by the Dumas method, colloidal titration, conductometric titration and polyelectrolyte adsorption. It can be concluded that most techniques investigated are reliable within certain ranges of DS and/or when using appropriate post-treatment of the quaternized material and suitable sample preparation techniques. The results from the present work hence provide recommendations to make an educated choice of method, and experimental protocol, based on the technique at hand.
Collapse
Affiliation(s)
- Johanna Sjölund
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; FibRe Center for Lignocellulose-based Thermoplastics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Gunnar Westman
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; FibRe Center for Lignocellulose-based Thermoplastics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
| | - Lars Wågberg
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; FibRe Center for Lignocellulose-based Thermoplastics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Per A Larsson
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; FibRe Center for Lignocellulose-based Thermoplastics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
5
|
Stanciu MC, Ionita D, Tȋmpu D, Popescu I, Suflet DM, Doroftei F, Tuchilus CG. Novel Quaternary Ammonium Derivatives Based on Apple Pectin. Polymers (Basel) 2024; 16:3352. [PMID: 39684100 DOI: 10.3390/polym16233352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
New quaternary ammonium derivatives (quats) based on apple pectin (PA) were synthesized by the chemical modification of native polysaccharides with various quaternization mixtures containing epichlorohydrin (ECH) and a tertiary amine. Pectin derivatives (QPAs) were studied by elemental analysis, conductometric titration, Fourier-transform infrared spectroscopy (FTIR), and 13C nuclear magnetic resonance (13C NMR). Viscosity measurements enabled the evaluation of the viscosity average molar mass (Mv) for the unmodified polysaccharide, as well as its intrinsic viscosity ([η]) value. Dynamic light scattering (DLS) analysis revealed that the PA and its quats formed aggregates in an aqueous solution with either a unimodal (PA) or bimodal (QPAs) distribution. Scanning transmission electron microscopy analysis (STEM) of the PA and its derivatives demonstrated the presence of individual polymeric chains and aggregates in aqueous solution, with the smallest sizes being specific to amphiphilic polymers. Thermal stability, as well as wide-angle X-ray diffraction (WAXD) studies, generally indicated a lower thermal stability and crystallinity of the QPAs compared with those of the PA. Antipathogenic activity demonstrated that the PA and its derivatives exhibited effectiveness against S. aureus ATCC 25923 bacterium and C. albicans ATCC 10231 pathogenic yeast.
Collapse
Affiliation(s)
| | - Daniela Ionita
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Daniel Tȋmpu
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Irina Popescu
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Dana Mihaela Suflet
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Florica Doroftei
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Cristina G Tuchilus
- Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 16, University Street, 700115 Iasi, Romania
| |
Collapse
|
6
|
Udoetok IA, Mohamed MH, Wilson LD. Stabilization of Oil-in-Water Pickering Emulsions by Surface-Functionalized Cellulose Hydrogel. Gels 2024; 10:685. [PMID: 39590041 PMCID: PMC11593766 DOI: 10.3390/gels10110685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024] Open
Abstract
An amphiphilic cellulose (CLH) hydrogel was synthesized via grafting of quaternary ammonium groups onto cellulose. The structural properties of CLH were characterized via Fourier transform infrared (FTIR)/13C solid-state NMR spectroscopy, elemental (CHN) analysis, particle size distribution (PSD), thermogravimetric analysis (TGA), and wettability was assessed through contact angle measurements. Pickering emulsions of apolar oils in water were prepared using variable weights of the CLH hydrogel as the stabilizing agent, along with different methods of agitation (mechanical shaking and sonication). The characterization results for CLH provide support for the successful grafting of quaternary ammonium groups onto cellulose to produce hydrogels. Different methods of agitation of an oil/water mixture revealed the formation of an oil-in-water (O/W) Pickering emulsion that was stable to coalescence for over 14 days. The resulting emulsions showed variable droplet sizes and stability according to the dosage of CLH in the emulsion and the agitation method, where the emulsion droplet size is related to the particle size of CLH. The addition of methyl orange (MO), a probe to evaluate the phase partitioning of the dye, had minor effects on the emulsion droplet size, and the emulsion prepared with 0.8 wt.% of CLH and agitated via sonication exhibited the smallest droplet size and greatest stability. This study is anticipated to catalyze further research and the development of low-cost and sustainable biopolymer hydrogels as stabilizers for tunable Pickering emulsion. Grafted cellulose materials of this type represent versatile stabilizing agents for foods, agrochemicals, and pharmaceutical products and technologies.
Collapse
Affiliation(s)
- Inimfon A. Udoetok
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada;
| | | | - Lee D. Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada;
| |
Collapse
|
7
|
Xu F, Cho BU. Porous cationic cellulose beads prepared by homogeneous in-situ quaternization and acid induced regeneration for water/moisture absorption. Carbohydr Polym 2024; 340:122301. [PMID: 38858023 DOI: 10.1016/j.carbpol.2024.122301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/12/2024]
Abstract
Chemical modification is a reliable and efficient strategy for designing cellulose-based functional materials. Herein, porous quaternized cellulose beads (QCBs) as cationic superabsorbent were fabricated by homogeneous in-situ chemical grafting cellulose molecular chains with glycidyl trimethylammonium chloride (GTAC) in tetraethylammonium hydroxide (TEAOH)/urea aqueous solution followed by acetic acid induced regeneration. The influence of GTAC dosage on the physicochemical-structural properties of cationic QCBs was deeply investigated. Results revealed that cotton liner could well-dissolved in TEAOH/urea aqueous solution, leading to a homogeneous and efficient quaternization medium for cellulose, thereby giving the high DS and positive charge density for quaternized cellulose. NMR results demonstrated the main substitution of GTAC groups at 2-OH and 6-OH positions of the cellulose chains during quaternization reaction. With increasing GTAC dosage, the network skeleton of QCBs gradually transformed from thick fibrils to thin aggregates, as well as enhanced pore volumes and hydrophilicity. Accordingly, QCBs-1.5 with high pore volume (99.70 cm3/g) exhibited excellent absorption capacity and efficiency, absorbing 122.32 g of water and 0.45 g of moisture per gram of the beads in 20 min. This work not only offers a simple strategy for the homogeneous quaternization modification of cellulose, but also provides a porous cellulose-based cationic superabsorbent material.
Collapse
Affiliation(s)
- Feng Xu
- Department of Paper Science & Engineering, Changgang Institute of Paper Science and Technology, Kangwon National University, Chuncheon, Kangwaon-Do 24341, South Korea
| | - Byoung-Uk Cho
- Department of Paper Science & Engineering, Changgang Institute of Paper Science and Technology, Kangwon National University, Chuncheon, Kangwaon-Do 24341, South Korea.
| |
Collapse
|
8
|
Lee Y, Nam K, Kim YM, Yang K, Kim Y, Oh JW, Roh YH. Functional polymeric DNA nanostructure-decorated cellulose nanocrystals for targeted and stimuli-responsive drug delivery. Carbohydr Polym 2024; 340:122270. [PMID: 38858000 DOI: 10.1016/j.carbpol.2024.122270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/20/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024]
Abstract
Targeted and stimuli-responsive drug delivery enhances therapeutic efficacy and minimizes undesirable side effects of cancer treatment. Although cellulose nanocrystals (CNCs) are used as drug carriers because of their robustness, spindle shape, biocompatibility, renewability, and nontoxicity, the lack of programmability and functionality of CNCs-based platforms hampers their application. Thus, high adaptability and the capacity to form dynamic 3D nanostructures of DNA may be advantageous, as they can provide functionalities such as target-specific and stimuli-responsive drug release. Using DNA nanotechnology, the functional polymeric form of DNA nanostructures can be replicated using rolling circle amplification (RCA), and the biologically and physiologically stable DNA nanostructures may overcome the challenges of CNCs. In this study, multifunctional polymeric DNAs produced with RCA were strongly complexed with surface-modified CNCs via electrostatic interactions to form polymeric DNA-decorated CNCs (pDCs). Particle size, polydispersity, zeta potential, and biostability of the nanocomplexes were analyzed. As a proof of concept, the dynamic structural functionalities of DNA nanostructures were verified by observing cancer-targeted intracellular delivery and pH-responsive drug release. pDCs showed anticancer properties without side effects in vitro, owing to their aptamer and i-motif functionalities. In conclusion, pDCs exhibited multifunctional anticancer activities, demonstrating their potential as a promising hybrid nanocomplex platform for targeted cancer therapy.
Collapse
Affiliation(s)
- Yuyeon Lee
- Graduate Program in Bioindustrial Engineering, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Keonwook Nam
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Young Min Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Kyungjik Yang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Yeongmok Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Jong-Won Oh
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Young Hoon Roh
- Graduate Program in Bioindustrial Engineering, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea; Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea.
| |
Collapse
|
9
|
He C, Yuan L, Bi S, Zhou C, Yang Q, Gu J, Yan B, He J. Modified Chitosan-Based Coating/Packaging Composites with Enhanced Antibacterial, Antioxidant, and UV-Resistant Properties for Fresh Food Preservation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48352-48362. [PMID: 39221854 DOI: 10.1021/acsami.4c10643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Chitosan-based biomass packaging materials are a promising material for food preservation, but their limited solubility, antioxidant capacity, UV resistance, and mechanical properties severely restrict their application. In this study, we developed a novel chitosan-based coating/packaging composite (QCTO) using quaternary ammonium salt and tannic acid (TA)-modified chitosan (QCS-TA) and oxidized chitosan (OCS). The introduction of quaternary ammonium salt and TA effectively improves the water solubility and antibacterial, antioxidant, and UV-resistant properties of chitosan. The Schiff-base bond formed between OCS and QCS-TA, along with the TA-mediated multiple interactions, conferred the prepared composite film with good mechanical properties (69.9 MPa tensile strength) and gas barrier performance to water (14.3 g·h-1·m-2) and oxygen (3.5 g·mm·m-2·h-1). Meanwhile, the prepared QCTO composites demonstrate excellent biocompatibility and safety and are applied as coatings for strawberries and bananas as well as packaging films for mushrooms. These preservation experiments demonstrated that the prepared composites are able to effectively reduce weight loss, prevent microbial growth, maintain color, and significantly prolong the shelf life of fresh products (bananas, strawberries, and mushrooms extended shelf life by 6, 5, and 6 days, respectively). Therefore, the developed QCTO coating/packaging film shows great potential for applications in the field of food preservation and packaging.
Collapse
Affiliation(s)
- Changyuan He
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Liubo Yuan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Siwei Bi
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Chaomei Zhou
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Qin Yang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Gu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Bin Yan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jin He
- Department of Pediatric Orthopaedics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| |
Collapse
|
10
|
Chen L, Bi T, Lizundia E, Liu A, Qi L, Ma Y, Huang J, Lu Z, Yu L, Deng H, Chen C. Biomass waste-assisted micro(nano)plastics capture, utilization, and storage for sustainable water remediation. Innovation (N Y) 2024; 5:100655. [PMID: 39040688 PMCID: PMC11260858 DOI: 10.1016/j.xinn.2024.100655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/03/2024] [Indexed: 07/24/2024] Open
Abstract
Micro(nano)plastics (MNPs) have become a significant environmental concern due to their widespread presence in the biosphere and potential harm to ecosystems and human health. Here, we propose for the first time a MNPs capture, utilization, and storage (PCUS) concept to achieve MNPs remediation from water while meeting economically productive upcycling and environmentally sustainable plastic waste management. A highly efficient capturing material derived from surface-modified woody biomass waste (M-Basswood) is developed to remove a broad spectrum of multidimensional and compositional MNPs from water. The M-Basswood delivered a high and stable capture efficiency of >99.1% at different pH or salinity levels. This exceptional capture performance is driven by multiscale interactions between M-Basswood and MNPs, involving physical trapping, strong electrostatic attractions, and triggered MNPs cluster-like aggregation sedimentation. Additionally, the in vivo biodistribution of MNPs shows low ingestion and accumulation of MNPs in the mice organs. After MNPs remediation from water, the M-Basswood, together with captured MNPs, is further processed into a high-performance composite board product where MNPs serve as the glue for utilization and storage. Furthermore, the life cycle assessment (LCA) and techno-economic analysis (TEA) results demonstrate the environmental friendliness and economic viability of our proposed full-chain PCUS strategy, promising to drive positive change in plastic pollution and foster a circular economy.
Collapse
Affiliation(s)
- Lu Chen
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Tingting Bi
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Erlantz Lizundia
- Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, University of the Basque Country (UPV/EHU), 48013 Bilbao, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, Edif. Martina Casiano, 48940 Leioa, Spain
| | - Anxiong Liu
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
- Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Luhe Qi
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Yifan Ma
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Jing Huang
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Ziyang Lu
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Le Yu
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Hongbing Deng
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Chaoji Chen
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| |
Collapse
|
11
|
Suflet DM, Popescu I, Stanciu MC, Rimbu CM. Antimicrobial Hydrogels Based on Cationic Curdlan Derivatives for Biomedical Applications. Gels 2024; 10:424. [PMID: 39057447 PMCID: PMC11276469 DOI: 10.3390/gels10070424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Hydrogels based on biocompatible polysaccharides with biological activity that can slowly release an active principle at the wound site represent promising alternatives to traditional wound dressing materials. In this respect, new hydrogels based on curdlan derivative with 2-hydroxypropyl dimethyl octyl ammonium groups (QCurd) and native curdlan (Curd) were obtained at room temperature by covalent cross-linking using a diepoxy cross-linking agent. The chemical structure of the QCurd/Curd hydrogels was investigated by Fourier transform infrared spectroscopy (FTIR) spectroscopy. Scanning electron microscopy (SEM) revealed well-defined regulated pores with an average diameter between 50 and 75 μm, and hydrophobic micro-domains of about 5 μm on the pore walls. The high swelling rate (21-24 gwater/ghydrogel) and low elastic modulus values (7-14 kPa) make them ideal for medical applications as wound dressings. To evaluate the possible use of the curdlan-based hydrogels as active dressings, the loading capacity and release kinetics of diclofenac, taken as a model drug, were studied under simulated physiological skin conditions. Several mathematical models have been applied to evaluate drug transport processes and to calculate the diffusion coefficients. The prepared QCurd/Curd hydrogels were found to have good antibacterial properties, showing a bacteriostatic effect after 48 h against S. aureus, MRSA, E. coli, and P. aeruginosa. The retarded drug delivery and antimicrobial properties of the new hydrogels support our hypothesis that they are candidates for the manufacture of wound dressings.
Collapse
Affiliation(s)
- Dana M. Suflet
- Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania; (I.P.); (M.-C.S.)
| | - Irina Popescu
- Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania; (I.P.); (M.-C.S.)
| | - Magdalena-Cristina Stanciu
- Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania; (I.P.); (M.-C.S.)
| | - Cristina Mihaela Rimbu
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, Mihail Sadoveanu Alley 8, 707027 Iasi, Romania;
| |
Collapse
|
12
|
Wu P, Chen Y, Luo Y, Ji W, Wang Y, Qian Z, Duan Y, Li X, Fu S, Gao W, Liu D. Hierarchical Bilayer Polyelectrolyte Ion Paper Conductor for Moisture-Induced Power Generation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32198-32208. [PMID: 38865083 DOI: 10.1021/acsami.4c03665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Harvesting energy from air water (atmospheric moisture) promises a sustainable self-powered system without any restrictions from specific environmental requirements (e.g., solar cells, hydroelectric, or thermoelectric devices). However, the present moisture-induced power devices traditionally generate intermittent or bursts of energy, especially for much lower current outputs (generally keeping at nA or μA levels) from the ambient environment, typically suffering from inferior ionic conductivity and poor hierarchical structure design for manipulating sustained air water and ion-charge transport. Here, we demonstrate a universal strategy to design a high-performance bilayer polyelectrolyte ion paper conductor for generating continuous electric power from ambient humidity. The generator can produce a continuous voltage of up to 0.74 V and also an exceptional current of 5.63 mA across a single 1.0 mm-thick ion paper conductor. We discover that the sandwiched LiCl-nanocellulose-engineered paper promises an ion-transport junction between the negatively and positively charged bilayer polyelectrolytes for application in MEGs with both high voltage and high current outputs. Moreover, we demonstrated the universality of this bilayer sandwich nanocellulose-salt engineering strategy with other anions and cations, exhibiting similar power generation ability, indicating that it could be the next generation of sustainable MEGs with low cost, easier operation, and high performance.
Collapse
Affiliation(s)
- Peilin Wu
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Yonghao Chen
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Yao Luo
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Wenhao Ji
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Yan Wang
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Zhiyun Qian
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Yulong Duan
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Xiaoming Li
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Shiyu Fu
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Wenhua Gao
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Detao Liu
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| |
Collapse
|
13
|
Alves L, Magalhães S, Pedrosa JFS, Ferreira PJT, Gamelas JAF, Rasteiro MG. Rheology of Suspensions of TEMPO-Oxidised and Cationic Cellulose Nanofibrils-The Effect of Chemical Pre-Treatment. Gels 2024; 10:367. [PMID: 38920914 PMCID: PMC11202593 DOI: 10.3390/gels10060367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Cellulose nanofibrils (CNFs) are particles with a high aspect ratio. Typically, chemically pre-treated CNFs (containing anionic or cationic charged groups) consist of long fibrils (up to 2 μm) with very low thickness (less than 10 nm). Derived from their high aspect ratio, CNFs form strong hydrogels with high elasticity at low concentrations. Thus, CNF suspensions appear as an interesting rheology modifier to be applied in cosmetics, paints, foods, and as a mineral suspending agent, among other applications. The high viscosity results from the strong 3D fibril network, which is related to the good fibrillation of the material, allowing the nanofibrils to overlap. The overlap concentration (c*) was found to vary from ca. 0.13 to ca. 0.60 wt.% depending on the type and intensity of the pre-treatment applied during the preparation of the CNFs. The results confirm the higher tendency for the fibres treated with (3-chloro-2-hydroxypropyl) trimethylammonium chloride (CHPTAC) and 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) to form a 3D network, resulting in the lowest c*. For the TEMPO-oxidised CNF suspensions, it was also found that aggregation is improved at acidic pH conditions due to lower charge repulsion among fibrils, leading to an increase in the suspension viscosity as well as higher apparent yield stresses. TEMPO CNF suspensions with a low content of carboxylic groups tend to precipitate at moderately acidic pH values.
Collapse
Affiliation(s)
- Luís Alves
- University of Coimbra, CERES, Department of Chemical Engineering, 3030-790 Coimbra, Portugal; (S.M.); (J.F.S.P.); (P.J.T.F.); (J.A.F.G.); (M.G.R.)
| | | | | | | | | | | |
Collapse
|
14
|
Ribeiro de Carvalho G, Kudaka AM, Fares Sampar J, Alvares LE, Delarmelina C, Duarte MCT, Lona LMF. Quaternization of cassava starch and determination of antimicrobial activity against bacteria and coronavirus. Carbohydr Res 2024; 538:109098. [PMID: 38527408 DOI: 10.1016/j.carres.2024.109098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
This study describes the novel development of quaternized cassava starch (Q-CS) with antimicrobial and antiviral properties, particularly effective against the MHV-3 coronavirus. The preparation of Q-CS involved the reaction of cassava starch (CS) with glycidyltrimethylammonium chloride (GTMAC) in an alkaline solution. Q-CS physicochemical properties were determined by FTIR, NMR, elemental analysis, zeta potential, TGA, and moisture sorption. FTIR and NMR spectra confirmed the introduction of cationic groups in the CS structure. The elemental analysis revealed a degree of substitution (DS) of 0.552 of the cationic reagent on the hydroxyl groups of CS. Furthermore, Q-CS exhibited a positive zeta potential value (+28.6 ± 0.60 mV) attributed to the high positive charge density shown by the quaternary ammonium groups. Q-CS demonstrated lower thermal stability and higher moisture sorption compared to CS. The antimicrobial activity of Q-CS was confirmed against Escherichia coli (MIC = 0.156 mg mL-1) and Staphylococcus aureus (MIC = 0.312 mg mL-1), along with a remarkable ability to inactivate 99% of MHV-3 coronavirus after only 1 min of direct contact. Additionally, Q-CS showed high cell viability (close to 100%) and minimal cytotoxicity effects, guaranteeing its safe use. Therefore, these findings indicate the potential use of Q-CS as a raw material for antiseptic biomaterials.
Collapse
Affiliation(s)
- Guilherme Ribeiro de Carvalho
- Department of Bioprocesses and Materials Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| | - Amanda Miki Kudaka
- Department of Bioprocesses and Materials Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Jórdan Fares Sampar
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Lúcia Elvira Alvares
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Camila Delarmelina
- Chemical, Biological and Agricultural Pluridisciplinary Research Center, University of Campinas (UNICAMP), Paulínia, SP, Brazil
| | - Marta Cristina Teixeira Duarte
- Chemical, Biological and Agricultural Pluridisciplinary Research Center, University of Campinas (UNICAMP), Paulínia, SP, Brazil
| | - Liliane Maria Ferrareso Lona
- Department of Bioprocesses and Materials Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
15
|
Stanciu MC, Nichifor M, Ailiesei GL, Popescu I, Hitruc GE, Ghimici L, Tuchilus CG. New Quaternary Ammonium Derivatives Based on Citrus Pectin. Polymers (Basel) 2023; 15:4492. [PMID: 38231903 PMCID: PMC10707904 DOI: 10.3390/polym15234492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 01/19/2024] Open
Abstract
New citrus pectin derivatives carrying pendant N,N-dimethyl-N-alkyl-N-(2-hydroxy propyl) ammonium chloride groups were achieved via polysaccharide derivatization with a mixture of N,N-dimethyl-N-alkyl amine (alkyl = ethyl, butyl, benzyl, octyl, dodecyl) and epichlorohydrin in aqueous solution. The structural characteristics of the polymers were examined via elemental analysis, conductometric titration, Fourier Transform Infrared spectroscopy (FTIR) and 1D (1H and 13C) nuclear magnetic resonance (NMR). Capillary viscosity measurements allowed for the study of viscometric behavior as well as the determination of viscosity-average molar mass for pristine polysaccharide and intrinsic viscosity ([η]) values for pectin and its derivatives. Dynamic light scattering measurements (DLS) showed that pectin-based polymers formed aggregates in aqueous solution with a unimodal distribution. Critical aggregation concentration (cac) for the hydrophobic pectin derivatives were determined using fluorescence spectroscopy. Atom force microscopy (AFM) images allowed for the investigation of the morphology of polymeric populations obtained in aqueous solution, consisting of flocs and aggregates for crude pectin and its hydrophilic derivatives and well-organized aggregates for lipophilic pectin derivatives. Antimicrobial activity, examined using the disc diffusion method, proved that all polymers were active against Staphylococcus aureus bacterium and Candida albicans yeast.
Collapse
Affiliation(s)
- Magdalena-Cristina Stanciu
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania; (M.N.); (G.-L.A.); (I.P.); (G.-E.H.); (L.G.)
| | - Marieta Nichifor
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania; (M.N.); (G.-L.A.); (I.P.); (G.-E.H.); (L.G.)
| | - Gabriela-Liliana Ailiesei
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania; (M.N.); (G.-L.A.); (I.P.); (G.-E.H.); (L.G.)
| | - Irina Popescu
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania; (M.N.); (G.-L.A.); (I.P.); (G.-E.H.); (L.G.)
| | - Gabriela-Elena Hitruc
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania; (M.N.); (G.-L.A.); (I.P.); (G.-E.H.); (L.G.)
| | - Luminita Ghimici
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania; (M.N.); (G.-L.A.); (I.P.); (G.-E.H.); (L.G.)
| | - Cristina G. Tuchilus
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania;
| |
Collapse
|
16
|
Hoogendoorn BW, Karlsson O, Xiao X, Pandey A, Mattsson SE, Ström V, Andersson RL, Li Y, Olsson RT. Cellulose nanofibers (CNFs) in the recycling of nickel and cadmium battery metals using electrodeposition. NANOSCALE ADVANCES 2023; 5:5263-5275. [PMID: 37767029 PMCID: PMC10521207 DOI: 10.1039/d3na00401e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/11/2023] [Indexed: 09/29/2023]
Abstract
Cellulose nanofibers (CNFs) were employed in the aqueous electrodeposition of nickel and cadmium for battery metal recycling. The electrowinning of mixed Ni-Cd metal ion recycling solutions demonstrated that cadmium with a purity of over 99% could be selectively extracted while leaving the nickel in the solution. Two types of CNFs were evaluated: negatively charged CNFs (a-CNF) obtained through acid hydrolysis (-75 μeq. g-1) and positively charged CNFs (q-CNF) functionalized with quaternary ammonium groups (+85 μeq. g-1). The inclusion of CNFs in the Ni-Cd electrolytes induced growth of cm-sized dendrites in conditions where dendrites were otherwise not observed, or increased the degree of dendritic growth when it was already present to a lesser extent. The augmented dendritic growth correlated with an increase in deposition yields of up to 30%. Additionally, it facilitated the formation of easily detachable dendritic structures, enabling more efficient processing on a large scale and enhancing the recovery of the toxic cadmium metal. Regardless of the charged nature of the CNFs, both negatively and positively charged CNFs led to a significant formation of protruding cadmium dendrites. When deposited separately, dendritic growth and increased deposition yields remained consistent for the cadmium metal. However, dendrites were not observed during the deposition of nickel; instead, uniformly deposited layers were formed, albeit at lower yields (20%), when positively charged CNFs were present. This paper explores the potential of utilizing cellulose and its derivatives as the world's largest biomass resource to enhance battery metal recycling processes.
Collapse
Affiliation(s)
- B W Hoogendoorn
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology Teknikringen 56 114 28 Stockholm Sweden
| | - O Karlsson
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology Teknikringen 56 114 28 Stockholm Sweden
| | - X Xiao
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology Teknikringen 56 114 28 Stockholm Sweden
| | - A Pandey
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology Teknikringen 56 114 28 Stockholm Sweden
| | - S E Mattsson
- SAFT AB Jungnergatan 25 572 32 Oskarshamn Sweden
| | - V Ström
- Department of Material Science and Engineering, School of Industrial Engineering and Management, KTH Royal Institute of Technology Brinellvägen 23 SE-100 24 Stockholm Sweden
| | - R L Andersson
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology Teknikringen 56 114 28 Stockholm Sweden
| | - Y Li
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology Teknikringen 56 114 28 Stockholm Sweden
| | - R T Olsson
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology Teknikringen 56 114 28 Stockholm Sweden
| |
Collapse
|
17
|
Liu R, Guo Y, Pei M, Chen Y, Zhang L, Li L, Chen Q, Tian Y, Xie H. Cellulose levulinate ester as a robust building block for the synthesis of fully biobased functional cellulose esters. Int J Biol Macromol 2023; 246:125654. [PMID: 37399870 DOI: 10.1016/j.ijbiomac.2023.125654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Facile modification of cellulose or cellulosic derivatives is one of the important strategies to prepare materials with targeted properties, multifunctionality, thus extending their applications in various fields. Cellulose levulinate ester (CLE) has the structural advantage of acetyl propyl ketone moiety pendant, on which fully biobased cellulose levulinate ester derivatives (CLEDs) have been successfully designed and prepared via aldol condensation reaction of CLE with lignin-derived phenolic aldehydes catalyzed by DL-proline. The structure of CLEDs are featured by a phenolic α,β-unsaturated ketone structure, thus endowing them with good UV absorption properties, excellent antioxidant activity, fluorescence properties and satisfactory biocompatibility. The utility of this aldol reaction strategy, together with the facile tunable substitution degree of cellulose levulinate ester and the diversity of aldehydes, can provide potentially a large spectrum of structurally diverse functionalized cellulosic polymers and create new avenues to advanced polymeric architectures.
Collapse
Affiliation(s)
- Ran Liu
- Department of polymer materials and engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Yuanlong Guo
- Department of polymer materials and engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Min Pei
- Department of polymer materials and engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Yumei Chen
- Department of polymer materials and engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Lihua Zhang
- Department of polymer materials and engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Long Li
- Department of polymer materials and engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Qin Chen
- Department of polymer materials and engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Yaozhu Tian
- Department of polymer materials and engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Haibo Xie
- Department of polymer materials and engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
18
|
Gupta A, Ladino CR, Mekonnen TH. Cationic modification of cellulose as a sustainable and recyclable adsorbent for anionic dyes. Int J Biol Macromol 2023; 234:123523. [PMID: 36796570 DOI: 10.1016/j.ijbiomac.2023.123523] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/31/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023]
Abstract
There is a dire need to find an efficient, cost-effective, sustainable, and environment-friendly adsorbent for the removal of anionic pollutants such as dyes from waste effluent. In this work, a cellulose-based cationic adsorbent was designed and utilized for methyl orange and reactive black 5 anionic dyes adsorption from an aqueous medium. Solid-state nuclear magnetic resonance spectroscopy (NMR) revealed the successful modification of cellulose fibers, and dynamic light scattering (DLS) evaluations showed the levels of charge densities. Furthermore, various models for adsorption equilibrium isotherm were utilized to understand the adsorbent characteristics, with the Freundlich isotherm model providing an excellent fit for the experimental results. The modelled maximum adsorption capacity was as much as 1010 mg/g for both model dyes. The dye adsorption was also confirmed using EDX. It was noted that the dyes were chemically adsorbed through the ionic interaction that can be reversed using sodium chloride solution. Overall, the cationized cellulose is inexpensive, environment-friendly, nature-driven, and recyclable making it an appealing adsorbent feasible for the dye removal from textile wastewater effluent.
Collapse
Affiliation(s)
- Arvind Gupta
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Camila Reyes Ladino
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Tizazu H Mekonnen
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada; Institute of Polymer Research, University of Waterloo, Waterloo, ON, Canada; Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
19
|
Xie H, Shi G, Wang R, Chen Q, Yu A, Lu A. Euryale ferox stem-inspired anisotropic quaternized cellulose/xanthan-based antibacterial sponge with high absorbency and compressibility for noncompressible hemorrhage. Int J Biol Macromol 2023; 237:124166. [PMID: 36965567 DOI: 10.1016/j.ijbiomac.2023.124166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/01/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
Uncontrollable hemorrhage from deep noncompressible wounds remains an intractable challenge. Herein, inspired by the euryale ferox stem which is capable of transporting water and nutrient substances efficiently along longitudinally aligned channels, an anisotropic sponge with rapidly liquid absorption capacity, excellent mechanical compressibility and antibacterial property based on quaternized cellulose (QC), xanthan gum (XG) and reduced graphene oxide (rGO), was constructed. The euryale ferox stem-like structure and multiple interactions, involving hydrogen bonding, electrostatic interaction and chemical crosslinking, endowed the sponge with excellent fatigue resistance, elasticity and efficient liquid absorption capacity. In vivo rat liver injury, tail amputation and liver noncompressible hemorrhage model experiments confirmed that the sponge exhibited superior hemostatic performance than commercial gelatin sponge, attributing to the positive charge, efficient absorption capacity and rough surface of the sponge, which synergistically promoting the aggregation and activation of red blood cells and platelets as well as formation of fibrin network, leading to accelerated blood coagulation process. Besides, the sponge showed favorable cytocompatibility, hemocompatibility and antibacterial property. Overall, the bioinspired sponge had fantastic potential for controlling deep noncompressible hemorrhage and providing a new idea for designing hemostatic materials.
Collapse
Affiliation(s)
- Hongxia Xie
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China; Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430072, PR China
| | - Ge Shi
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Ruizi Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Qianqian Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China; Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430072, PR China
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China.
| | - Ang Lu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China; Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430072, PR China.
| |
Collapse
|
20
|
Trombino S, Sole R, Di Gioia ML, Procopio D, Curcio F, Cassano R. Green Chemistry Principles for Nano- and Micro-Sized Hydrogel Synthesis. Molecules 2023; 28:molecules28052107. [PMID: 36903352 PMCID: PMC10004334 DOI: 10.3390/molecules28052107] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 03/06/2023] Open
Abstract
The growing demand for drug carriers and green-technology-based tissue engineering materials has enabled the fabrication of different types of micro- and nano-assemblies. Hydrogels are a type of material that have been extensively investigated in recent decades. Their physical and chemical properties, such as hydrophilicity, resemblance to living systems, swelling ability and modifiability, make them suitable to be exploited for many pharmaceutical and bioengineering applications. This review deals with a brief account of green-manufactured hydrogels, their characteristics, preparations, importance in the field of green biomedical technology and their future perspectives. Only hydrogels based on biopolymers, and primarily on polysaccharides, are considered. Particular attention is given to the processes of extracting such biopolymers from natural sources and the various emerging problems for their processing, such as solubility. Hydrogels are catalogued according to the main biopolymer on which they are based and, for each type, the chemical reactions and the processes that enable their assembly are identified. The economic and environmental sustainability of these processes are commented on. The possibility of large-scale processing in the production of the investigated hydrogels are framed in the context of an economy aimed at waste reduction and resource recycling.
Collapse
|
21
|
Jiménez-Bonilla P, Zhang J, Wang Y, Blersch D, de-Bashan LE, Guo L, Li X, Zhang D, Wang Y. Polycationic Surfaces Promote Whole-Cell Immobilization and Induce Microgranulation of Clostridium saccharoperbutylacetonicum N1-4 for Enhanced Biobutanol Production. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49555-49567. [PMID: 36282625 DOI: 10.1021/acsami.2c14888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Immobilization is a common strategy used to protect microbial cells to improve the performance of bioprocesses. However, the interaction mechanism between the cells and the immobilization material is generally poorly understood. In this study, we employed natural polysaccharide-based materials as immobilization carriers for clostridial fermentation in an attempt to enhance the production of butanol (a valuable biofuel/biochemical but highly toxic to the host cells) and meanwhile elucidate the interaction mechanisms related to immobilization. The utilization of chitosan powder as the immobilization carrier enhanced butanol productivity by 97% in the fermentation with Clostridium saccharoperbutylacetonicum N1-4 and improved butanol titer by 21% in the fermentation with Clostridium beijerinckii NCIMB 8052. Additionally, analogue derivatives using microcrystalline cellulose (MCC) and cotton cationized on the surface with 3-chloro-2-hydroxypropyltrymethylammonium (CHPTA) and 2-chloro-N,N-diethylaminoethyl chloride (DEAEC) were prepared and used as immobilization carriers for similar fermentation conditions. The CHPTA derivatives showed slightly increased production of butanol and total solvent with C. saccharoperbutylacetonicum. Overall, our results indicated that the interaction between the cell and the carrier material occurs through a double mechanism involving adsorption immobilization and induced aggregation. This work provides insights concerning the effects of the chemical properties of the carrier material (such as the cation density and surface area) on fermentation performance, enabling a better understanding of the interaction between bacterial cells and the cationic materials. The derivatization strategies employed in this study can be applied to most cellulosic materials to modulate the properties and enhance the interaction between the cell and the carrier material for immobilization, thus improving the bioprocess performance.
Collapse
Affiliation(s)
- Pablo Jiménez-Bonilla
- Department of Biosystems Engineering, Auburn University, Auburn, Alabama36849, United States
- Universidad Nacional (UNA), Campus Omar Dengo, Heredia83-3000, Costa Rica
| | - Jie Zhang
- Department of Biosystems Engineering, Auburn University, Auburn, Alabama36849, United States
| | - Yifen Wang
- Department of Biosystems Engineering, Auburn University, Auburn, Alabama36849, United States
- Center for Bioenergy and Bioproducts, Auburn University, Auburn, Alabama36849, United States
| | - David Blersch
- Department of Biosystems Engineering, Auburn University, Auburn, Alabama36849, United States
| | - Luz Estela de-Bashan
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Av. IPN 195, La Paz, B.C.S.23096, Mexico
- The Bashan Institute of Science, 1730 Post Oak Court, Auburn, Alabama36830, United States
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama36849, United States
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao266100, China
| | - Xiao Li
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, Alabama36849, United States
| | - Dunhua Zhang
- Aquatic Animal Health Research Unit, Agricultural Research Service, USDA, 990 Wire Road, Auburn, Alabama36832, United States
| | - Yi Wang
- Department of Biosystems Engineering, Auburn University, Auburn, Alabama36849, United States
- Center for Bioenergy and Bioproducts, Auburn University, Auburn, Alabama36849, United States
| |
Collapse
|
22
|
Zhang H, Shi LWE, Zhou J. Recent developments of polysaccharide‐based double‐network hydrogels. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Haodong Zhang
- Hubei Engineering Center of Natural Polymer‐based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences Wuhan University Wuhan China
| | - Ling Wa Eric Shi
- Hubei Engineering Center of Natural Polymer‐based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences Wuhan University Wuhan China
| | - Jinping Zhou
- Hubei Engineering Center of Natural Polymer‐based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences Wuhan University Wuhan China
| |
Collapse
|
23
|
Qin Y, Li Y, Wu R, Wang X, Qin J, Fu Y, Qin M, Wang Z, Zhang Y, Zhang F. Bilayer Designed Paper-Based Solar Evaporator for Efficient Seawater Desalination. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3487. [PMID: 36234614 PMCID: PMC9565815 DOI: 10.3390/nano12193487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Solar desalination devices utilizing sustainable solar energy and the abundant resource of seawater has great potential as a response to global freshwater scarcity. Herein, a bilayered solar evaporator was designed and fabricated utilizing a facile paper sheet forming technology, which was composed of cellulose fibers decorated with Fe3O4 nanoparticles as the top absorbent layer and the original cellulose fibers as the bottom supporting substrate. The characterization of the cellulose fibers decorated with Fe3O4 nanoparticles revealed that the in situ formed Fe3O4 nanoparticles were successfully loaded on the fiber surface and presented a unique rough surface, endowing the absorber layer with highly efficient light absorption and photothermal conversion. Moreover, due to its superhydrophilic property, the cellulose fiber-based bottom substrate conferred ultra-speed water transport capability, which could enable an adequate water supply to combat the water loss caused by continuous evaporation on the top layer. With the advantages mentioned above, our designed bilayered paper-based evaporator achieved an evaporation rate ~1.22 kg m-2 h-1 within 10 min under 1 sun irradiation, which was much higher than that of original cellulose cardboard. Based on the simple and scalable manufacture process, the bilayered paper-based evaporator may have great potential as a highly efficient photothermal conversion material for real-world desalination applications.
Collapse
Affiliation(s)
- Ying Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yongzheng Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Ruijie Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xiaodi Wang
- Organic Chemistry Laboratory, Taishan University, Taian 271021, China
| | - Jinli Qin
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yingjuan Fu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Menghua Qin
- Organic Chemistry Laboratory, Taishan University, Taian 271021, China
| | - Zhiwei Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yongchao Zhang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | | |
Collapse
|
24
|
de Aguiar TC, de Oliveira Torchia DF, van Tol de Castro TA, Tavares OCH, de Abreu Lopes S, de Souza da Silva L, Castro RN, Berbara RLL, Pereira MG, García AC. Spectroscopic-chemometric modeling of 80 humic acids confirms the structural pattern identity of humified organic matter despite different formation environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155133. [PMID: 35427620 DOI: 10.1016/j.scitotenv.2022.155133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
The structure of humic substances (HSs) and the humification process are critical topics for understanding the dynamics of carbon on the planet. This study aimed to assess the structural patterns of 80 humic acid (HA) samples isolated from different soils, namely, Histosols, Ferralsols, Cambisols, Mollisols, Planosols and vermicompost, by spectroscopic characterization using solid-state 13C nuclear magnetic resonance cross-polarization/magic angle spinning combined with chemometric techniques. All 80 HAs had a similar structural pattern, regardless of their source of origin, but they had different relative quantities of organic C species. The different structural amounts of the various organic C fractions generated different properties in each of the HAs. This explains why there were similarities in the HS functions but why the intensities of these functions varied among the samples from the different soil types and environments, confirming that HSs are a group of compounds with a structural identity distinct from the molecules that give rise to them. There appears to be no single definition for the humification process; therefore, for the soils from each source of origin, a specific humification process occurs that depends on the characteristics of the local environment. Humification can be understood as a process that is similar to a chemical reaction, where the key factor that determines the formation of the products is the structural characteristics of the reactants (organic substrates deposited in the soil). The degree to which the reaction progresses is governed by the reaction conditions (chemical, physical, and biological properties of the soil). The structural patterns for HSs obtained in this study justify the existence of HSs structured as self-assembled, hydrophilic and hydrophobic domains that, under certain conditions, can undergo transformations, altering the balance of organic carbon in the environment.
Collapse
Affiliation(s)
- Tamiris Conceição de Aguiar
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | | | - Tadeu Augusto van Tol de Castro
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Orlando Carlos Huertas Tavares
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Samuel de Abreu Lopes
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Lucas de Souza da Silva
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Rosane Nora Castro
- Department of Chemistry, Institute of Chemistry, Federal Rural University of Rio de Janeiro, Rodovia Br 465, Seropédica, RJ 23890-000, Brazil
| | - Ricardo Luiz Louro Berbara
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Marcos Gervasio Pereira
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Andrés Calderín García
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil.
| |
Collapse
|
25
|
Pinto PIF, Magina S, Budjav E, Pinto PCR, Liebner F, Evtuguin D. Cationization of Eucalyptus Kraft LignoBoost Lignin: Preparation, Properties, and Potential Applications. Ind Eng Chem Res 2022; 61:3503-3515. [PMID: 35309502 PMCID: PMC8931834 DOI: 10.1021/acs.iecr.1c04899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 01/14/2023]
Abstract
![]()
Current changes toward
a more biobased economy have recently created
tremendous renewed interest in using lignin as a valuable source for
chemicals and materials. Here, we present a facile cationization approach
aiming to impart kraft lignin water-solubility, with similar good
features as lignosulfonates. Eucalyptus globulus kraft lignin obtained from a paper mill black liquor by applying
the LignoBoost process was used as the substrate. Its reaction with
3-chloro-2-hydroxypropyl-trimethylammonium chloride (CHPTAC) in an
aqueous alkaline medium was studied to assess the impact of different
reaction conditions (temperature, time, educt concentration, molar
CHPTAC-to-lignin ratio) on the degree of cationization. It has been
shown that at pH 13, 10 wt % lignin content, 70 °C, and 3 h reaction
time, a CHPTAC-to-lignin minimum molar ratio of 1.3 is required to
obtain fully water-soluble products. Elemental analysis (4.2% N),
size-exclusion chromatography (Mw 2180
Da), and quantitative 13C NMR spectroscopy of the product
obtained at this limit reactant concentration suggest introduction
of 1.2 quaternary ammonium groups per C9 unit and substitution of
75% of the initially available phenolic OH groups. The possible contribution
of benzylic hydroxyls to the introduction of quaternary ammonium moieties
through a quinone methide mechanism has been proposed. Since both
molecular characteristics and degree of substitution, and hence solubility
or count of surface charge, of colloidal particles can be adjusted
within a wide range, cationic kraft lignins are promising materials
for a wide range of applications, as exemplarily demonstrated for
flocculation of anionic dyes.
Collapse
Affiliation(s)
- Patrícia I F Pinto
- RAIZ-Forest and Paper Research Institute, Quinta de S. Francisco, Apartado 15, Eixo, 3801-501 Aveiro, Portugal.,CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Sandra Magina
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Enkhjargal Budjav
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Straße 24, A-3430 Tulln, Austria
| | - Paula C R Pinto
- RAIZ-Forest and Paper Research Institute, Quinta de S. Francisco, Apartado 15, Eixo, 3801-501 Aveiro, Portugal
| | - Falk Liebner
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.,Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Straße 24, A-3430 Tulln, Austria
| | - Dmitry Evtuguin
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
26
|
Jiang X, Zeng F, Yang X, Jian C, Zhang L, Yu A, Lu A. Injectable self-healing cellulose hydrogel based on host-guest interactions and acylhydrazone bonds for sustained cancer therapy. Acta Biomater 2022; 141:102-113. [PMID: 34990813 DOI: 10.1016/j.actbio.2021.12.036] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 12/13/2022]
Abstract
Tumor local chemotherapy employing injectable hydrogel reservoirs is a promising platform to achieve precise drug administration. However, balanced injectability, pH-responsiveness and long-term hydrolysis resistance of self-healing hydrogels remain appealing challenges. Herein, a modular preassembly strategy combining host-guest interactions with dynamic acylhydrazone bonds, was exploited to fabricate injectable cellulose-based hydrogels (CAAs) dressed with self-healing properties, pH-responsiveness and hydrolytic degradation resistance. Attributed to the host-guest interaction between β-cyclodextrin (CD) and 1-adamantane (AD), the hydrogels exhibited injectability, self-healing properties (healing efficiency of 97.5%) and rapid recovery (< 10 min) without external stimuli in physiological environment. Moreover, the hydrogels equipped with dynamic acylhydrazone linkages underwent slow hydrolytic degradation (> 30 days) and pH-responsive behavior, endowing the hydrogels with precise spatiotemporal drug release administration. The in vivo application of CAA as a carrier was studied using doxorubicin (DOX) model drug, and the results shows that using CAA as DOX carrier not only greatly enhances the anti-tumor efficacy of DOX, but also reduced the side effects of DOX. STATEMENT OF SIGNIFICANCE: With the preassemble approach combining host-guest interactions with dynamic acylhydrazone bonds, this work demonstrated a multi-functional self-healing hydrogel as drug carrier developed by using natural polysaccharides, which offers a new avenue for the high-value utilization of biomass. The strategy demonstrated in the present work may also supply a pathway for the preparation and regulation of hydrogels as intelligent biomedicine materials.
Collapse
|
27
|
Pedrosa JFS, Rasteiro MG, Neto CP, Ferreira PJT. Effect of cationization pretreatment on the properties of cationic Eucalyptus micro/nanofibrillated cellulose. Int J Biol Macromol 2022; 201:468-479. [PMID: 35051499 DOI: 10.1016/j.ijbiomac.2022.01.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/07/2021] [Accepted: 01/11/2022] [Indexed: 11/19/2022]
Abstract
Micro/nanofibrillated celluloses (M/NFCs) have attracted considerable research interest over the past few decades, with various pretreatments being used to reduce energy consumption and/or increase fibrillation. To date, few studies have considered cationization as a pretreatment for their preparation. In this work, quaternary ammonium groups were attached to cellulose fibers by a direct reaction with 2,3-epoxypropyltrimethylammonium chloride or by a two-step method (periodate oxidation + Girard's reagent T). The cationic fibers with degrees of substitution (DS) between 0.02 and 0.36, were subjected to homogenization treatment. The morphological properties, chemical composition, and rheological behavior were evaluated to assess the effect of DS and the effect of the cationization method (for samples with similar DS). The two-step cationization resulted in significant degradation of the cellulose structure, leading to the formation of short fibrils and solubilization of the material, ranging from 6% to almost complete solubilization at a DS of 0.36. Direct cationization resulted in longer fibrils with an average diameter of 1 μm, and no significant cellulose degradation was observed, leading to a more cohesive gel-like material (at 1 wt%). These observations clearly show the strong influence of the cationization method on the final properties of the cationic cellulosic materials.
Collapse
Affiliation(s)
- Jorge F S Pedrosa
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Pólo II - R. Silvio Lima, 3030-790 Coimbra, Portugal.
| | - Maria G Rasteiro
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Pólo II - R. Silvio Lima, 3030-790 Coimbra, Portugal
| | - Carlos P Neto
- RAIZ - Forest and Paper Research Institute, Quinta de São Francisco - Apartado 15, 3801-501 Eixo, Portugal
| | - Paulo J T Ferreira
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Pólo II - R. Silvio Lima, 3030-790 Coimbra, Portugal
| |
Collapse
|
28
|
Liu Y, Wei H, Li S, Wang G, Guo T, Han H. Facile fabrication of semi-IPN hydrogel adsorbent based on quaternary cellulose via amino-anhydride click reaction in water. Int J Biol Macromol 2022; 207:622-634. [PMID: 35283138 DOI: 10.1016/j.ijbiomac.2022.03.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 02/16/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022]
Abstract
Clean and safe water resources play a key role in environmental safety and human health. Recently, hydrogels have attracted extensive attention due to their non-toxicity, controllable performance, and high adsorption. Herein, a semi- interpenetrating network hydrogel (semi-IPN-Gel) adsorbent based on quaternary cellulose (QC) was prepared by the amino-anhydride click reaction between maleic anhydride copolymer and polyacrylamine hydrochloride (PAH), and its adsorption properties for Eosin Y were studied. First, a binary copolymer (PAM) of acrylamide and maleic anhydride was synthesized by free radical polymerization. Then, the PAM, QC and PAH were dissolved in water, and the pH of the solution was adjusted to alkaline. Semi-IPN-Gel was successfully prepared by fast anhydride-amino click reaction. The preparation conditions of hydrogels were optimized by single-factor experiments. Finally, taking Eosin Y as a model pollutant, the adsorption performance of Eosin Y was studied. The factors influencing the adsorption capacity of the absorbents such as initial concentration of the Eosin Y, temperature, the amount of absorbent, ionic strength and pH of the Eosin Y solutions were investigated. And adsorption data were analyzed via the kinetic model and the isothermal model, indicating that the adsorption process of the hydrogel is a single layer chemisorption process.
Collapse
Affiliation(s)
- Yuhua Liu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Hongliang Wei
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Songmao Li
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Gang Wang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Tao Guo
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Huayun Han
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
29
|
Roy S, Kumari M, Haloi P, Chawla S, Konkimalla VB, Kumar A, Kashyap HK, Jaiswal A. Quaternary ammonium substituted pullulan accelerates wound healing and disinfects Staphylococcus aureus infected wounds in mouse through an atypical 'non-pore forming' pathway of bacterial membrane disruption. Biomater Sci 2021; 10:581-601. [PMID: 34907410 DOI: 10.1039/d1bm01542g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The emergence of multi-drug resistant pathogens has fueled the search for alternatives to the existing line of antibiotics that can eradicate pathogens without inducing resistance development. Here, we report the accelerated wound healing and disinfection potential of a non-amphiphilic quaternized fungal exopolysaccharide, pullulan, without resistance generation in pathogens. The quaternary ammonium substituted pullulan (CP) derivatives showed excellent bactericidal activity against both Gram negative (MBC90 = 1.5 μg mL-1) and Gram positive (MBC90 = 0.25 μg mL-1) bacteria at very low concentrations without showing any toxicity towards mammalian cells. A combined approach of atomistic molecular dynamics simulation and experimental assays revealed that CP exerts a membrane directed bactericidal action through an atypical "non-pore forming" pathway which is not yet established for any known antibacterial polysaccharides. This involves an increase in membrane roughness, disorder among anionic lipid tails, formation of localized anionic lipid clusters and membrane depolarization, finally leading to physical disruption of the membrane integrity. Moreover, CP also displayed biofilm eradication abilities and emerged as an excellent therapeutic material for disinfection and healing of infected wounds. The present work shows the potential of exploiting polysaccharides as next-generation broad-spectrum antimicrobials and provides a platform for further development of rationally designed pullulan-based functional materials for biomedical applications.
Collapse
Affiliation(s)
- Shounak Roy
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175005, India.
| | - Monika Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Prakash Haloi
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India
| | - Saurabh Chawla
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India
| | - V Badireenath Konkimalla
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India
| | - Ajith Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175005, India.
| | - Hemant K Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Amit Jaiswal
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175005, India.
| |
Collapse
|
30
|
Xie H, Xia H, Huang L, Zhong Z, Ye Q, Zhang L, Lu A. Biocompatible, antibacterial and anti-inflammatory zinc ion cross-linked quaternized cellulose‑sodium alginate composite sponges for accelerated wound healing. Int J Biol Macromol 2021; 191:27-39. [PMID: 34534578 DOI: 10.1016/j.ijbiomac.2021.09.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 01/30/2023]
Abstract
Bacterial infection has become one of the most challenges for wound healing, which causes serious inflammatory response and delays the healing process. Herein, a novel sponge with excellent biocompatible, antibacterial and anti-inflammatory properties based on quaternized cellulose (QC), sodium alginate (SA) and Zn2+ was reported. The existence of physical interactions, such as electrostatic interaction, chelation and hydrogen bonding endowed the sponges with enhanced mechanical property. The composite sponges exhibited outstanding biocompatibility and hemostatic efficiency due to the compatible nature of the component and physical cross-linking, as well as superior antibacterial property benefited from the synergistic effects of steady Zn2+ release and quaternary ammonium group. In vivo investigation validated that the enhanced antibacterial and anti-inflammatory effect of the sponges, which significantly promoted wound closure and the reconstruction of skin tissue through epithelial regeneration, collagen deposition and mitigating inflammatory cell infiltration. Overall, the novel sponge demonstrated great potentials in bacteria-associated wound management.
Collapse
Affiliation(s)
- Hongxia Xie
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan University, Wuhan 430072, China
| | - Haoyang Xia
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430071, PR China
| | - Lin Huang
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan University, Wuhan 430072, China
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430071, PR China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430071, PR China.
| | - Lina Zhang
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan University, Wuhan 430072, China.
| | - Ang Lu
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
31
|
Bansal M, Kumar D, Chauhan GS, Kaushik A, Kaur G. Functionalization of nanocellulose to quaternized nanocellulose tri-iodide and its evaluation as an antimicrobial agent. Int J Biol Macromol 2021; 190:1007-1014. [PMID: 34517030 DOI: 10.1016/j.ijbiomac.2021.08.228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/31/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
The reported research involves formation of quaternized nanocellulose triiodide for use as an agent for controlled release of iodine. Nanocellulose was extracted from bagasse and the extracted cellulose nanofibers (CNFs) were quaternized with 3-chloro-2-hydroxypropyltrimethyl ammonium chloride (CHPTAC) in NaOH/urea solution. This was followed by exchange of Cl- with I3- by reaction with KI/I2. Nanofibers having I3- anions were characterized by SEM, TEM, XRD, XRF and FTIR spectroscopy. The iodine content was estimated to be 33.42% and the fibers showed no leaching of molecular I2 in detectable amounts. The fibers showed a maximum activity of 94.73% and 99.86% against E. coli and S. aureus, respectively. These are capable of sustaining 100% antimicrobial activity over a period of six months. These fibers can thus find potential applications as a disinfectant agent in biomedical and water purification processes.
Collapse
Affiliation(s)
- Monica Bansal
- Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla 171005, India
| | - Dharamender Kumar
- Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla 171005, India
| | - Ghanshyam S Chauhan
- Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla 171005, India.
| | | | - Gagandeep Kaur
- Department of Microbial Biotechnology, Panjab University, Chandigarh 160014, India
| |
Collapse
|
32
|
McMullen A, Ehie D, Wyatt Q, Kim K, Sedaghat-Herati R. Exploring phosphonium and ammonium chitosan polymers and their PEGylated analogs for high performance gene delivery. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
|
34
|
Li Q, Li Y, Jin Z, Li Y, Chen Y, Zhou J. Viscoelasticity and Solution Stability of Cyanoethylcellulose with Different Molecular Weights in Aqueous Solution. Molecules 2021; 26:molecules26113201. [PMID: 34071835 PMCID: PMC8198951 DOI: 10.3390/molecules26113201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022] Open
Abstract
Water-soluble cellulose ethers are widely used as stabilizers, thickeners, and viscosity modifiers in many industries. Understanding rheological behavior of the polymers is of great significance to the effective control of their applications. In this work, a series of cyanoethylcellulose (CEC) samples with different molecular weights were prepared with cellulose and acrylonitrile in NaOH/urea aqueous solution under the homogeneous reaction. The rheological properties of water-soluble CECs as a function of concentration and molecular weight were investigated using shear viscosity and dynamic rheological measurements. Viscoelastic behaviors have been successfully described by the Carreau model, the Ostwald-de-Waele equation, and the Cox–Merz rule. The entanglement concentrations were determined to be 0.6, 0.85, and 1.5 wt% for CEC-11, CEC-7, and CEC-3, respectively. All of the solutions exhibited viscous behavior rather than a clear sol-gel transition in all tested concentrations. The heterogeneous nature of CEC in an aqueous solution was determined from the Cox–Merz rule due to the coexistence of single chain complexes and aggregates. In addition, the CEC aqueous solutions showed good thermal and time stability, and the transition with temperature was reversible.
Collapse
Affiliation(s)
- Qian Li
- School of Engineering, Zhejiang A&F University, Hangzhou 311300, China; (Y.L.); (Z.J.); (Y.L.); (Y.C.)
- Correspondence: (Q.L.); (J.Z.)
| | - Yuehu Li
- School of Engineering, Zhejiang A&F University, Hangzhou 311300, China; (Y.L.); (Z.J.); (Y.L.); (Y.C.)
| | - Zehua Jin
- School of Engineering, Zhejiang A&F University, Hangzhou 311300, China; (Y.L.); (Z.J.); (Y.L.); (Y.C.)
| | - Yujie Li
- School of Engineering, Zhejiang A&F University, Hangzhou 311300, China; (Y.L.); (Z.J.); (Y.L.); (Y.C.)
| | - Yifan Chen
- School of Engineering, Zhejiang A&F University, Hangzhou 311300, China; (Y.L.); (Z.J.); (Y.L.); (Y.C.)
| | - Jinping Zhou
- College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, China
- Correspondence: (Q.L.); (J.Z.)
| |
Collapse
|
35
|
Ghosh T, Singh R, Nesamma AA, Jutur PP. Marine Polysaccharides: Properties and Applications. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
36
|
Control of the aqueous solubility of cellulose by hydroxyl group substitution and its effect on processing. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Abstract
Abstract
The presented chapter deals with structure, morphology, and properties aspects concerning cellulose-based polymers in both research and industrial production, such as cellulose fibers, cellulose membranes, cellulose nanocrystals, and bacterial cellulose, etc. The idea was to highlight the main cellulose-based polymers and cellulose derivatives, as well as the dissolution technologies in processing cellulose-based products. The structure and properties of cellulose are introduced briefly. The main attention has been paid to swelling and dissolution of cellulose in order to yield various kinds of cellulose derivatives through polymerization. The main mechanisms and methods are also presented. Finally, the environmental friendly and green cellulose-based polymers will be evaluated as one of the multifunctional and smart materials with significant progress.
Collapse
Affiliation(s)
- Xing Zhou
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology , Xi’an 710048 , P. R. China
- School of Materials Science and Engineering, Xi’an University of Technology , Xi’an 710048 , P. R. China
| | - Yaya Hao
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology , Xi’an 710048 , P. R. China
| | - Xin Zhang
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology , Xi’an 710048 , P. R. China
| | - Xinyu He
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology , Xi’an 710048 , P. R. China
| | - Chaoqun Zhang
- College of Materials and Energy, South China Agricultural University , Guangzhou 510642 , P. R. China
| |
Collapse
|
38
|
Abstract
Bacterial transformation and gene transfection can be understood as being the results of introducing specific genetic material into cells, resulting in gene expression, and adding a new genetic trait to the host cell. Many studies have been carried out to investigate different types of lipids and cationic polymers as promising nonviral vectors for DNA transfer. The present study aimed to carry out a systematic review on the use of biopolymeric materials as nonviral vectors. The methodology was carried out based on searches of scientific articles and applications for patents published or deposited from 2006 to 2020 in different databases for patents (EPO, USPTO, and INPI) and articles (Scopus, Web of Science, and Scielo). The results showed that there are some deposits of patents regarding the use of chitosan as a gene carrier. The 16 analyzed articles allowed us to infer that the use of biopolymers as nonviral vectors is limited due to the low diversity of biopolymers used for these purposes. It was also observed that the use of different materials as nonviral vectors is based on chemical structure modifications of the material, mainly by the addition of cationic groups. Thus, the use of biopolymers as nonviral vectors is still limited to only a few polysaccharide types, emphasizing the need for further studies involving the use of different biopolymers in processes of gene transfer.
Collapse
|
39
|
Kim YM, Lee YS, Kim T, Yang K, Nam K, Choe D, Roh YH. Cationic cellulose nanocrystals complexed with polymeric siRNA for efficient anticancer drug delivery. Carbohydr Polym 2020; 247:116684. [DOI: 10.1016/j.carbpol.2020.116684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 01/07/2023]
|
40
|
Sharma D, Kumar V, Sharma P. Application, Synthesis, and Characterization of Cationic Galactomannan from Ruderal Species as a Wet Strength Additive and Flocculating Agent. ACS OMEGA 2020; 5:25240-25252. [PMID: 33043202 PMCID: PMC7542865 DOI: 10.1021/acsomega.0c03408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
There has been a cumulative interest across the globe in substituting the synthetic materials with sustainable, economical, and biobased green alternatives for utilization in diverse industrial applications. Galactomannans are among the most important sustainable, biodegradable macromolecules abundantly produced by plants, which can be exploited for a range of end-use applications. Functionalization of the galactomannans may improve the physicochemical properties for diverse industrial applications. In the present study, the cationic derivative of Cassia tora gum, a 1:5 galactomannan, was synthesized under heterogeneous alkaline conditions using CHPTAC. The effect of each reaction parameter on the degree of substitution (DS) was investigated using Taguchi L16 orthogonal array. The optimized cationic product with DS 0.28 showed promising results as a biopolymeric flocculant for wastewater treatment and as a wet strength additive for improving the physical strength of paper prepared from old corrugated carton for its recycling. The optimized product was characterized by advanced spectroscopic methods.
Collapse
Affiliation(s)
- Deepak Sharma
- Chemistry and Bioprospecting Division, Forest Research Institute, Indian Council of Forestry
Research and Education, Dehradun 248006, India
| | - Vineet Kumar
- Chemistry and Bioprospecting Division, Forest Research Institute, Indian Council of Forestry
Research and Education, Dehradun 248006, India
| | - Pradeep Sharma
- Chemistry and Bioprospecting Division, Forest Research Institute, Indian Council of Forestry
Research and Education, Dehradun 248006, India
| |
Collapse
|
41
|
Hasan N, Rahman L, Kim SH, Cao J, Arjuna A, Lallo S, Jhun BH, Yoo JW. Recent advances of nanocellulose in drug delivery systems. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2020. [DOI: 10.1007/s40005-020-00499-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Adolfsson KH, Melilli G, Hakkarainen M. Oxidized Carbonized Cellulose-Coated Filters for Environmental Contaminant Adsorption and Detection. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Karin H. Adolfsson
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 58, Stockholm SE-100 44, Sweden
| | - Giuseppe Melilli
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 58, Stockholm SE-100 44, Sweden
| | - Minna Hakkarainen
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 58, Stockholm SE-100 44, Sweden
| |
Collapse
|
43
|
A flexible Cellulose/Methylcellulose gel polymer electrolyte endowing superior Li + conducting property for lithium ion battery. Carbohydr Polym 2020; 246:116622. [PMID: 32747261 DOI: 10.1016/j.carbpol.2020.116622] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 11/22/2022]
Abstract
With the advent of gel polymer electrolyte (GPE), a series of safety problems of lithium ion batteries have been resolved. However, poor self-standing property, the low ionic conductivity and Li+ transference number are still the obstacles that impede the practical application of GPE. Herein, a flexible and eco-friendly GPE is designed using allyl-modified cellulose with methylcellulose through simple UV curing. The crosslinked structure facilitates the integrity of GPE during use, and methylcellulose guarantees the high affinity to liquid electrolyte and improve interfacial compatibility. The specific polar functional groups (OH, OCH3 and COC) in GPE cooperate to enhance the lithium salt dissociation, anion immobilization and lithium ion transporting and enable the high Li+ transference number (0.902) and ion conductivity (4.36 × 10-3 S cm-1). The assembled Li/GPE/LiFePO4 coin cells possess high initial discharge capacity of 150.6 mA h g-1 and a high capacity retention of 91.6 % after 100 cycles.
Collapse
|
44
|
Synthesis of quaternised guar gum using Taguchi L(16) orthogonal array. Carbohydr Polym 2020; 237:116136. [DOI: 10.1016/j.carbpol.2020.116136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/28/2020] [Accepted: 03/06/2020] [Indexed: 11/15/2022]
|
45
|
Liang X, Liang B, Wei J, Zhong S, Zhang R, Yin Y, Zhang Y, Hu H, Huang Z. A cellulose-based adsorbent with pendant groups of quaternary ammonium and amino for enhanced capture of aqueous Cr(VI). Int J Biol Macromol 2020; 148:802-810. [DOI: 10.1016/j.ijbiomac.2020.01.184] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/29/2019] [Accepted: 01/19/2020] [Indexed: 12/20/2022]
|
46
|
Synthesis and characterization of quaternized Cassia tora gum using Taguchi L’16 approach. Carbohydr Polym 2020; 232:115731. [DOI: 10.1016/j.carbpol.2019.115731] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 10/25/2022]
|
47
|
Ding F, Zhong Y, Wu S, Liu X, Zou X, Li H. Synthesis and characterization of quaternized agar in KOH/urea aqueous solution. NEW J CHEM 2020. [DOI: 10.1039/d0nj03412f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Quaternized agar (QA) is synthesized in KOH/urea aqueous solution and shows low melting and gelling temperatures and antibacterial properties.
Collapse
Affiliation(s)
- Fuyuan Ding
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Yuye Zhong
- School of Printing and Packaging
- Wuhan University
- Wuhan
- China
| | - Shuping Wu
- Research School of Polymeric Materials
- School of Materials Science & Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Xinghai Liu
- School of Printing and Packaging
- Wuhan University
- Wuhan
- China
| | - Xiaobo Zou
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Houbin Li
- School of Printing and Packaging
- Wuhan University
- Wuhan
- China
| |
Collapse
|
48
|
Guo Y, Gao W, Kong F, Fatehi P. One-pot preparation of zwitterion-type lignin polymers. Int J Biol Macromol 2019; 140:429-440. [DOI: 10.1016/j.ijbiomac.2019.08.135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 10/26/2022]
|
49
|
One-Step Formation of Chondrocytes through Direct Reprogramming via Polysaccharide-Based Gene Delivery. ADVANCES IN POLYMER TECHNOLOGY 2019. [DOI: 10.1155/2019/7632873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An innovative strategy for the generation of chondrocytes was thoroughly studied in this paper. Polyetherimide-modified polysaccharides of Porphyra yezoensis (pmPPY) served as a nonviral gene vector and delivered Sox9 plasmid to directly reprogram mouse embryonic fibroblasts into chondrocytes. The gene transfer efficiency was evaluated through ELISA, RT-PCR, and Western blot. The induced chondrocytes were identified through toluidine blue, Safranin O, and the immunostaining. The expression level of collagen II was finally evaluated through western blot. The pSox9/pmPPY nanoparticles (1:50) showed lower cytotoxicity as well as greater gene transfection efficiency than Lipofectamine 2000 and polyetherimide (PEI) (p<0.05). The results of toluidine blue, Safranin O, and the immunostaining of collagen II further showed that the normal MEFs were successfully reprogrammed into chondrocytes. These findings indicate that pmPPY could be a promising gene vector for the generation of chondrocytes via single-gene delivery strategy, which might provide abundant chondrocytes for cartilage repair.
Collapse
|
50
|
Phiri I, Eum KY, Kim JW, Choi WS, Kim SH, Ko JM, Jung H. Simultaneous complementary oil-water separation and water desalination using functionalized woven glass fiber membranes. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.12.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|