1
|
Wang Y, Zhou X, He L, Zhou X, Wang Y, Zhou P. Research Progress on Using Modified Hydrogel Coatings as Marine Antifouling Materials. Mar Drugs 2024; 22:546. [PMID: 39728121 PMCID: PMC11676044 DOI: 10.3390/md22120546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
The adhesion of marine organisms to marine facilities negatively impacts human productivity. This phenomenon, known as marine fouling, constitutes a serious issue in the marine equipment industry. It increases resistance for ships and their structures, which, in turn, raises fuel consumption and reduces ship speed. To date, numerous antifouling strategies have been researched to combat marine biofouling. However, a multitude of these resources face long-term usability issues due to various limitations, such as low adhesion quality, elevated costs, and inefficacy. Hydrogels, exhibiting properties akin to the slime layer on the skin of many aquatic creatures, possess a low frictional coefficient and a high rate of water absorbency and are extensively utilized in the marine antifouling field. This review discusses the recent progress regarding the application of hydrogels as an important marine antifouling material in recent years. It introduces the structure, properties, and classification of hydrogels; summarizes the current research status of improved hydrogels in detail; and analyzes the improvement in their antifouling properties and the prospects for their application in marine antifouling.
Collapse
Affiliation(s)
- Ying Wang
- College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China; (Y.W.); (X.Z.); (Y.W.); (P.Z.)
| | - Xiaohong Zhou
- School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China;
| | - Lingyan He
- College of Mechanical and Electrical Engineering, Guangxi Vocational College of Water Resources and Electric Power, Nanning 530023, China
| | - Xiangkai Zhou
- College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China; (Y.W.); (X.Z.); (Y.W.); (P.Z.)
| | - Yantian Wang
- College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China; (Y.W.); (X.Z.); (Y.W.); (P.Z.)
| | - Peijian Zhou
- College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China; (Y.W.); (X.Z.); (Y.W.); (P.Z.)
| |
Collapse
|
2
|
Bandyopadhyay A, Mondal JA. Impact of electrolyte on the structure and orientation of water at air/water-polyethylene glycol polymer interface. J Chem Phys 2024; 161:174708. [PMID: 39494801 DOI: 10.1063/5.0231332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024] Open
Abstract
Polyethylene glycol (PEG) is a water soluble, non-ionic polymer with applications in drug delivery, protein precipitation, anti-biofouling, water-splitting, Li-ion batteries, and fuel cells. The interaction of PEG with water and electrolytes plays pivotal roles in such applications. Using interface-selective spectroscopy, heterodyne-detected vibrational sum frequency generation, and Raman difference spectroscopy with simultaneous curve fitting analysis, we show that water adopts different structures and orientations at the air/water-PEG interface, which depends on the molar mass of the PEG. At the air/water-PEG4000 (MW 4000u) interface, water is H-up oriented (i.e., water Hs are pointed away from the aqueous bulk) around 3200 cm-1 and H-down oriented (i.e., water Hs are pointed toward the aqueous bulk) around 3470 cm-1. Variation of the bulk concentration of PEG4000 does not change the dual orientation of interfacial water. The presence of an electrolyte (1.0M NaCl) selectively reduces the H-up oriented water without affecting the H-down oriented water at the air/water-PEG4000 interface. The selective reorganization of the interfacial water is assigned to the disruption of the asymmetric hydration around ether-oxygen of the surface-adsorbed PEG4000 by the Na+ ion of the electrolyte. Interestingly, in the case of low molar mass PEG (air/water-PEG200), the interfacial water neither shows the dual orientation nor is affected by 1.0M NaCl.
Collapse
Affiliation(s)
- Anisha Bandyopadhyay
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Homi Bhabha National Institute, Trombay, Mumbai 400085, India
| | - Jahur Alam Mondal
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Homi Bhabha National Institute, Trombay, Mumbai 400085, India
| |
Collapse
|
3
|
Wissner JL, Almeida JR, Grilo IR, Oliveira JF, Brízida C, Escobedo-Hinojosa W, Pissaridou P, Vasquez MI, Cunha I, Sobral RG, Vasconcelos V, Gaudêncio SP. Novel metabolite madeirone and neomarinone extracted from Streptomyces aculeoletus as marine antibiofilm and antifouling agents. Front Chem 2024; 12:1425953. [PMID: 39119516 PMCID: PMC11306024 DOI: 10.3389/fchem.2024.1425953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction: Biofouling poses a significant economic threat to various marine industries, leading to financial losses that can reach billions of euros annually. This study highlights the urgent need for effective alternatives to traditional antifouling agents, particularly following the global ban on organotin compounds. Material and methods: Streptomyces aculeolatus PTM-346 was isolated from sediment samples on the shores of the Madeira Archipelago, Portugal. The crude extract was fractionated using silica flash chromatography and preparative HPLC, resulting in two isolated marinone compounds: madeirone (1), a novel marinone derivative discovered in this study, and neomarinone (2). The antifouling activities of these compounds were tested against five marine bacterial species and the larvae of the mussel Mytilus galloprovincialis. Additionally, in silico and in vivo environmental toxicity evaluations of madeirone (1) and neomarinone (2) were conducted. Results: Madeirone (1) demonstrated significant antibiofilm efficacy, inhibiting Phaeobacter inhibens by up to 66%, Marinobacter hydrocarbonoclasticus by up to 60%, and Cobetia marina by up to 40%. Neomarinone (2) also exhibited substantial antibiofilm activity, with inhibition rates of up to 41% against P. inhibens, 40% against Pseudo-oceanicola batsensis, 56% against M. hydrocarbonoclasticus, 46% against C. marina, and 40% against Micrococcus luteus. The growth inhibition activity at the same concentrations of these compounds remained below 20% for the respective bacteria, highlighting their effectiveness as potent antibiofilm agents without significantly affecting bacterial viability. Additionally, both compounds showed potent effects against the settlement of Mytilus galloprovincialis larvae, with EC50 values of 1.76 µg/mL and 0.12 µg/mL for compounds (1) and (2), respectively, without impairing the viability of the targeted macrofouling species. In silico toxicity predictions and in vivo toxicity assays both support their potential for further development as antifouling agents. Conclusion: The newly discovered metabolite madeirone (1) and neomarinone (2) effectively inhibit both micro- and macrofouling. This distinct capability sets them apart from existing commercial antifouling agents and positions them as promising candidates for biofouling prevention. Consequently, these compounds represent a viable and environmentally friendly alternative for incorporation into paints, primers, varnishes, and sealants, offering significant advantages over traditional copper-based compounds.
Collapse
Affiliation(s)
- Julian L. Wissner
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Yucatán, Mexico
| | - Joana R. Almeida
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
| | - Inês R. Grilo
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
| | - Jhenifer F. Oliveira
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
| | - Carolina Brízida
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
| | - Wendy Escobedo-Hinojosa
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Yucatán, Mexico
| | - Panayiota Pissaridou
- Department of Chemical Engineering, Cyprus University of Technology, Limassol, Cyprus
| | - Marlen I. Vasquez
- Department of Chemical Engineering, Cyprus University of Technology, Limassol, Cyprus
| | - Isabel Cunha
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
| | - Rita G. Sobral
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
| | - Vítor Vasconcelos
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
- Biology Department, Faculty of Sciences, Porto University, Porto, Portugal
| | - Susana P. Gaudêncio
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, Portugal
| |
Collapse
|
4
|
Chen TL, Huang CY, Lai YS, Chen YC, Yang YJ, Wang WL, Hsueh HY. Fabrication of Stable Liquid-like Wetting Buckled Surfaces as Bioinspired Antibiofouling Coatings by Using Silicon-Containing Block Copolymers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37212-37225. [PMID: 38965654 PMCID: PMC11261564 DOI: 10.1021/acsami.4c06172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Inspired by animals with a slippery epidermis, durable slippery antibiofouling coatings with liquid-like wetting buckled surfaces are successfully constructed in this study by combining dynamic-interfacial-release-induced buckling with self-assembled silicon-containing diblock copolymer (diBCP). The core diBCP material is polystyrene-block-poly(dimethylsiloxane) (PS-b-PDMS). Because silicon-containing polymers with intrinsic characters of low surface energy, they easily flow over and cover a surface after it has undergone controlled thermal treatment, generating a slippery wetting layer on which can eliminate polar interactions with biomolecules. Additionally, microbuckled patterns result in curved surfaces, which offer fewer points at which organisms can attach to the surface. Different from traditional slippery liquid-infused porous surfaces, the proposed liquid-like PDMS wetting layer, chemically bonded with PS, is stable and slippery but does not flow away. PS-b-PDMS diBCPs with various PDMS volume fractions are studied to compare the influence of PDMS segment length on antibiofouling performance. The surface characteristics of the diBCPs─ease of processing, transparency, and antibiofouling, anti-icing, and self-cleaning abilities─are examined under various conditions. Being able to fabricate ecofriendly silicon-based lubricant layers without needing to use fluorinated compounds and costly material precursors is an advantage in industrial practice.
Collapse
Affiliation(s)
- Ting-Lun Chen
- Department
of Materials Science and Engineering, National
Chung Hsing University, Taichung, Taiwan 40227, Republic of China
| | - Ching-Yu Huang
- Department
of Materials Science and Engineering, National
Chung Hsing University, Taichung, Taiwan 40227, Republic of China
| | - Yi-Shan Lai
- Department
of Materials Science and Engineering, National
Chung Hsing University, Taichung, Taiwan 40227, Republic of China
| | - Yi-Chen Chen
- Department
of Materials Science and Engineering, National
Chung Hsing University, Taichung, Taiwan 40227, Republic of China
| | - Yi-Ju Yang
- Department
of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien, Taiwan 974301, Republic of China
| | - Wei-Lung Wang
- Department
of Biology, National Changhua University
of Education, Changhua, Taiwan 50007, Republic of China
| | - Han-Yu Hsueh
- Department
of Materials Science and Engineering, National
Chung Hsing University, Taichung, Taiwan 40227, Republic of China
- Innovation
and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan 40227, Republic of China
| |
Collapse
|
5
|
Zhang Q, Yan K, Zheng X, Liu Q, Han Y, Liu Z. Research progress of photo-crosslink hydrogels in ophthalmology: A comprehensive review focus on the applications. Mater Today Bio 2024; 26:101082. [PMID: 38774449 PMCID: PMC11107262 DOI: 10.1016/j.mtbio.2024.101082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/24/2024] Open
Abstract
Hydrogel presents a three-dimensional polymer network with high water content. Over the past decade, hydrogel has developed from static material to intelligent material with controllable response. Various stimuli are involved in the formation of hydrogel network, among which photo-stimulation has attracted wide attention due to the advantages of controllable conditions, which has a good application prospect in the treatment of ophthalmic diseases. This paper reviews the application of photo-crosslink hydrogels in ophthalmology, focusing on the types of photo-crosslink hydrogels and their applications in ophthalmology, including drug delivery, tissue engineering and 3D printing. In addition, the limitations and future prospects of photo-crosslink hydrogels are also provided.
Collapse
Affiliation(s)
- Qinghe Zhang
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
| | - Ke Yan
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
| | - Xiaoqin Zheng
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
| | - Qiuping Liu
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
| | - Yi Han
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
| | - Zuguo Liu
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen Fujian 361005, China
| |
Collapse
|
6
|
Wang M, Zhang Z, Xie Q, Pan J, Ma C, Zhang G. High-Performance Polyurea Improved by Reactive Nanocluster for Antibiofouling. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26733-26742. [PMID: 38718383 DOI: 10.1021/acsami.4c02070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Polyurea has found applications in protective coatings. Yet, the too fast polymerization and lack of functions limit its application. Herein, we report a high-performance polyurea via the stepwise polymerization of an isocyanate (NCO)-terminated prepolymer consisting of poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) (PPG-b-PEG-b-PPG) with a nanocluster synthesized via the hydrolysis of N-phenylaminomethyltriethoxysilane. Such a nanocluster contains low-reactivity secondary amines, so the polymerization of polyurea can be slowed down (over 1 h), which improves its wetting and adhesion to a substrate. The residual silanol groups on the nanocluster further increase the adhesion. Such polyurea exhibits high adhesion on various substrates, including glass, ceramic, steel, copper, titanium, wood, and natural rubber (∼2.35-14.64 MPa). Besides, the nanoclusters can cross-link the prepolymer into a tough network, endowing the polyurea with a high mechanical strength of ∼25 MPa, much higher than the traditional polyaspartic ester polyurea. On the other hand, the PEG segments enable the polyurea to have good fouling resistance against proteins (fibrinogen absorption was reduced by over 90%), bacteria (RBA of S. aureusE. coli and Pseudomonas sp. was less than 10%), as well as diatom (diatom density was less than 100 cells/mm2). The polyurea is expected to find applications in biomedical engineering and marine antifouling.
Collapse
Affiliation(s)
- Man Wang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Zhipeng Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Qingyi Xie
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Jiansen Pan
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Chunfeng Ma
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| |
Collapse
|
7
|
Kumar R, Lalnundiki V, Shelare SD, Abhishek GJ, Sharma S, Sharma D, Kumar A, Abbas M. An investigation of the environmental implications of bioplastics: Recent advancements on the development of environmentally friendly bioplastics solutions. ENVIRONMENTAL RESEARCH 2024; 244:117707. [PMID: 38008206 DOI: 10.1016/j.envres.2023.117707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/04/2023] [Accepted: 11/15/2023] [Indexed: 11/28/2023]
Abstract
The production and utilization of plastics may prove beneficial, but the environmental impact suggests the opposite. The single-use plastics (SUP) and conventional plastics are harmful to the environment and need prompt disposal. Bioplastics are increasingly being considered as a viable alternative to conventional plastics due to their potential to alleviate environmental concerns such as greenhouse gas emissions and pollution. However, the previous reviews revealed a lack of consistency in the methodologies used in the Life Cycle Assessments (LCAs), making it difficult to compare the results across studies. The current study provides a systematic review of LCAs that assess the environmental impact of bioplastics. The different mechanical characteristics of bio plastics, like tensile strength, Young's modulus, flexural modulus, and elongation at break are reviewed which suggest that bio plastics are comparatively much better than synthetic plastics. Bioplastics have more efficient mechanical properties compared to synthetic plastics which signifies that bioplastics are more sustainable and reliable than synthetic plastics. The key challenges in bioplastic adoption and production include competition with food production for feedstock, high production costs, uncertainty in end-of-life management, limited biodegradability, lack of standardization, and technical performance limitations. Addressing these challenges requires collaboration among stakeholders to drive innovation, reduce costs, improve end-of-life management, and promote awareness and education. Overall, the study suggests that while bioplastics have the potential to reduce environmental impact, further research is needed to better understand their life cycle and optimize their end-of-life (EoL) management and production to maximize their environmental benefits.
Collapse
Affiliation(s)
- Ravinder Kumar
- School of Mechanical Engineering, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - V Lalnundiki
- School of Agriculture, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Sagar D Shelare
- Department of Mechanical Engineering, Priyadarshini College of Engineering, Nagpur, M.S, 440019, India.
| | - Galla John Abhishek
- School of Agriculture, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Shubham Sharma
- Mechanical Engineering Department, University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India; School of Mechanical and Automotive Engineering, Qingdao University of Technology, 266520, Qingdao, China; Department of Mechanical Engineering, Lebanese American University, Kraytem, 1102-2801, Beirut, Lebanon; Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Deepti Sharma
- Department of Management, Uttaranchal Institute of Management, Uttaranchal University, Dehradun, 248007, India.
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia, Boris Yeltsin, 19 Mira Street, 620002, Ekaterinburg, Russia.
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia.
| |
Collapse
|
8
|
Li Y, Liu J, Zhang Q, Hu N, Jiang Z, Kan Q, Kang G. Growth of Double-Network Tough Hydrogel Coatings by Surface-Initiated Polymerization. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10822-10831. [PMID: 38381141 DOI: 10.1021/acsami.4c00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Hydrogel coatings exhibit versatile applications in biomedicine, flexible electronics, and environmental science. However, current coating methods encounter challenges in simultaneously achieving strong interfacial bonding, robust hydrogel coatings, and the ability to coat substrates with controlled thickness. This paper introduces a novel approach to grow a double-network (DN) tough hydrogel coating on various substrates. The process involves initial substrate modification using a silane coupling agent, followed by the deposition of an initiator layer on its surface. Subsequently, the substrate is immersed in a DN hydrogel precursor, where the coating grows under ultraviolet (UV) illumination. Precise control over the coating thickness is achieved by adjusting the UV illumination duration and the initiator quantity. The experimental measurement of adhesion reveals strong bonding between the DN hydrogel coating and diverse substrates, reaching up to 1012.9 J/m2 between the DN hydrogel coating and a glass substrate. The lubricity performance of the DN hydrogel coating is experimentally characterized, which is dependent on the coating thickness, applied pressure, and sliding velocity. The incorporation of 3D printing technology into the current coating method enables the creation of intricate hydrogel coating patterns on a flat substrate. Moreover, the hydrogel coating's versatility is demonstrated through its effective applications in oil-water separation and antifogging glasses, underscoring its wide-ranging potential. The robust DN hydrogel coating method presented here holds promise for advancing hydrogel applications across diverse fields.
Collapse
Affiliation(s)
- Yuhong Li
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| | - Junjie Liu
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| | - Qifang Zhang
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| | - Nan Hu
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| | - Zhouhu Jiang
- State Key Lab for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qianhua Kan
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| | - Guozheng Kang
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| |
Collapse
|
9
|
Patra A, Bandyopadhyay A, Roy S, Mondal JA. Origin of Strong Hydrogen Bonding and Preferred Orientation of Water at Uncharged Polyethylene Glycol Polymer/Water Interface. J Phys Chem Lett 2023; 14:11359-11366. [PMID: 38065092 DOI: 10.1021/acs.jpclett.3c03098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Polyethylene glycol (PEG), a water-soluble non-ionic polymer, finds diverse applications from Li-ion batteries to drug delivery. The effectiveness of PEG in these contexts hinges on water's behavior at PEG/water interfaces. Employing heterodyne-detected vibrational sum frequency generation and Raman spectroscopy along with a novel analytical approach, termed difference spectroscopy with simultaneous curve-fitting analysis, we observed that water exhibits both "hydrogen-up" and "hydrogen-down" orientations at PEG(≥400u)/water interfaces. As the molar mass of PEG increases, the contribution of the strongly hydrogen-bonded and H-up-oriented water rises. We propose that the PEG-affected interfacial water originates from the asymmetrical hydration of the surface-adsorbed PEG, as evidenced by the resemblance between the water spectra in the hydration shell of PEG and those at the PEG/water interface. These findings elucidate the molecular mechanism underlying PEG's catalytic role in water splitting at membrane interfaces.
Collapse
Affiliation(s)
- Animesh Patra
- School of Chemistry, Centre for Excellence in Basic Sciences, Mumbai 400098, India
| | - Anisha Bandyopadhyay
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Homi Bhabha National Institute, Trombay, Mumbai 400085, India
| | - Subhadip Roy
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Homi Bhabha National Institute, Trombay, Mumbai 400085, India
| | - Jahur Alam Mondal
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Homi Bhabha National Institute, Trombay, Mumbai 400085, India
| |
Collapse
|
10
|
Leontev A, Rozental L, Freger V. Dynamics of underwater microparticle adhesion to soft hydrated surfaces: Modeling and analysis by time-dependent AFM force spectroscopy. J Colloid Interface Sci 2023; 651:464-476. [PMID: 37556904 DOI: 10.1016/j.jcis.2023.07.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
HYPOTHESIS Understanding the attachment and detachment of microparticles and living cells to surfaces is crucial for developing antifouling strategies. Hydrogel coatings have shown promise in reducing fouling and particle adhesion due to their softness and high water content, yet the mechanisms involved are dynamic and complex, and relevant parameters are not easily accessible. AFM-based force spectroscopy (FS) experiments with colloidal probe particles is a direct way of evaluating adhesive and mechanical relaxational dynamics, yet their interpretation and modeling has been challenging. The present study proposes and examines several dynamic models, suitable for quantitative analysis of FS results with model probe particle on hydrogels surfaces. EXPERIMENTS FS were performed using polyethylene glycol (PEG) hydrogels and polystyrene microspheres including particle attachement to the hydrogel surface (loading), holding the particle on the surface with a constant force for variable times (dwell) and pulling the particle away from the surface (unloading) FINDINGS: It was found that a viscoelastic extension of the classical JKR model with energy of adhesion unevenly distributed over the contact area and vanishing at its circumferences accurately described all FS experiments and yielded physically consistent viscoelastic and adhesive dynamic parameters, steadily changing with dwell time and applied force. The observed time evolution and force dependence were rationalized as combination of osmotic and osmo-mechnical relaxation in the contact region.
Collapse
Affiliation(s)
- Aleksandr Leontev
- Wolfson Department of Chemical Engineering, Technion - IIT, Haifa, Israel
| | - Lina Rozental
- Wolfson Department of Chemical Engineering, Technion - IIT, Haifa, Israel
| | - Viatcheslav Freger
- Wolfson Department of Chemical Engineering, Technion - IIT, Haifa, Israel; Grand Technion Energy Program, Technion - IIT, Haifa, Israel; Russel Berrie Nanotechnology Institute, Technion - IIT, Haifa, Israel.
| |
Collapse
|
11
|
Peng T, Shi Q, Chen M, Yu W, Yang T. Antibacterial-Based Hydrogel Coatings and Their Application in the Biomedical Field-A Review. J Funct Biomater 2023; 14:jfb14050243. [PMID: 37233353 DOI: 10.3390/jfb14050243] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Hydrogels exhibit excellent moldability, biodegradability, biocompatibility, and extracellular matrix-like properties, which make them widely used in biomedical fields. Because of their unique three-dimensional crosslinked hydrophilic networks, hydrogels can encapsulate various materials, such as small molecules, polymers, and particles; this has become a hot research topic in the antibacterial field. The surface modification of biomaterials by using antibacterial hydrogels as coatings contributes to the biomaterial activity and offers wide prospects for development. A variety of surface chemical strategies have been developed to bind hydrogels to the substrate surface stably. We first introduce the preparation method for antibacterial coatings in this review, which includes surface-initiated graft crosslinking polymerization, anchoring the hydrogel coating to the substrate surface, and the LbL self-assembly technique to coat crosslinked hydrogels. Then, we summarize the applications of hydrogel coating in the biomedical antibacterial field. Hydrogel itself has certain antibacterial properties, but the antibacterial effect is not sufficient. In recent research, in order to optimize its antibacterial performance, the following three antibacterial strategies are mainly adopted: bacterial repellent and inhibition, contact surface killing of bacteria, and release of antibacterial agents. We systematically introduce the antibacterial mechanism of each strategy. The review aims to provide reference for the further development and application of hydrogel coatings.
Collapse
Affiliation(s)
- Tai Peng
- Key Lab of Oral Biomedical Materials and Clinical Application of Heilongjiang Province, Jiamusi University, Jiamusi 154007, China
- School of Materials Science and Engineering, Jiamusi University, Jiamusi 154007, China
| | - Qi Shi
- Key Lab of Oral Biomedical Materials and Clinical Application of Heilongjiang Province, Jiamusi University, Jiamusi 154007, China
- School of Materials Science and Engineering, Jiamusi University, Jiamusi 154007, China
| | - Manlong Chen
- Key Lab of Oral Biomedical Materials and Clinical Application of Heilongjiang Province, Jiamusi University, Jiamusi 154007, China
| | - Wenyi Yu
- Key Lab of Oral Biomedical Materials and Clinical Application of Heilongjiang Province, Jiamusi University, Jiamusi 154007, China
- School of Materials Science and Engineering, Jiamusi University, Jiamusi 154007, China
| | - Tingting Yang
- Key Lab of Oral Biomedical Materials and Clinical Application of Heilongjiang Province, Jiamusi University, Jiamusi 154007, China
- School of Materials Science and Engineering, Jiamusi University, Jiamusi 154007, China
| |
Collapse
|
12
|
Medhi R, Cintora A, Guazzelli E, Narayan N, Leonardi AK, Galli G, Oliva M, Pretti C, Finlay JA, Clare AS, Martinelli E, Ober CK. Nitroxide-Containing Amphiphilic Random Terpolymers for Marine Antifouling and Fouling-Release Coatings. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11150-11162. [PMID: 36802475 DOI: 10.1021/acsami.2c23213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Two types of amphiphilic random terpolymers, poly(ethylene glycol methyl ether methacrylate)-ran-poly(2,2,6,6-tetramethylpiperidinyloxy methacrylate)-ran-poly(polydimethyl siloxane methacrylate) (PEGMEMA-r-PTMA-r-PDMSMA), were synthesized and evaluated for antifouling (AF) and fouling-release (FR) properties using diverse marine fouling organisms. In the first stage of production, the two respective precursor amine terpolymers containing (2,2,6,6-tetramethyl-4-piperidyl methacrylate) units (PEGMEMA-r-PTMPM-r-PDMSMA) were synthesized by atom transfer radical polymerization using various comonomer ratios and two initiators: alkyl halide and fluoroalkyl halide. In the second stage, these were selectively oxidized to introduce nitroxide radical functionalities. Finally, the terpolymers were incorporated into a PDMS host matrix to create coatings. AF and FR properties were examined using the alga Ulva linza, the barnacle Balanus improvisus, and the tubeworm Ficopomatus enigmaticus. The effects of comonomer ratios on surface properties and fouling assay results for each set of coatings are discussed in detail. There were marked differences in the effectiveness of these systems against the different fouling organisms. The terpolymers had distinct advantages over monopolymeric systems across the different organisms, and the nonfluorinated PEG and nitroxide combination was identified as the most effective formulation against B. improvisus and F. enigmaticus.
Collapse
Affiliation(s)
- Riddhiman Medhi
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Alicia Cintora
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Elisa Guazzelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa 56124, Italy
| | - Nila Narayan
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Amanda K Leonardi
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Giancarlo Galli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa 56124, Italy
| | - Matteo Oliva
- Consorzio Interuniversitario di Biologia Marina e Ecologia Applicata "G. Bacci", Livorno 57128, Italy
| | - Carlo Pretti
- Consorzio Interuniversitario di Biologia Marina e Ecologia Applicata "G. Bacci", Livorno 57128, Italy
- Dipartimento di Scienze Veterinarie, Università di Pisa, Pisa 56124, Italy
| | - John A Finlay
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Elisa Martinelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa 56124, Italy
| | - Christopher K Ober
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
13
|
Wei Y, Li W, Liu H, Liu H. In situ preparation of spindle calcium carbonate-chitosan/poly (vinyl alcohol) anti-biofouling hydrogels inspired by Shellfish. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
14
|
Su D, Bai X, He X. Research progress on hydrogel materials and their antifouling properties. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Nagy B, Ekblad T, Fragneto G, Ederth T. Structure of Self-Initiated Photopolymerized Films: A Comparison of Models. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14004-14015. [PMID: 36377414 PMCID: PMC9671054 DOI: 10.1021/acs.langmuir.2c02396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Self-initiated photografting and photopolymerization (SI-PGP) uses UV illumination to graft polymers to surfaces without additional photoinitiators using the monomers as initiators, "inimers". A wider use of this method is obstructed by a lack of understanding of the resulting, presumably heterogeneous, polymer structure and of the parallel degradation under continuous UV illumination. We have used neutron reflectometry to investigate the structure of hydrated SI-PGP-prepared poly(HEMA-co-PEG10MA) (poly(2-hydroxyethyl methacrylate-co-(ethylene glycol)10 methacrylate)) films and compared parabolic, sigmoidal, and Gaussian models for the polymer volume fraction distributions. Results from fitting these models to the data suggest that either model can be used to approximate the volume fraction profile to similar accuracy. In addition, a second layer of deuterated poly(methacrylic acid) (poly(dMAA)) was grafted over the existing poly(HEMA-co-PEG10MA) layer, and the resulting double-grafted films were also studied by neutron reflectometry to shed light on the UV-polymerization process and the inevitable UV-induced degradation which competes with the grafting.
Collapse
Affiliation(s)
- Béla Nagy
- Division
of Biophysics and Bioengineering, Department of Physics, Chemistry
and Biology, Linköping University, SE-581 83Linköping, Sweden
| | - Tobias Ekblad
- Division
of Biophysics and Bioengineering, Department of Physics, Chemistry
and Biology, Linköping University, SE-581 83Linköping, Sweden
| | - Giovanna Fragneto
- Institut
Laue-Langevin, 71 avenue des Martyrs, BP 156, 38042Grenoble, France
| | - Thomas Ederth
- Division
of Biophysics and Bioengineering, Department of Physics, Chemistry
and Biology, Linköping University, SE-581 83Linköping, Sweden
| |
Collapse
|
16
|
Ali A, Ul Amin B, Yu W, Gui T, Cong W, Zhang K, Tong Z, Hu J, Zhan X, Zhang Q. Eco-friendly biodegradable polyurethane based coating for antibacterial and antifouling performance. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Zhou L, Zhao C, Yang W. Durable and covalently attached antibacterial coating based on post-crosslinked maleic anhydride copolymer with long-lasting performance. Colloids Surf B Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Ukolov AI, Popova TN. Efficiency of the Use of Commercial Superhydrophobic Coatings in the Fields of Marine Industry. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x22040111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Diehl F, Hageneder S, Fossati S, Auer SK, Dostalek J, Jonas U. Plasmonic nanomaterials with responsive polymer hydrogels for sensing and actuation. Chem Soc Rev 2022; 51:3926-3963. [PMID: 35471654 PMCID: PMC9126188 DOI: 10.1039/d1cs01083b] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Indexed: 12/25/2022]
Abstract
Plasmonic nanomaterials have become an integral part of numerous technologies, where they provide important functionalities spanning from extraction and harvesting of light in thin film optical devices to probing of molecular species and their interactions on biochip surfaces. More recently, we witness increasing research efforts devoted to a new class of plasmonic nanomaterials that allow for on-demand tuning of their properties by combining metallic nanostructures and responsive hydrogels. This review addresses this recently emerged vibrant field, which holds potential to expand the spectrum of possible applications and deliver functions that cannot be achieved by separate research in each of the respective fields. It aims at providing an overview of key principles, design rules, and current implementations of both responsive hydrogels and metallic nanostructures. We discuss important aspects that capitalize on the combination of responsive polymer networks with plasmonic nanostructures to perform rapid mechanical actuation and actively controlled nanoscale confinement of light associated with resonant amplification of its intensity. The latest advances towards the implementation of such responsive plasmonic nanomaterials are presented, particularly covering the field of plasmonic biosensing that utilizes refractometric measurements as well as plasmon-enhanced optical spectroscopy readout, optically driven miniature soft actuators, and light-fueled micromachines operating in an environment resembling biological systems.
Collapse
Affiliation(s)
- Fiona Diehl
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf Reichwein-Straße 2, 57074 Siegen, Germany.
| | - Simone Hageneder
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
| | - Stefan Fossati
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
| | - Simone K Auer
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
- CEST Competence Center for Electrochemical Surface Technologies, 3430 Tulln an der Donau, Austria
| | - Jakub Dostalek
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
- FZU-Institute of Physics, Czech Academy of Sciences, Na Slovance 2, Prague 182 21, Czech Republic
| | - Ulrich Jonas
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf Reichwein-Straße 2, 57074 Siegen, Germany.
| |
Collapse
|
20
|
Tong Z, Guo H, Di Z, Sheng Y, Song L, Hu J, Gao X, Hou Y, Zhan X, Zhang Q. Squid inspired elastomer marine coating with efficient antifouling strategies: Hydrophilized defensive surface and lower modulus. Colloids Surf B Biointerfaces 2022; 213:112392. [PMID: 35144083 DOI: 10.1016/j.colsurfb.2022.112392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/11/2022] [Accepted: 02/02/2022] [Indexed: 01/15/2023]
Abstract
In antifouling applications for the marine industry, low surface energy coatings entail turbulent water flow to release marine biofouling, which presents a substantial challenge for antifouling in the static situation. The traditional solution is to add environmentally friendly antifouling agents, but it has the problem of exhaustion. Therefore, the low surface energy elastic antifouling coating without antifoulants has high research value. Herein, inspired by soft body and epidermal mucus of squid, the stable polyvinylpyrrolidone (PVP) hydrophilic segments were introduced to modify the polydimethylsiloxane-based polyurethane (PDMS-PU), realizing low surface energy elastomer coatings with hydrophilized defensive surface and reduced elastic modulus (<1.1 MPa). In an aqueous environment, the tailored surface exposed sufficient stable hydrophilic segments, exerting excellent antifouling performance, which improved the anti-adsorption effect on biological proteins, bacteria (antibacterial rate 95.24%) and algae (cover rate <3%). The coating exhibited excellent marine antifouling performance within 150 days and also gave a new impetus to developing an eco-friendly and sustainable solution for no-antifoulant marine antifouling applications.
Collapse
Affiliation(s)
- Zheming Tong
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hongyu Guo
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhigang Di
- CNOOC Changzhou Paint and Coating Industry Research Institute Co., Ltd, Changzhou 213016, China
| | - Ye Sheng
- Jiangsu Lanling Macromolecule Material Co., Ltd, Changzhou 213016, China
| | - Lina Song
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiankun Hu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiang Gao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Xiaoli Zhan
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Institute of Zhejiang University-Quzhou, Quzhou 324000, China.
| | - Qinghua Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Institute of Zhejiang University-Quzhou, Quzhou 324000, China.
| |
Collapse
|
21
|
Zhang X, Feng Y, Gao D, Ma W, Jin C, Jiang X, Lin J, Yang F. Functionalization of cellulosic hydrogels with Cu2O@CuO nanospheres: Toward antifouling applications. Carbohydr Polym 2022; 282:119136. [DOI: 10.1016/j.carbpol.2022.119136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/19/2021] [Accepted: 01/09/2022] [Indexed: 01/21/2023]
|
22
|
Nagy B, Campana M, Khaydukov YN, Ederth T. Structure and pH-Induced Swelling of Polymer Films Prepared from Sequentially Grafted Polyelectrolytes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1725-1737. [PMID: 35081310 PMCID: PMC8830213 DOI: 10.1021/acs.langmuir.1c02784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/13/2022] [Indexed: 05/16/2023]
Abstract
We have prepared a series of ampholytic polymer films, using a self-initiated photografting and photopolymerization (SI-PGP) method to sequentially polymerize first anionic (deuterated methacrylic acid (dMAA)) and thereafter cationic (2-aminoethyl methacrylate (AEMA)) monomers to investigate the SI-PGP grafting process. Dry films were investigated by ellipsometry, X-ray, and neutron reflectometry, and their swelling was followed over a pH range from 4.5 to 10.5 with spectroscopic ellipsometry. The deuterated monomer allows us to separate the distributions of the two components by neutron reflectometry. Growth of both polymers proceeds via grafting of solution-polymerized fragments to the surface, and also the second layer is primarily grafted to the substrate and not as a continuation of the existing chains. The polymer films are stratified, with one layer of near 1:1 composition and the other layer enriched in one component and located either above or below the former layer. The ellipsometry results show swelling transitions at low and high pH but with no systematic variation in the pH values where these transitions occur. The results suggest that grafting density in SI-PGP-prepared homopolymers could be increased via repeated polymerization steps, but that this process does not necessarily increase the average chain length.
Collapse
Affiliation(s)
- Béla Nagy
- Division
of Biophysics and Bioengineering, Department of Physics, Chemistry
and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Mario Campana
- ISIS
Facility, Rutherford Appleton Laboratory,
STFC, Chilton, Didcot, Oxon OX11
0QX, U.K.
| | - Yury N. Khaydukov
- Max-Planck-Institut
für Festkörperforschung, Heisenbergstraße 1, D-70569 Stuttgart, Germany
- Max
Planck Society Outstation at the Heinz Maier-Leibnitz Zentrum (MLZ), D-85748 Garching, Germany
| | - Thomas Ederth
- Division
of Biophysics and Bioengineering, Department of Physics, Chemistry
and Biology, Linköping University, SE-581 83 Linköping, Sweden
| |
Collapse
|
23
|
Qiu H, Feng K, Gapeeva A, Meurisch K, Kaps S, Li X, Yu L, Mishra YK, Adelung R, Baum M. Functional Polymer Materials for Modern Marine Biofouling Control. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101516] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
24
|
Kim HJ, Choi W, San Lee J, Choi J, Choi N, Hwang KS. Clinical application of serological Alzheimer's disease diagnosis using a highly sensitive biosensor with hydrogel-enhanced dielectrophoretic force. Biosens Bioelectron 2022; 195:113668. [PMID: 34583104 DOI: 10.1016/j.bios.2021.113668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022]
Abstract
Analysis of a ratio between amyloid beta 1-40 and 1-42 (Aβ1-40 and Aβ1-42) presented in plasm enables a highly accurate diagnosis of Alzheimer's disease (AD). However, the analysis of plasma Aβs is not routinely conducted because of the lack of Aβ detection techniques sensitive enough to specifically detect Aβ from thousands of biomaterials present in the plasma. We developed a hydrogel-patterned spiral microelectrode sensor combined with a hopping dielectrophoretic (DEP) force, combining the negative DEP and positive DEP forces, for Aβ detection. The hydrogel effectively increased the number of immobilized fragmented antibodies in the reaction region of the sensor and enabled size-exclusive passive filtration of non-specific plasma proteins from that region. The hopping DEP force further concentrated the Aβs and removed the non-specific plasma proteins. Consequently, our sensor achieved a limit of detection (LOD) of approximately ∼ 0.15 pg/mL for both Aβ1-40 and Aβ1-42 in the standard plasma. Finally, comparing the ratio between Aβ1-40 and Aβ1-42 signals, we distinguished AD patients from cognitively normal subjects with 95.83% accuracy and 92.31% precision (n = 24, p < 0.0001, One-way ANOVA).
Collapse
Affiliation(s)
- Hye Jin Kim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woongsun Choi
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jin San Lee
- Department of Neurology, Kyung Hee University Hospital, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jungkyu Choi
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - Nakwon Choi
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, South Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
| | - Kyo Seon Hwang
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
25
|
Antialgal Synergistic Polystyrene Blended with Polyethylene Glycol and Silver Sulfadiazine for Healthcare Applications. ADVANCES IN POLYMER TECHNOLOGY 2021. [DOI: 10.1155/2021/6627736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Polystyrene (PS) was blended with polyethylene glycol (PEG) and silver sulfadiazine (SS) with different weight proportions to form polymeric blends. These synthesized blends were preliminary characterized in terms of functional groups through the FTIR technique. All compositions were subjected to thermogravimetric analysis for studying thermal transition and were founded thermally stable even at 280°C. The zeta potential and average diameter of algal strains of Dictyosphaerium sp. (DHM1), Dictyosphaerium sp. (DHM2), and Pectinodesmus sp. (PHM3) were measured to be -32.7 mV, -33.0 mV, and -25.7 mV and 179.6 nm, 102.6 nm, and 70.4 nm, respectively. Upon incorporation of PEG and SS into PS blends, contact angles were decreased while hydrophilicity and surface energy were increased. However, increase of surface energy did not led to decrease of antialgal activities. This has indicated that biofilm adhesion is not a major antialgal factor in these blended materials. The synergetic effect of PEG and SS in PS blends has exhibited significant antialgal activity via the agar disk diffusion method. The PSPS10 composition with 10
PEG and 10
SS has exhibited highest inhibition zones 10.8 mm, 10.8 mm, and 11.3 mm against algal strains DHM1, DHM2, and DHM3, respectively. This thermally stable polystyrene blends with improved antialgal properties have potential for a wide range of applications including marine coatings.
Collapse
|
26
|
Sun X, Miao L, Wang H, Yuan J, Fan G. Enhanced rainfall erosion durability of enzymatically induced carbonate precipitation for dust control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148369. [PMID: 34126498 DOI: 10.1016/j.scitotenv.2021.148369] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Globally, most cities are facing severe challenges caused by dust pollution. Recently, the significant dust control application potential of the environmentally friendly enzymatically induced carbonate precipitation (EICP) has been demonstrated. However, repeated rainfall erosion negatively affects the long-term durability of several EICP treated areas. This study applied EICP and added either polyvinyl acetate (PVAc) or polyethylene glycol (PEG) to the cementation solution. The results showed that both PVAc and PEG could improve the shear resistance and rainfall-erosion resistance of treated dust soils. However, for repeated rainfall erosion, the surface strength and calcium carbonate (CaCO3) contents of samples still decreased to less than 250 kPa and 1.1%, respectively. Therefore, combined EICP-PVAc-PEG treatment was proposed and the rainfall-erosion durability of treated dust soils was further studied. With the EICP-PVAc-PEG treatment, the dust samples achieved better shear resistance, higher surface strength, and better repeated rainfall-erosion resistance. Considering cost, cementation effects, and the effects of repeated rainfalls, EICP-PVAc-PEG treatment with 50 g/L PVAc and 30 g/L PEG was most suitable for dust control. The combined EICP-PVAc-PEG treatment significantly suppressed the generation of dust and improved the rainfall-erosion durability.
Collapse
Affiliation(s)
- Xiaohao Sun
- Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| | - Linchang Miao
- Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| | - Hengxing Wang
- Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Junhao Yuan
- Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| | - Guangcai Fan
- Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
27
|
Correa S, Grosskopf AK, Lopez Hernandez H, Chan D, Yu AC, Stapleton LM, Appel EA. Translational Applications of Hydrogels. Chem Rev 2021; 121:11385-11457. [PMID: 33938724 PMCID: PMC8461619 DOI: 10.1021/acs.chemrev.0c01177] [Citation(s) in RCA: 418] [Impact Index Per Article: 104.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 12/17/2022]
Abstract
Advances in hydrogel technology have unlocked unique and valuable capabilities that are being applied to a diverse set of translational applications. Hydrogels perform functions relevant to a range of biomedical purposes-they can deliver drugs or cells, regenerate hard and soft tissues, adhere to wet tissues, prevent bleeding, provide contrast during imaging, protect tissues or organs during radiotherapy, and improve the biocompatibility of medical implants. These capabilities make hydrogels useful for many distinct and pressing diseases and medical conditions and even for less conventional areas such as environmental engineering. In this review, we cover the major capabilities of hydrogels, with a focus on the novel benefits of injectable hydrogels, and how they relate to translational applications in medicine and the environment. We pay close attention to how the development of contemporary hydrogels requires extensive interdisciplinary collaboration to accomplish highly specific and complex biological tasks that range from cancer immunotherapy to tissue engineering to vaccination. We complement our discussion of preclinical and clinical development of hydrogels with mechanical design considerations needed for scaling injectable hydrogel technologies for clinical application. We anticipate that readers will gain a more complete picture of the expansive possibilities for hydrogels to make practical and impactful differences across numerous fields and biomedical applications.
Collapse
Affiliation(s)
- Santiago Correa
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Abigail K. Grosskopf
- Chemical
Engineering, Stanford University, Stanford, California 94305, United States
| | - Hector Lopez Hernandez
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Doreen Chan
- Chemistry, Stanford University, Stanford, California 94305, United States
| | - Anthony C. Yu
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | | | - Eric A. Appel
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
- Bioengineering, Stanford University, Stanford, California 94305, United States
- Pediatric
Endocrinology, Stanford University School
of Medicine, Stanford, California 94305, United States
- ChEM-H Institute, Stanford
University, Stanford, California 94305, United States
- Woods
Institute for the Environment, Stanford
University, Stanford, California 94305, United States
| |
Collapse
|
28
|
Tian L, Wang H, Bing W, Jin H, Shang Y, Dong S, Yan S, Du W. Exploring the antifouling performance of non-bactericidal and bactericidal film for combating marine biofouling. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.06.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Wen J, Song Z, Chen X, Li H. Fabrication of Porous Aluminum Coating by Cored Wire Arc Spray for Anchoring Antifouling Hydrogel Layer. JOURNAL OF THERMAL SPRAY TECHNOLOGY 2021; 31:119-129. [PMID: 38624882 PMCID: PMC8373294 DOI: 10.1007/s11666-021-01251-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 06/18/2023]
Abstract
Biofouling has been persisting as a worldwide problem due to the difficulties in finding efficient environment-friendly antifouling coatings for long-term applications. Developing novel coatings with desired antifouling properties has been one of the research goals for surface coating community. Recently hydrogel coating was proposed to serve as antifouling layer, for it offers the advantages of the ease of incorporating green biocides, and resisting attachment of microorganisms by its soft surface. Yet poor adhesion of the hydrogel on steel surfaces is a big concern. In this study, porous matrix aluminum coatings were fabricated by cored wire arc spray, and the sizes of the pores in the aluminum (Al) coatings were controlled by altering the size of the cored powder of sodium chloride. Silicone hydrogel was further deposited on the porous coating. The hydrogel penetrated into the open pores of the porous Al coatings, and the porous Al structure significantly enhanced the adhesion of the hydrogel. In addition, hydrogel coating exhibited very encouraging antifouling properties.
Collapse
Affiliation(s)
- Jianxin Wen
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
- Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
| | - Ziheng Song
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
- Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
| | - Xiuyong Chen
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
- Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
| | - Hua Li
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
- Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 China
| |
Collapse
|
30
|
Zhang C, Zhang Z, Qi Y. Preparation, Structure, and Properties of Polystyrene-Microsphere-Reinforced PEG-Based Hydrogels. Polymers (Basel) 2021; 13:2605. [PMID: 34451147 PMCID: PMC8398237 DOI: 10.3390/polym13162605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/22/2021] [Accepted: 08/03/2021] [Indexed: 11/17/2022] Open
Abstract
To improve the mechanical strength and practicability of hydrogels, polystyrene microspheres with core-shell structure were prepared by the soap-free emulsion polymerization, polyethylene glycol hydrogels with polystyrene microspheres by the in-situ polymerization. The structure, morphology, roughness, swelling property, surface energy, and mechanical properties of the microspheres and hydrogels were investigated by Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, confocal laser microscopy, swelling test, contact angle measurement, and compression test. The results showed that they have certain swelling capacity and excellent mechanical properties, and can change from hydrophobic to hydrophilic surface. The reason is that the hydrophilic chain segment can migrate, enrich, and form a hydration layer on the surface after soaking for a certain time. Introducing proper content of polystyrene microspheres into the hydrogel, the compressive strength and swelling degree improved obviously. Increasing the content of polystyrene microspheres, the surface energy of the hydrogels decreased gradually.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Zhanping Zhang
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yuhong Qi
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
31
|
Eco-friendly erucamide-polydimethylsiloxane coatings for marine anti-biofouling. Colloids Surf B Biointerfaces 2021; 207:112003. [PMID: 34343909 DOI: 10.1016/j.colsurfb.2021.112003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/11/2021] [Accepted: 07/22/2021] [Indexed: 11/21/2022]
Abstract
Marine biofouling of ship hulls and ocean structures causes enormous economic losses due to increased frictional drag. Thus, efforts have been exerted worldwide to eliminate biofouling. In addition, a strong demand exists for the development of a cost-effective and eco-friendly anti-biofouling coating technology. Thus, erucamide-polydimethylsiloxane (EP) coating is proposed in this study. EP exhibits a hydrophobic surface as the erucamide content and drag reduction effect increase. In this study, the drag reduction effect of the EP 2.5 is better than that of glass and polydimethylsiloxane (PDMS) surfaces. Moreover, the proposed EP coatings are observed to prevent the biofouling induced by bacteria (E. coli) and brown algae (Cladosiphon sp.). In addition, through a marine field test, the anti-biofouling effect of the EP surface is found to be better than the previously studied oleamide-PDMS (OP) surface. In the marine field test, the EP 2.5 demonstrates superior anti-biofouling performance for 5.5 months under real marine environment. The proposed eco-friendly EP coating method could be applicable to marine vehicles that require effective drag reduction and anti-biofouling properties.
Collapse
|
32
|
Koschitzki F, Wanka R, Sobota L, Gardner H, Hunsucker KZ, Swain GW, Rosenhahn A. Amphiphilic Zwitterionic Acrylate/Methacrylate Copolymers for Marine Fouling-Release Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5591-5600. [PMID: 33930274 DOI: 10.1021/acs.langmuir.1c00428] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Methacrylate and acrylate monomers are popular building blocks for antifouling (AF) and fouling-release (FR) coatings to counteract marine biofouling. They are used in various combinations and often combined into amphiphilic materials. This study investigated the FR properties of amphiphilic ethylene glycol dicyclopentenyl ether acrylate (DCPEA) and the corresponding methacrylate (DCPEMA) blended with 5 wt % zwitterionic carboxybetaine acrylate (CBA) and the corresponding methacrylate (CBMA). A series of (co)polymers with different acrylate/methacrylate compositions were synthesized and tested against the attachment of the diatom Navicula perminuta and in short-term dynamic field exposure experiments. The more hydrophobic methacrylate DCPEMA homopolymer outperformed its acrylate counterpart DCPEA. Incorporated zwitterionic functionality of both CBMA and CBA imparted ultralow fouling capability in the amphiphilic polymers toward diatom attachment, whereas in the real ocean environment, only the employment of CBMA reduced marine biofouling. Moreover, it was observed that CBA-containing coatings showed different surface morphologies and roughnesses compared to the CBMA analogues. Particularly, a high impact was found when acrylic CBA was mixed with methacrylic DCPEMA. While the wettability of the coatings was comparable, investigated methacrylates in general exhibited superior fouling resistance compared to the acrylates.
Collapse
Affiliation(s)
- Florian Koschitzki
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, Bochum, NRW 44780, Germany
| | - Robin Wanka
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, Bochum, NRW 44780, Germany
| | - Lennart Sobota
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, Bochum, NRW 44780, Germany
| | - Harrison Gardner
- Center for Corrosion & Biofouling, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Kelli Z Hunsucker
- Center for Corrosion & Biofouling, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Geoffrey W Swain
- Center for Corrosion & Biofouling, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Axel Rosenhahn
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, Bochum, NRW 44780, Germany
| |
Collapse
|
33
|
Shave MK, Xu Z, Raman V, Kalasin S, Tuominen MT, Forbes NS, Santore MM. Escherichia coli Swimming back Toward Stiffer Polyetheylene Glycol Coatings, Increasing Contact in Flow. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17196-17206. [PMID: 33821607 PMCID: PMC8503937 DOI: 10.1021/acsami.1c00245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Bacterial swimming in flow near surfaces is critical to the spread of infection and device colonization. Understanding how material properties affect flagella- and motility-dependent bacteria-surface interactions is a first step in designing new medical devices that mitigate the risk of infection. We report that, on biomaterial coatings such as polyethylene glycol (PEG) hydrogels and end-tethered layers that prevent adhesive bacteria accumulation, the coating mechanics and hydration control the near-surface travel and dynamic surface contact of E. coli cells in gentle shear flow (order 10 s-1). Along relatively stiff (order 1 MPa) PEG hydrogels or end-tethered layers of PEG chains of similar polymer correlation length, run-and-tumble E. coli travel nanometrically close to the coating's surface in the flow direction in distinguishable runs or "engagements" that persist for several seconds, after which cells leave the interface. The duration of these engagements was greater along stiff hydrogels and end-tethered layers compared with softer, more-hydrated hydrogels. Swimming cells that left stiff hydrogels or end-tethered layers proceeded out to distances of a few microns and then returned to engage the surface again and again, while cells engaging the soft hydrogel tended not to return after leaving. As a result of differences in the duration of engagements and tendency to return to stiff hydrogel and end-tethered layers, swimming E. coli experienced 3 times the integrated dynamic surface contact with stiff coatings compared with softer hydrogels. The striking similarity of swimming behaviors near 16-nm-thick end-tethered layers and 100-μm-thick stiff hydrogels argues that only the outermost several nanometers of a highly hydrated coating influence cell travel. The range of material stiffnesses, cell-surface distance during travel, and time scales of travel compared with run-and-tumble time scales suggests the influence of the coating derives from its interactions with flagella and its potential to alter flagellar bundling. Given that restriction of flagellar rotation is known to trigger increased virulence, bacteria influenced by surfaces in one region may become predisposed to form a biofilm downstream.
Collapse
Affiliation(s)
- Molly K. Shave
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003
| | - Zhou Xu
- Department of Physics, University of Massachusetts, Amherst, MA 01003
| | - Vishnu Raman
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003
| | - Surachate Kalasin
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003
| | - Mark T. Tuominen
- Department of Physics, University of Massachusetts, Amherst, MA 01003
| | - Neil S. Forbes
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003
| | - Maria M. Santore
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003
| |
Collapse
|
34
|
Yu W, Wang Y, Gnutt P, Wanka R, Krause LMK, Finlay JA, Clare AS, Rosenhahn A. Layer-by-Layer Deposited Hybrid Polymer Coatings Based on Polysaccharides and Zwitterionic Silanes with Marine Antifouling Properties. ACS APPLIED BIO MATERIALS 2021; 4:2385-2397. [PMID: 35014359 DOI: 10.1021/acsabm.0c01253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polyelectrolyte multilayer (PEM) assembly is a versatile tool to construct low-fouling coatings. For application in the marine environment, their structure needs to be stabilized by covalent linkage. Here, we introduce an approach for spin coating of silane-based sol-gel chemistries using layer-by-layer assembly of polysaccharide-based hybrid polymer coatings (LBLHPs). The silane sol-gel chemistry allows the films to be cross-linked under water-based and mild reaction conditions. Two different silanes were used for this purpose, a conventional triethoxymethyl silane and a de novo synthesized zwitterionic silane. The polysaccharide-silane hybrid polymer coatings were thoroughly characterized with spectroscopic ellipsometry, water contact angle (WCA) goniometry, attenuated total reflection-Fourier transform infrared spectroscopy, and atomic force microscopy. The coatings showed good stability in seawater, smooth surfaces, a high degree of hydration, and WCAs below or close to the Berg limit. LBLHPs showed low-fouling properties in biological assays against nonspecific protein adsorption, attachment of the diatom Navicula perminuta, and settlement of zoospores of the macroalga Ulva linza.
Collapse
Affiliation(s)
- Wenfa Yu
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, 44801 Bochum, Germany
| | - Yongxiang Wang
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, 44801 Bochum, Germany
| | - Patricia Gnutt
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, 44801 Bochum, Germany
| | - Robin Wanka
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, 44801 Bochum, Germany
| | - Lutz M K Krause
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, 44801 Bochum, Germany
| | - John A Finlay
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Axel Rosenhahn
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
35
|
Wanka R, Koschitzki F, Puzovic V, Pahl T, Manderfeld E, Hunsucker KZ, Swain GW, Rosenhahn A. Synthesis and Characterization of Dendritic and Linear Glycol Methacrylates and Their Performance as Marine Antifouling Coatings. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6659-6669. [PMID: 33497184 DOI: 10.1021/acsami.0c21212] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dendritic polyglycerol (PG) was covalently coupled to 2-hydroxyethyl methacrylate (HEMA) by an anionically catalyzed ring-opening polymerization generating a dendritic PG-HEMA with four PG repetition units (PG4MA). Coatings of the methacrylate monomer were prepared by grafting-through and compared against commercially available hydrophilic monomers of HEMA, poly(ethylene) glycol methacrylate (PEGMA), and poly(propylene) glycol methacrylate (PPGMA). The obtained coatings were characterized by modern surface analytical techniques, including water contact angle goniometry (sessile and captive bubble), attenuated total internal reflection Fourier transform infrared spectroscopy, and atomic force microscopy. The antifouling (AF) and fouling-release (FR) properties of the coatings were tested against the model organisms Cobetia marina and Navicula perminuta in laboratory-scale dynamic accumulation assays as well as in a dynamic short-term field exposure (DSFE) in the marine environment. In addition, the hydration of the coatings and their susceptibility toward silt uptake were evaluated, revealing a strong correlation between water uptake, silt incorporation, and field assay performance. While all glycol derivatives showed good resistance in laboratory settlement experiments, PPGMA turned out to be less susceptible to silt incorporation and outperformed PEGMA and PG4MA in the DSFE assay.
Collapse
Affiliation(s)
- Robin Wanka
- Analytical Chemistry - Biointerfaces, Ruhr-University Bochum, 44780 Bochum, Germany
- Center for Protein Diagnostics (ProDi), Ruhr-University Bochum, 44780 Bochum, Germany
| | - Florian Koschitzki
- Analytical Chemistry - Biointerfaces, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Vuk Puzovic
- Analytical Chemistry - Biointerfaces, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Thorben Pahl
- Analytical Chemistry - Biointerfaces, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Emily Manderfeld
- Analytical Chemistry - Biointerfaces, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Kelli Z Hunsucker
- Center for Corrosion & Biofouling, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Geoffrey W Swain
- Center for Corrosion & Biofouling, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Axel Rosenhahn
- Analytical Chemistry - Biointerfaces, Ruhr-University Bochum, 44780 Bochum, Germany
| |
Collapse
|
36
|
Vignesh V, Stafslien S, Evans M, Wise K, Marmo A, Tonks M, Brennan A. Comparative analysis of two isocyanate-free urethane-based gels for antifouling applications. BIOFOULING 2021; 37:131-144. [PMID: 33730945 DOI: 10.1080/08927014.2020.1870679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Amphiphilic gels consisting of acrylamide (AAM)/2-hydroxyethyl methacrylate (HEMA), hexafluorobutyl methacrylate (HFBMA) and non-isocyanate urethane dimethacrylate (NIUDMA) of varying molecular weights were compared. A three-level Taguchi analysis was performed using the amount of AAM/HEMA, HFBMA, NIUDMA and reaction time as dependent variables to determine the optimal formulation of the gels with maximized toughness and elastic modulus. The results were compared with commercial AF/FR Intersleek® coatings (IS 700, IS 900 and IS 1100SR) for their antifouling performance against a marine microalga (Navicula incerta), a marine bacterium (Cellulophaga lytica) and adult barnacles (Amphibalanus amphitrite). The toughness, elastic modulus and strain at break of the optimized AAM gels ranged from 3 to7 MPa, 25 to 72 MPa and 80% to 170%, respectively, whereas those of the optimized HEMA gels ranged from 1 to 3 MPa, 13 to 23 MPa and 76% to 160%, respectively. The gels, particularly AHN(E9) and HHN(E12), showed reductions of attachment compared with IS700 of up to 93% and 58%, respectively.
Collapse
Affiliation(s)
- Vishal Vignesh
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida, USA
| | - Shane Stafslien
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota, USA
| | - Morgan Evans
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida, USA
| | - Kellen Wise
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida, USA
| | - Alec Marmo
- Department of Materials Science and Engineering, Texas A & M University, Texas, College Station, USA
| | - Michael Tonks
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida, USA
| | - Anthony Brennan
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
37
|
Liu M, Li S, Wang H, Jiang R, Zhou X. Research progress of environmentally friendly marine antifouling coatings. Polym Chem 2021. [DOI: 10.1039/d1py00512j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The antifouling mechanisms and research progress in the past three years of environmentally friendly marine antifouling coatings are introduced in this work.
Collapse
Affiliation(s)
- Mengyue Liu
- School of Chemistry and Life Sciences
- Suzhou University of Science andTechnology
- Suzhou 215009
- China
| | - Shaonan Li
- School of Chemistry and Life Sciences
- Suzhou University of Science andTechnology
- Suzhou 215009
- China
| | - Hao Wang
- School of Chemistry and Life Sciences
- Suzhou University of Science andTechnology
- Suzhou 215009
- China
| | - Rijia Jiang
- School of Chemistry and Life Sciences
- Suzhou University of Science andTechnology
- Suzhou 215009
- China
| | - Xing Zhou
- School of Chemistry and Life Sciences
- Suzhou University of Science andTechnology
- Suzhou 215009
- China
| |
Collapse
|
38
|
Kuliasha CA, Fedderwitz RL, Stafslien SJ, Finlay JA, Clare AS, Brennan AB. Anti-biofouling properties of poly(dimethyl siloxane) with RAFT photopolymerized acrylate/methacrylate surface grafts against model marine organisms. BIOFOULING 2021; 37:78-95. [PMID: 33491472 DOI: 10.1080/08927014.2021.1875216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Biofouling of man-made surfaces by marine organisms is a global problem with both financial and environmental consequences. However, the development of non-toxic anti-biofouling coatings is challenged by the diversity of fouling organisms. One possible solution leverages coatings composed of diverse chemical constituents. Reversible addition-fragmentation chain-transfer (RAFT) photopolymerization was used to modify poly(dimethylsiloxane) (PDMSe) surfaces with polymeric grafts composed of three successive combinations of acrylamide, acrylic acid, and hydroxyethyl methacrylate. RAFT limited conflicting variables and allowed for the effect of graft chemistry to be isolated. While all compositions enhanced the anti-biofouling performance compared with the PDMSe control, the ternary, amphiphilic copolymer was the most effective with 98% inhibition of the attachment of zoospores of the green alga Ulva linza, 94% removal of cells of the diatom Navicula incerta, and 62% removal of cells of the bacterium Cellulophaga lytica. However, none of the graft compositions tested were able to mitigate reattachment of adult barnacles, Amphibalanus amphitrite.
Collapse
Affiliation(s)
- Cary A Kuliasha
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
| | - Rebecca L Fedderwitz
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
| | - Shane J Stafslien
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, USA
| | - John A Finlay
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Anthony B Brennan
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
39
|
Hoppe Alvarez L, Rudov AA, Gumerov RA, Lenssen P, Simon U, Potemkin II, Wöll D. Controlling microgel deformation via deposition method and surface functionalization of solid supports. Phys Chem Chem Phys 2021; 23:4927-4934. [PMID: 33620358 DOI: 10.1039/d0cp06355j] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Soft matter at solid-liquid interfaces plays an important role in multiple scientific disciplines as well as in various technological fields. For microgels, representing highly interesting soft matter systems, we demonstrate that the preparation method, i.e. the way how the microgel is applied to the specific surface, plays a key role. Focusing on the three most common sample preparation methods (spin-coating, drop-casting and adsorption from solution), we performed a comparative study of the deformation behavior of microgels at the solid-liquid interface on three different surfaces with varying hydrophilicities. For in situ visualization of the deformation of pNIPMAM microgels, we conducted highly sensitive 3D super resolution fluorescence microscopy methods. We furthermore performed complementary molecular dynamics simulations to determine the driving force responsible for the deformation depending on the surface and the deposition method. The combination of experiments and simulations revealed that the simulated equilibrium structure obtained after simulation of the completely dry microgel after deposition is retained after rehydration and subsequent fluorescent imaging.
Collapse
Affiliation(s)
- Laura Hoppe Alvarez
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany.
| | - Andrey A Rudov
- Physics Department, Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russian Federation and DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, D-52056 Aachen, Germany
| | - Rustam A Gumerov
- Physics Department, Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russian Federation and DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, D-52056 Aachen, Germany
| | - Pia Lenssen
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany.
| | - Ulrich Simon
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1 a, D-52056 Aachen, Germany
| | - Igor I Potemkin
- Physics Department, Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russian Federation and DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, D-52056 Aachen, Germany and National Research South Ural State University, Chelyabinsk 454080, Russian Federation
| | - Dominik Wöll
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany.
| |
Collapse
|
40
|
Efstathiou S, Wemyss AM, Patias G, Al-Shok L, Grypioti M, Coursari D, Ma C, Atkins CJ, Shegiwal A, Wan C, Haddleton DM. Self-healing and mechanical performance of dynamic glycol chitosan hydrogel nanocomposites. J Mater Chem B 2021; 9:809-823. [DOI: 10.1039/d0tb02390f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Evaluation of Schiff base nanocomposite hydrogels properties using a benzaldehyde multifunctional amphiphilic polyacrylamide crosslinker in conjunction with glycol chitosan.
Collapse
Affiliation(s)
| | - Alan M. Wemyss
- Department of Chemistry
- University of Warwick
- Coventry
- UK
- International Institute for Nanocomposites Manufacturing (IINM)
| | | | - Lucas Al-Shok
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | | | | - Congkai Ma
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | | | | - Chaoying Wan
- International Institute for Nanocomposites Manufacturing (IINM)
- WMG
- University of Warwick
- UK
| | | |
Collapse
|
41
|
Xu X, Huang X, Chang Y, Yu Y, Zhao J, Isahak N, Teng J, Qiao R, Peng H, Zhao CX, Davis TP, Fu C, Whittaker AK. Antifouling Surfaces Enabled by Surface Grafting of Highly Hydrophilic Sulfoxide Polymer Brushes. Biomacromolecules 2020; 22:330-339. [PMID: 33305948 DOI: 10.1021/acs.biomac.0c01193] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antifouling surfaces are important in a broad range of applications. An effective approach to antifouling surfaces is to covalently attach antifouling polymer brushes. This work reports the synthesis of a new class of antifouling polymer brushes based on highly hydrophilic sulfoxide polymers by surface-initiated photoinduced electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. The sulfoxide polymer brushes are able to effectively reduce nonspecific adsorption of proteins and cells, demonstrating remarkable antifouling properties. Given the outstanding antifouling behavior of the sulfoxide polymers and versatility of surface-initiated PET-RAFT technology, this work presents a useful and general approach to engineering various material surfaces with antifouling properties, for potential biomedical applications in areas such as tissue engineering, medical implants, and regenerative medicine.
Collapse
Affiliation(s)
- Xin Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Xumin Huang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yixin Chang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ye Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jiacheng Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Naatasha Isahak
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jisi Teng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ruirui Qiao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Thomas P Davis
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
42
|
Li XC, Hao DZ, Hao WJ, Guo XL, Jiang L. Bioinspired Hydrogel-Polymer Hybrids with a Tough and Antifatigue Interface via One-Step Polymerization. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51036-51043. [PMID: 33112597 DOI: 10.1021/acsami.0c14728] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydrogel hybrids are one of the key factors in life activities and biomimetic science; however, their development and utilization are critically impeded by their inadequate adhesive strength and intricate process. In nature, barnacles can stick to a variety of solid surfaces firmly (adhesive strength above 300 kPa) using a hydrophobic interface, which inspires us to firmly combine hydrogels and polymers through introducing an adhesive layer. By spreading a hydrophobic liquid membrane directly, tough combination of a hydrogel and a polymer substrate could be achieved after one-step polymerization. The fracture energy of the hydrogel attached to the surface of polyvinyl chloride was up to 1200 J m-2 and the tensile strength reached 1.21 MPa. Furthermore, the adhesion samples with this method exhibit an antifatigue performance, having withstood large bends and twists. It should be pointed out that this approach can also be applied to a variety of complicated surfaces. This work may expand the application range of hydrogels and provides an inspiration for hydrogel adhesion.
Collapse
Affiliation(s)
- Xing-Chao Li
- Hainan Tropical Island Resources Ministry of Education Key Laboratory of Advanced Materials, Hainan University, Haikou 570228, P. R. China
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - De-Zhao Hao
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Wan-Jun Hao
- Hainan Tropical Island Resources Ministry of Education Key Laboratory of Advanced Materials, Hainan University, Haikou 570228, P. R. China
| | - Xing-Lin Guo
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lei Jiang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
43
|
Zhao C, Zhou L, Chiao M, Yang W. Antibacterial hydrogel coating: Strategies in surface chemistry. Adv Colloid Interface Sci 2020; 285:102280. [PMID: 33010575 DOI: 10.1016/j.cis.2020.102280] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/20/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
Hydrogels have emerged as promising antimicrobial materials due to their unique three-dimensional structure, which provides sufficient capacity to accommodate various materials, including small molecules, polymers and particles. Coating substrates with antibacterial hydrogel layers has been recognized as an effective strategy to combat bacterial colonization. To prevent possible delamination of hydrogel coatings from substrates, it is crucial to attach hydrogel layers via stronger links, such as covalent bonds. To date, various surface chemical strategies have been developed to introduce hydrogel coatings on different substrates. In this review, we first give a brief introduction of the major strategies for designing antibacterial coatings. Then, we summarize the chemical methods used to fix the antibacterial hydrogel layer on the substrate, which include surface-initiated graft crosslinking polymerization, anchoring the hydrogel layer on the surface during crosslinking, and chemical crosslinking of layer-by-layer coating. The reaction mechanisms of each method and matched pretreatment strategies are systemically documented with the aim of introducing available protocols to researchers in related fields for designing hydrogel-coated antibacterial surfaces.
Collapse
|
44
|
Liu J, Qu S, Suo Z, Yang W. Functional hydrogel coatings. Natl Sci Rev 2020; 8:nwaa254. [PMID: 34691578 PMCID: PMC8288423 DOI: 10.1093/nsr/nwaa254] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/21/2022] Open
Abstract
Hydrogels—natural or synthetic polymer networks that swell in water—can be made mechanically, chemically and electrically compatible with living tissues. There has been intense research and development of hydrogels for medical applications since the invention of hydrogel contact lenses in 1960. More recently, functional hydrogel coatings with controlled thickness and tough adhesion have been achieved on various substrates. Hydrogel-coated substrates combine the advantages of hydrogels, such as lubricity, biocompatibility and anti-biofouling properties, with the advantages of substrates, such as stiffness, toughness and strength. In this review, we focus on three aspects of functional hydrogel coatings: (i) applications and functions enabled by hydrogel coatings, (ii) methods of coating various substrates with different functional hydrogels with tough adhesion, and (iii) tests to evaluate the adhesion between functional hydrogel coatings and substrates. Conclusions and outlook are given at the end of this review.
Collapse
Affiliation(s)
- Junjie Liu
- Center for X-Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province and Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Fluid Power and Mechatronic System, Zhejiang University, Hangzhou 310027, China
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shaoxing Qu
- Center for X-Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province and Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Fluid Power and Mechatronic System, Zhejiang University, Hangzhou 310027, China
| | - Zhigang Suo
- John A. Paulson School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA 02138, USA
| | - Wei Yang
- Center for X-Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province and Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
45
|
Zhang T, Qu Y, Gunatillake PA, Cass P, Locock KES, Blackman LD. Honey-inspired antimicrobial hydrogels resist bacterial colonization through twin synergistic mechanisms. Sci Rep 2020; 10:15796. [PMID: 32978445 PMCID: PMC7519120 DOI: 10.1038/s41598-020-72478-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 08/25/2020] [Indexed: 12/21/2022] Open
Abstract
Inspired by the interesting natural antimicrobial properties of honey, biohybrid composite materials containing a low-fouling polymer hydrogel network and an encapsulated antimicrobial peroxide-producing enzyme have been developed. These synergistically combine both passive and active mechanisms for reducing microbial bacterial colonization. The mechanical properties of these materials were assessed using compressive mechanical analysis, which revealed these hydrogels possessed tunable mechanical properties with Young's moduli ranging from 5 to 500 kPa. The long-term enzymatic activities of these materials were also assessed over a 1-month period using colorimetric assays. Finally, the passive low-fouling properties and active antimicrobial activity against a leading opportunistic pathogen, Staphylococcus epidermidis, were confirmed using bacterial cell counting and bacterial adhesion assays. This study resulted in non-adhesive substrate-permeable antimicrobial materials, which could reduce the viability of planktonic bacteria by greater than 7 logs. It is envisaged these new biohybrid materials will be important for reducing bacterial adherence in a range of industrial applications.
Collapse
Affiliation(s)
- Tiffany Zhang
- CSIRO Manufacturing, Research Way, Clayton, VIC, 3168, Australia
- Chimie ParisTech, Rue Pierre et Marie Curie, 75005, Paris, France
| | - Yue Qu
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | | | - Peter Cass
- CSIRO Manufacturing, Research Way, Clayton, VIC, 3168, Australia
| | | | - Lewis D Blackman
- CSIRO Manufacturing, Research Way, Clayton, VIC, 3168, Australia.
| |
Collapse
|
46
|
Sung J, Lee DG, Lee S, Park J, Jung HW. Crosslinking Dynamics and Gelation Characteristics of Photo- and Thermally Polymerized Poly(Ethylene Glycol) Hydrogels. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3277. [PMID: 32717929 PMCID: PMC7435459 DOI: 10.3390/ma13153277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 12/15/2022]
Abstract
The crosslinking behaviors and gelation features of poly(ethylene glycol) (PEG) hydrogels were scrutinized during the UV and thermal polymerizations of mixtures of poly(ethylene glycol) methacrylate (PEGMA, monomer) and poly(ethylene glycol) dimethacrylates (PEGDMAs, crosslinkers). The real-time crosslinking behavior of the PEG hydrogels was quantified as a function of the UV irradiation time and reaction temperature during the UV and thermal polymerization, respectively, using real-time FT-IR spectrometry and rotational rheometry. The gelation characteristics of UV- and thermally crosslinked hydrogels were compared through the analysis of the gel fraction, swelling ratio, surface hardness, and the loading and release of rhodamine-B. The gelation properties of the cured hydrogel films were suitably correlated with the real-time rheological properties and crosslinked network state of the PEG mixtures. The crosslinking and gelation properties of the cured hydrogels could be optimally tuned by not only the molecular weight of the crosslinker but also the UV or thermal polymerization conditions.
Collapse
Affiliation(s)
- Jungmoon Sung
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea; (J.S.); (D.G.L.); (J.P.)
- Analysis Platform, R&D Center, SK Innovation, Daejeon 34124, Korea;
| | - Dong Geun Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea; (J.S.); (D.G.L.); (J.P.)
| | - Sukchin Lee
- Analysis Platform, R&D Center, SK Innovation, Daejeon 34124, Korea;
| | - Junyoung Park
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea; (J.S.); (D.G.L.); (J.P.)
| | - Hyun Wook Jung
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea; (J.S.); (D.G.L.); (J.P.)
| |
Collapse
|
47
|
Cėpla V, Rakickas T, Stankevičienė G, Mazėtytė-Godienė A, Baradokė A, Ruželė Ž, Valiokas RN. Photografting and Patterning of Poly(ethylene glycol) Methacrylate Hydrogel on Glass for Biochip Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32233-32246. [PMID: 32438798 DOI: 10.1021/acsami.0c04085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An efficient procedure for chemical initiator-free, in situ synthesis of a functional polyethylene glycol methacrylate (PEG MA) hydrogel on regular glass substrates is reported. It is demonstrated that self-initiated photografting and photopolymerization driven by UV irradiation can yield tens of nanometer-thick coatings of carboxy-functionalized PEG MA on the aldehyde-terminated borosilicate glass surface. The most efficient formulation for hydrogel synthesis contained methyl methacrylic acid (MAA), 2-hydroxyethyl methacrylate (HEMA), and PEG methacrylate (PEG10MA) monomers (1:1:1). The resulting HEMA/PEG10MA/MAA (HPMAA) coatings had a defined thickness in the range from 11 to 50 nm. The physicochemical properties of the synthesized HPMAA coatings were analyzed by combining water contact angle measurements, stylus profilometry, imaging null ellipsometry, and atomic force microscopy (AFM). The latter technique was employed in the quantitative imaging mode not only for direct probing of the surface topography but also for swelling behavior characterization in the pH range from 4.5 to 8.0. The estimated high swelling ratios of the HPMAA hydrogel (up to 3.2) together with its good stability and resistance to nonspecific protein binding were advantageous in extracellular matrix mimetics via patterning of fibronectin (FN) at a resolution close to 200 nm. It was shown that the fabricated FN micropatterns on HPMAA were equally suitable for single-cell arraying, as well as controlled cell culture lasting at least for 96 h.
Collapse
Affiliation(s)
- Vytautas Cėpla
- Department of Nanoengineering, Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
| | - Tomas Rakickas
- Department of Nanoengineering, Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
| | - Gintarė Stankevičienė
- Department of Nanoengineering, Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
| | - Airina Mazėtytė-Godienė
- Department of Nanoengineering, Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
| | - Aušra Baradokė
- Department of Nanoengineering, Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
| | - Živilė Ruželė
- Department of Nanoengineering, Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
| | - Ramu Nas Valiokas
- Department of Nanoengineering, Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
| |
Collapse
|
48
|
Gaihre B, Liu X, Lee Miller A, Yaszemski M, Lu L. Poly(Caprolactone Fumarate) and Oligo[Poly(Ethylene Glycol) Fumarate]: Two Decades of Exploration in Biomedical Applications. POLYM REV 2020. [DOI: 10.1080/15583724.2020.1758718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - A. Lee Miller
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael Yaszemski
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
49
|
Zhang K, Huang H, Hung HC, Leng C, Wei S, Crisci R, Jiang S, Chen Z. Strong Hydration at the Poly(ethylene glycol) Brush/Albumin Solution Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2030-2036. [PMID: 32091913 DOI: 10.1021/acs.langmuir.9b03680] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Albumin molecules are extensively used as biocompatible coatings, and poly(ethylene glycol) (PEG) materials are widely used for antifouling. PEG materials have excellent antifouling property because of their strong surface hydration. Our previous research indicates that hydration at the PEG/bovine serum albumin solution interface is stronger than that at the PEG/water interface. This research shows that this observation is general for different types of albumin molecules. Different albumins including bovine, porcine, rat, rabbit, and sheep serum albumins were studied in this research. It was found that the hydration at the PEG methacrylate (pOEGMA)/albumin solution interface is always stronger than that at the pOEGMA/water interface. Here, we define "strong interfacial hydration" as "ordered strongly hydrogen-bonded interfacial water". We believe that such a strong hydration is because of the strong hydration on the albumin surface, leading to its biocompatible property. All of the albumin molecules demonstrated stronger hydration on the pOEGMA surface compared to other protein molecules such as lysozyme and fibrinogen. The strong hydration on albumin molecules is related to the high surface coverage of glutamic acid and lysine with similar amounts.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hao Huang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hsiang-Chieh Hung
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Chuan Leng
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shuai Wei
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ralph Crisci
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shaoyi Jiang
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
50
|
Antifouling Napyradiomycins from Marine-Derived Actinomycetes Streptomyces aculeolatus. Mar Drugs 2020; 18:md18010063. [PMID: 31963732 PMCID: PMC7024211 DOI: 10.3390/md18010063] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 01/20/2023] Open
Abstract
The undesired attachment of micro and macroorganisms on water-immersed surfaces, known as marine biofouling, results in severe prevention and maintenance costs (billions €/year) for aquaculture, shipping and other industries that rely on coastal and off-shore infrastructures. To date, there are no sustainable, cost-effective and environmentally safe solutions to address this challenging phenomenon. Therefore, we investigated the antifouling activity of napyradiomycin derivatives that were isolated from actinomycetes from ocean sediments collected off the Madeira Archipelago. Our results revealed that napyradiomycins inhibited ≥80% of the marine biofilm-forming bacteria assayed, as well as the settlement of Mytilus galloprovincialis larvae (EC50 < 5 µg/ml and LC50/EC50 >15), without viability impairment. In silico prediction of toxicity end points are of the same order of magnitude of standard approved drugs and biocides. Altogether, napyradiomycins disclosed bioactivity against marine micro and macrofouling organisms, and non-toxic effects towards the studied species, displaying potential to be used in the development of antifouling products.
Collapse
|