1
|
Li W, Taboas JM, Almarza AJ. Chondrogenic potential of superficial versus cartilage layer cells of the temporomandibular joint condyle in photopolymerizable gelatin-based hydrogels. Proc Inst Mech Eng H 2024; 238:741-754. [PMID: 39109566 DOI: 10.1177/09544119241267021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The objectives of this study were to compare the chondrogenic potential of cells derived from different layers of Mandibular condyle cartilage and to gain further understanding of the impact of chondrogenic cues when embedded into a novel hydrogel scaffold (PGH, a polymer blend of poly (ethylene glycol), gelatin, and heparin) compared to a gelatin hydrogel scaffold (GEL). Cartilage layer cells (CLCs) and fibroblastic superficial layer cells (SLCs) were harvested from the mandibular condyle of boer goats obtained from a local abattoir. After expansion, cells were seeded into PGH and GEL hydrogels and cultured in chondrogenic media for 3 weeks. Scaffolds were harvested at 0, 1, and 3 week(s) and processed for gross appearance, histochemical, biochemical, and mechanical assays. In terms of chondrogenesis, major differences were observed between scaffold materials, but not cell types. Glycosaminoglycan (GAG) staining showed GEL scaffolds deposited GAG during the 3 week period, which was also confirmed with the biochemical testing. Moreover, GEL scaffolds had significantly higher compressive modulus and peak stress than PGH scaffolds at all time points with the largest difference seen in week 3. It can be concluded that GEL outperformed PGH in chondrogenesis. It can also be concluded that materials play a more important role in the process of chondrogenesis than the tested cell populations. Fibroblastic SLCs were shown to have similar chondrogenic potential as CLCs cells, suggesting a rich pool of progenitor cells in the superficial fibroblastic layer capable of undergoing chondrogenesis given appropriate physical and chemical cues.
Collapse
Affiliation(s)
- Wuyang Li
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center of Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juan M Taboas
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center of Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alejandro J Almarza
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center of Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Arkas M, Vardavoulias M, Kythreoti G, Giannakoudakis DA. Dendritic Polymers in Tissue Engineering: Contributions of PAMAM, PPI PEG and PEI to Injury Restoration and Bioactive Scaffold Evolution. Pharmaceutics 2023; 15:524. [PMID: 36839847 PMCID: PMC9966633 DOI: 10.3390/pharmaceutics15020524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
The capability of radially polymerized bio-dendrimers and hyperbranched polymers for medical applications is well established. Perhaps the most important implementations are those that involve interactions with the regenerative mechanisms of cells. In general, they are non-toxic or exhibit very low toxicity. Thus, they allow unhindered and, in many cases, faster cell proliferation, a property that renders them ideal materials for tissue engineering scaffolds. Their resemblance to proteins permits the synthesis of derivatives that mimic collagen and elastin or are capable of biomimetic hydroxy apatite production. Due to their distinctive architecture (core, internal branches, terminal groups), dendritic polymers may play many roles. The internal cavities may host cell differentiation genes and antimicrobial protection drugs. Suitable terminal groups may modify the surface chemistry of cells and modulate the external membrane charge promoting cell adhesion and tissue assembly. They may also induce polymer cross-linking for healing implementation in the eyes, skin, and internal organ wounds. The review highlights all the different categories of hard and soft tissues that may be remediated with their contribution. The reader will also be exposed to the incorporation of methods for establishment of biomaterials, functionalization strategies, and the synthetic paths for organizing assemblies from biocompatible building blocks and natural metabolites.
Collapse
Affiliation(s)
- Michael Arkas
- Institute of Nanoscience Nanotechnology, NCSR “Demokritos”, Patriarchou Gregoriou Street, 15310 Athens, Greece
| | | | - Georgia Kythreoti
- Institute of Nanoscience Nanotechnology, NCSR “Demokritos”, Patriarchou Gregoriou Street, 15310 Athens, Greece
| | | |
Collapse
|
3
|
Exploring dendrimer-based drug delivery systems and their potential applications in cancer immunotherapy. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111471] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
Kiyotake EA, Cheng ME, Thomas EE, Detamore MS. The Rheology and Printability of Cartilage Matrix-Only Biomaterials. Biomolecules 2022; 12:biom12060846. [PMID: 35740971 PMCID: PMC9220845 DOI: 10.3390/biom12060846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/27/2022] [Accepted: 06/14/2022] [Indexed: 01/19/2023] Open
Abstract
The potential chondroinductivity from cartilage matrix makes it promising for cartilage repair; however, cartilage matrix-based hydrogels developed thus far have failed to match the mechanical performance of native cartilage or be bioprinted without adding polymers for reinforcement. There is a need for cartilage matrix-based hydrogels with robust mechanical performance and paste-like precursor rheology for bioprinting/enhanced surgical placement. In the current study, our goals were to increase hydrogel stiffness and develop the paste-like precursor/printability of our methacryl-modified solubilized and devitalized cartilage (MeSDVC) hydrogels. We compared two methacryloylating reagents, methacrylic anhydride (MA) and glycidyl methacrylate (GM), and varied the molar excess (ME) of MA from 2 to 20. The MA-modified MeSDVCs had greater methacryloylation than GM-modified MeSDVC (20 ME). While GM and most of the MA hydrogel precursors exhibited paste-like rheology, the 2 ME MA and GM MeSDVCs had the best printability (i.e., shape fidelity, filament collapse). After crosslinking, the 2 ME MA MeSDVC had the highest stiffness (1.55 ± 0.23 MPa), approaching the modulus of native cartilage, and supported the viability/adhesion of seeded cells for 15 days. Overall, the MA (2 ME) improved methacryloylation, hydrogel stiffness, and printability, resulting in a stand-alone MeSDVC printable biomaterial. The MeSDVC has potential as a future bioink and has future clinical relevance for cartilage repair.
Collapse
Affiliation(s)
- Emi A. Kiyotake
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (E.A.K.); (M.E.C.)
| | - Michael E. Cheng
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (E.A.K.); (M.E.C.)
| | - Emily E. Thomas
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Michael S. Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (E.A.K.); (M.E.C.)
- Correspondence:
| |
Collapse
|
5
|
Huang J, Liu F, Su H, Xiong J, Yang L, Xia J, Liang Y. Advanced Nanocomposite Hydrogels for Cartilage Tissue Engineering. Gels 2022; 8:138. [PMID: 35200519 PMCID: PMC8871651 DOI: 10.3390/gels8020138] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
Tissue engineering is becoming an effective strategy for repairing cartilage damage. Synthesized nanocomposite hydrogels mimic the structure of natural cartilage extracellular matrices (ECMs), are biocompatible, and exhibit nano-bio effects in response to external stimuli. These inherent characteristics make nanocomposite hydrogels promising scaffold materials for cartilage tissue engineering. This review summarizes the advances made in the field of nanocomposite hydrogels for artificial cartilage. We discuss, in detail, their preparation methods and scope of application. The challenges involved for the application of hydrogel nanocomposites for cartilage repair are also highlighted.
Collapse
Affiliation(s)
- Jianghong Huang
- Department of Spine Surgery and Orthopedics, Shenzhen Second People’s Hospital (First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen 518035, China; (J.H.); (J.X.); (L.Y.)
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Fei Liu
- Department of Biochemistry, Texas A&M University School of Medicine, Bryan, TX 77807, USA;
| | - Haijing Su
- Technology R&D Department, Shenzhen Lechuang Medical Research Institute Co., Ltd., Shenzhen 518129, China;
| | - Jianyi Xiong
- Department of Spine Surgery and Orthopedics, Shenzhen Second People’s Hospital (First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen 518035, China; (J.H.); (J.X.); (L.Y.)
| | - Lei Yang
- Department of Spine Surgery and Orthopedics, Shenzhen Second People’s Hospital (First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen 518035, China; (J.H.); (J.X.); (L.Y.)
| | - Jiang Xia
- Department of Chemistry, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China;
| | - Yujie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, China
| |
Collapse
|
6
|
Abstract
Smart hydrogels are of great interest in areas such as drug delivery and sensing. Dendrimer-based hydrogels can exhibit tunable properties due to their structural precision. We prepared hydrogels from self-immolative dendrons. Controlled hydrogel degradation in response to light was demonstrated and the hydrogel properties as a function of dendron generation were compared.
Collapse
Affiliation(s)
- Karanpreet Gill
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, N6A 5B7, Canada.
| | - Xueli Mei
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, N6A 5B7, Canada.
| | - Elizabeth R Gillies
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, N6A 5B7, Canada. .,Department of Chemical and Biochemical Engineering and School of Biomedical Engineering, The University of Western Ontario, London, N6A 5B7, Canada
| |
Collapse
|
7
|
Polyesters based on aspartic acid and poly(ethylene glycol): Functional polymers for hydrogel preparation. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Zhan Y, Fu W, Xing Y, Ma X, Chen C. Advances in versatile anti-swelling polymer hydrogels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112208. [PMID: 34225860 DOI: 10.1016/j.msec.2021.112208] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 12/20/2022]
Abstract
Swelling is ubiquitous for traditional as-prepared hydrogels, but is unfavorable in many situations, especially biomedical applications, such as tissue engineering, internal wound closure, soft actuating and bioelectronics, and so forth. As the swelling of a hydrogel usually leads to a volume expansion, which not only deteriorates the mechanical property of the hydrogel but can bring about undesirable oppression on the surrounding tissues when applied in vivo. In contrast, anti-swelling hydrogels hardly alter their volume when applied in aqueous environment, therefore reserving the original mechanical performance and size-stability and facilitating their potential application. In the past decade, with the development of advanced hydrogels, quite a number of anti-swelling hydrogels with versatile functions have been developed by researchers to meet the practical applications well, through integrating anti-swelling property with certain performance or functionality, such as high strength, self-healing, injectability, adhesiveness, antiseptics, etc. However, there has not been a general summary with regard to these hydrogels. To promote the construction of anti-swelling hydrogels with desirable functionalities in the future, this review generalizes and analyzes the tactics employed so far in the design and manufacture of anti-swelling hydrogels, starting from the viewpoint of classical swelling theories. The review will provide a relatively comprehensive understanding of anti-swelling hydrogels and clues to researchers interested in this kind of materials to develop more advanced ones suitable for practical application.
Collapse
Affiliation(s)
- Yiwei Zhan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China
| | - Wenjiao Fu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, PR China.
| | - Yacheng Xing
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China.
| | - Xiaomei Ma
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, PR China.
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, PR China.
| |
Collapse
|
9
|
Chen J, Chin A, Almarza AJ, Taboas JM. Hydrogel to guide chondrogenesis versus osteogenesis of mesenchymal stem cells for fabrication of cartilaginous tissues. ACTA ACUST UNITED AC 2020; 15:045006. [PMID: 31470441 DOI: 10.1088/1748-605x/ab401f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The ideal combination of hydrogel components for regeneration of cartilage and cartilaginous interfaces is a significant challenge because control over differentiation into multiple lineages is necessary. Stabilization of the phenotype of stem cell derived chondrocytes is needed to avoid undesired progression to terminal hypertrophy and tissue mineralization. A novel ternary blend hydrogel composed of methacrylated poly(ethylene glycol) (PEG), gelatin, and heparin (PGH) was designed to guide chondrogenesis by bone marrow derived mesenchymal stem cells (BMSCs) and maintenance of their cartilaginous phenotype. The hydrogel material effects on chondrogenic and osteogenic differentiation by BMSCs were evaluated in comparison to methacrylated gelatin hydrogel (GEL), a conventional bioink used for both chondrogenic and osteogenic applications. PGH and GEL hydrogels were loaded with goat BMSCs and cultured in chondrogenic and osteogenic mediums in vitro over six weeks. The PGH showed no sign of mineral deposition in an osteogenic environment in vitro. To further evaluate material effects, the hydrogels were loaded with adult human BMSCs (hBMSCs) and transforming growth factor β-3 and grown in subcutaneous pockets in mice over eight weeks. Consistent with the in vitro results, the PGH had greater potential to induce chondrogenesis by BMSCs in vivo compared to the GEL as evidenced by elevated gene expression of chondrogenic markers, supporting its potential for stable cartilage engineering. The PGH also showed a greater percentage of GAG positive cells compared to the GEL. Unlike the GEL, the PGH hydrogel exhibited anti-osteogenic effects in vivo as evidenced by negative Von Kossa staining and suppressed gene expression of hypertrophic and osteogenic markers. By nature of their polymer composition alone, the PGH and GEL regulated BMSC differentiation down different osteochondral lineages. Thus, the PGH and GEL are promising hydrogels to regenerate stratified cartilaginous interfacial tissues in situ, such as the mandibular condyle surface, using undifferentiated BMSCs and a stratified scaffold design.
Collapse
Affiliation(s)
- Jingming Chen
- Department of Bioengineering; University of Pittsburgh, Pittsburgh, PA 15213, United States of America. Center for Craniofacial Regeneration; University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | | | | | | |
Collapse
|
10
|
Shetgaonkar AD, Nadkarni VS. Synthetically Induced 1→4‐C Branching Motif ‐ An Access Towards Dense Urethane Connecting Dendritic Scaffolds and Application in Nuclear Track Detection. ChemistrySelect 2019. [DOI: 10.1002/slct.201903243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Vishnu S. Nadkarni
- School of Chemical SciencesGoa University, Taleigao Plateau Goa- 403206 India
| |
Collapse
|
11
|
Singh YP, Moses JC, Bhardwaj N, Mandal BB. Injectable hydrogels: a new paradigm for osteochondral tissue engineering. J Mater Chem B 2018; 6:5499-5529. [PMID: 32254962 DOI: 10.1039/c8tb01430b] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Osteochondral tissue engineering has become a promising strategy for repairing focal chondral lesions and early osteoarthritis (OA), which account for progressive joint pain and disability in millions of people worldwide. Towards improving osteochondral tissue repair, injectable hydrogels have emerged as promising matrices due to their wider range of properties such as their high water content and porous framework, similarity to the natural extracellular matrix (ECM), ability to encapsulate cells within the matrix and ability to provide biological cues for cellular differentiation. Further, their properties such as those that facilitate minimally invasive deployment or delivery, and their ability to repair geometrically complex irregular defects have been critical for their success. In this review, we provide an overview of innovative approaches to engineer injectable hydrogels towards improved osteochondral tissue repair. Herein, we focus on understanding the biology of osteochondral tissue and osteoarthritis along with the need for injectable hydrogels in osteochondral tissue engineering. Furthermore, we discuss in detail different biomaterials (natural and synthetic) and various advanced fabrication methods being employed for the development of injectable hydrogels in osteochondral repair. In addition, in vitro and in vivo applications of developed injectable hydrogels for osteochondral tissue engineering are also reviewed. Finally, conclusions and future perspectives of using injectable hydrogels in osteochondral tissue engineering are provided.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | | | | | | |
Collapse
|
12
|
Christadore L, Grinstaff MW, Schaus SE. Fluorescent Dendritic Micro-Hydrogels: Synthesis, Analysis and Use in Single-Cell Detection. Molecules 2018; 23:E936. [PMID: 29669998 PMCID: PMC6017717 DOI: 10.3390/molecules23040936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 01/19/2023] Open
Abstract
Hydrogels are of keen interest for a wide range of medical and biotechnological applications including as 3D substrate structures for the detection of proteins, nucleic acids, and cells. Hydrogel parameters such as polymer wt % and crosslink density are typically altered for a specific application; now, fluorescence can be incorporated into such criteria by specific macromonomer selection. Intrinsic fluorescence was observed at λmax 445 nm from hydrogels polymerized from lysine and aldehyde- terminated poly(ethylene glycol) macromonomers upon excitation with visible light. The hydrogel’s photochemical properties are consistent with formation of a nitrone functionality. Printed hydrogels of 150 μm were used to detect individual cell adherence via a decreased in fluorescence. The use of such intrinsically fluorescent hydrogels as a platform for cell sorting and detection expands the current repertoire of tools available.
Collapse
Affiliation(s)
- Lisa Christadore
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| | - Mark W Grinstaff
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
- Departments of Biomedical Engineering and Medicine, Boston University, Boston, MA 02215, USA.
| | - Scott E Schaus
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
13
|
Nanoparticles-Based Systems for Osteochondral Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:209-217. [DOI: 10.1007/978-3-319-76735-2_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Hodgson SM, McNelles SA, Abdullahu L, Marozas IA, Anseth KS, Adronov A. Reproducible Dendronized PEG Hydrogels via SPAAC Cross-Linking. Biomacromolecules 2017; 18:4054-4059. [PMID: 28968079 DOI: 10.1021/acs.biomac.7b01115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A common issue with hydrogel formulations is batch-to-batch irreproducibility originating from poorly defined polymer precursors. Here, we report the use of dendritic polymer end-groups to address this issue and maintain reproducibility between batches of poly(ethylene glycol) (PEG) hydrogels. Specifically, we synthesized two end-functionalized PEG chains: one with azide-terminated first- and second-generation dendrons and the other with strained cyclooctynes. The two complementary azide and alkyne polymers react via strain-promoted alkyne-azide cycloaddition (SPAAC) to produce hydrogels quickly in the absence of additional reagents or catalyst at low polymer concentrations. Hydrogels made with first-generation dendrons gelled in minutes and exhibited a small degree of swelling when incubated in PBS buffer at 37 °C, whereas hydrogels made from second-generation dendrons gelled in seconds with almost no swelling upon incubation at 37 °C. In both cases, the hydrogels proved reproducible, resulting in identical Young's modulus values from different batches. The hydrogels prepared with second-generation dendrons were seeded with human mesenchymal stem cells and showed high cell viability as well as cell spreading over a two-week time frame. These studies show that the SPAAC hydrogels are noncytotoxic and are capable of supporting cell growth.
Collapse
Affiliation(s)
- Sabrina M Hodgson
- Department of Chemistry and Chemical Biology, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Stuart A McNelles
- Department of Chemistry and Chemical Biology, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Leonora Abdullahu
- Department of Chemistry and Chemical Biology, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Ian A Marozas
- Department of Chemical and Biological Engineering and the BioFrontiers Institute, University of Colorado Boulder , Jennie Smoly Caruthers Biotechnology Building, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering and the BioFrontiers Institute, University of Colorado Boulder , Jennie Smoly Caruthers Biotechnology Building, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| | - Alex Adronov
- Department of Chemistry and Chemical Biology, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
15
|
Cooper BG, Lawson TB, Snyder BD, Grinstaff MW. Reinforcement of articular cartilage with a tissue-interpenetrating polymer network reduces friction and modulates interstitial fluid load support. Osteoarthritis Cartilage 2017; 25:1143-1149. [PMID: 28285000 PMCID: PMC5726233 DOI: 10.1016/j.joca.2017.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/12/2017] [Accepted: 03/01/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is associated with increased articular cartilage hydraulic permeability and decreased maintenance of high interstitial fluid load support (IFLS) during articulation, resulting in increased friction on the cartilage solid matrix. This study assesses frictional response following in situ synthesis of an interpenetrating polymer network (IPN) designed to mimic glycosaminoglycans (GAGs) depleted during OA. METHODS Cylindrical osteochondral explants containing various interpenetrating polymer concentrations were subjected to a torsional friction test under unconfined creep compression. Time-varying coefficient of friction, compressive engineering strain, and normalized strain values (ε/εeq) were calculated and analyzed. RESULTS The polymer network reduced friction coefficient over the duration of the friction test, with statistically significantly reduced friction coefficients (95% confidence interval 14-34% reduced) at equilibrium compressive strain upon completion of the test (P = 0.015). A positive trend was observed relating polymer network concentration with magnitude of friction reduction compared to non-treated tissue. CONCLUSION The cartilage-interpenetrating polymer treatment improves lubrication by augmenting the biphasic tissue's interstitial fluid phase, and additionally improves the friction dissipation of the tissue's solid matrix. This technique demonstrates potential as a therapy to augment tribological function of articular cartilage.
Collapse
Affiliation(s)
- B G Cooper
- Department of Chemistry, Boston University, Boston, MA, USA; Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - T B Lawson
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Mechanical Engineering, Boston University, Boston, MA, USA.
| | - B D Snyder
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Biomedical Engineering, Boston University, Boston, MA, USA; Department of Medicine, Boston University, Boston, MA, USA; Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, MA, USA.
| | - M W Grinstaff
- Department of Chemistry, Boston University, Boston, MA, USA; Department of Biomedical Engineering, Boston University, Boston, MA, USA; Department of Medicine, Boston University, Boston, MA, USA.
| |
Collapse
|
16
|
Donnelly PE, Chen T, Finch A, Brial C, Maher SA, Torzilli PA. Photocrosslinked tyramine-substituted hyaluronate hydrogels with tunable mechanical properties improve immediate tissue-hydrogel interfacial strength in articular cartilage. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2017; 28:582-600. [PMID: 28134036 PMCID: PMC5462458 DOI: 10.1080/09205063.2017.1289035] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 01/27/2017] [Indexed: 10/20/2022]
Abstract
Articular cartilage lacks the ability to self-repair and a permanent solution for cartilage repair remains elusive. Hydrogel implantation is a promising technique for cartilage repair; however for the technique to be successful hydrogels must interface with the surrounding tissue. The objective of this study was to investigate the tunability of mechanical properties in a hydrogel system using a phenol-substituted polymer, tyramine-substituted hyaluronate (TA-HA), and to determine if the hydrogels could form an interface with cartilage. We hypothesized that tyramine moieties on hyaluronate could crosslink to aromatic amino acids in the cartilage extracellular matrix. Ultraviolet (UV) light and a riboflavin photosensitizer were used to create a hydrogel by tyramine self-crosslinking. The gel mechanical properties were tuned by varying riboflavin concentration, TA-HA concentration, and UV exposure time. Hydrogels formed with a minimum of 2.5 min of UV exposure. The compressive modulus varied from 5 to 16 kPa. Fluorescence spectroscopy analysis found differences in dityramine content. Cyanine-3 labelled tyramide reactivity at the surface of cartilage was dependent on the presence of riboflavin and UV exposure time. Hydrogels fabricated within articular cartilage defects had increasing peak interfacial shear stress at the cartilage-hydrogel interface with increasing UV exposure time, reaching a maximum shear stress 3.5× greater than a press-fit control. Our results found that phenol-substituted polymer/riboflavin systems can be used to fabricate hydrogels with tunable mechanical properties and can interface with the surface tissue, such as articular cartilage.
Collapse
Affiliation(s)
- Patrick E. Donnelly
- Laboratory for Soft Tissue Research, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Biomechanics, Hospital for Special Surgery, New York, NY 10021, USA
| | - Tony Chen
- Laboratory for Soft Tissue Research, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Biomechanics, Hospital for Special Surgery, New York, NY 10021, USA
| | - Anthony Finch
- Laboratory for Soft Tissue Research, Hospital for Special Surgery, New York, NY 10021, USA
| | - Caroline Brial
- Department of Biomechanics, Hospital for Special Surgery, New York, NY 10021, USA
| | - Suzanne A. Maher
- Laboratory for Soft Tissue Research, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Biomechanics, Hospital for Special Surgery, New York, NY 10021, USA
| | - Peter A. Torzilli
- Laboratory for Soft Tissue Research, Hospital for Special Surgery, New York, NY 10021, USA
| |
Collapse
|
17
|
Shaarani S, Hamid SS, Mohd Kaus NH. The Influence of Pluronic F68 and F127 Nanocarrier on Physicochemical Properties, In vitro Release, and Antiproliferative Activity of Thymoquinone Drug. Pharmacognosy Res 2017; 9:12-20. [PMID: 28250648 PMCID: PMC5330097 DOI: 10.4103/0974-8490.199774] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND This study reports on hydrophobic drug thymoquinone (TQ), an active compound found in the volatile oil of Nigella sativa that exhibits anticancer activities. Nanoformulation of this drug could potentially increase its bioavailability to specific target cells. OBJECTIVE The aim of this study was to formulate TQ into polymer micelle, Pluronic F127 (5.0 wt %) and Pluronic F68 (0.1 wt %), as a drug carrier to enhance its solubility and instability in aqueous media. MATERIALS AND METHODS Polymeric micelles encapsulated TQ were prepared by the microwave-assisted solvent evaporation technique. Fourier transform infrared spectroscopy and ultraviolet-visible spectrophotometer were utilized for qualitative confirmation of micelles encapsulation. The surface morphology and mean particle size of the prepared micelles were determined by using transmission electron microscopy (TEM). Cytotoxicity effect was studied using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay. RESULTS Dynamic laser light scattering (DLS) technique showed hydrodynamic size distribution of optimized micelles of 50 nm, which was in close agreement with the mean particle size obtained from TEM of about 51 nm. Drug release study showed the maximum percentage of TQ release at 61% after 72 h, while the entrapment efficiency of TQ obtained was 46% using PF127. The cytotoxic effect of PF127-encapsulated TQ was considerably higher compared to PF68-encapsulated TQ against MCF7 cells, as they exhibited IC50value of 8 μM and 18 μM, respectively. CONCLUSION This study suggests higher molecular weight Pluronic polymer micelles (F127) with hydrophilic-hydrophobic segments which could be used as a suitable candidate for sustainable delivery of TQ. However, comprehensive studies should be carried out to establish the suitability of Pluronic F127 as a carrier for other drugs with similar challenges as TQ. SUMMARY There is a rising interest in integrating nanotechnology with medicine, creating a nanomedicine aiming for high efficiency and efficacy of disease diagnosis and treatment. In drug delivery, the term nanomedicine describes the nanometer-sized range (1-1000 nm) of a multi-component drug for disease treatments. As such, liposome-based nanoparticulate delivery vehicles have been approved by the Food and Drug Administration (FDA) for clinical applications. The main purpose of introducing nanoscale drug delivery is to improve the pharmacological and pharmacokinetic profiles of therapeutic molecules. Drug or therapeutic molecules can be either released through the cleavage of a covalent linkage between drug molecules and polymers (conjugation) or through the diffusion from a drug and polymer blended matrix (physical encapsulation). Polymers play an important role in the design of nanocarriers for therapeutic deliveries. In Asia, Nigella sativa seed oil has been used traditionally for its various medicinal benefits. One of its most potent compound which is thymoquinone has been intensively investigated for its anti-cancer effects in colorectal carcinoma, breast adenocarcinoma, osteosarcoma, ovarian carcinoma, myeloblastic leukemia, and pancreatic carcinoma. In addition, it is reported to show anti-inflammatory potential, antidiabetic, antihistaminic effects, as well as the ability to alleviate respiratory diseases, rheumatoid arthritis, multiple sclerosis, and Parkinson's disease. This study aims to formulate and characterize different pluronic-based thymoquinone nanocarrier and investigate its effect against breast cancer cells Abbreviations Used: ATR-IR: Attenuated Total Reflectance-Infrared Spectroscopy, CH3CN: Acetonitrile, DLS: Dynamic Light Scattering, MTS: [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, NPs: Nanoparticles, PF127/TQ: Pluronic F127 encapsulated TQ, PF68/TQ: Pluronic F68 encapsulated TQ, PLGA: Poly-(D,L-lactide-co-glycolide), PVA: Poly-vinylalcohol, TQ: Thymoquinone, UV/VIS: Ultravioletvisible spectrophotometry.
Collapse
Affiliation(s)
- Salwa Shaarani
- Department of Physical Chemistry, School of Chemical Science, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Pulau Pinang, Malaysia
| | - Shahrul Sahul Hamid
- Oncological and Radiological Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Pulau Pinang, Malaysia
| | - Noor Haida Mohd Kaus
- Department of Physical Chemistry, School of Chemical Science, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Pulau Pinang, Malaysia
| |
Collapse
|
18
|
Xue S, Pei D, Jiang W, Mu Y, Wan X. A simple and fast formation of biodegradable poly(urethane-urea) hydrogel with high water content and good mechanical property. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.07.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Selin M, Peltonen L, Hirvonen J, Bimbo LM. Dendrimers and their supramolecular nanostructures for biomedical applications. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2016.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Konieczynska MD, Villa-Camacho JC, Ghobril C, Perez-Viloria M, Tevis KM, Blessing WA, Nazarian A, Rodriguez EK, Grinstaff MW. On-Demand Dissolution of a Dendritic Hydrogel-based Dressing for Second-Degree Burn Wounds through Thiol-Thioester Exchange Reaction. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604827] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Marlena D. Konieczynska
- Departments of Chemistry and Biomedical Engineering; Boston University; 590 Commonwealth Ave Boston MA 02215 USA
| | - Juan C. Villa-Camacho
- Center for Advanced Orthopaedic Studies; Beth Israel Deaconess Medical Center; 330 Brookline Ave Boston MA 02215 USA
| | - Cynthia Ghobril
- Departments of Chemistry and Biomedical Engineering; Boston University; 590 Commonwealth Ave Boston MA 02215 USA
| | - Miguel Perez-Viloria
- Center for Advanced Orthopaedic Studies; Beth Israel Deaconess Medical Center; 330 Brookline Ave Boston MA 02215 USA
| | - Kristie M. Tevis
- Departments of Chemistry and Biomedical Engineering; Boston University; 590 Commonwealth Ave Boston MA 02215 USA
| | - William A. Blessing
- Departments of Chemistry and Biomedical Engineering; Boston University; 590 Commonwealth Ave Boston MA 02215 USA
| | - Ara Nazarian
- Center for Advanced Orthopaedic Studies; Beth Israel Deaconess Medical Center; 330 Brookline Ave Boston MA 02215 USA
| | - Edward K. Rodriguez
- Center for Advanced Orthopaedic Studies; Beth Israel Deaconess Medical Center; 330 Brookline Ave Boston MA 02215 USA
| | - Mark W. Grinstaff
- Departments of Chemistry and Biomedical Engineering; Boston University; 590 Commonwealth Ave Boston MA 02215 USA
| |
Collapse
|
21
|
Konieczynska MD, Villa-Camacho JC, Ghobril C, Perez-Viloria M, Tevis KM, Blessing WA, Nazarian A, Rodriguez EK, Grinstaff MW. On-Demand Dissolution of a Dendritic Hydrogel-based Dressing for Second-Degree Burn Wounds through Thiol-Thioester Exchange Reaction. Angew Chem Int Ed Engl 2016; 55:9984-7. [PMID: 27410669 DOI: 10.1002/anie.201604827] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/23/2016] [Indexed: 12/20/2022]
Abstract
An adhesive yet easily removable burn wound dressing represents a breakthrough in second-degree burn wound care. Current second-degree burn wound dressings absorb wound exudate, reduce bacterial infections, and maintain a moist environment for healing, but are surgically or mechanically debrided from the wound, causing additional trauma to the newly formed tissues. We have developed an on-demand dissolvable dendritic thioester hydrogel burn dressing for second-degree burn care. The hydrogel is composed of a lysine-based dendron and a PEG-based crosslinker, which are synthesized in high yields. The hydrogel burn dressing covers the wound and acts as a barrier to bacterial infection in an in vivo second-degree burn wound model. A unique feature of the hydrogel is its capability to be dissolved on-demand, via a thiol-thioester exchange reaction, allowing for a facile burn dressing removal.
Collapse
Affiliation(s)
- Marlena D Konieczynska
- Departments of Chemistry and Biomedical Engineering, Boston University, 590 Commonwealth Ave, Boston, MA, 02215, USA
| | - Juan C Villa-Camacho
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Cynthia Ghobril
- Departments of Chemistry and Biomedical Engineering, Boston University, 590 Commonwealth Ave, Boston, MA, 02215, USA
| | - Miguel Perez-Viloria
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Kristie M Tevis
- Departments of Chemistry and Biomedical Engineering, Boston University, 590 Commonwealth Ave, Boston, MA, 02215, USA
| | - William A Blessing
- Departments of Chemistry and Biomedical Engineering, Boston University, 590 Commonwealth Ave, Boston, MA, 02215, USA
| | - Ara Nazarian
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Edward K Rodriguez
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Mark W Grinstaff
- Departments of Chemistry and Biomedical Engineering, Boston University, 590 Commonwealth Ave, Boston, MA, 02215, USA.
| |
Collapse
|
22
|
Kaga S, Arslan M, Sanyal R, Sanyal A. Dendrimers and Dendrons as Versatile Building Blocks for the Fabrication of Functional Hydrogels. Molecules 2016; 21:497. [PMID: 27092481 PMCID: PMC6273238 DOI: 10.3390/molecules21040497] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/09/2016] [Accepted: 04/11/2016] [Indexed: 11/17/2022] Open
Abstract
Hydrogels have emerged as a versatile class of polymeric materials with a wide range of applications in biomedical sciences. The judicious choice of hydrogel precursors allows one to introduce the necessary attributes to these materials that dictate their performance towards intended applications. Traditionally, hydrogels were fabricated using either polymerization of monomers or through crosslinking of polymers. In recent years, dendrimers and dendrons have been employed as well-defined building blocks in these materials. The multivalent and multifunctional nature of dendritic constructs offers advantages in either formulation or the physical and chemical properties of the obtained hydrogels. This review highlights various approaches utilized for the fabrication of hydrogels using well-defined dendrimers, dendrons and their polymeric conjugates. Examples from recent literature are chosen to illustrate the wide variety of hydrogels that have been designed using dendrimer- and dendron-based building blocks for applications, such as sensing, drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Sadik Kaga
- Department of Chemistry, Bogazici University, Istanbul 34342, Turkey.
| | - Mehmet Arslan
- Department of Polymer Engineering, Yalova University, Yalova 77100, Turkey.
| | - Rana Sanyal
- Department of Chemistry, Bogazici University, Istanbul 34342, Turkey.
- Center for Life Sciences and Technologies, Bogazici University, Istanbul, 34342, Turkey.
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Istanbul 34342, Turkey.
- Center for Life Sciences and Technologies, Bogazici University, Istanbul, 34342, Turkey.
| |
Collapse
|
23
|
Bartnikowski M, Akkineni AR, Gelinsky M, Woodruff MA, Klein TJ. A Hydrogel Model Incorporating 3D-Plotted Hydroxyapatite for Osteochondral Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E285. [PMID: 28773410 PMCID: PMC5502978 DOI: 10.3390/ma9040285] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/24/2016] [Accepted: 04/06/2016] [Indexed: 12/15/2022]
Abstract
The concept of biphasic or multi-layered compound scaffolds has been explored within numerous studies in the context of cartilage and osteochondral regeneration. To date, no system has been identified that stands out in terms of superior chondrogenesis, osteogenesis or the formation of a zone of calcified cartilage (ZCC). Herein we present a 3D plotted scaffold, comprising an alginate and hydroxyapatite paste, cast within a photocrosslinkable hydrogel made of gelatin methacrylamide (GelMA), or GelMA with hyaluronic acid methacrylate (HAMA). We hypothesized that this combination of 3D plotting and hydrogel crosslinking would form a high fidelity, cell supporting structure that would allow localization of hydroxyapatite to the deepest regions of the structure whilst taking advantage of hydrogel photocrosslinking. We assessed this preliminary design in terms of chondrogenesis in culture with human articular chondrocytes, and verified whether the inclusion of hydroxyapatite in the form presented had any influence on the formation of the ZCC. Whilst the inclusion of HAMA resulted in a better chondrogenic outcome, the effect of HAP was limited. We overall demonstrated that formation of such compound structures is possible, providing a foundation for future work. The development of cohesive biphasic systems is highly relevant for current and future cartilage tissue engineering.
Collapse
Affiliation(s)
- Michal Bartnikowski
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Queensland 4059, Australia.
| | - Ashwini Rahul Akkineni
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden D-01307, Germany.
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden D-01307, Germany.
| | - Maria A Woodruff
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Queensland 4059, Australia.
| | - Travis J Klein
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Queensland 4059, Australia.
| |
Collapse
|
24
|
Ghobril C, Rodriguez EK, Nazarian A, Grinstaff MW. Recent Advances in Dendritic Macromonomers for Hydrogel Formation and Their Medical Applications. Biomacromolecules 2016; 17:1235-52. [PMID: 26978246 DOI: 10.1021/acs.biomac.6b00004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hydrogels represent one of the most important classes of biomaterials and are of interest for various medical applications including wound repair, tissue engineering, and drug release. Hydrogels possess tunable mechanical properties, biocompatibility, nontoxicity, and similarity to natural soft tissues. The need for hydrogels with specific properties, based on the design requirements of the in vitro, in vivo, or clinical application, motivates researchers to develop new synthetic approaches and cross-linking methodologies to form novel hydrogels with unique properties. The use of dendritic macromonomers represents one elegant strategy for the formation of hydrogels with specific properties. Specifically, the uniformity of dendrimers combined with the control of their size, architecture, density, and surface groups make them promising cross-linkers for hydrogel formation. Over the last two decades, a large variety of dendritic-based hydrogels are reported for their potential use in the clinic. This review describes the state of the art with these different dendritic hydrogel formulations including their design requirements, the synthetic routes, the measurement and determination of their properties, the evaluation of their in vitro and in vivo performances, and future perspectives.
Collapse
Affiliation(s)
- Cynthia Ghobril
- Departments of Biomedical Engineering, Chemistry and Medicine, Boston University , 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Edward K Rodriguez
- Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, Massachusetts, United States
| | - Ara Nazarian
- Center for Advanced Orthopaedic Studies, Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, Massachusetts, United States
| | - Mark W Grinstaff
- Departments of Biomedical Engineering, Chemistry and Medicine, Boston University , 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
25
|
Vilela CA, Correia C, Oliveira JM, Sousa RA, Espregueira-Mendes J, Reis RL. Cartilage Repair Using Hydrogels: A Critical Review of in Vivo Experimental Designs. ACS Biomater Sci Eng 2015; 1:726-739. [DOI: 10.1021/acsbiomaterials.5b00245] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- C. A. Vilela
- 3B’s
Research Group, University of Minho, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Life
and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- Orthopaedic
Department, Centro Hospitalar do Alto Ave, Guimarães, Portugal
| | - C. Correia
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Guimarães, Portugal
| | - J. M. Oliveira
- 3B’s
Research Group, University of Minho, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - R. A. Sousa
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Guimarães, Portugal
| | - J. Espregueira-Mendes
- 3B’s
Research Group, University of Minho, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Life
and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- Clínica
do Dragão, Espregueira-Mendes Sports Centre, Porto, Portugal
| | - R. L. Reis
- 3B’s
Research Group, University of Minho, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Guimarães, Portugal
| |
Collapse
|
26
|
Kaga S, Yapar S, Gecici EM, Sanyal R. Photopatternable “Clickable” Hydrogels: “Orthogonal” Control over Fabrication and Functionalization. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01536] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sadik Kaga
- Department
of Chemistry and ‡Center for Life Sciences and Technologies, Bogazici University, 34342 Istanbul, Turkey
| | - Serap Yapar
- Department
of Chemistry and ‡Center for Life Sciences and Technologies, Bogazici University, 34342 Istanbul, Turkey
| | - Ece Manavoglu Gecici
- Department
of Chemistry and ‡Center for Life Sciences and Technologies, Bogazici University, 34342 Istanbul, Turkey
| | - Rana Sanyal
- Department
of Chemistry and ‡Center for Life Sciences and Technologies, Bogazici University, 34342 Istanbul, Turkey
| |
Collapse
|
27
|
Wang Y, Zhao Q, Luo Y, Xu Z, Zhang H, Yang S, Wei Y, Jia X. A high stiffness bio-inspired hydrogel from the combination of a poly(amido amine) dendrimer with DOPA. Chem Commun (Camb) 2015; 51:16786-9. [DOI: 10.1039/c5cc05643h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A robust bio-inspired hydrogel is constructed from two components containing G4.0 PAMAM and DOPA.
Collapse
Affiliation(s)
- Yao Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- P. R. China
| | - Qiang Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- P. R. China
| | - Yiyang Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- P. R. China
| | - Zejun Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- P. R. China
| | - He Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education
- College of Stomatology, Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Sheng Yang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education
- College of Stomatology, Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Yen Wei
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Xinru Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- P. R. China
| |
Collapse
|
28
|
Khoee S, Kardani M. Preparation of PCL/PEG superporous hydrogel containing drug-loaded nanoparticles: The effect of hydrophobic–hydrophilic interface on the physical properties. Eur Polym J 2014. [DOI: 10.1016/j.eurpolymj.2014.06.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Whitton G, Gillies ER. Functional aqueous assemblies of linear-dendron hybrids. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/pola.27316] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Greg Whitton
- Department of Chemistry; The University of Western Ontario; 1151 Richmond Street London Ontario Canada N6A 5B7
| | - Elizabeth R. Gillies
- Department of Chemistry; The University of Western Ontario; 1151 Richmond Street London Ontario Canada N6A 5B7
- Department of Chemical and Biochemical Engineering; The University of Western Ontario; 1151 Richmond Street London Ontario Canada N6A 5B9
| |
Collapse
|
30
|
Wang Y, Zhao Q, Zhang H, Yang S, Jia X. A novel poly(amido amine)-dendrimer-based hydrogel as a mimic for the extracellular matrix. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:4163-4167. [PMID: 24729192 DOI: 10.1002/adma.201400323] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/26/2014] [Indexed: 06/03/2023]
Abstract
The extracellular matrix is mimicked by a novel dendrimer-based hydrogel, which exhibits a highly interconnected porous network, enhanced mechanical stiffness, and a low swelling ratio. The hydrogel system supports the proliferation and differentiation of mesenchymal stem cells without any cytotoxic effects. This dendrimer-based hydrogel may serve as a model for developing new advanced materials with applications in tissue engineering.
Collapse
Affiliation(s)
- Yao Wang
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | | | | | | | | |
Collapse
|
31
|
Anderson TR, Marquart ME, Janorkar AV. Effective release of a broad spectrum antibiotic from elastin-like polypeptide-collagen composite. J Biomed Mater Res A 2014; 103:782-90. [PMID: 24825292 DOI: 10.1002/jbm.a.35219] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/21/2014] [Accepted: 05/08/2014] [Indexed: 11/10/2022]
Abstract
Preparation of hydrogels that possess an effective antibiotic release profile and better mechanical properties compared to the traditionally used collagen hydrogels has the potential to minimize post-surgical infections and support wound healing. Toward this goal, we prepared elastin-like polypeptide (ELP)-collagen composite hydrogels that displayed a significantly higher elastic modulus compared to the collagen hydrogels. We then characterized the release behavior of the collagen and ELP-collagen hydrogels loaded with varying dosages (1-5% w/w) of a commonly used broad spectrum antibiotic, doxycycline hyclate. Both collagen and ELP-collagen hydrogels showed a gradual time dependent doxycycline release over a period of 5 days. The ELP-collagen hydrogels, in general, showed a slower release of the doxycycline compared to the collagen hydrogels. The released doxycycline was found to be effective against four bacterial strains (Escherichia coli, Pseudomonas aeruginosa, Streptococcus sanguinis, and methicillin-resistant Staphylococcus aureus) in a dose dependent manner. Combined with their improved mechanical properties, the gradual and effective drug release from the biocompatible ELP-collagen hydrogels shown here may be beneficial for drug delivery and tissue engineering applications.
Collapse
Affiliation(s)
- Tiffany R Anderson
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi, 39216
| | | | | |
Collapse
|
32
|
Blasco E, Piñol M, Oriol L. Responsive linear-dendritic block copolymers. Macromol Rapid Commun 2014; 35:1090-115. [PMID: 24706548 DOI: 10.1002/marc.201400007] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/05/2014] [Indexed: 11/08/2022]
Abstract
The combination of dendritic and linear polymeric structures in the same macromolecule opens up new possibilities for the design of block copolymers and for applications of functional polymers that have self-assembly properties. There are three main strategies for the synthesis of linear-dendritic block copolymers (LDBCs) and, in particular, the emergence of click chemistry has made the coupling of preformed blocks one of the most efficient ways of obtaining libraries of LDBCs. In these materials, the periphery of the dendron can be precisely functionalised to obtain functional LDBCs with self-assembly properties of interest in different technological areas. The incorporation of stimuli-responsive moieties gives rise to smart materials that are generally processed as self-assemblies of amphiphilic LDBCs with a morphology that can be controlled by an external stimulus. Particular emphasis is placed on light-responsive LDBCs. Furthermore, a brief review of the biomedical or materials science applications of LDBCs is presented.
Collapse
Affiliation(s)
- Eva Blasco
- Dpt. Química Orgánica, Facultad de Ciencias - Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | | | | |
Collapse
|
33
|
Holowka EP, Bhatia SK. Hydrogel Materials. Drug Deliv 2014. [DOI: 10.1007/978-1-4939-1998-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
34
|
Ghobril C, Charoen K, Rodriguez EK, Nazarian A, Grinstaff MW. A dendritic thioester hydrogel based on thiol-thioester exchange as a dissolvable sealant system for wound closure. Angew Chem Int Ed Engl 2013; 52:14070-4. [PMID: 24282150 PMCID: PMC4000691 DOI: 10.1002/anie.201308007] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Indexed: 11/09/2022]
Abstract
A dissolvable dendritic thioester hydrogel based on thiol-thioester exchange for wound closure is reported. The hydrogel sealant adheres strongly to tissues, closes an ex vivo vein puncture, and withstands high pressures placed on a wound. The hydrogel sealant can be completely washed off upon exposure to thiolates based on thiol-thioester exchange and allow gradual wound re-exposure during definitive surgical care.
Collapse
Affiliation(s)
- Cynthia Ghobril
- Departments of Biomedical Engineering and Chemistry, Boston University, 590 Commonwealth avenue, Boston, MA
| | - Kristie Charoen
- Departments of Biomedical Engineering and Chemistry, Boston University, 590 Commonwealth avenue, Boston, MA
| | | | - Ara Nazarian
- Beth Israël Deaconess Medical Center, 330 Brookline Avenue, Boston, MA
| | - Mark W. Grinstaff
- Departments of Biomedical Engineering and Chemistry, Boston University, 590 Commonwealth avenue, Boston, MA
| |
Collapse
|
35
|
Ghobril C, Charoen K, Rodriguez EK, Nazarian A, Grinstaff MW. A Dendritic Thioester Hydrogel Based on Thiol-Thioester Exchange as a Dissolvable Sealant System for Wound Closure. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201308007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Ko CY, Ku KL, Yang SR, Lin TY, Peng S, Peng YS, Cheng MH, Chu IM. In vitro and in vivo co-culture of chondrocytes and bone marrow stem cells in photocrosslinked PCL-PEG-PCL hydrogels enhances cartilage formation. J Tissue Eng Regen Med 2013; 10:E485-E496. [PMID: 24668937 DOI: 10.1002/term.1846] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 08/29/2013] [Accepted: 09/30/2013] [Indexed: 12/25/2022]
Abstract
Chondrocytes (CH) and bone marrow stem cells (BMSCs) are sources that can be used in cartilage tissue engineering. Co-culture of CHs and BMSCs is a promising strategy for promoting chondrogenic differentiation. In this study, articular CHs and BMSCs were encapsulated in PCL-PEG-PCL photocrosslinked hydrogels for 4 weeks. Various ratios of CH:BMSC co-cultures were investigated to identify the optimal ratio for cartilage formation. The results thus obtained revealed that co-culturing CHs and BMSCs in hydrogels provides an appropriate in vitro microenvironment for chondrogenic differentiation and cartilage matrix production. Co-culture with a 1:4 CH:BMSC ratio significantly increased the synthesis of GAGs and collagen. In vivo cartilage regeneration was evaluated using a co-culture system in rabbit models. The co-culture system exhibited a hyaline chondrocyte phenotype with excellent regeneration, resembling the morphology of native cartilage. This finding suggests that the co-culture of these two cell types promotes cartilage regeneration and that the system, including the hydrogel scaffold, has potential in cartilage tissue engineering. Copyright © 2013 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Chao-Yin Ko
- Department of Chemical Engineering, National Tsing Hua University, Taiwan, Republic of China
| | - Kuan-Lin Ku
- Department of Chemical Engineering, National Tsing Hua University, Taiwan, Republic of China
| | - Shu-Rui Yang
- Department of Chemical Engineering, National Tsing Hua University, Taiwan, Republic of China.,Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taiwan, Republic of China
| | - Tsai-Yu Lin
- Department of Chemical Engineering, National Tsing Hua University, Taiwan, Republic of China.,Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Taiwan, Republic of China
| | - Sydney Peng
- Department of Chemical Engineering, National Tsing Hua University, Taiwan, Republic of China
| | - Yu-Shiang Peng
- Department of Chemical Engineering, National Tsing Hua University, Taiwan, Republic of China
| | - Ming-Huei Cheng
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taiwan, Republic of China
| | - I-Ming Chu
- Department of Chemical Engineering, National Tsing Hua University, Taiwan, Republic of China.
| |
Collapse
|
37
|
Wei YN, Wang QQ, Gao TT, Kong M, Yang KK, An Y, Jiang SY, Li J, Cheng XJ, Chen XG. 3-D culture of human umbilical vein endothelial cells with reversible thermosensitive hydroxybutyl chitosan hydrogel. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:1781-1787. [PMID: 23526152 DOI: 10.1007/s10856-013-4918-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 03/14/2013] [Indexed: 06/02/2023]
Abstract
The aim of this study was to present a non-trypsin 3D cell culture method with a reversible thermosensitive HBCS hydrogel. In this study, hydroxybutyl chitosan (HBCS) was synthesized by grafting hydroxybutyl groups on chitosan molecule chains. The prepared HBCS was water-soluble, and the reversible phase transformation temperature was 26 °C. Scanning electron microscope images illuminated the 3-D network of hydrogel formed irregular porous structure which ranged from 50-250 μm. Cell viability assay indicated that HBCS solution could promote the proliferation of human umbilical vein endothelial cells (HUVECs), and the boost of proliferation was enhanced with the increase of HBCS concentration. HBCS had no harm to the nitric oxide (NO) synthesis functionality of HUVECs. HUVECs could grow and reproduce inside the hydrogel, and showed good vitality after 14-days culture. Meanwhile, cells cultured inside the hydrogel could be passaged successively through the reversible phase transformation process of HBCS. The results revealed that HBCS have the potential to be used for 3-D cell culture without the use of trypsin.
Collapse
Affiliation(s)
- Ya Nan Wei
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao, 266003, Shandong, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Genipin-cross-linked poly(L-lysine)-based hydrogels: synthesis, characterization, and drug encapsulation. Colloids Surf B Biointerfaces 2013; 111:423-31. [PMID: 23872465 DOI: 10.1016/j.colsurfb.2013.06.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/11/2013] [Accepted: 06/12/2013] [Indexed: 01/22/2023]
Abstract
Genipin-cross-linked hydrogels composed of biodegradable and pH-sensitive cationic poly(L-lysine) (PLL), poly(L-lysine)-block-poly(L-alanine) (PLL-b-PLAla), and poly(L-lysine)-block-polyglycine (PLL-b-PGly) polypeptides were synthesized, characterized, and used as carriers for drug delivery. These polypeptide hydrogels can respond to pH-stimulus and their gelling and mechanical properties, degradation rate, and drug release behavior can be tuned by varying polypeptide composition and cross-linking degree. Comparing with natural polymers, the synthetic polypeptides with well-defined chain length and composition can warrant the preparation of the hydrogels with tunable properties to meet the criteria for specific biomedical applications. These hydrogels composed of natural building blocks exhibited good cell compatibility and enzyme degradability and can support cell attachment/proliferation. The evaluation of these hydrogels for in vitro drug release revealed that the controlled release profile was a biphasic pattern with a mild burst release and a moderate release rate thereafter, suggesting the drug molecules were encapsulated inside the gel matrix. With the versatility of polymer chemistry and conjugation of functional moieties, it is expected these hydrogels can be useful for biomedical applications such as polymer therapeutics and tissue engineering.
Collapse
|
39
|
Amruthwar SS, Janorkar AV. In vitro evaluation of elastin-like polypeptide-collagen composite scaffold for bone tissue engineering. Dent Mater 2012; 29:211-20. [PMID: 23127995 DOI: 10.1016/j.dental.2012.10.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 06/19/2012] [Accepted: 10/01/2012] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Collagen and elastin are two key structural proteins found in the extra-cellular matrices (ECMs) of most tissues, yet very little is known about the response of bone cells to elastin or its derivatives. Recently, we have designed and characterized a novel class of ECM-based composite scaffolds with collagen and a genetically engineered polymer, elastin-like polypeptide (ELP) and subsequently showed their superior mechanical properties and drug release characteristics compared to collagen scaffolds. The objective of this research was to evaluate osteoblast growth and expression on these composite scaffolds. METHODS A thorough biochemical and morphological characterization was performed on MC3T3-E1 pre-osteoblast cells cultured on collagen and ELP-collagen scaffolds. Cell viability was assessed using a live/dead assay. Total DNA content of all cells present on various surfaces was quantified. Pre-osteoblast differentiation was assessed by measuring the alkaline phosphatase and osteocalcin production. Mineral deposition by the cultured cells was visualized using the Von Kossa stain. RESULTS Our results showed that the ELP-collagen scaffolds were suitable substrates for cell culture that allowed MC3T3-E1 pre-osteoblast cell attachment, differentiation, and subsequent mineralization over a period of 3 weeks. The ELP-collagen scaffolds displayed equivalent biocompatibility and cell-interacting properties to those of the neat collagen scaffolds. SIGNIFICANCE The novel ELP-collagen composite material may have future implications as a scaffold material for bone tissue engineering applications, for example, the treatment of alveolar bone loss.
Collapse
Affiliation(s)
- Shruti S Amruthwar
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | | |
Collapse
|
40
|
Guo Y, Yuan T, Xiao Z, Tang P, Xiao Y, Fan Y, Zhang X. Hydrogels of collagen/chondroitin sulfate/hyaluronan interpenetrating polymer network for cartilage tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:2267-2279. [PMID: 22639153 DOI: 10.1007/s10856-012-4684-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 05/14/2012] [Indexed: 06/01/2023]
Abstract
The network structure of a three-dimensional hydrogel scaffold dominates its performance such as mechanical strength, mass transport capacity, degradation rate and subsequent cellular behavior. The hydrogels scaffolds with interpenetrating polymeric network (IPN) structure have an advantage over the individual component gels and could simulate partly the structure of native extracellular matrix of cartilage tissue. In this study, to develop perfect cartilage tissue engineering scaffolds, IPN hydrogels of collagen/chondroitin sulfate/hyaluronan were prepared via two simultaneous processes of collagen self-assembly and cross linking polymerization of chondroitin sulfate-methacrylate (CSMA) and hyaluronic acid-methacrylate. The degradation rate, swelling performance and compressive modulus of IPN hydrogels could be adjusted by varying the degree of methacrylation of CSMA. The results of proliferation and fluorescence staining of rabbit articular chondrocytes in vitro culture demonstrated that the IPN hydrogels possessed good cytocompatibility. Furthermore, the IPN hydrogels could upregulate cartilage-specific gene expression and promote the chondrocytes secreting glycosaminoglycan and collagen II. These results suggested that IPN hydrogels might serve as promising hydrogel scaffolds for cartilage tissue engineering.
Collapse
Affiliation(s)
- Yan Guo
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, 610064, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Matos-Pérez CR, Wilker JJ. Ambivalent Adhesives: Combining Biomimetic Cross-Linking With Antiadhesive Oligo(ethylene glycol). Macromolecules 2012; 45:6634-6639. [PMID: 23293396 PMCID: PMC3534954 DOI: 10.1021/ma300962d] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Oligo(ethylene glycol) (OEG) and poly(ethylene glycol) (PEG) exhibit several desirable properties including biocompatibility and resistance to fouling by protein adsorption. Still needed are surgical glues and orthopedic cements, among several other materials, that display similar traits. However the very lack of interactions with other molecules that prevents toxicity and fouling also makes adhesion elusive. In work described here the cross-linking chemistry of marine mussel adhesive is combined with OEG to make a family of terpolymers. The effect of polymer composition upon bulk adhesion was examined. High strength bonding was found with a subset of the polymers containing appreciable OEG content. These structure-property insights may help the design of new materials for which the properties of OEG and high strength adhesion are both being sought.
Collapse
Affiliation(s)
| | - Jonathan J. Wilker
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907
- School of Materials Engineering, Purdue University, Neil Armstrong Hall of Engineering, 701 West Stadium Avenue, West Lafayette, IN 47907
| |
Collapse
|
42
|
|
43
|
Sousa-Herves A, Riguera R, Fernandez-Megia E. PEG-dendritic block copolymers for biomedical applications. NEW J CHEM 2012. [DOI: 10.1039/c2nj20849k] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
44
|
Oelker AM, Grinstaff MW. Synthesis, characterization, and in vitro evaluation of a hydrogel-based corneal onlay. IEEE Trans Nanobioscience 2011; 11:37-45. [PMID: 21908258 DOI: 10.1109/tnb.2011.2166978] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Blindness due to opacity of the cornea is treated by corneal transplantation with donor tissue. Due to the limited supply of suitable donor corneas, the need for synthetic corneal equivalents is clear. Herein we report the design and in vitro characterization of a hydrogel-based implant; this implant will serve as a permanent, transparent, space-filling onlay with a two-layer design that mimics the native corneal stratification to support surface epithelialization and foster integration with the surrounding tissue. The top layer of the implant was composed of a 2-hydroxyethylmethacrylate hydrogel containing methacrylic acid as the co-monomer (HEMA-co-MAA) with tunable dimensions and compressive modulus ranging from 700-1000 kPa. The bottom layer, which constitutes the bulk of the implant and is designed to provide integration with the corneal stroma, is a dendrimer hydrogel with high water content and compressive modulus ranging from 500-1200 kPa. Both hydrogels were found to possess optical and diffusion properties similar to those of the human cornea. In addition, composite implants with uniform and structurally sound interfaces were formed when the gels were sequentially injected and cross-linked in the same mold. HEMA-co-MAA hydrogels were covalently modified with type I collagen to enable corneal epithelial cell adhesion and spreading that was dependent upon the collagen coating density but independent of hydrogel stiffness. Similarly, dendrimer hydrogels supported the adhesion and spreading of corneal fibroblasts upon modification with the adhesion ligand arginine-glycine-aspartic acid (RGD). Fibroblast adhesion was not dependent upon dendrimer hydrogel stiffness for the formulations studied and, after in vitro culture for 4 weeks, fibroblasts remained able to adhere to and conformally coat the hydrogel surface. In conclusion, the tunable physical properties and structural integrity of the laminated interface suggests that this design is suitable for further study. The judicious tuning of material properties and inclusion of bioactive moieties is a promising strategy for promotion of implant epithelialization and tissue integration.
Collapse
|
45
|
Navath RS, Menjoge AR, Dai H, Romero R, Kannan S, Kannan RM. Injectable PAMAM dendrimer-PEG hydrogels for the treatment of genital infections: formulation and in vitro and in vivo evaluation. Mol Pharm 2011; 8:1209-23. [PMID: 21615144 DOI: 10.1021/mp200027z] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Local intravaginal drug therapy is preferred for treatment of ascending genital infections during pregnancy. In the present study, an in situ forming biodegradable hydrogel for sustained release of amoxicillin in the cervicovaginal region is described. A generation 4 poly(amidoamine) [G4-(NH(2))(64)] dendrimer with peripheral thiopyridyl terminations is cross-linked with 8-arm polyethylene glycol (PEG) bearing thiol terminations. The hydrogels were formulated and tested in vivo in a pregnant guinea pig model for volume, retention times, biodegradation, tolerability and transport across fetal membrane. The physicochemical characterization of the hydrogels was carried out using differential calorimetry, SEM, and confocal imaging. The hydrogels offer antibacterial activity arising from sustained release of amoxicillin from gels. The in vivo studies in guinea pig showed that 100-200 μL of gel sufficiently covered the cervicovaginal region with a residence time of at least 72 h and gel was primarily retained in the maternal tissues without crossing the fetal membranes into the fetus. The dendrimer gels were stable up to 72 h, and the in vivo biodegradation of gel occurred after 72 h; this correlated well with the in vitro degradation pattern. The pH of the vagina was not altered upon application of the gel, and none of the animals aborted up to 72 h after application of gel. The histological evaluation of the cervical tissues showed absence of edema in the epithelial cell layer, no sloughing of the epithelial or superficial mucous layer, and absence of necrosis and infiltration of inflammatory cells in the submucosal layers, confirming that tissues were tolerant to the gel. The immunohistofluorescence images showed the localization of the gel components on the superficial mucified epithelial layer. The cross-linking density and swelling of hydrogels was impacted by the polymer content, and the 10% hydrogels exhibited the highest cross-link density. The in vitro drug release studies carried out using Franz diffusion cells showed that amoxicillin release from 6 and 10% gels was sustained for 240 h as compared to 3% gels. As the polymer concentration increased to 10%, the release pattern from gels approached diffusion controlled mechanism with diffusional exponent n = 0.49. In conclusion, the biodegradable in situ forming hydrogels of the present study offer a therapeutic option to provide sustained localized delivery of amoxicillin intracervically to the pregnant woman for the treatment of ascending genital infections.
Collapse
Affiliation(s)
- Raghavendra S Navath
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | | | | | |
Collapse
|
46
|
Goycoolea FM, Fernández-Valle ME, Aranaz I, Heras Á. pH- and Temperature-Sensitive Chitosan Hydrogels: Swelling and MRI Studies. MACROMOL CHEM PHYS 2011. [DOI: 10.1002/macp.201000301] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
Zhang L, Li K, Xiao W, Zheng L, Xiao Y, Fan H, Zhang X. Preparation of collagen–chondroitin sulfate–hyaluronic acid hybrid hydrogel scaffolds and cell compatibility in vitro. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2010.11.009] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Yang JJ, Chen YM, Kurokawa T, Gong JP, Onodera S, Yasuda K. Gene expression, glycocalyx assay, and surface properties of human endothelial cells cultured on hydrogel matrix with sulfonic moiety: Effect of elasticity of hydrogel. J Biomed Mater Res A 2011; 95:531-42. [PMID: 20681030 DOI: 10.1002/jbm.a.32875] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We measured the gene expression, glycocalyx content, and surface properties of human coronary artery endothelial cells (HCAECs) cultured on poly(sodium p-styrene sulfonate) (PNaSS) hydrogels with various levels of elasticity ranged in 3-300 kPa. We found that all HCAECs reached confluence on these hydrogels while retaining the similar expression of EC-specific markers to that on polystyrene (PS), a widely used scaffold in cell culture in vitro. Real-time polymerase chain reaction (PCR) and glycosaminoglycan (GAG) assay showed that the amount of EC-specific glycocalyx secreted by HCAECs cultured on PNaSS gels was higher than that cultured on PS, and it increased with an increase of gel elasticity. Furthermore, the HCAECs cultured on PNaSS gels showed excellent property against platelet adhesion and lower surface friction than that on PS. The platelet adhesion and surface friction of HCAECs cultured on PNaSS gels also depend on the elasticity of gels. The largest amount of EC-specific glycocalyx, excellent blood compatibility, and the lowest friction were observed when the elastic modulus of the gel was larger than 60 kPa. Overall, HCAECs cultured on these hydrogels have better properties than those cultured on PS scaffold, demonstrating the PNaSS gels can be used as potential tissue engineering material for blood vessels.
Collapse
Affiliation(s)
- Jing Jing Yang
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Mintzer MA, Grinstaff MW. Biomedical applications of dendrimers: a tutorial. Chem Soc Rev 2011; 40:173-90. [DOI: 10.1039/b901839p] [Citation(s) in RCA: 555] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
50
|
Son TI, Sakuragi M, Takahashi S, Obuse S, Kang J, Fujishiro M, Matsushita H, Gong J, Shimizu S, Tajima Y, Yoshida Y, Suzuki K, Yamamoto T, Nakamura M, Ito Y. Visible light-induced crosslinkable gelatin. Acta Biomater 2010; 6:4005-10. [PMID: 20580950 DOI: 10.1016/j.actbio.2010.05.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 05/14/2010] [Accepted: 05/19/2010] [Indexed: 11/17/2022]
Abstract
A novel visible light-crosslinkable porcine gelatin was prepared for gelation and micropatterning. The preparation employed a photo-oxidation-induced crosslinking mechanism. First, furfuryl groups were incorporated into the gelatin. Second, the modified gelatin was mixed in water with Rose Bengal, which is a visible light sensitizer. Irradiation by visible light solidified the aqueous solution. In addition, when the solution was cast on a plate, dried and photo-irradiated in the presence of a photomask a micropattern was formed that matched the micropattern on the photomask. The gelatin-immobilized regions enhanced cell adhesion. It was also confirmed that the gelatin incorporating furfuryl and Rose Bengal have no significant toxicity. The photo-crosslinkable gelatin was employed as a direct pulp capping material in the dental field. Considering these results, this system could be useful as a new type of visible light-induced crosslinkable biosealant.
Collapse
Affiliation(s)
- Tae Il Son
- RIKEN Advanced Science Institute, Wako-shi, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|