1
|
Khodayari A, Vats S, Mertz G, Schnell CN, Rojas CF, Seveno D. Electrospinning of cellulose nanocrystals; procedure and optimization. Carbohydr Polym 2025; 347:122698. [PMID: 39486938 DOI: 10.1016/j.carbpol.2024.122698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 11/04/2024]
Abstract
Cellulose nanocrystals (CNCs) and cellulose microfibrils (CMFs) are promising materials with the potential to significantly enhance the mechanical properties of electrospun nanofibers. However, the crucial aspect of optimizing their integration into these nanofibers remains a challenge. In this work, we present a method to prepare and electrospin a cellulosic solution, aiming to overcome the existing challenges and realize the optimized incorporation of CNCs into nanofibers. The solution parameters of electrospinning were explored using a combined experimental and simulation (molecular dynamics) approach. Experimental results emphasize the impact of polymer solution concentration on fiber morphology, reinforcing the need for further optimization. Simulations highlight the intricate factors, including the molecular weight of cellulose acetate (CA) polymer chains, electrostatic fields, and humidity, that impact the alignment of CNCs and CMFs. Furthermore, efforts were made to study CNCs/CMFs alignment rate and quality optimization. It is predicted that pure CNCs benefit more from electrostatic alignment, while lower molecular weight CA enables better CNC/CMF alignment.
Collapse
Affiliation(s)
- Ali Khodayari
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium.
| | - Shameek Vats
- Luxembourg Institute of Science and Technology (LIST), Rue Bommel 5, L-4940 Hautcharage, Luxembourg
| | - Grégory Mertz
- Luxembourg Institute of Science and Technology (LIST), Rue Bommel 5, L-4940 Hautcharage, Luxembourg
| | - Carla N Schnell
- Luxembourg Institute of Science and Technology (LIST), Rue Bommel 5, L-4940 Hautcharage, Luxembourg
| | - Carlos Fuentes Rojas
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium; Luxembourg Institute of Science and Technology (LIST), Rue Bommel 5, L-4940 Hautcharage, Luxembourg
| | - David Seveno
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium
| |
Collapse
|
2
|
Jamal M, Sharif F, Shozab Mehdi M, Fakhar-e-Alam M, Asif M, Mustafa W, Bashir M, Rafiq S, Bustam MA, Saif-ur-Rehman, Dahlous KA, Shibl MF, Al-Qahtani NH. Development of Biocompatible Electrospun PHBV-PLLA Polymeric Bilayer Composite Membranes for Skin Tissue Engineering Applications. Molecules 2024; 29:2049. [PMID: 38731542 PMCID: PMC11085634 DOI: 10.3390/molecules29092049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 05/13/2024] Open
Abstract
Bilayer electrospun fibers aimed to be used for skin tissue engineering applications were fabricated for enhanced cell attachment and proliferation. Different ratios of PHBV-PLLA (70:30, 80:20, and 90:10 w/w) blends were electrospun on previously formed electrospun PHBV membranes to produce their bilayers. The fabricated electrospun membranes were characterized with FTIR, which conformed to the characteristic peaks assigned for both PHBV and PLLA. The surface morphology was evaluated using SEM analysis that showed random fibers with porous morphology. The fiber diameter and pore size were measured in the range of 0.7 ± 0.1 µm and 1.9 ± 0.2 µm, respectively. The tensile properties of the bilayers were determined using an electrodynamic testing system. Bilayers had higher elongation at break (44.45%) compared to the monolayers (28.41%) and improved ultimate tensile strength (7.940 MPa) compared to the PHBV monolayer (2.450 MPa). In vitro cytotoxicity of each of the scaffolds was determined via culturing MC3T3 (pre-osteoblastic cell line) on the membranes. Proliferation was evaluated using the Alamar Blue assay on days 3, 7, and 14, respectively. SEM images of cells cultured on membranes were taken in addition to bright field imaging to visually show cell attachment. Fluorescent nuclear staining performed with DAPI was imaged with an inverted fluorescent microscope. The fabricated bilayer shows high mechanical strength as well as biocompatibility with good cell proliferation and cell attachment, showing potential for skin substitute applications.
Collapse
Affiliation(s)
- Muddasar Jamal
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan; (M.J.); (W.M.); (S.-u.-R.)
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia;
| | - Faiza Sharif
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan; (M.J.); (W.M.); (S.-u.-R.)
| | - Muhammad Shozab Mehdi
- Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23640, Pakistan;
| | - Muhammad Fakhar-e-Alam
- Department of Physics, Government College University Faisalabad, Allama Iqbal Road, Faisalabad 38000, Pakistan; (M.F.-e.-A.)
| | - Muhammad Asif
- Department of Physics, Government College University Faisalabad, Allama Iqbal Road, Faisalabad 38000, Pakistan; (M.F.-e.-A.)
| | - Waleed Mustafa
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan; (M.J.); (W.M.); (S.-u.-R.)
| | - Mustehsan Bashir
- Department of Plastic, Reconstructive Surgery and Burn Unit, King Edward Medical University, Lahore 54000, Pakistan;
| | - Sikandar Rafiq
- Department of Chemical, Polymer and Composites Materials Engineering, University of Engineering and Technology-Lahore, New Campus, Lahore 39161, Pakistan;
| | - Mohamad Azmi Bustam
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia;
| | - Saif-ur-Rehman
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan; (M.J.); (W.M.); (S.-u.-R.)
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
- Department of Chemical Engineering, ProcESS-Process Engineering for Sustainable System, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Kholood A. Dahlous
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mohamed F. Shibl
- Chemistry Department, Faculty of Science, Cairo University, Cairo 12613, Egypt;
| | | |
Collapse
|
3
|
Alkassfarity AN, Yassin MA, Abdel Rehim MH, Liu L, Jiao Z, Wang B, Wei Z. Modified cellulose nanocrystals enhanced polycaprolactone multifunctional films with barrier, UV-blocking and antimicrobial properties for food packaging. Int J Biol Macromol 2024; 261:129871. [PMID: 38309396 DOI: 10.1016/j.ijbiomac.2024.129871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
The packaging industry demands improved eco-friendly materials with new and enhanced properties. In this context, bio-nanocomposite films with antimicrobial and UV-shielding properties based on modified cellulose nanocrystals/polycaprolactone (MCNC/PCL) were fabricated via solution casting method, and then food packaging simulation was carried out. CNCs were obtained by acid hydrolysis followed by successful functionalization with Quaternary ammonium surfactant, confirmed by FTIR, XPS, XRD, TEM, and DLS analyses. Furthermore, the morphological, physical, antibacterial, and food packaging properties of all prepared films were investigated. Results showed that the mechanical, UV blocking, barrier properties, and antibacterial activity of all composite films were remarkably improved. Particularly, the addition of 3 wt% MCNC increased the tensile strength and elongation at break by 27.5 % and 20.0 %, respectively. Moreover, the permeability of O2, CO2, and water vapor dramatically reduced by 97.6 %, 96.7 %, and 49.8% compared to the Neat PCL. Further, the UV-blocking properties of the composite films were significantly improved. The antimicrobial properties of MCNC/PCL films showed good antimicrobial properties against S. aureus. Finally, cherry packaged with 1 and 3 wt% MCNC films exhibited satisfactory freshness after 22 days of preservation. Overall, the fabricated PCL nanocomposite films can be utilized in the food packaging industry.
Collapse
Affiliation(s)
- Asmaa N Alkassfarity
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; Packing and Packaging Materials Department, National Research Centre, Giza, Egypt
| | - Mohamed A Yassin
- Packing and Packaging Materials Department, National Research Centre, Giza, Egypt; Advanced Materials and Nanotechnology Lab, Center of Excellence, National Research Centre, Giza, Egypt
| | - Mona H Abdel Rehim
- Packing and Packaging Materials Department, National Research Centre, Giza, Egypt
| | - Lipeng Liu
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ziyue Jiao
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Bo Wang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhiyong Wei
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
4
|
Wohlert J, Chen P, Berglund LA, Lo Re G. Acetylation of Nanocellulose: Miscibility and Reinforcement Mechanisms in Polymer Nanocomposites. ACS NANO 2024; 18:1882-1891. [PMID: 38048271 PMCID: PMC10811682 DOI: 10.1021/acsnano.3c04872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023]
Abstract
The improvement of properties in nanocomposites obtained by topochemical surface modification, e.g., acetylation, of the nanoparticles is often ascribed to improved compatibility between the nanoparticle and the matrix. It is not always clear however what is intended: specific interactions at the interface leading to increased adhesion or the miscibility between the nanoparticle and the polymer. In this work, it is demonstrated that acetylation of cellulose nanocrystals greatly improves mechanical properties of their nanocomposites with polycaprolactone. In addition, molecular dynamics simulations with a combination of potential of mean force calculations and computational alchemy are employed to analyze the surface energies between the two components. The work of adhesion between the two phases decreases with acetylation. It is discussed how acetylation can still contribute to the miscibility, which leads to a stricter use of the concept of compatibility. The integrated experimental-modeling toolbox used has wide applicability for assessing changes in the miscibility of polymer nanocomposites.
Collapse
Affiliation(s)
- Jakob Wohlert
- Wallenberg
Wood Science Center, Department of Fiber and Polymer Technology, School
of Chemical Science and Engineering, KTH
Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Pan Chen
- Beijing
Engineering Research Center of Cellulose and its Derivatives, School
of Materials Science and Engineering, Beijing
Institute of Technology, Beijing 100081, China
| | - Lars A. Berglund
- Wallenberg
Wood Science Center, Department of Fiber and Polymer Technology, School
of Chemical Science and Engineering, KTH
Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Giada Lo Re
- Wallenberg
Wood Science Center, Department of Fiber and Polymer Technology, School
of Chemical Science and Engineering, KTH
Royal Institute of Technology, SE-10044 Stockholm, Sweden
- Department
of Industrial and Materials Science, Chalmers
University of Technology, SE-41296 Gothenburg, Sweden
| |
Collapse
|
5
|
Wu Z, Ji X, He Q, Gu H, Zhang WX, Deng Z. Nanocelluloses fine-tuned polyvinylidene fluoride (PVDF) membrane for enhanced separation and antifouling. Carbohydr Polym 2024; 323:121383. [PMID: 37940278 DOI: 10.1016/j.carbpol.2023.121383] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/01/2023] [Accepted: 09/10/2023] [Indexed: 11/10/2023]
Abstract
To mitigate membrane fouling and address the trade-off between permeability and selectivity, we fabricated nanocellulose (NC) fine-tuned polyvinylidene fluoride (PVDF) porous membranes (NC-PVDFs) using phase inversion method through blending NCs with varied aspect ratios, surface charges and grafted functional groups. NC-PVDF presented rougher surface (increased by at least 18.3 %), higher porosity and crystallinity compared to PVDF membrane. Moreover, cellulose nanocrystals incorporated PVDF (CNC-PVDF) elevated membrane surface charge and hydrophilicity (from 74.3° to 71.7°), while 2,2,6,6-tetramethylpiperidine-1-oxyl-oxidized cellulose nanofibers modified PVDF (TCNF-PVDF) enhanced the porosity (from 25.0 % to 40.3 %) and tensile strength (63.6 % higher than PVDF). For separation performance, NC improved flux, rejection and fouling resistance due to facilitation of phase transition thermokinetics as pore-forming agent and increased hydrophilicity at both interface and pore wall. For water flux, NC-PVDFs (139-228 L·m-2·h-1) resulted in increased permeability compared to bare PVDF. CNC-PVDF membrane exhibited the highest water flux because of improved porosity, roughness and hydrophilicity. For bovine serum albumin (BSA) rejection, the removal rates of all NC-PVDFs were all above 90 %. Notably, TCNF-PVDF exhibited the most remarkable elevation of BSA rejection (95.1 %) owing to size exclusion and charge repulsion in comparison with PVDF.
Collapse
Affiliation(s)
- Zixuan Wu
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xin Ji
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Quanlong He
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hongbo Gu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wei-Xian Zhang
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zilong Deng
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
6
|
Bressi AC, Dallinger A, Steksova Y, Greco F. Bioderived Laser-Induced Graphene for Sensors and Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37471123 PMCID: PMC10401514 DOI: 10.1021/acsami.3c07687] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The maskless and chemical-free conversion and patterning of synthetic polymer precursors into laser-induced graphene (LIG) via laser-induced pyrolysis is a relatively new but growing field. Bioderived precursors from lignocellulosic materials can also be converted to LIG, opening a path to sustainable and environmentally friendly applications. This review is designed as a starting point for researchers who are not familiar with LIG and/or who wish to switch to sustainable bioderived precursors for their applications. Bioderived precursors are described, and their performances (mainly crystallinity and sheet resistance of the obtained LIG) are compared. The three main fields of application are reviewed: supercapacitors and electrochemical and physical sensors. The key advantages and disadvantages of each precursor for each application are discussed and compared to those of a benchmark of polymer-derived LIG. LIG from bioderived precursors can match, or even outperform, its synthetic analogue and represents a viable and sometimes better alternative, also considering its low cost and biodegradability.
Collapse
Affiliation(s)
- Anna Chiara Bressi
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Viale R. Piaggio 34, 56025 Pontedera, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Alexander Dallinger
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, Petergasse 16, Graz 8010, Austria
| | - Yulia Steksova
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Viale R. Piaggio 34, 56025 Pontedera, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Francesco Greco
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Viale R. Piaggio 34, 56025 Pontedera, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, Petergasse 16, Graz 8010, Austria
- Interdisciplinary Center on Sustainability and Climate, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| |
Collapse
|
7
|
Dias IKR, Lacerda BK, Arantes V. High-yield production of rod-like and spherical nanocellulose by controlled enzymatic hydrolysis of mechanically pretreated cellulose. Int J Biol Macromol 2023:125053. [PMID: 37244329 DOI: 10.1016/j.ijbiomac.2023.125053] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
In this study, a simple and scalable mechanical pretreatment was evaluated as means to increase the cellulose accessibility of cellulose fibers, with the aim of improving the efficiency of enzymatic reactions for the production of cellulose nanoparticles (CNs). In addition, the effects of enzyme type (endoglucanase - EG, endoxylanase - EX, and a cellulase preparation - CB), composition ratio (0-200UEG:0-200UEX or EG, EX, and CB alone), and loading (0 U-200 U) were investigated in relation to CN yield, morphology, and properties. The combination of mechanical pretreatment and specific conditions for enzymatic hydrolysis substantially improved CN production yield, reaching up to 83 %. The production of rod-like or spherical nanoparticles and their chemical composition were highly dependent on the type of enzyme, composition ratio, and loading. However, these enzymatic conditions minimally affected the crystallinity index (approximately 80 %) and thermal stability (Tmax within 330-355 °C). Collectively, these results demonstrate that mechanical pretreatment followed by enzymatic hydrolysis under specific conditions is a suitable method to produce nanocellulose with a high yield and tunable properties such as purity, rod-like or spherical forms, high thermal stability, and high crystallinity. Therefore, this production route is a promising approach to produce tailored CNs with the potential to offer superior performance in a variety of sophisticated applications, including, but not limited to, wound dressings, drug delivery, thermoplastic composites, 3D (bio)printing, and smart packaging.
Collapse
Affiliation(s)
- Isabella K R Dias
- Nanobiotechnology and Bioproducts Laboratory, Department of Biotechnology, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, SP, Brazil
| | - Bruna K Lacerda
- Nanobiotechnology and Bioproducts Laboratory, Department of Biotechnology, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, SP, Brazil
| | - Valdeir Arantes
- Nanobiotechnology and Bioproducts Laboratory, Department of Biotechnology, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, SP, Brazil.
| |
Collapse
|
8
|
Kinnebrew A, Vincent S, Curry ML. Isolation, Oxidation, and Application of Crystalline-Pristine Cellulose: Natural Products That Could End Plastic Waste. Acc Chem Res 2023. [PMID: 37104849 DOI: 10.1021/acs.accounts.2c00746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
ConspectusGiven this special issue's efforts to highlight the research emanating from HBCUs (Historically Black Colleges and Universities) and the trials and tribulations associated with their research, the authors have presented work associated with the characterization and application of cellulosic materials as renewable products. Despite challenges, the research completed in this laboratory at Tuskegee, a HBCU, hinges upon the many investigations of cellulose as a carbon-neutral, biorenewable material that can potentially replace environmentally unfriendly and hazardous petroleum-based polymers. Although cellulose is one of the most promising candidates, overcoming the challenge of its incompatibility (i.e., lack of good dispersion, interfacial adhesion, etc.) with most hydrophobic polymers due to its hydrophilic nature is critical to usage in plastic products across industries. Chemical isolations via acid hydrolysis and surface functionalities have emerged as new approaches to modulate the surface chemistry of cellulose to improve its compatibility and physical performance within the polymer composites. Recently, we have explored the influence of (1) acid hydrolysis and (2) chemical modifications via surface oxidation to ketones and aldehydes on the resulting macrostructural arrangements and thermal performance and (3) the application of crystalline cellulose as reinforcement agents in ABS (acrylonitrile-butadiene-styrene) composites.XRD structural characterizations of crystalline cellulose isolated from wheat straw under dissimilar acid hydrolysis conditions showed induced alterations in the native cellulose polymorph (CI). Mixing of the native polymorph (CI) with CIII was observed and found to be more prominent under sulfuric acid isolation conditions which is one of the more commonly used methods of chemical isolation. Thermal evaluations using TGA confirmed that the introduction of the mixed polymorphs changed the thermal behavior of the isolated crystalline cellulose. Further, FTIR analysis and Tollens testing of chemically oxidized crystalline cellulose via the Albright-Goldman reaction revealed the transformation of surface OH groups to ketones and aldehydes, respectively. We observed similar macrostructural disruption behavior to that of acid hydrolysis processing (i.e., mixing of polymorphs) for oxidation of crystalline cellulose, which had no negative impacts on the thermal stability of the cellulosic structure. The application of acid-hydrolyzed pristine cellulose (PC) as reinforcement agents in ABS composites showed increased thermal-mechanical performance as revealed by TGA and thermal mechanical analysis (TMA). As the ratio of crystalline cellulose increased, the thermal stability of the ABS composite increased, and at extremely high ratios, increased dimensional stability (i.e., low coefficient of thermal expansion (CTE) value) was observed, expanding the application of ABS plastic products.
Collapse
Affiliation(s)
- Amber Kinnebrew
- Department of Materials Science and Engineering, Tuskegee University, 1200 West Montgomery Road, Tuskegee, Alabama 36088, United States
| | - Samuel Vincent
- Department of Chemistry, Tuskegee University, 1200 West Montgomery Road, Tuskegee, Alabama 36088, United States
| | - Michael L Curry
- Department of Chemistry, Tuskegee University, 1200 West Montgomery Road, Tuskegee, Alabama 36088, United States
- Department of Materials Science and Engineering, Tuskegee University, 1200 West Montgomery Road, Tuskegee, Alabama 36088, United States
| |
Collapse
|
9
|
Rybiński P, Mirkhodjaev UZ, Żukowski W, Bradło D, Gawlik A, Zamachowski J, Żelezik M, Masłowski M, Miedzianowska J. Effect of Hybrid Filler, Carbon Black-Lignocellulose, on Fire Hazard Reduction, including PAHs and PCDDs/Fs of Natural Rubber Composites. Polymers (Basel) 2023; 15:polym15081975. [PMID: 37112122 PMCID: PMC10146314 DOI: 10.3390/polym15081975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/06/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
The smoke emitted during thermal decomposition of elastomeric composites contains a significant number of carcinogenic and mutagenic compounds from the group of polycyclic aromatic hydrocarbons, PAHs, as well as polychlorinated dibenzo-p-dioxins and furans, PCDDs/Fs. By replacing carbon black with a specific amount of lignocellulose filler, we noticeably reduced the fire hazard caused by elastomeric composites. The lignocellulose filler reduced the parameters associated with the flammability of the tested composites, decreased the smoke emission, and limited the toxicity of gaseous decomposition products expressed as a toximetric indicator and the sum of PAHs and PCDDs/Fs. The natural filler also reduced emission of gases that constitute the basis for determination of the value of the toximetric indicator WLC50SM. The flammability and optical density of the smoke were determined in accordance with the applicable European standards, with the use of a cone calorimeter and a chamber for smoke optical density tests. PCDD/F and PAH were determined using the GCMS-MS technique. The toximetric indicator was determined using the FB-FTIR method (fluidised bed reactor and the infrared spectrum analysis).
Collapse
Affiliation(s)
- Przemysław Rybiński
- Institute of Chemistry, The Jan Kochanowski University, 25-406 Kielce, Poland
| | | | - Witold Żukowski
- Department of General and Inorganic Chemistry, Cracow University of Technology, 31-155 Cracow, Poland
| | - Dariusz Bradło
- Department of General and Inorganic Chemistry, Cracow University of Technology, 31-155 Cracow, Poland
| | - Adam Gawlik
- Institute of Geography and Environmental Sciences, Jan Kochanowski University, 25-406 Kielce, Poland
| | - Jakub Zamachowski
- Institute of Geography and Environmental Sciences, Jan Kochanowski University, 25-406 Kielce, Poland
| | - Monika Żelezik
- Institute of Geography and Environmental Sciences, Jan Kochanowski University, 25-406 Kielce, Poland
| | - Marcin Masłowski
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, 90-924 Lodz, Poland
| | - Justyna Miedzianowska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, 90-924 Lodz, Poland
| |
Collapse
|
10
|
Olusanya SO, Ajayi SM, Sodeinde KO, Fapojuwo DP, Atunde MO, Diduyemi AE, Olumayede EG, Lawal OS. Hydrophobic modification of cellulose from oil palm waste in aqueous medium. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04756-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
11
|
Sapuan SM, Harussani MM, Ismail AH, Zularifin Soh NS, Mohamad Azwardi MI, Siddiqui VU. Development of nanocellulose fiber reinforced starch biopolymer composites: a review. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
Abstract
In the last few years, there are rising numbers for environmental waste due to factors such as plastic based food packaging that really need to get enough attention in order to prevent the issue from becoming worse and bringing disaster to society. Thus, the uses of plastic composite materials need to be reduced and need to be replaced with materials that are natural and have low degradation to preserve nature. Based on the statistics for the global, the production of plastic has been roughly calculated for passing 400 million metric tons every year and has a high probability of approaching the value of 500 million metric tons at the year of 2025 and this issue needs to be counteracted as soon as possible. Due to that, the increasing number for recent development of natural biopolymer, as an example starch, has been investigated as the substitution for the non-biodegradable biopolymer. Besides, among all biodegradable polymers, starch has been considered as promising substitution polymer due to its renewability, easy availability, and biodegradability. Apart from that, by the reinforcement from the nanocellulose, starch fiber has an increasing in terms of mechanical, barrier and thermal properties. In this review paper, we will be discussing the up-to-date development of nanocellulose fiber reinforced starch biopolymer composites throughout this century.
Collapse
Affiliation(s)
- Salit Mohd Sapuan
- Department of Mechanical and Manufacturing Engineering , Advanced Engineering Materials and Composites (AEMC) Research Centre, Universiti Putra Malaysia (UPM) , Serdang , Selangor 43400 , Malaysia
| | - Moklis Muhammad Harussani
- Energy Science and Engineering, Department of Transdisciplinary Science and Engineering , School of Environment and Society, Tokyo Institute of Technology , Meguro 152-8552 , Tokyo , Japan
| | - Aleif Hakimi Ismail
- Department of Mechanical and Manufacturing Engineering , Advanced Engineering Materials and Composites (AEMC) Research Centre, Universiti Putra Malaysia (UPM) , Serdang , Selangor 43400 , Malaysia
| | - Noorashikin Soh Zularifin Soh
- Department of Mechanical and Manufacturing Engineering , Advanced Engineering Materials and Composites (AEMC) Research Centre, Universiti Putra Malaysia (UPM) , Serdang , Selangor 43400 , Malaysia
| | - Mohamad Irsyad Mohamad Azwardi
- Department of Mechanical and Manufacturing Engineering , Advanced Engineering Materials and Composites (AEMC) Research Centre, Universiti Putra Malaysia (UPM) , Serdang , Selangor 43400 , Malaysia
| | - Vasi Uddin Siddiqui
- Department of Mechanical and Manufacturing Engineering , Advanced Engineering Materials and Composites (AEMC) Research Centre, Universiti Putra Malaysia (UPM) , Serdang , Selangor 43400 , Malaysia
| |
Collapse
|
12
|
Highly functional nanocellulose-reinforced thermoplastic starch-based nanocomposites. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Abstract
Starch/nanocellulose nanocomposite is of interest because of its potential applications in the field of biodegradable food packaging and biomedical applications thanks to its safe, biodegradable, fabricated by simple traditional methods, and cheap. The starch reinforced by nanocellulose significantly improved the physicochemical properties, especially the mechanical properties, thermal stability as well as barrier properties, compared to the starch matrix. With outstanding advantages compared to polymer nanocomposites derived from petroleum, the starch/nanocellulose composite is considered a potential agent for biodegradable food packaging and biomedical technology.
Collapse
|
13
|
Wongvasana B, Thongnuanchan B, Masa A, Saito H, Sakai T, Lopattananon N. Reinforcement Behavior of Chemically Unmodified Cellulose Nanofiber in Natural Rubber Nanocomposites. Polymers (Basel) 2023; 15:1274. [PMID: 36904515 PMCID: PMC10007268 DOI: 10.3390/polym15051274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
We investigated the reinforcement behavior of small amounts of chemically unmodified cellulose nanofiber (CNF) in eco-friendly natural rubber (NR) nanocomposites. For this purpose, NR nanocomposites filled with 1, 3, and 5 parts per hundred rubber (phr) of cellulose nanofiber (CNF) were prepared by a latex mixing method. By using TEM, a tensile test, DMA, WAXD, a bound rubber test, and gel content measurements, the effect of CNF concentration on the structure-property relationship and reinforcing mechanism of the CNF/NR nanocomposite was revealed. Increasing the content of CNF resulted in decreased dispersibility of the nanofiber in the NR matrix. It was found that the stress upturn in the stress-strain curves was remarkably enhanced when the NR was combined with 1-3 phr CNF, and a noticeable increase in tensile strength (an approximately 122% increase in tensile strength over that of NR) was observed without sacrificing the flexibility of the NR in the NR filled with 1 phr CNF, though no acceleration in their strain-induced crystallization was observed. Since the NR chains were not inserted in the uniformly dispersed CNF bundles, the reinforcement behavior by the small content of CNF might be attributed to the shear stress transfer at the CNF/NR interface through the interfacial interaction (i.e., physical entanglement) between the nano-dispersed CNFs and the NR chains. However, at a higher CNF filling content (5 phr), the CNFs formed micron-sized aggregates in the NR matrix, which significantly induced the local stress concentration and promoted strain-induced crystallization, causing a substantially increased modulus but reduced the strain at the rupture of the NR.
Collapse
Affiliation(s)
- Bunsita Wongvasana
- Department of Rubber Technology and Polymer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand
| | - Bencha Thongnuanchan
- Department of Rubber Technology and Polymer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand
| | - Abdulhakim Masa
- Rubber Engineering & Technology Program, International College, Prince of Songkla University, Songkhla 90110, Thailand
| | - Hiromu Saito
- Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Tadamoto Sakai
- Organization for Innovation & Social Collaboration, Shizuoka University, Shizuoka 432-8011, Japan
| | - Natinee Lopattananon
- Department of Rubber Technology and Polymer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand
| |
Collapse
|
14
|
Zhao H, Sun J, Du Y, Zhang M, Yang Z, Su J, Peng X, Liu X, Sun G, Cui Y. In-situ immobilization of CuMOF on sodium alginate/chitosan/cellulose nanofibril composite hydrogel for fast and highly efficient removal of Pb2+ from aqueous solutions. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
15
|
Sudhaik A, Raizada P, Ahamad T, Alshehri SM, Nguyen VH, Van Le Q, Thakur S, Thakur VK, Selvasembian R, Singh P. Recent advances in cellulose supported photocatalysis for pollutant mitigation: A review. Int J Biol Macromol 2023; 226:1284-1308. [PMID: 36574582 DOI: 10.1016/j.ijbiomac.2022.11.241] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
In recent times, green chemistry or "green world" is a new and effective approach for sustainable environmental remediation. Among all biomaterials, cellulose is a vital material in research and green chemistry. Cellulose is the most commonly used natural biopolymer because of its distinctive and exceptional properties such as reproducibility, cost-effectiveness, biocompatibility, biodegradability, and universality. Generally, coupling cellulose with other nanocomposite materials enhances the properties like porosity and specific surface area. The polymer is environment-friendly, bioresorbable, and sustainable which not only justifies the requirements of a good photocatalyst but boosts the adsorption ability and degradation efficiency of the nanocomposite. Hence, knowing the role of cellulose to enhance photocatalytic activity, the present review is focused on the properties of cellulose and its application in antibiotics, textile dyes, phenol and Cr(VI) reduction, and degradation. The work also highlighted the degradation mechanism of cellulose-based photocatalysts, confirming cellulose's role as a support material to act as a sink and electron mediator, suppressing the charge carrier's recombination rate and enhancing the charge migration ability. The review also covers the latest progressions, leanings, and challenges of cellulose biomaterials-based nanocomposites in the photocatalysis field.
Collapse
Affiliation(s)
- Anita Sudhaik
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia
| | - Saad M Alshehri
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia
| | - Van-Huy Nguyen
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Tamil Nadu, India
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sourbh Thakur
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic, Analytical Chemistry and Electrochemistry, B. Krzywoustego 6 Str., 44-100 Gliwice, Poland
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, Scotland's Rural College, Edinburgh EH9 3JG, Scotland, UK
| | | | - Pardeep Singh
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India.
| |
Collapse
|
16
|
Khalili H, Bahloul A, Ablouh EH, Sehaqui H, Kassab Z, Semlali Aouragh Hassani FZ, El Achaby M. Starch biocomposites based on cellulose microfibers and nanocrystals extracted from alfa fibers (Stipa tenacissima). Int J Biol Macromol 2023; 226:345-356. [PMID: 36470435 DOI: 10.1016/j.ijbiomac.2022.11.313] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Cellulose-based biopolymers have emerged as one of the most promising components to produce sustainable composites as a potential substitutes to fossil-based materials. Herein, the aim of this study is to investigate the reinforcing effect of cellulose microfibers (CMFs) and cellulose nanocrystals (CNCs), extracted from alfa fibers (Stipa tenacissima), on the properties of starch biopolymer extracted from potato. The as-extracted CMFs (D = 5.94 ± 0.96 μm), CNCs (D = 14.29 ± 2.53 nm) and starch were firstly characterized in terms of their physicochemical properties. Afterwards, CMFs and CNCs were separately dispersed in starch at different concentrations, and their reinforcing effects as well as the chemical, thermal, transparency and mechanical properties of the resulted starch-based films were evaluated. Thus, CMFs and CNCs incorporation into starch resulted in a minor impact on the films thermal stability, while a considerable impact on the transparency property was observed. In terms of mechanical properties, the addition of up to 20 wt% CMFs reduced the film's elongation but drastically increased its stiffness by 300 %. On the other hand, in the case of CNCs, a loading of 10 wt% was found to be the most effective in increasing film stiffness (by 57 %), while increasing the loading up to 20 wt% CNCs enhanced the film's ductility (strain-to-failure) by 52 %. This study showed that introduction of cellulosic fibers having different sizes into starch can produce biocomposite materials with a wide range of properties for food packaging application.
Collapse
Affiliation(s)
- Houssine Khalili
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150 Benguerir, Morocco
| | - Adil Bahloul
- Laboratoire d'Ingénierie et Matériaux, Faculté des Sciences Ben M'sik, Université Hassan II de Casablanca, B.P.7955, Casablanca, Morocco
| | - El-Houssaine Ablouh
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150 Benguerir, Morocco
| | - Houssine Sehaqui
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150 Benguerir, Morocco
| | - Zineb Kassab
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150 Benguerir, Morocco.
| | - Fatima-Zahra Semlali Aouragh Hassani
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150 Benguerir, Morocco.
| | - Mounir El Achaby
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150 Benguerir, Morocco.
| |
Collapse
|
17
|
Dufresne A. Preparation and Applications of Cellulose Nanomaterials. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00542-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
18
|
Production and Characterization of Cellulose Nanocrystals of Different Allomorphs from Oil Palm Empty Fruit Bunches for Enhancing Composite Interlaminar Fracture Toughness. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
19
|
Optimization of Lignin-Cellulose Nanofiber-Filled Thermoplastic Starch Composite Film Production for Potential Application in Food Packaging. Molecules 2022; 27:molecules27227708. [PMID: 36431806 PMCID: PMC9695932 DOI: 10.3390/molecules27227708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/12/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022] Open
Abstract
The optimization of the production of thermoplastic starch (TPS) bionanocomposite films for their potential application in food packaging was carried out, according to the Box-Wilson Central Composite Design (CCD) with one center point, using Response Surface Methodology (RSM) and fillers based on lignin and nanofiber, which were derived from bamboo plant. The effects of the fillers on the moisture absorption (MAB), tensile strength (TS), percent elongation (PE) and Young's modulus (YM) of the produced films were statistically examined. The obtained results showed that the nanocomposite films were best fitted by a quadratic regression model with a high coefficient of determination (R2) value. The film identified to be optimum has a desirability of 76.80%, which is close to the objective function, and contained 4.81 wt. % lignin and 5.00 wt. % nanofiber. The MAB, TS, YM and PE of the identified film were 17.80%, 21.51 MPa, 25.76 MPa and 48.81%, respectively. The addition of lignin and cellulose nanofiber to starch composite was found to have reduced the moisture-absorption tendency significantly and increased the mechanical properties of the films due to the good filler/matrix interfacial adhesion. Overall, the results suggested that the produced films would be suitable for application as packaging materials for food preservation.
Collapse
|
20
|
Kim Y, Jeong Y, Kang SM. Surface Coating with Naphthalene Trisulfonate/Hafnium(IV) Complexes: Versatility and Post-Functionalization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12711-12716. [PMID: 36209435 DOI: 10.1021/acs.langmuir.2c02336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Naphthalene trisulfonate is found to have versatile surface coating capability when combined with hafnium(IV) ions, thereby forming complexes. Solid substrates such as titanium/titanium dioxide, glass, and nylon immersed in a solution of naphthalene trisulfonate and HfIV produces naphthalene trisulfonate/HfIV complex coating. The coating is not produced when the HfIV ions are absent or when naphthalene monosulfonate replaces naphthalene trisulfonate; this indicates the significance of HfIV ions and multiple sulfonates in this coating system. The versatile surface coating property of naphthalene trisulfonate/HfIV complexes is attributed to the coexistence of hydrophobic aromatic and hydrophilic side groups in naphthalene trisulfonate. Additionally, HfIV ion-mediated cross-linking reactions between naphthalene trisulfonate molecules induce molecular assembly, facilitating versatile surface coating. Post-functionalization of the coating is accomplished through additional HfIV-mediated coordinate bond formation; alginate and λ-carrageenan are successfully grafted onto the coating for nonbiofouling applications.
Collapse
Affiliation(s)
- Yejin Kim
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Yeonwoo Jeong
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Sung Min Kang
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
21
|
Mohammed AABA, Hasan Z, Omran AAB, Kumar V, Elfaghi AM, Ilyas RA, Sapuan SM. Corn: Its Structure, Polymer, Fiber, Composite, Properties, and Applications. Polymers (Basel) 2022; 14:polym14204396. [PMID: 36297977 PMCID: PMC9607144 DOI: 10.3390/polym14204396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Biocomposite materials have a significant function in saving the environment by replacing artificial plastic materials with natural substances. They have been enrolled in many applications, such as housing, automotive engine components, aerospace and military products, electronic and circuit board components, and oil and gas equipment. Therefore, continuous studies have been employed to improve their mechanical, thermal, physical properties. In this research, we conduct a comprehensive review about corn fiber and corn starch-based biocomposite. The results gained from previous studies were compared and discussed. Firstly, the chemical, thermal, and mechanical properties of cornstarch-based composite were discussed. Then, the effects of various types of plasticizers on the flexibility of the cornstarch-based composite were addressed. The effects of chemical treatments on the properties of biocomposite using different cross-linking agents were discussed. The corn fiber surface treatment to enhance interfacial adhesion between natural fiber and polymeric matrix also were addressed. Finally, morphological characterization, crystallinity degree, and measurement of vapor permeability, degradation, and uptake of water were discussed. The mechanical, thermal, and water resistance properties of corn starch and fibers-based biopolymers show a significant improvement through plasticizing, chemical treatment, grafting, and cross-linker agent procedures, which expands their potential applications.
Collapse
Affiliation(s)
| | - Zaimah Hasan
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan Ikram-Uniten, Kajang 43000, Malaysia
- Correspondence: (Z.H.); (A.A.B.O.)
| | - Abdoulhdi A. Borhana Omran
- Department of Mechanical and Mechatronic Engineering, Faculty of Engineering, Sohar University, Sohar P C-311, Oman
- Department of Mechanical Engineering, College of Engineering Science & Technology, Sebha University, Sabha 00218, Libya
- Correspondence: (Z.H.); (A.A.B.O.)
| | - V.Vinod Kumar
- Department of Mechanical and Mechatronic Engineering, Faculty of Engineering, Sohar University, Sohar P C-311, Oman
| | - Abdulhafid M. Elfaghi
- Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat 86400, Malaysia
| | - R. A. Ilyas
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - S. M. Sapuan
- Advanced Engineering Materials and Composites Research Center (AEMC), Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
22
|
Comparative Structure–Property Relationship between Nanoclay and Cellulose Nanofiber Reinforced Natural Rubber Nanocomposites. Polymers (Basel) 2022; 14:polym14183747. [PMID: 36145891 PMCID: PMC9505582 DOI: 10.3390/polym14183747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Natural rubber (NR) nanocomposites reinforced with five parts per hundred rubber (phr) of two different nano-fillers, i.e., nanoclay (abbrev. NC) and cellulose nanofiber (abbrev. CNF), were prepared by using latex mixing approach, followed by mill-compounding and molding. The morphology, stress–strain behavior, strain-induced crystallization, and bound rubber of the NR nanocomposites were systematically compared through TEM, tensile test, WAXS, DMA, and bound rubber measurement. The aggregated CNFs were observed in the NR matrix, while the dispersed nanosized clay tactoids were detected across the NR phase. The reinforcement effects of NC and CNF were clearly distinct in the NR nanocomposites. At the same nano-filler content, the addition of NC and CNF effectively accelerated strain-induced crystallization of NR. The high tensile strength obtained in the NC-filled NR nanocomposite was attributed to strain-induced crystallization of NR accelerated by well-dispersed NC. However, the larger tensile modulus and low strain for the CNF-filled NR were related to the formation of immobilized NR at the interface between CNF aggregate and NR. The immobilization effect of NR at the CNF surface offered by a mutual entanglement of CNF aggregate and NR chain led to local stress concentration and accelerated strain-induced crystallization of CNF/NR nanocomposite. From the present study, the NR nanocomposites combined with 5 phr CNF shows high-tensile modulus and acceptable breaking tensile stress and strain, suggesting the application of CNF/NR based nanocomposite in automotive and stretchable sensors for next-generation electronic devices.
Collapse
|
23
|
Evaluation of the effect of isocyanate modification on the thermal and rheological properties of poly(ε-caprolactone)/cellulose composites. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03753-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Wu W, Liu L, Goksen G, Demir D, Shao P. Multidimensional (0D-3D) nanofillers: fascinating materials in the field of bio-based food active packaging. Food Res Int 2022; 157:111446. [DOI: 10.1016/j.foodres.2022.111446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/13/2022] [Accepted: 05/28/2022] [Indexed: 11/24/2022]
|
25
|
Perumal AB, Nambiar RB, Moses J, Anandharamakrishnan C. Nanocellulose: Recent trends and applications in the food industry. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107484] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
26
|
Rosa RP, Ferreira FV, dos Santos DM, Lona LM. Cellulose nanocrystals as initiator of ring-opening polymerization of ε-caprolactone: Mathematical modeling and experimental verification. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Uchida T, Nishioka R, Yanai R. Preparation of cellulose nanocrystals coated with polymer crystals and their application in composite films. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tetsuya Uchida
- Graduate School of Natural Science and Technology Okayama University Okayama Japan
| | - Ryohei Nishioka
- Graduate School of Natural Science and Technology Okayama University Okayama Japan
| | - Risa Yanai
- Graduate School of Natural Science and Technology Okayama University Okayama Japan
| |
Collapse
|
28
|
Stepanova M, Korzhikova-Vlakh E. Modification of Cellulose Micro- and Nanomaterials to Improve Properties of Aliphatic Polyesters/Cellulose Composites: A Review. Polymers (Basel) 2022; 14:polym14071477. [PMID: 35406349 PMCID: PMC9003142 DOI: 10.3390/polym14071477] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
Aliphatic polyesters/cellulose composites have attracted a lot attention due to the perspectives of their application in biomedicine and the production of disposable materials, food packaging, etc. Both aliphatic polyesters and cellulose are biocompatible and biodegradable polymers, which makes them highly promising for the production of “green” composite materials. However, the main challenge in obtaining composites with favorable properties is the poor compatibility of these polymers. Unlike cellulose, which is very hydrophilic, aliphatic polyesters exhibit strong hydrophobic properties. In recent times, the modification of cellulose micro- and nanomaterials is widely considered as a tool to enhance interfacial biocompatibility with aliphatic polyesters and, consequently, improve the properties of composites. This review summarizes the main types and properties of cellulose micro- and nanomaterials as well as aliphatic polyesters used to produce composites with cellulose. In addition, the methods for noncovalent and covalent modification of cellulose materials with small molecules, polymers and nanoparticles have been comprehensively overviewed and discussed. Composite fabrication techniques, as well as the effect of cellulose modification on the mechanical and thermal properties, rate of degradation, and biological compatibility have been also analyzed.
Collapse
|
29
|
Ahmad K, Din Z, Ullah H, Ouyang Q, Rani S, Jan I, Alam M, Rehman Z, Kamal T, Ali S, Khan SA, Shahwar D, Gul F, Ibrahim M, Nawaz T. Preparation and Characterization of Bio‐based Nanocomposites Packaging Films Reinforced with Cellulose Nanofibers from Unripe Banana Peels. STARCH-STARKE 2022. [DOI: 10.1002/star.202100283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kashan Ahmad
- Department of Agriculture University of Swabi Anbar‐23561 Khyber Pakhtunkhwa Pakistan
| | - Zia‐ud Din
- Department of Agriculture University of Swabi Anbar‐23561 Khyber Pakhtunkhwa Pakistan
| | - Hidayat Ullah
- Department of Agriculture University of Swabi Anbar‐23561 Khyber Pakhtunkhwa Pakistan
| | - Qin Ouyang
- School of Food and Biological Engineering Jiangsu University Zhenjiang 212013 PR China
| | - Sumayya Rani
- Department of Agriculture University of Swabi Anbar‐23561 Khyber Pakhtunkhwa Pakistan
| | - Ibadullah Jan
- Department of Agriculture University of Swabi Anbar‐23561 Khyber Pakhtunkhwa Pakistan
| | - Mukhtar Alam
- Department of Agriculture University of Swabi Anbar‐23561 Khyber Pakhtunkhwa Pakistan
| | - Ziaur‐ Rehman
- Department of Agriculture University of Swabi Anbar‐23561 Khyber Pakhtunkhwa Pakistan
| | - Tariq Kamal
- Department of Agriculture University of Swabi Anbar‐23561 Khyber Pakhtunkhwa Pakistan
| | - Saqib Ali
- Department of Agriculture University of Swabi Anbar‐23561 Khyber Pakhtunkhwa Pakistan
| | - Sheraz Ahmad Khan
- Department of Agriculture University of Swabi Anbar‐23561 Khyber Pakhtunkhwa Pakistan
| | - Durri Shahwar
- Department of Agriculture University of Swabi Anbar‐23561 Khyber Pakhtunkhwa Pakistan
| | - Farhana Gul
- Department of Agriculture University of Swabi Anbar‐23561 Khyber Pakhtunkhwa Pakistan
| | - Muhammad Ibrahim
- Department of Agriculture University of Swabi Anbar‐23561 Khyber Pakhtunkhwa Pakistan
| | - Taufiq Nawaz
- Department of Food Science and technology The university of Agriculture Peshawar Pakistan
| |
Collapse
|
30
|
Voronova MI, Gurina DL, Surov OV. Properties of Poly(3-hydroxybutyrate- co-3-hydroxyvalerate)/Polycaprolactone Polymer Mixtures Reinforced by Cellulose Nanocrystals: Experimental and Simulation Studies. Polymers (Basel) 2022; 14:340. [PMID: 35054746 PMCID: PMC8780583 DOI: 10.3390/polym14020340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 02/05/2023] Open
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/polycaprolactone (PHBV/PCL) polymer mixtures reinforced by cellulose nanocrystals (CNCs) have been obtained. To improve the CNC compatibility with the hydrophobic PHBV/PCL matrix, the CNC surface was modified by amphiphilic polymers, i.e., polyvinylpyrrolidone (PVP) and polyacrylamide (PAM). The polymer composites were characterized by FTIR, DSC, TG, XRD, microscopy, BET surface area, and tensile testing. The morphological, sorption, thermal, and mechanical properties of the obtained composites have been studied. It was found out that with an increase in the CNC content in the composites, the porosity of the films increased, which was reflected in an increase in their specific surface areas and water sorption. An analysis of the IR spectra confirms that hydrogen bonds can be formed between the CNC hydroxyl- and the -CO- groups of PCL and PHBV. The thermal decomposition of CNC in the PHBV/PCL/CNC composites starts at a much higher temperature than the decomposition of pure CNC. It was revealed that CNCs can either induce crystallization and the polymer crystallite growth or act as a compatibilizer of a mixture of the polymers causing their amorphization. The CNC addition significantly reduces the elongation and strength of the composites, but changes Young's modulus insignificantly, i.e., the mechanical properties of the composites are retained under conditions of small linear deformations. A molecular-dynamics simulation of several systems, starting from simplest binary (solvent-polymer) and finishing with multi-component (CNC-polymer mixture-solvent) systems, has been made. It is concluded that the surface modification of CNCs with amphiphilic polymers makes it possible to obtain the CNC composites with hydrophobic polymer matrices.
Collapse
Affiliation(s)
| | | | - Oleg V. Surov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., 153045 Ivanovo, Russia; (M.I.V.); (D.L.G.)
| |
Collapse
|
31
|
Majdoub M, Essamlali Y, Amedlous A, EL Gharrak A, Zahouily M. Nanocomposite-enhanced hydrophobicity effect in biosourced polyurethane with low volume fraction of organophilic CNC: towards solvent-absorbent and porous membranes. NEW J CHEM 2022. [DOI: 10.1039/d2nj02430f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we focus on the development of new nanocomposite porous membranes based on castor oil-derived polyurethane (PUBCO) and octadecylamine-functionalized cellulose nanocrystals (CNC-ODA) as compatible nanoreinforcements.
Collapse
Affiliation(s)
- Mohammed Majdoub
- Laboratory of Materials, Catalysis & Valorization of Natural Resources. Hassan II University, Mohammedia, 20650, Morocco
- MAScIR Foundation, VARENA Center, Rabat Design, Rue Mohamed El Jazouli, Madinat Al Irfane, 10100, Rabat, Morocco
| | - Younes Essamlali
- MAScIR Foundation, VARENA Center, Rabat Design, Rue Mohamed El Jazouli, Madinat Al Irfane, 10100, Rabat, Morocco
| | - Abdallah Amedlous
- Laboratory of Materials, Catalysis & Valorization of Natural Resources. Hassan II University, Mohammedia, 20650, Morocco
- MAScIR Foundation, VARENA Center, Rabat Design, Rue Mohamed El Jazouli, Madinat Al Irfane, 10100, Rabat, Morocco
| | - Abdelouahed EL Gharrak
- Laboratory of Materials, Catalysis & Valorization of Natural Resources. Hassan II University, Mohammedia, 20650, Morocco
- MAScIR Foundation, VARENA Center, Rabat Design, Rue Mohamed El Jazouli, Madinat Al Irfane, 10100, Rabat, Morocco
| | - Mohamed Zahouily
- Laboratory of Materials, Catalysis & Valorization of Natural Resources. Hassan II University, Mohammedia, 20650, Morocco
- MAScIR Foundation, VARENA Center, Rabat Design, Rue Mohamed El Jazouli, Madinat Al Irfane, 10100, Rabat, Morocco
| |
Collapse
|
32
|
Cellulose–metal organic frameworks (CelloMOFs) hybrid materials and their multifaceted Applications: A review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214263] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
33
|
da Silva LS, Biondo MM, Feitosa BDA, Rocha ALF, Pinto CDC, Lima SX, Nogueira CDL, de Souza SM, Ruiz YL, Campelo PH, Sanches EA. Semiconducting nanocomposite based on the incorporation of polyaniline on the cellulose extracted from Bambusa vulgaris: structural, thermal and electrical properties. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-01844-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Basta AH, Lotfy VF, Micky JA, Salem AM. Hydroxypropylcellulose-based liquid crystal materials. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
35
|
Lee W, Lee J, Chung JW, Kwak SY. Enhancement of tensile toughness of poly(lactic acid) (PLA) through blending of a polydecalactone-grafted cellulose copolymer: The effect of mesophase transition on mechanical properties. Int J Biol Macromol 2021; 193:1103-1113. [PMID: 34710481 DOI: 10.1016/j.ijbiomac.2021.09.205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Increasing the toughness of poly(lactic acid) (PLA), i.e., simultaneously increasing both the tensile strength and ductility, remains a major challenge. In this study, fully bio-based PLA blends with polydecalactone (PDL)-grafted cellulose copolymer (CgPD) were prepared and comprehensively analyzed to enhance the toughness of the PLA matrix. The blends were found by FT-IR and solid-state 1H NMR to be physically intact and miscible at the sub-twenty-nanometer scale. The WXRD and DSC analyses indicated that the addition of the alkyl-branched CgPD imparts a more structurally disordered PLA mesophase state to the prepared PLA_CgPD bio-blends. UTM analysis was used to characterize the macroscopic mechanical properties of the PLA_CgPD bio-blends. Both the tensile strength and elongation properties were simultaneously improved with the addition of 1 wt% CgPD loading amount to PLA (PLA_CgPD1). This study experimentally demonstrates that the enhanced mechanical properties of PLA_CgPD1 are closely related to the existence of more ordered PLA mesophases induced by the introduction of an optimal amount of CgPD into the PLA matrix.
Collapse
Affiliation(s)
- Woojin Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Junhyung Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae Woo Chung
- Department of Organic Materials and Fiber Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
| | - Seung-Yeop Kwak
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul 08826, Republic of Korea; Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
36
|
Gao C, Wang S, Liu B, Yao S, Dai Y, Zhou L, Qin C, Fatehi P. Sustainable Chitosan-Dialdehyde Cellulose Nanocrystal Film. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5851. [PMID: 34640253 PMCID: PMC8510260 DOI: 10.3390/ma14195851] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 01/20/2023]
Abstract
In this study, we incorporated 2,3-dialdehyde nanocrystalline cellulose (DANC) into chitosan as a reinforcing agent and manufactured biodegradable films with enhanced gas barrier properties. DANC generated via periodate oxidation of cellulose nanocrystal (CNC) was blended at various concentrations with chitosan, and bionanocomposite films were prepared via casting and characterized systematically. The results showed that DANC developed Schiff based bond with chitosan that improved its properties significantly. The addition of DANC dramatically improved the gas barrier performance of the composite film, with water vapor permeability (WVP) value decreasing from 62.94 g·mm·m-2·atm-1·day-1 to 27.97 g·mm·m-2·atm-1·day-1 and oxygen permeability (OP) value decreasing from 0.14 cm3·mm·m-2·day-1·atm-1 to 0.026 cm3·mm·m-2·day-1·atm-1. Meanwhile, the maximum decomposition temperature (Tdmax) of the film increased from 286 °C to 354 °C, and the tensile strength of the film was increased from 23.60 MPa to 41.12 MPa when incorporating 25 wt.% of DANC. In addition, the chitosan/DANC (75/25, wt/wt) films exhibited superior thermal stability, gas barrier, and mechanical strength compared to the chitosan/CNC (75/25, wt/wt) film. These results confirm that the DANC and chitosan induced films with improved gas barrier, mechanical, and thermal properties for possible use in film packaging.
Collapse
Affiliation(s)
- Cong Gao
- Department of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China; (C.G.); (S.W.); (B.L.); (S.Y.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
- Chemical Engineering Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada;
| | - Shuo Wang
- Department of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China; (C.G.); (S.W.); (B.L.); (S.Y.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
| | - Baojie Liu
- Department of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China; (C.G.); (S.W.); (B.L.); (S.Y.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
| | - Shuangquan Yao
- Department of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China; (C.G.); (S.W.); (B.L.); (S.Y.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
| | - Yi Dai
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China;
| | - Long Zhou
- Chemical Engineering Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada;
| | - Chengrong Qin
- Department of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China; (C.G.); (S.W.); (B.L.); (S.Y.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
| | - Pedram Fatehi
- Chemical Engineering Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada;
| |
Collapse
|
37
|
Merillas B, Villafañe F, Rodríguez-Pérez MÁ. Nanoparticles Addition in PU Foams: The Dramatic Effect of Trapped-Air on Nucleation. Polymers (Basel) 2021; 13:polym13172952. [PMID: 34502991 PMCID: PMC8433816 DOI: 10.3390/polym13172952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/30/2022] Open
Abstract
To determine the effect of nanoclays and trapped air on the formation of rigid polyurethane foams, three different production procedures were used. To study the influence of mixing at atmospheric pressure, two approaches were carried out employing either an electric or a magnetic stirrer. The third approach was executed by mixing under vacuum conditions with magnetic stirring. The samples thus obtained were characterized, and the effect of trapped air into the reactive mixtures was evaluated by analyzing the cellular structures. Different levels of trapped air were achieved when employing each manufacturing method. A correlation between the trapped air and the increase in the nucleation density when nanoclays were added was found: the cell nucleation density increased by 1.54 and 1.25 times under atmospheric conditions with electric and magnetic stirring, respectively. Nevertheless, samples fabricated without the presence of air did not show any nucleating effect despite the nanoclay addition (ratio of 1.09). This result suggests that the inclusion of air into the components is key for improving nucleation and that this effect is more pronounced when the polyol viscosity increases due to nanoclay addition. This is the most important feature determining the nucleating effect and, therefore, the corresponding cell size decreases.
Collapse
Affiliation(s)
- Beatriz Merillas
- Cellular Materials Laboratory (CellMat), Condensed Matter Physics Department, Faculty of Science, Campus Miguel Delibes, University of Valladolid, Paseo de Belén 7, 47011 Valladolid, Spain;
- Correspondence:
| | - Fernando Villafañe
- GIR MIOMeT-IU Cinquima-Química Inorgánica, Faculty of Science, Campus Miguel Delibes, University of Valladolid, Paseo de Belén 7, 47011 Valladolid, Spain;
| | - Miguel Ángel Rodríguez-Pérez
- Cellular Materials Laboratory (CellMat), Condensed Matter Physics Department, Faculty of Science, Campus Miguel Delibes, University of Valladolid, Paseo de Belén 7, 47011 Valladolid, Spain;
- BioEcoUVA Research Institute on Bioeconomy, University of Valladolid, Paseo de Belén 7, 47011 Valladolid, Spain
| |
Collapse
|
38
|
Teodoro KBR, Sanfelice RC, Migliorini FL, Pavinatto A, Facure MHM, Correa DS. A Review on the Role and Performance of Cellulose Nanomaterials in Sensors. ACS Sens 2021; 6:2473-2496. [PMID: 34182751 DOI: 10.1021/acssensors.1c00473] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sensors and biosensors play a key role as an analytical tool for the rapid, reliable, and early diagnosis of human diseases. Such devices can also be employed for monitoring environmental pollutants in air and water in an expedited way. More recently, nanomaterials have been proposed as an alternative in sensor fabrication to achieve gains in performance in terms of sensitivity, selectivity, and portability. In this direction, the use of cellulose nanomaterials (CNM), such as cellulose nanofibrils (CNF), cellulose nanocrystals (CNC), and bacterial cellulose (BC), has experienced rapid growth in the fabrication of varied types of sensors. The advantageous properties are related to the supramolecular structures that form the distinct CNM, their biocompatibility, and highly reactive functional groups that enable surface functionalization. The CNM can be applied as hydrogels and xerogels, thin films, nanopapers and other structures interesting for sensor design. Besides, CNM can be combined with other materials (e.g., nanoparticles, enzymes, carbon nanomaterials, etc.) and varied substrates to advanced sensors and biosensors fabrication. This review explores recent advances on CNM and composites applied in the fabrication of optical, electrical, electrochemical, and piezoelectric sensors for detecting analytes ranging from environmental pollutants to human physiological parameters. Emphasis is given to how cellulose nanomaterials can contribute to enhance the performance of varied sensors as well as expand novel sensing applications, which could not be easily achieved using standard materials. Finally, challenges and future trends on the use of cellulose-based materials in sensors and biosensors are also discussed.
Collapse
Affiliation(s)
- Kelcilene B. R. Teodoro
- Nanotechnology National Laboratory for Agriculture, Embrapa Instrumentação, 13560-970, São Carlos, São Paulo, Brazil
| | - Rafaela C. Sanfelice
- Science and Technology Institute, Federal University of Alfenas, Rodovia José Aurélio Vilela, 11999, BR 267, Km 533, CEP 37715-400, Poços de Caldas, Minas Gerais, Brazil
| | - Fernanda L. Migliorini
- Nanotechnology National Laboratory for Agriculture, Embrapa Instrumentação, 13560-970, São Carlos, São Paulo, Brazil
| | - Adriana Pavinatto
- Scientific and Technological Institute of Brazil University, 235 Carolina Fonseca Street, São Paulo 08230-030, São Paulo, Brazil
| | - Murilo H. M. Facure
- Nanotechnology National Laboratory for Agriculture, Embrapa Instrumentação, 13560-970, São Carlos, São Paulo, Brazil
- PPGQ, Department of Chemistry, Center for Exact Sciences and Technology, Federal University of São Carlos (UFSCar), 13565-905, São Carlos, São Paulo, Brazil
| | - Daniel S. Correa
- Nanotechnology National Laboratory for Agriculture, Embrapa Instrumentação, 13560-970, São Carlos, São Paulo, Brazil
- PPGQ, Department of Chemistry, Center for Exact Sciences and Technology, Federal University of São Carlos (UFSCar), 13565-905, São Carlos, São Paulo, Brazil
| |
Collapse
|
39
|
Morphological, barrier, and mechanical properties of banana starch films reinforced with cellulose nanoparticles from plantain rachis. Int J Biol Macromol 2021; 187:35-42. [PMID: 34293358 DOI: 10.1016/j.ijbiomac.2021.07.112] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/22/2022]
Abstract
The main aim of the present study was to characterize banana starch films reinforced with nanoparticles from plantain rachis. Nanoparticles were obtained by acid hydrolysis and sonication, exhibiting a mean hydraulic diameter of about 60 nm. Scanning electron microscopy micrographs showed that the nanoparticle thickness ranged between 9.8 and 22.3 nm. The thermal gravimetric analysis showed that nanoparticles are thermally stable for temperatures up to 340 °C. Films were made for different fractions of nanoparticles (0.0, 1.75, 2.5, and 4.0%) relative to total solids, and glycerol was used as a plasticizer. The influence of the addition of nanoparticles to starch films on the morphology, water vapor permeability (WVP), and mechanical properties of the nanocomposites films was explored. Cellulose nanoparticles reduced the WVP, and increased the tensile strength and flexibility of the starch films. FTIR analysis of films was used to show that nanoparticles improved the molecular organization of starch chains. It was proposed that nanoparticles acted as a crosslinked for starch chains via hydrogen bonding effects.
Collapse
|
40
|
Amestoy H, Diego P, Meaurio E, Muñoz J, Sarasua JR. Crystallization Behavior and Mechanical Properties of Poly(ε-caprolactone) Reinforced with Barium Sulfate Submicron Particles. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2368. [PMID: 34063190 PMCID: PMC8125263 DOI: 10.3390/ma14092368] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 11/23/2022]
Abstract
Poly(ε-caprolactone) (PCL) was mixed with submicron particles of barium sulfate to obtain biodegradable radiopaque composites. X-ray images comparing with aluminum samples show that 15 wt.% barium sulfate (BaSO4) is sufficient to present radiopacity. Thermal studies by differential scanning calorimetry (DSC) show a statistically significant increase in PCL degree of crystallinity from 46% to 52% for 25 wt.% BaSO4. Non-isothermal crystallization tests were performed at different cooling rates to evaluate crystallization kinetics. The nucleation effect of BaSO4 was found to change the morphology and quantity of the primary crystals of PCL, which was also corroborated by the use of a polarized light optical microscope (PLOM). These results fit well with Avrami-Ozawa-Jeziorny model and show a secondary crystallization that contributes to an increase in crystal fraction with internal structure reorganization. The addition of barium sulfate particles in composite formulations with PCL improves stiffness but not strength for all compositions due to possible cavitation effects induced by debonding of reinforcement interphase.
Collapse
Affiliation(s)
| | | | | | - Jone Muñoz
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Faculty of Engineering in Bilbao, University of the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, 48013 Bilbao, Spain; (H.A.); (P.D.); (E.M.)
| | - Jose-Ramon Sarasua
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Faculty of Engineering in Bilbao, University of the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, 48013 Bilbao, Spain; (H.A.); (P.D.); (E.M.)
| |
Collapse
|
41
|
Santos MV, Maturi FE, Pecoraro É, Barud HS, Lima LR, Ferreira RAS, Carlos LD, Ribeiro SJL. Cellulose Based Photonic Materials Displaying Direction Modulated Photoluminescence. Front Bioeng Biotechnol 2021; 9:617328. [PMID: 33859978 PMCID: PMC8042215 DOI: 10.3389/fbioe.2021.617328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/08/2021] [Indexed: 11/24/2022] Open
Abstract
Photonic materials featuring simultaneous iridescence and light emission are an attractive alternative for designing novel optical devices. The luminescence study of a new optical material that integrates light emission and iridescence through liquid crystal self-assembly of cellulose nanocrystal-template silica approach is herein presented. These materials containing Rhodamine 6G were obtained as freestanding composite films with a chiral nematic organization. The scanning electron microscopy confirms that the cellulose nanocrystal film structure comprises multi-domain Bragg reflectors and the optical properties of these films can be tuned through changes in the relative content of silica/cellulose nanocrystals. Moreover, the incorporation of the light-emitting compound allows a complementary control of the optical properties. Overall, such findings demonstrated that the photonic structure plays the role of direction-dependent inner-filter, causing selective suppression of the light emitted with angle-dependent detection.
Collapse
Affiliation(s)
- Molíria V Santos
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil.,Department of Physics, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Fernando E Maturi
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil.,Department of Physics, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Édison Pecoraro
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Hernane S Barud
- Biopolymers and Biomaterials Laboratory, University of Araraquara, Araraquara, Brazil
| | - Laís R Lima
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Rute A S Ferreira
- Department of Physics, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Luís D Carlos
- Department of Physics, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Sidney J L Ribeiro
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
42
|
Surface-modified and oven-dried microfibrillated cellulose reinforced biocomposites: Cellulose network enabled high performance. Carbohydr Polym 2021; 256:117525. [PMID: 33483046 DOI: 10.1016/j.carbpol.2020.117525] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 02/04/2023]
Abstract
Microfibrillated cellulose (MFC) is widely used as a reinforcement filler for biocomposites due to its unique properties. However, the challenge of drying MFC and the incompatibility between nanocellulose and polymer matrix still limits the mechanical performance of MFC-reinforced biocomposites. In this study, we used a water-based transesterification reaction to functionalize MFC and explored the capability of oven-dried MFC as a reinforcement filler for polylactic acid (PLA). Remarkably, this oven-dried, vinyl laurate-modified MFC improved the tensile strength by 38 % and Young's modulus by 71 % compared with neat PLA. Our results suggested improved compatibility and dispersion of the fibrils in PLA after modification. This study demonstrated that scalable water-based surface modification and subsequent straightforward oven drying could be a facile method for effectively drying cellulose nanomaterials. The method helps significantly disperse fibrils in polymers and enhances the mechanical properties of microfibrillar cellulose-reinforced biocomposites.
Collapse
|
43
|
Facile Fabrication of Superhydrophobic Cross-Linked Nanocellulose Aerogels for Oil-Water Separation. Polymers (Basel) 2021; 13:polym13040625. [PMID: 33669607 PMCID: PMC7921982 DOI: 10.3390/polym13040625] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/28/2021] [Accepted: 02/15/2021] [Indexed: 12/24/2022] Open
Abstract
A facile and environmental-friendly approach was developed for the preparation of the cross-linked nanocellulose aerogel through the freeze-drying process and subsequent esterification. The as-prepared aerogel had a three-dimensional cellular microstructure with ultra-low density of 6.05 mg·cm-3 and high porosity (99.61%). After modifying by chemical vapor deposition (CVD) with hexadecyltrimethoxysilane (HTMS), the nanocellulose aerogel displayed stable super-hydrophobicity and super-oleophilicity with water contact angle of 151°, and had excellent adsorption performance for various oil and organic solvents with the adsorption capacity of 77~226 g/g. Even after 30 cycles, the adsorption capacity of the nanocellulose aerogel for chloroform was as high as 170 g/g, indicating its outstanding reusability. Therefore, the superhydrophobic cross-linked nanocellulose aerogel is a promising oil adsorbent for wastewater treatment.
Collapse
|
44
|
Oberlintner A, Likozar B, Novak U. Hydrophobic functionalization reactions of structured cellulose nanomaterials: Mechanisms, kinetics and in silico multi-scale models. Carbohydr Polym 2021; 259:117742. [PMID: 33674002 DOI: 10.1016/j.carbpol.2021.117742] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022]
Abstract
Nanoscale-interfaced cellulose nanomaterials are extracted from polysaccharides, which are widely available in nature, biocompatible and biodegradable. Moreover, the latter have a potential to be recycled, upcycled, and formulate therefore a great theoretical predisposition to be used in a number of applications. Nanocrystals, nano-fibrils and nanofibers possess reactive functional groups that enable hydrophobic surface modifications. Analysed literature data, concerning mechanisms, pathways and kinetics, was screened, compared and assessed with regard to the demand of a catalyst, different measurement conditions and added molecule reactions. There is presently only a scarce technique description for carbonOH bond functionalization, considering the elementary chemical steps, sequences and intermediates of these (non)catalytic transformations. The overview of the prevailing basic research together with in silico modelling approach methodology gives us a deeper physical understanding of processes. Finally, to further highlight the applicability of such raw materials, the review of the development in several multidisciplinary fields was presented.
Collapse
Affiliation(s)
- Ana Oberlintner
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000 Ljubljana, Slovenia.
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna Pot 113, SI-1000, Ljubljana, Slovenia.
| | - Uroš Novak
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia.
| |
Collapse
|
45
|
Banerjee R, Ray SS. An overview of the recent advances in polylactide‐based sustainable nanocomposites. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25623] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ritima Banerjee
- Department of Chemical Engineering Calcutta Institute of Technology Howrah India
| | - Suprakas Sinha Ray
- Centre for Nanostructures and Advanced Materials, DSI‐CSIR Nanotechnology Innovation Centre Council for Scientific and Industrial Research Pretoria South Africa
- Department of Chemical Sciences University of Johannesburg Johannesburg South Africa
| |
Collapse
|
46
|
Guan Y. Liquid Foaming Properties. Food Hydrocoll 2021. [DOI: 10.1007/978-981-16-0320-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Alonso-Lerma B, Larraza I, Barandiaran L, Ugarte L, Saralegi A, Corcuera MA, Perez-Jimenez R, Eceiza A. Enzymatically produced cellulose nanocrystals as reinforcement for waterborne polyurethane and its applications. Carbohydr Polym 2020; 254:117478. [PMID: 33357930 DOI: 10.1016/j.carbpol.2020.117478] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 01/25/2023]
Abstract
Waterborne polyurethanes (WBPUs) have been proposed as ecofriendly elastomers with several applications in coatings and adhesives. WBPU's physicochemical properties can be enhanced by the addition of cellulose nanocrystals (CNCs). The way CNCs are isolated has a strong effect on their properties and can determine their role as reinforcement. In this work, CNCs produced using ancestral endoglucanase (EnCNCs) were used as reinforcement for WBPU and compared with CNC produced by sulfuric acid hydrolysis (AcCNC). The enzymatic method produced highly thermostable and crystalline CNCs. The addition of small contents of EnCNCs improved the thermomechanical stability and mechanical properties of WBPUs, even better than commercial AcCNCs. Besides, WBPU reinforced by adding EnCNCs was studied as a coating for paper materials, increasing its abrasion resistance and as electrospun nanocomposite mats where EnCNCs helped maintaining the morphology of the fibers.
Collapse
Affiliation(s)
- Borja Alonso-Lerma
- Group 'Materials + Technologies', Department of Chemical and Environmental Engineering, Faculty of Engineering of Gipuzkoa, University of the Basque Country, San Sebastian, Spain; CIC nanoGUNE BRTA, San Sebastian, Spain
| | - Izaskun Larraza
- Group 'Materials + Technologies', Department of Chemical and Environmental Engineering, Faculty of Engineering of Gipuzkoa, University of the Basque Country, San Sebastian, Spain
| | | | - Lorena Ugarte
- Group 'Materials + Technologies', Department of Chemical and Environmental Engineering, Faculty of Engineering of Gipuzkoa, University of the Basque Country, San Sebastian, Spain
| | - Ainara Saralegi
- Group 'Materials + Technologies', Department of Chemical and Environmental Engineering, Faculty of Engineering of Gipuzkoa, University of the Basque Country, San Sebastian, Spain
| | - Maria Angeles Corcuera
- Group 'Materials + Technologies', Department of Chemical and Environmental Engineering, Faculty of Engineering of Gipuzkoa, University of the Basque Country, San Sebastian, Spain
| | - Raul Perez-Jimenez
- CIC nanoGUNE BRTA, San Sebastian, Spain; Ikerbasque Foundation for Science, Bilbao, Spain; Evolgene Genomics S.L., San Sebastian, Spain.
| | - Arantxa Eceiza
- Group 'Materials + Technologies', Department of Chemical and Environmental Engineering, Faculty of Engineering of Gipuzkoa, University of the Basque Country, San Sebastian, Spain.
| |
Collapse
|
48
|
Gong X, Kalantari M, Aslanzadeh S, Boluk Y. Interfacial interactions and electrospinning of cellulose nanocrystals dispersions in polymer solutions: a review. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1847137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Xiaoyu Gong
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Mahsa Kalantari
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Samira Aslanzadeh
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Yaman Boluk
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
49
|
Wan Ishak WH, Rosli NA, Ahmad I. Influence of amorphous cellulose on mechanical, thermal, and hydrolytic degradation of poly(lactic acid) biocomposites. Sci Rep 2020; 10:11342. [PMID: 32647369 PMCID: PMC7347652 DOI: 10.1038/s41598-020-68274-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/12/2020] [Indexed: 12/02/2022] Open
Abstract
Eco-friendly materials such as poly(lactic acid) (PLA) and cellulose are gaining considerable interest as suitable substitutes for petroleum-based plastics. Therefore, amorphous cellulose (AC) was fabricated as a new reinforcing material for PLA biocomposites by modifying a microcrystalline cellulose (MCC) structure via milling. In this study, the mechanical properties, thermal properties, and degradability of PLA were analysed to compare the effects of both MCC and AC on PLA. The tensile and impact properties improved at an optimum value with AC at 8 wt% and 4 wt% fibre loading, respectively. Notably, a scanning electron micrograph analysis revealed improved AC fibre-matrix adhesion, compared with MCC fibre-matrix adhesion, as well as excellent interaction between AC and PLA. Both MCC and AC improved the hydrolytic degradation of PLA. Moreover, the biocomposites with AC exhibited superior degradation when the incorporation of AC improved the water absorption efficiency of PLA. These findings can expand AC applications and improve sustainability.
Collapse
Affiliation(s)
- Wan Hafizi Wan Ishak
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Noor Afizah Rosli
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia.
| | - Ishak Ahmad
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
50
|
Sriruangrungkamol A, Chonkaew W. Modification of nanocellulose membrane by impregnation method with sulfosuccinic acid for direct methanol fuel cell applications. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03289-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|