1
|
Wirsig K, Bacova J, Richter RF, Hintze V, Bernhardt A. Cellular response of advanced triple cultures of human osteocytes, osteoblasts and osteoclasts to high sulfated hyaluronan (sHA3). Mater Today Bio 2024; 25:101006. [PMID: 38445011 PMCID: PMC10912908 DOI: 10.1016/j.mtbio.2024.101006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
Bone remodelling, important for homeostasis and regeneration involves the controlled action of osteoblasts, osteocytes and osteoclasts. The present study established a three-dimensional human in vitro bone model as triple culture with simultaneously differentiating osteocytes and osteoclasts, in the presence of osteoblasts. Since high sulfated hyaluronan (sHA3) was reported as a biomaterial to enhance osteogenesis as well as to dampen osteoclastogenesis, the triple culture was exposed to sHA3 to investigate cellular responses compared to the respective bone cell monocultures. Osteoclast formation and marker expression was stimulated by sHA3 only in triple culture. Osteoprotegerin (OPG) gene expression and protein secretion, but not receptor activator of NF-κB ligand (RANKL) or sclerostin (SOST), were strongly enhanced, suggesting an important role of sHA3 itself in osteoclastogenesis with other targets than indirect modulation of the RANKL/OPG ratio. Furthermore, sHA3 upregulated osteocalcin (BGLAP) in osteocytes and osteoblasts in triple culture, while alkaline phosphatase (ALP) was downregulated.
Collapse
Affiliation(s)
- Katharina Wirsig
- Centre for Translational Bone, Joint- and Soft Tissue Research, Faculty of Medicine and University Hospital, TUD University of Technology, Fetscherstraße 74, 01307, Dresden, Germany
| | - Jana Bacova
- Centre for Translational Bone, Joint- and Soft Tissue Research, Faculty of Medicine and University Hospital, TUD University of Technology, Fetscherstraße 74, 01307, Dresden, Germany
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice, Czech Republic
| | - Richard F. Richter
- Centre for Translational Bone, Joint- and Soft Tissue Research, Faculty of Medicine and University Hospital, TUD University of Technology, Fetscherstraße 74, 01307, Dresden, Germany
| | - Vera Hintze
- Max Bergmann Center of Biomaterials, Institute of Material Science, TUD University of Technology, Budapester Str. 27, 01069, Dresden, Germany
| | - Anne Bernhardt
- Centre for Translational Bone, Joint- and Soft Tissue Research, Faculty of Medicine and University Hospital, TUD University of Technology, Fetscherstraße 74, 01307, Dresden, Germany
| |
Collapse
|
2
|
Le Pennec J, Picart C, Vivès RR, Migliorini E. Sweet but Challenging: Tackling the Complexity of GAGs with Engineered Tailor-Made Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312154. [PMID: 38011916 DOI: 10.1002/adma.202312154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Glycosaminoglycans (GAGs) play a crucial role in tissue homeostasis by regulating the activity and diffusion of bioactive molecules. Incorporating GAGs into biomaterials has emerged as a widely adopted strategy in medical applications, owing to their biocompatibility and ability to control the release of bioactive molecules. Nevertheless, immobilized GAGs on biomaterials can elicit distinct cellular responses compared to their soluble forms, underscoring the need to understand the interactions between GAG and bioactive molecules within engineered functional biomaterials. By controlling critical parameters such as GAG type, density, and sulfation, it becomes possible to precisely delineate GAG functions within a biomaterial context and to better mimic specific tissue properties, enabling tailored design of GAG-based biomaterials for specific medical applications. However, this requires access to pure and well-characterized GAG compounds, which remains challenging. This review focuses on different strategies for producing well-defined GAGs and explores high-throughput approaches employed to investigate GAG-growth factor interactions and to quantify cellular responses on GAG-based biomaterials. These automated methods hold considerable promise for improving the understanding of the diverse functions of GAGs. In perspective, the scientific community is encouraged to adopt a rational approach in designing GAG-based biomaterials, taking into account the in vivo properties of the targeted tissue for medical applications.
Collapse
Affiliation(s)
- Jean Le Pennec
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| | - Catherine Picart
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| | | | - Elisa Migliorini
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| |
Collapse
|
3
|
Sodhi H, Panitch A. A Tunable Glycosaminoglycan-Peptide Nanoparticle Platform for the Protection of Therapeutic Peptides. Pharmaceutics 2024; 16:173. [PMID: 38399234 PMCID: PMC10892384 DOI: 10.3390/pharmaceutics16020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The popularity of Glycosaminoglycans (GAGs) in drug delivery systems has grown as their innate ability to sequester and release charged molecules makes them adept in the controlled release of therapeutics. However, peptide therapeutics have been relegated to synthetic, polymeric systems, despite their high specificity and efficacy as therapeutics because they are rapidly degraded in vivo when not encapsulated. We present a GAG-based nanoparticle system for the easy encapsulation of cationic peptides, which offers control over particle diameter, peptide release behavior, and swelling behavior, as well as protection from proteolytic degradation, using a singular, organic polymer and no covalent linkages. These nanoparticles can encapsulate cargo with a particle diameter range spanning 130-220 nm and can be tuned to release cargo over a pH range of 4.5 to neutral through the modulation of the degree of sulfation and the molecular weight of the GAG. This particle system also confers better in vitro performance than the unencapsulated peptide via protection from enzymatic degradation. This method provides a facile way to protect therapeutic peptides via the inclusion of the presented binding sequence and can likely be expanded to larger, more diverse cargo as well, abrogating the complexity of previously demonstrated systems while offering broader tunability.
Collapse
Affiliation(s)
- Harkanwalpreet Sodhi
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA;
| | - Alyssa Panitch
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA;
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| |
Collapse
|
4
|
Yue Y, Shi F, Wang J, Ning Q, Zhang Z, Lv H. Sulfated hyaluronic acid gel for the treatment of rheumatoid arthritis in rats. Int J Biol Macromol 2024; 256:128537. [PMID: 38043665 DOI: 10.1016/j.ijbiomac.2023.128537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease. NSAIDS, cyclophosphamide and glucocorticoid were commonly used to treat RA in clinical application, which long-term administration of these drugs caused serious adverse reactions. Therefore, sulfated hyaluronic acid (sHA) gel (SG) was prepared to firstly treat the RA and avoid the problem of toxic side effect caused by long-term application. In vitro evaluation showed that sHA inhibited the level of reactive oxygen species and TNF-α, IL-1β, and IL-6, and decreased the ratio of macrophage M1/M2 type, which exerted better anti-inflammatory capacity. In vivo studies showed that the injection of SG into the joint cavity of collagen-induced rheumatoid arthritis (CIA) rats could effectively treat joint swelling and reduce the level of inflammatory factors in the serum. Immunofluorescence showed that SG exerted its anti-inflammatory activity by decreasing the ratio of M1/M2 type macrophages in synovial tissue. Cartilage tissue sections showed that SG reduced bone erosion and elevated chondrocyte expression. These results confirmed that sHA is expected to be developed as a drug to treat or relieve RA, which could effectively regulate the level of macrophages in rat RA, alleviate the physiological state of inflammatory over-excitation, and improve its anti-inflammatory and antioxidant capacity.
Collapse
Affiliation(s)
- Yingxue Yue
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; State Key Laboratory of Oral Drug Delivery Systems of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - FanLi Shi
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jing Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; State Key Laboratory of Oral Drug Delivery Systems of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Qing Ning
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; State Key Laboratory of Oral Drug Delivery Systems of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Zhenhai Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; State Key Laboratory of Oral Drug Delivery Systems of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| | - Huixia Lv
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
5
|
Ruiz-Gómez G, Salbach-Hirsch J, Dürig JN, Köhler L, Balamurugan K, Rother S, Heidig SL, Moeller S, Schnabelrauch M, Furesi G, Pählig S, Guillem-Gloria PM, Hofbauer C, Hintze V, Pisabarro MT, Rademann J, Hofbauer LC. Rational engineering of glycosaminoglycan-based Dickkopf-1 scavengers to improve bone regeneration. Biomaterials 2023; 297:122105. [PMID: 37031548 DOI: 10.1016/j.biomaterials.2023.122105] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 03/13/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
The WNT signaling pathway is a central regulator of bone development and regeneration. Functional alterations of WNT ligands and inhibitors are associated with a variety of bone diseases that affect bone fragility and result in a high medical and socioeconomic burden. Hence, this cellular pathway has emerged as a novel target for bone-protective therapies, e.g. in osteoporosis. Here, we investigated glycosaminoglycan (GAG) recognition by Dickkopf-1 (DKK1), a potent endogenous WNT inhibitor, and the underlying functional implications in order to develop WNT signaling regulators. In a multidisciplinary approach we applied in silico structure-based de novo design strategies and molecular dynamics simulations combined with synthetic chemistry and surface plasmon resonance spectroscopy to Rationally Engineer oligomeric Glycosaminoglycan derivatives (REGAG) with improved neutralizing properties for DKK1. In vitro and in vivo assays show that the GAG modification to obtain REGAG translated into increased WNT pathway activity and improved bone regeneration in a mouse calvaria defect model with critical size bone lesions. Importantly, the developed REGAG outperformed polymeric high-sulfated hyaluronan (sHA3) in enhancing bone healing up to 50% due to their improved DKK1 binding properties. Thus, rationally engineered GAG variants may represent an innovative strategy to develop novel therapeutic approaches for regenerative medicine.
Collapse
Affiliation(s)
- Gloria Ruiz-Gómez
- Structural Bioinformatics, BIOTEC, Technische Universität Dresden, Tatzberg 47/51, D-01307, Dresden, Germany
| | - Juliane Salbach-Hirsch
- Division of Endocrinology, Diabetes and Bone Diseases & Center for Healthy Aging, Department of Medicine III, Technische Universität Dresden Medical Center, Fetscherstraße 74, D-01307, Dresden, Germany
| | - Jan-Niklas Dürig
- Institute of Pharmacy - Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, D-14195, Berlin, Germany
| | - Linda Köhler
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, D-01069, Dresden, Germany
| | - Kanagasabai Balamurugan
- Structural Bioinformatics, BIOTEC, Technische Universität Dresden, Tatzberg 47/51, D-01307, Dresden, Germany
| | - Sandra Rother
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, D-01069, Dresden, Germany
| | - Sophie-Luise Heidig
- Structural Bioinformatics, BIOTEC, Technische Universität Dresden, Tatzberg 47/51, D-01307, Dresden, Germany
| | | | | | - Giulia Furesi
- Division of Endocrinology, Diabetes and Bone Diseases & Center for Healthy Aging, Department of Medicine III, Technische Universität Dresden Medical Center, Fetscherstraße 74, D-01307, Dresden, Germany
| | - Sophie Pählig
- Division of Endocrinology, Diabetes and Bone Diseases & Center for Healthy Aging, Department of Medicine III, Technische Universität Dresden Medical Center, Fetscherstraße 74, D-01307, Dresden, Germany
| | - Pedro M Guillem-Gloria
- Structural Bioinformatics, BIOTEC, Technische Universität Dresden, Tatzberg 47/51, D-01307, Dresden, Germany
| | - Christine Hofbauer
- National Center for Tumor Diseases/University Cancer Center Dresden, Technische Universität Dresden Medical Center, Fetscherstraße 74, D-01307, Dresden, Germany
| | - Vera Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Budapester Str. 27, D-01069, Dresden, Germany.
| | - M Teresa Pisabarro
- Structural Bioinformatics, BIOTEC, Technische Universität Dresden, Tatzberg 47/51, D-01307, Dresden, Germany.
| | - Jörg Rademann
- Institute of Pharmacy - Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, D-14195, Berlin, Germany.
| | - Lorenz C Hofbauer
- Division of Endocrinology, Diabetes and Bone Diseases & Center for Healthy Aging, Department of Medicine III, Technische Universität Dresden Medical Center, Fetscherstraße 74, D-01307, Dresden, Germany; Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstraße 105, D-01307, Dresden, Germany.
| |
Collapse
|
6
|
Leprince M, Mailley P, Choisnard L, Auzély-Velty R, Texier I. Design of hyaluronan-based dopant for conductive and resorbable PEDOT ink. Carbohydr Polym 2022; 301:120345. [DOI: 10.1016/j.carbpol.2022.120345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
|
7
|
Schmaus A, Rothley M, Schreiber C, Möller S, Roßwag S, Franz S, Garvalov BK, Thiele W, Spataro S, Herskind C, Prunotto M, Anderegg U, Schnabelrauch M, Sleeman J. Sulfated hyaluronic acid inhibits the hyaluronidase CEMIP and regulates the HA metabolism, proliferation and differentiation of fibroblasts. Matrix Biol 2022; 109:173-191. [DOI: 10.1016/j.matbio.2022.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/12/2022] [Accepted: 04/04/2022] [Indexed: 12/23/2022]
|
8
|
Spinelli FM, Rosales P, Pluda S, Vitale DL, Icardi A, Guarise C, Reszegi A, Kovalszky I, García M, Sevic I, Galesso D, Alaniz L. The effects of sulfated hyaluronan in breast, lung and colorectal carcinoma and monocytes/macrophages cells: Its role in angiogenesis and tumor progression. IUBMB Life 2022; 74:927-942. [PMID: 35218610 DOI: 10.1002/iub.2604] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/11/2022]
Abstract
Hyaluronan (HA) is a component of the extracellular matrix (ECM) it is the main non-sulfated glycosaminoglycan able to modulate cell behavior in the healthy and tumor context. Sulfated hyaluronan (sHA) is a biomaterial derived from chemical modifications of HA, since this molecule is not naturally sulfated. The HA sulfation modifies several properties of the native molecule, acquiring antitumor properties in different cancers. In this study, we evaluated the action of sHA of ~30-60 kDa with different degrees of sulfation (0.7 sHA1 and 2.5 sHA3) on tumor cells of a breast, lung, and colorectal cancer model and its action on other cells of the tumor microenvironment, such as endothelial and monocytes/macrophage cells. Our data showed that in breast and lung tumor cells, sHA3 is able to modulate cell viability, cytotoxicity, and proliferation, but no effects were observed on colorectal cancer cells. In 3D cultures of breast and lung cancer cells, sHA3 diminished the size of the tumorsphere and modulated total HA levels. In these tumor models, treatment of monocytes/macrophages with sHA3 showed a downregulation of the expression of angiogenic factors. We also observed a decrease in endothelial cell migration and modulation of the hyaluronan-binding protein TSG-6. In the breast in vivo xenograft model, monocytes/macrophages preincubated with sHA1 or sHA3 decreased tumor vasculature, TSG-6 and HA levels. Besides, in silico analysis showed an association of TSG-6, HAS2, and IL-8 with biological processes implicated in the progression of the tumor. Taken together, our data indicate that sHA in a breast and lung tumor context is able to induce an antiangiogenic action on tumor cells as well as in monocytes/macrophages (Mo/MØ) by modulation of endothelial migration, angiogenic factors, and vessel formation.
Collapse
Affiliation(s)
- Fiorella M Spinelli
- Laboratorio de Microambiente Tumoral, CIBA, UNNOBA/CIT NOBA (UNNOBA-UNSADA-CONICET), Jorge Newbery 261, Junín, Argentina
| | - Paolo Rosales
- Laboratorio de Microambiente Tumoral, CIBA, UNNOBA/CIT NOBA (UNNOBA-UNSADA-CONICET), Jorge Newbery 261, Junín, Argentina
| | | | - Daiana L Vitale
- Laboratorio de Microambiente Tumoral, CIBA, UNNOBA/CIT NOBA (UNNOBA-UNSADA-CONICET), Jorge Newbery 261, Junín, Argentina
| | - Antonella Icardi
- Laboratorio de Microambiente Tumoral, CIBA, UNNOBA/CIT NOBA (UNNOBA-UNSADA-CONICET), Jorge Newbery 261, Junín, Argentina
| | | | - Andrea Reszegi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Ilona Kovalszky
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Mariana García
- Laboratorio de Terapia Génica, IIMT - CONICET, Universidad Austral, Derqui-Pilar, Argentina
| | - Ina Sevic
- Laboratorio de Microambiente Tumoral, CIBA, UNNOBA/CIT NOBA (UNNOBA-UNSADA-CONICET), Jorge Newbery 261, Junín, Argentina
| | | | - Laura Alaniz
- Laboratorio de Microambiente Tumoral, CIBA, UNNOBA/CIT NOBA (UNNOBA-UNSADA-CONICET), Jorge Newbery 261, Junín, Argentina
| |
Collapse
|
9
|
Möller S, Theiß J, Deinert TIL, Golat K, Heinze J, Niemeyer D, Wyrwa R, Schnabelrauch M, Bogner E. High-Sulfated Glycosaminoglycans Prevent Coronavirus Replication. Viruses 2022; 14:v14020413. [PMID: 35216006 PMCID: PMC8877876 DOI: 10.3390/v14020413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 12/14/2022] Open
Abstract
Coronaviruses (CoVs) are common among humans and many animals, causing respiratory or gastrointestinal diseases. Currently, only a few antiviral drugs against CoVs are available. Especially for SARS-CoV-2, new compounds for treatment of COVID-19 are urgently needed. In this study, we characterize the antiviral effects of two high-sulfated glycosaminoglycan (GAG) derivatives against SARS-CoV-2 and bovine coronaviruses (BCoV), which are both members of the Betacoronavirus genus. The investigated compounds are based on hyaluronan (HA) and chondroitin sulfate (CS) and exhibit a strong inhibitory effect against both CoVs. Yield assays were performed using BCoV-infected PT cells in the presence and absence of the compounds. While the high-sulfated HA (sHA3) led to an inhibition of viral growth early after infection, high-sulfated CS (sCS3) had a slightly smaller effect. Time of addition assays, where sHA3 and sCS3 were added to PT cells before, during or after infection, demonstrated an inhibitory effect during all phases of infection, whereas sHA3 showed a stronger effect even after virus absorbance. Furthermore, attachment analyses with prechilled PT cells revealed that virus attachment is not blocked. In addition, sHA3 and sCS3 inactivated BCoV by stable binding. Analysis by quantitative real-time RT PCR underlines the high potency of the inhibitors against BCoV, as well as B.1-lineage, Alpha and Beta SARS-CoV-2 viruses. Taken together, these results demonstrated that the two high-sulfated GAG derivatives exhibit low cytotoxicity and represent promising candidates for an anti-CoV therapy.
Collapse
Affiliation(s)
- Stephanie Möller
- INNOVENT e.V., Biomaterial Department, 07745 Jena, Germany; (S.M.); (R.W.); (M.S.)
| | - Janine Theiß
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.T.); (T.I.L.D.); (K.G.); (J.H.); (D.N.)
| | - Thaira I. L. Deinert
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.T.); (T.I.L.D.); (K.G.); (J.H.); (D.N.)
| | - Karoline Golat
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.T.); (T.I.L.D.); (K.G.); (J.H.); (D.N.)
| | - Julian Heinze
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.T.); (T.I.L.D.); (K.G.); (J.H.); (D.N.)
- German Center for Infection Research (DZIF), 10117 Berlin, Germany
| | - Daniela Niemeyer
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.T.); (T.I.L.D.); (K.G.); (J.H.); (D.N.)
- German Center for Infection Research (DZIF), 10117 Berlin, Germany
| | - Ralf Wyrwa
- INNOVENT e.V., Biomaterial Department, 07745 Jena, Germany; (S.M.); (R.W.); (M.S.)
| | | | - Elke Bogner
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.T.); (T.I.L.D.); (K.G.); (J.H.); (D.N.)
- Correspondence: ; Tel.: +49-30-450-525121
| |
Collapse
|
10
|
Hintze V, Schnabelrauch M, Rother S. Chemical Modification of Hyaluronan and Their Biomedical Applications. Front Chem 2022; 10:830671. [PMID: 35223772 PMCID: PMC8873528 DOI: 10.3389/fchem.2022.830671] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/10/2022] [Indexed: 12/26/2022] Open
Abstract
Hyaluronan, the extracellular matrix glycosaminoglycan, is an important structural component of many tissues playing a critical role in a variety of biological contexts. This makes hyaluronan, which can be biotechnologically produced in large scale, an attractive starting polymer for chemical modifications. This review provides a broad overview of different synthesis strategies used for modulating the biological as well as material properties of this polysaccharide. We discuss current advances and challenges of derivatization reactions targeting the primary and secondary hydroxyl groups or carboxylic acid groups and the N-acetyl groups after deamidation. In addition, we give examples for approaches using hyaluronan as biomedical polymer matrix and consequences of chemical modifications on the interaction of hyaluronan with cells via receptor-mediated signaling. Collectively, hyaluronan derivatives play a significant role in biomedical research and applications indicating the great promise for future innovative therapies.
Collapse
Affiliation(s)
- Vera Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany
| | | | - Sandra Rother
- School of Medicine, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| |
Collapse
|
11
|
Steinhauff D, Jensen MM, Griswold E, Jedrzkiewicz J, Cappello J, Oottamasathien S, Ghandehari H. An Oligomeric Sulfated Hyaluronan and Silk-Elastinlike Polymer Combination Protects against Murine Radiation Induced Proctitis. Pharmaceutics 2022; 14:pharmaceutics14010175. [PMID: 35057068 PMCID: PMC8777937 DOI: 10.3390/pharmaceutics14010175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 01/23/2023] Open
Abstract
Semisynthetic glycosaminoglycan ethers (SAGEs) are short, sulfated hyaluronans which combine the natural properties of hyaluronan with chemical sulfation. In a murine model, SAGEs provide protection against radiation induced proctitis (RIP), a side effect of lower abdominal radiotherapy for cancer. The anti-inflammatory effects of SAGE have been studied in inflammatory diseases at mucosal barrier sites; however, few mechanisms have been uncovered necessitating high throughput methods. SAGEs were combined with silk-elastinlike polymers (SELPs) to enhance rectal accumulation in mice. After high radiation exposure to the lower abdominal area, mice were followed for 3 days or until they met humane endpoints, before evaluation of behavioral pain responses and histological assessment of rectal inflammation. RNA sequencing was conducted on tissues from the 3-day cohort to determine molecular mechanisms of SAGE–SELP. After 3 days, mice receiving the SAGE–SELP combination yielded significantly lowered pain responses and amelioration of radiation-induced rectal inflammation. Mice receiving the drug–polymer combination survived 60% longer than other irradiated mice, with a fraction exhibiting long term survival. Sequencing reveals varied regulation of toll like receptors, antioxidant activities, T-cell signaling, and pathways associated with pain. This investigation elucidates several molecular mechanisms of SAGEs and exhibits promising measures for prevention of RIP.
Collapse
Affiliation(s)
- Douglas Steinhauff
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; (D.S.); (E.G.)
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Mark Martin Jensen
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (M.M.J.); (S.O.)
| | - Ethan Griswold
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; (D.S.); (E.G.)
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Joseph Cappello
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA;
| | - Siam Oottamasathien
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (M.M.J.); (S.O.)
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hamidreza Ghandehari
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; (D.S.); (E.G.)
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA;
- Correspondence:
| |
Collapse
|
12
|
Nguyen DD, Luo LJ, Lai JY. Thermogels containing sulfated hyaluronan as novel topical therapeutics for treatment of ocular surface inflammation. Mater Today Bio 2021; 13:100183. [PMID: 34927046 PMCID: PMC8649391 DOI: 10.1016/j.mtbio.2021.100183] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/02/2021] [Indexed: 12/26/2022] Open
Abstract
The development of long lasting therapeutic agents is critically important for efficient treatment of chronic diseases. We herein report a rational strategy to develop a therapeutic thermogel featured with prolonged anti-inflammatory and corneal-protective effects. Specifically, a hyaluronic acid with different sulfation degrees and an amine-terminated poly(N-isopropylacrylamide) are conjugated to achieve the thermogels. In vitro studies reveal that the thermogels are highly biocompatible to statens seruminstitut rabbit cornea cells and their anti-inflammatory properties are strongly dependent on the sulfation degree. In a rabbit model of ocular inflammation, single-dose topical administration of a thermogel formulation could repair defects in corneal epithelium (∼99% thickness restored), prevent corneal cell apoptosis (∼68.3% cells recovered), and suppress ocular surface inflammation (∼4-fold decrease) for a follow-up period of 7 days. This high treatment efficacy of the thermogel can be attributed to its potent inhibition in selectin-mediated leukocyte infiltration as well as effective corneal protection. These findings show a great promise for topical treatment of ocular inflammation and advancement of ophthalmic formulations using the bioactive thermogel as a therapeutic component that is not rapidly cleared from the eye and thus considerably reduces administration times. Sulfated hyaluronan thermogels served as intrinsic therapeutic agents. Thermogels exert inhibitory effects on selectin-mediated leukocyte infiltration. Sulfation degree is a key to achieve superior therapeutic thermogels. Highly sulfated agent reveals potent anti-inflammatory/corneal-protective effects. Single dose reduces corneal inflammation by 4-folds at 7 days post-instillation.
Collapse
Affiliation(s)
- Duc Dung Nguyen
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Li-Jyuan Luo
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Jui-Yang Lai
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan
- Corresponding author. Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan.
| |
Collapse
|
13
|
Hauck S, Zager P, Halfter N, Wandel E, Torregrossa M, Kakpenova A, Rother S, Ordieres M, Räthel S, Berg A, Möller S, Schnabelrauch M, Simon JC, Hintze V, Franz S. Collagen/hyaluronan based hydrogels releasing sulfated hyaluronan improve dermal wound healing in diabetic mice via reducing inflammatory macrophage activity. Bioact Mater 2021; 6:4342-4359. [PMID: 33997511 PMCID: PMC8105600 DOI: 10.1016/j.bioactmat.2021.04.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/13/2022] Open
Abstract
Sustained inflammation associated with dysregulated macrophage activation prevents tissue formation and healing of chronic wounds. Control of inflammation and immune cell functions thus represents a promising approach in the development of advanced therapeutic strategies. Here we describe immunomodulatory hyaluronan/collagen (HA-AC/coll)-based hydrogels containing high-sulfated hyaluronan (sHA) as immunoregulatory component for the modulation of inflammatory macrophage activities in disturbed wound healing. Solute sHA downregulates inflammatory activities of bone marrow-derived and tissue-resident macrophages in vitro. This further affects macrophage-mediated pro-inflammatory activation of skin cells as shown in skin ex-vivo cultures. In a mouse model of acute skin inflammation, intradermal injection of sHA downregulates the inflammatory processes in the skin. This is associated with the promotion of an anti-inflammatory gene signature in skin macrophages indicating a shift of their activation profile. For in vivo translation, we designed HA-AC/coll hydrogels allowing delivery of sHA into wounds over a period of at least one week. Their immunoregulatory capacity was analyzed in a translational experimental approach in skin wounds of diabetic db/db mice, an established model for disturbed wound healing. The sHA-releasing hydrogels improved defective tissue repair with reduced inflammation, augmented pro-regenerative macrophage activation, increased vascularization, and accelerated new tissue formation and wound closure.
Collapse
Affiliation(s)
- Sophia Hauck
- Department of Dermatology, Venerology und Allergology, Leipzig University, 04103, Leipzig, Germany
| | - Paula Zager
- Department of Dermatology, Venerology und Allergology, Leipzig University, 04103, Leipzig, Germany
| | - Norbert Halfter
- Institute of Materials Science, Max Bergmann Center for Biomaterials, Technische Universität Dresden, 01069, Dresden, Germany
| | - Elke Wandel
- Department of Dermatology, Venerology und Allergology, Leipzig University, 04103, Leipzig, Germany
| | - Marta Torregrossa
- Department of Dermatology, Venerology und Allergology, Leipzig University, 04103, Leipzig, Germany
| | - Ainur Kakpenova
- Department of Dermatology, Venerology und Allergology, Leipzig University, 04103, Leipzig, Germany
| | - Sandra Rother
- Institute of Materials Science, Max Bergmann Center for Biomaterials, Technische Universität Dresden, 01069, Dresden, Germany
| | - Michelle Ordieres
- Department of Dermatology, Venerology und Allergology, Leipzig University, 04103, Leipzig, Germany
| | - Susann Räthel
- Department of Dermatology, Venerology und Allergology, Leipzig University, 04103, Leipzig, Germany
| | - Albrecht Berg
- Biomaterials Department, INNOVENT e.V. Jena, Germany
| | | | | | - Jan C. Simon
- Department of Dermatology, Venerology und Allergology, Leipzig University, 04103, Leipzig, Germany
| | - Vera Hintze
- Institute of Materials Science, Max Bergmann Center for Biomaterials, Technische Universität Dresden, 01069, Dresden, Germany
| | - Sandra Franz
- Department of Dermatology, Venerology und Allergology, Leipzig University, 04103, Leipzig, Germany
- Corresponding author. University Leipzig, Department of Dermatology, Venerology and Allergology, Max Bürger Research Centre, Johannisallee 30, 04103, Leipzig, Germany.
| |
Collapse
|
14
|
Kroschwald LM, Allerdt F, Bernhardt A, Rother S, Zheng K, Maqsood I, Halfter N, Heinemann C, Möller S, Schnabelrauch M, Hacker MC, Rammelt S, Boccaccini AR, Hintze V. Artificial Extracellular Matrices Containing Bioactive Glass Nanoparticles Promote Osteogenic Differentiation in Human Mesenchymal Stem Cells. Int J Mol Sci 2021; 22:ijms222312819. [PMID: 34884623 PMCID: PMC8657909 DOI: 10.3390/ijms222312819] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 02/07/2023] Open
Abstract
The present study analyzes the capacity of collagen (coll)/sulfated glycosaminoglycan (sGAG)-based surface coatings containing bioactive glass nanoparticles (BGN) in promoting the osteogenic differentiation of human mesenchymal stroma cells (hMSC). Physicochemical characteristics of these coatings and their effects on proliferation and osteogenic differentiation of hMSC were investigated. BGN were stably incorporated into the artificial extracellular matrices (aECM). Oscillatory rheology showed predominantly elastic, gel-like properties of the coatings. The complex viscosity increased depending on the GAG component and was further elevated by adding BGN. BGN-containing aECM showed a release of silicon ions as well as an uptake of calcium ions. hMSC were able to proliferate on coll and coll/sGAG coatings, while cellular growth was delayed on aECM containing BGN. However, a stimulating effect of BGN on ALP activity and calcium deposition was shown. Furthermore, a synergistic effect of sGAG and BGN was found for some donors. Our findings demonstrated the promising potential of aECM and BGN combinations in promoting bone regeneration. Still, future work is required to further optimize the BGN/aECM combination for increasing its combined osteogenic effect.
Collapse
Affiliation(s)
- Lysann M. Kroschwald
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital “Carl Gustav Carus”, Technische Universität Dresden, Fetscherstraße 74, D-01307 Dresden, Germany; (L.M.K.); (A.B.)
| | - Felix Allerdt
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Straße 27, D-01069 Dresden, Germany; (F.A.); (S.R.); (N.H.); (C.H.)
| | - Anne Bernhardt
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital “Carl Gustav Carus”, Technische Universität Dresden, Fetscherstraße 74, D-01307 Dresden, Germany; (L.M.K.); (A.B.)
| | - Sandra Rother
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Straße 27, D-01069 Dresden, Germany; (F.A.); (S.R.); (N.H.); (C.H.)
| | - Kai Zheng
- Institute of Biomaterials, University of Erlangen-Nuremberg, D-91058 Erlangen, Germany; (K.Z.); (A.R.B.)
| | - Iram Maqsood
- Institute for Pharmacy, Pharmaceutical Technology, University Leipzig, D-04317 Leipzig, Germany;
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University (RIU), Lahore 54000, Pakistan
| | - Norbert Halfter
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Straße 27, D-01069 Dresden, Germany; (F.A.); (S.R.); (N.H.); (C.H.)
| | - Christiane Heinemann
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Straße 27, D-01069 Dresden, Germany; (F.A.); (S.R.); (N.H.); (C.H.)
| | - Stephanie Möller
- Biomaterials Department, INNOVENT e.V., D-07745 Jena, Germany; (S.M.); (M.S.)
| | | | - Michael C. Hacker
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, D-40225 Düsseldorf, Germany;
| | - Stefan Rammelt
- University Centre for Orthopaedics, Plastic and Trauma Surgery, University Hospital Carl Gustav Carus, D-01307 Dresden, Germany;
| | - Aldo R. Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, D-91058 Erlangen, Germany; (K.Z.); (A.R.B.)
| | - Vera Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Straße 27, D-01069 Dresden, Germany; (F.A.); (S.R.); (N.H.); (C.H.)
- Correspondence:
| |
Collapse
|
15
|
Großkopf H, Vogel S, Müller CD, Köhling S, Dürig JN, Möller S, Schnabelrauch M, Rademann J, Hempel U, von Bergen M, Schubert K. Identification of intracellular glycosaminoglycan-interacting proteins by affinity purification mass spectrometry. Biol Chem 2021; 402:1427-1440. [PMID: 34472763 DOI: 10.1515/hsz-2021-0167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/04/2021] [Indexed: 12/20/2022]
Abstract
Glycosaminoglycans (GAGs) are essential functional components of the extracellular matrix (ECM). Artificial GAGs like sulfated hyaluronan (sHA) exhibit pro-osteogenic properties and boost healing processes. Hence, they are of high interest for supporting bone regeneration and wound healing. Although sulfated GAGs (sGAGs) appear intracellularly, the knowledge about intracellular effects and putative interaction partners is scarce. Here we used an affinity-purification mass spectrometry-based (AP-MS) approach to identify novel and particularly intracellular sGAG-interacting proteins in human bone marrow stromal cells (hBMSC). Overall, 477 proteins were found interacting with at least one of four distinct sGAGs. Enrichment analysis for protein localization showed that mainly intracellular and cell-associated interacting proteins were identified. The interaction of sGAG with α2-macroglobulin receptor-associated protein (LRPAP1), exportin-1 (XPO1), and serine protease HTRA1 (HTRA1) was confirmed in reverse assays. Consecutive pathway and cluster analysis led to the identification of biological processes, namely processes involving binding and processing of nucleic acids, LRP1-dependent endocytosis, and exosome formation. Respecting the preferentially intracellular localization of sGAG in vesicle-like structures, also the interaction data indicate sGAG-specific modulation of vesicle-based transport processes. By identifying many sGAG-specific interacting proteins, our data provide a resource for upcoming studies aimed at molecular mechanisms and understanding of sGAG cellular effects.
Collapse
Affiliation(s)
- Henning Großkopf
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig D-04318, Germany
| | - Sarah Vogel
- Institute of Physiological Chemistry, Medical Faculty, Technische Universität Dresden, Dresden D-01307, Germany
| | - Claudia Damaris Müller
- Institute of Physiological Chemistry, Medical Faculty, Technische Universität Dresden, Dresden D-01307, Germany
| | - Sebastian Köhling
- Institute of Pharmacy, Freie Universität Berlin, Berlin D-14195, Germany
| | - Jan-Niklas Dürig
- Institute of Pharmacy, Freie Universität Berlin, Berlin D-14195, Germany
| | - Stephanie Möller
- Biomaterials Department, INNOVENT e.V. Technologieentwicklung Jena, Jena D-07745, Germany
| | - Matthias Schnabelrauch
- Biomaterials Department, INNOVENT e.V. Technologieentwicklung Jena, Jena D-07745, Germany
| | - Jörg Rademann
- Institute of Pharmacy, Freie Universität Berlin, Berlin D-14195, Germany
| | - Ute Hempel
- Institute of Physiological Chemistry, Medical Faculty, Technische Universität Dresden, Dresden D-01307, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig D-04318, Germany
- Institute of Biochemistry, Faculty of Life Sciences, Universität Leipzig, Leipzig D-04103, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig D-04318, Germany
| |
Collapse
|
16
|
Al-Maawi S, Rother S, Halfter N, Fiebig KM, Moritz J, Moeller S, Schnabelrauch M, Kirkpatrick CJ, Sader R, Wiesmann HP, Scharnweber D, Hintze V, Ghanaati S. Covalent linkage of sulfated hyaluronan to the collagen scaffold Mucograft® enhances scaffold stability and reduces proinflammatory macrophage activation in vivo. Bioact Mater 2021; 8:420-434. [PMID: 34541411 PMCID: PMC8429620 DOI: 10.1016/j.bioactmat.2021.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 12/15/2022] Open
Abstract
Sulfated glycosaminoglycans (sGAG) show interaction with biological mediator proteins. Although collagen-based biomaterials are widely used in clinics, their combination with high-sulfated hyaluronan (sHA3) is unexplored. This study aims to functionalize a collagen-based scaffold (Mucograft®) with sHA3 via electrostatic (sHA3/PBS) or covalent binding to collagen fibrils (sHA3+EDC/NHS). Crosslinking without sHA3 was used as a control (EDC/NHS Ctrl). The properties of the sHA3-functionalized materials were characterized. In vitro growth factor and cytokine release after culturing with liquid platelet-rich fibrin was performed by means of ELISA. The cellular reaction to the biomaterials was analyzed in a subcutaneous rat model. The study revealed that covalent linking of sHA3 to collagen allowed only a marginal release of sHA3 over 28 days in contrast to electrostatically bound sHA3. sHA3+EDC/NHS scaffolds showed reduced vascular endothelial growth factor (VEGF), transforming growth factor beta 1 (TGF-β1) and enhanced interleukin-8 (IL-8) and epithelial growth factor (EGF) release in vitro compared to the other scaffolds. Both sHA3/PBS and EDC/NHS Ctrl scaffolds showed a high proinflammatory reaction (M1: CD-68+/CCR7+) and induced multinucleated giant cell (MNGC) formation in vivo. Only sHA3+EDC/NHS scaffolds reduced the proinflammatory macrophage M1 response and did not induce MNGC formation during the 30 days. SHA3+EDC/NHS scaffolds had a stable structure in vivo and showed sufficient integration into the implantation region after 30 days, whereas EDC/NHS Ctrl scaffolds underwent marked disintegration and lost their initial structure. In summary, functionalized collagen (sHA3+EDC/NHS) modulates the inflammatory response and is a promising biomaterial as a stable scaffold for full-thickness skin regeneration in the future. Covalent linking of high-sulfated hyaluronan (sHA3) to collagen allows a sustained release of sHA3. Covalent linking of sHA3 to collagen modulates the release of growth factor and cytokines in vitro. Covalent linking of sHA3 to collagen suppresses the induction of multinucleated giant cells in vivo. Covalent linking of sHA3 to collagen reduces the proinflammatory macrophage M1 response in vivo. Functionalized collagen with sHA3 is promising for full-thickness skin regeneration.
Collapse
Affiliation(s)
- Sarah Al-Maawi
- Clinic for Maxillofacial and Plastic Surgery, Goethe University, Frankfurt Am Main, Germany
| | - Sandra Rother
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, 01069, Dresden, Germany.,Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
| | - Norbert Halfter
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, 01069, Dresden, Germany
| | - Karen M Fiebig
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, 01069, Dresden, Germany
| | - Juliane Moritz
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, 01069, Dresden, Germany
| | - Stephanie Moeller
- Biomaterials Department, INNOVENT e.V., Prüssingstr. 27B, 07745, Jena, Germany
| | | | | | - Robert Sader
- Clinic for Maxillofacial and Plastic Surgery, Goethe University, Frankfurt Am Main, Germany
| | - Hans-Peter Wiesmann
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, 01069, Dresden, Germany
| | - Dieter Scharnweber
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, 01069, Dresden, Germany
| | - Vera Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, 01069, Dresden, Germany
| | - Shahram Ghanaati
- Clinic for Maxillofacial and Plastic Surgery, Goethe University, Frankfurt Am Main, Germany
| |
Collapse
|
17
|
Salbach-Hirsch J, Rauner M, Hofbauer C, Hofbauer LC. New insights into the role of glycosaminoglycans in the endosteal bone microenvironment. Biol Chem 2021; 402:1415-1425. [PMID: 34323057 DOI: 10.1515/hsz-2021-0174] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 07/14/2021] [Indexed: 12/19/2022]
Abstract
The bone microenvironment is a complex tissue in which heterogeneous cell populations of hematopoietic and mesenchymal origin interact with environmental cues to maintain tissue integrity. Both cellular and matrix components are subject to physiologic challenges and can dynamically respond by modifying cell/matrix interactions. When either component is impaired, the physiologic balance is lost. Here, we review the current state of knowledge of how glycosaminoglycans - organic components of the bone extracellular matrix - influence the bone micromilieu. We point out how they interact with mediators of distinct signaling pathways such as the RANKL/OPG axis, BMP and WNT signaling, and affect the activity of bone remodeling cells within the endosteal niche summarizing their potential for therapeutic intervention.
Collapse
Affiliation(s)
- Juliane Salbach-Hirsch
- Division of Endocrinology, Diabetes, and Metabolic Bone Diseases, Department of Medicine III, Medical Center, Technische Universität Dresden, D-01307 Dresden, Germany
- Center for Healthy Aging, Medical Center, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Martina Rauner
- Division of Endocrinology, Diabetes, and Metabolic Bone Diseases, Department of Medicine III, Medical Center, Technische Universität Dresden, D-01307 Dresden, Germany
- Center for Healthy Aging, Medical Center, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Christine Hofbauer
- NCT Dresden and University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Lorenz C Hofbauer
- Division of Endocrinology, Diabetes, and Metabolic Bone Diseases, Department of Medicine III, Medical Center, Technische Universität Dresden, D-01307 Dresden, Germany
- Center for Healthy Aging, Medical Center, Technische Universität Dresden, D-01307 Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), D-01307 Dresden, Germany
| |
Collapse
|
18
|
Vogel S, Ullm F, Müller CD, Pompe T, Hempel U. Impact of binding mode of low-sulfated hyaluronan to 3D collagen matrices on its osteoinductive effect for human bone marrow stromal cells. Biol Chem 2021; 402:1465-1478. [PMID: 34085493 DOI: 10.1515/hsz-2021-0212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022]
Abstract
Synthetically sulfated hyaluronan derivatives were shown to facilitate osteogenic differentiation of human bone marrow stromal cells (hBMSC) by application in solution or incorporated in thin collagen-based coatings. In the presented study, using a biomimetic three-dimensional (3D) cell culture model based on fibrillary collagen I (3D Col matrix), we asked on the impact of binding mode of low sulfated hyaluronan (sHA) in terms of adsorptive and covalent binding on osteogenic differentiation of hBMSC. Both binding modes of sHA induced osteogenic differentiation. Although for adsorptive binding of sHA a strong intracellular uptake of sHA was observed, implicating an intracellular mode of action, covalent binding of sHA to the 3D matrix induced also intense osteoinductive effects pointing towards an extracellular mode of action of sHA in osteogenic differentiation. In summary, the results emphasize the relevance of fibrillary 3D Col matrices as a model to study hBMSC differentiation in vitro in a physiological-like environment and that sHA can display dose-dependent osteoinductive effects in dependence on presentation mode in cell culture scaffolds.
Collapse
Affiliation(s)
- Sarah Vogel
- Institute of Physiological Chemistry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstrasse 74, D-01307Dresden, Germany
| | - Franziska Ullm
- Institute of Biochemistry, Faculty of Life Sciences, Universität Leipzig, Johannisallee 21-23, D-04103Leipzig, Germany
| | - Claudia Damaris Müller
- Institute of Physiological Chemistry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstrasse 74, D-01307Dresden, Germany
| | - Tilo Pompe
- Institute of Biochemistry, Faculty of Life Sciences, Universität Leipzig, Johannisallee 21-23, D-04103Leipzig, Germany
| | - Ute Hempel
- Institute of Physiological Chemistry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstrasse 74, D-01307Dresden, Germany
| |
Collapse
|
19
|
Rother S, Ruiz-Gómez G, Balamurugan K, Koehler L, Fiebig KM, Galiazzo VD, Hempel U, Moeller S, Schnabelrauch M, Waltenberger J, Pisabarro MT, Scharnweber D, Hintze V. Hyaluronan/Collagen Hydrogels with Sulfated Glycosaminoglycans Maintain VEGF165 Activity and Fine-Tune Endothelial Cell Response. ACS APPLIED BIO MATERIALS 2020; 4:494-506. [DOI: 10.1021/acsabm.0c01001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sandra Rother
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, 01069 Dresden, Germany
| | - Gloria Ruiz-Gómez
- Structural Bioinformatics, BIOTEC TU Dresden, Tatzberg 47-51, Dresden 01307, Germany
| | | | - Linda Koehler
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, 01069 Dresden, Germany
| | - Karen M. Fiebig
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, 01069 Dresden, Germany
| | - Vanessa D. Galiazzo
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, 01069 Dresden, Germany
| | - Ute Hempel
- Institute of Physiological Chemistry, Carl Gustav Carus Faculty of Medicine, TU Dresden, Fiedlerstraße 42, 01307 Dresden, Germany
| | - Stephanie Moeller
- Biomaterials Department, INNOVENT e.V., Prüssingstr. 27B, 07745 Jena, Germany
| | | | - Johannes Waltenberger
- Department of Cardiovascular Medicine, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - M. Teresa Pisabarro
- Structural Bioinformatics, BIOTEC TU Dresden, Tatzberg 47-51, Dresden 01307, Germany
| | - Dieter Scharnweber
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, 01069 Dresden, Germany
| | - Vera Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, 01069 Dresden, Germany
| |
Collapse
|
20
|
Localized inhibition of platelets and platelet derived growth factor by a matrix targeted glycan mimetic significantly attenuates liver fibrosis. Biomaterials 2020; 269:120538. [PMID: 33246740 DOI: 10.1016/j.biomaterials.2020.120538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/01/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023]
Abstract
New therapeutic strategies are needed for the growing unmet clinical needs in liver disease and fibrosis. Platelet activation and PDGF activity are recognized as important therapeutic targets; however, no therapeutic approach has yet addressed these two upstream drivers of liver fibrosis. We therefore designed a matrix-targeting glycan therapeutic, SBR-294, to inhibit collagen-mediated platelet activation while also inhibiting PDGF activity. Herein we describe the synthesis and characterization of SBR-294 and demonstrate its potential therapeutic benefits in vitro and in vivo. In vitro SBR-294 was found to bind collagen (EC50 = 23 nM), thereby inhibiting platelet-collagen engagement (IC50 = 60 nM). Additionally, SBR-294 was found to bind all PDGF homodimeric isoforms and to inhibit PDGF-BB mediated hepatic stellate cell activation and proliferation. Translating these mechanisms in vivo, SBR-294 reduced fibrosis by up to 54% in the CCl4 mouse model (p = 0.0004), as measured by Sirius red histological analysis. Additional fibrosis measurements were also supportive of the therapeutic benefit in this model. These results support the therapeutic benefit of platelet and PDGF antagonism and warrant further investigation of SBR-294 as a potential treatment for liver fibrosis.
Collapse
|
21
|
The influence of different artificial extracellular matrix implant coatings on the regeneration of a critical size femur defect in rats. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111157. [DOI: 10.1016/j.msec.2020.111157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023]
|
22
|
Krieghoff J, Picke AK, Salbach-Hirsch J, Rother S, Heinemann C, Bernhardt R, Kascholke C, Möller S, Rauner M, Schnabelrauch M, Hintze V, Scharnweber D, Schulz-Siegmund M, Hacker MC, Hofbauer LC, Hofbauer C. Increased pore size of scaffolds improves coating efficiency with sulfated hyaluronan and mineralization capacity of osteoblasts. Biomater Res 2019; 23:26. [PMID: 31890268 PMCID: PMC6921484 DOI: 10.1186/s40824-019-0172-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Background Delayed bone regeneration of fractures in osteoporosis patients or of critical-size bone defects after tumor resection are a major medical and socio-economic challenge. Therefore, the development of more effective and osteoinductive biomaterials is crucial. Methods We examined the osteogenic potential of macroporous scaffolds with varying pore sizes after biofunctionalization with a collagen/high-sulfated hyaluronan (sHA3) coating in vitro. The three-dimensional scaffolds were made up from a biodegradable three-armed lactic acid-based macromer (TriLA) by cross-polymerization. Templating with solid lipid particles that melt during fabrication generates a continuous pore network. Human mesenchymal stem cells (hMSC) cultivated on the functionalized scaffolds in vitro were investigated for cell viability, production of alkaline phosphatase (ALP) and bone matrix formation. Statistical analysis was performed using student’s t-test or two-way ANOVA. Results We succeeded in generating scaffolds that feature a significantly higher average pore size and a broader distribution of individual pore sizes (HiPo) by modifying composition and relative amount of lipid particles, macromer concentration and temperature for cross-polymerization during scaffold fabrication. Overall porosity was retained, while the scaffolds showed a 25% decrease in compressive modulus compared to the initial TriLA scaffolds with a lower pore size (LoPo). These HiPo scaffolds were more readily coated as shown by higher amounts of immobilized collagen (+ 44%) and sHA3 (+ 25%) compared to LoPo scaffolds. In vitro, culture of hMSCs on collagen and/or sHA3-coated HiPo scaffolds demonstrated unaltered cell viability. Furthermore, the production of ALP, an early marker of osteogenesis (+ 3-fold), and formation of new bone matrix (+ 2.5-fold) was enhanced by the functionalization with sHA3 of both scaffold types. Nevertheless, effects were more pronounced on HiPo scaffolds about 112%. Conclusion In summary, we showed that the improvement of scaffold pore sizes enhanced the coating efficiency with collagen and sHA3, which had a significant positive effect on bone formation markers, underlining the promise of using this material approach for in vivo studies.
Collapse
Affiliation(s)
- Jan Krieghoff
- 1Institute for Pharmacy, Pharmaceutical Technology, University Leipzig, Leipzig, Germany
| | - Ann-Kristin Picke
- 2Division of Endocrinology, Diabetes, and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.,3Center for Healthy Aging, TU Dresden Medical Center, Dresden, Germany
| | - Juliane Salbach-Hirsch
- 2Division of Endocrinology, Diabetes, and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.,3Center for Healthy Aging, TU Dresden Medical Center, Dresden, Germany
| | - Sandra Rother
- 4Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany.,Present address: Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA USA
| | - Christiane Heinemann
- 4Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany
| | - Ricardo Bernhardt
- 4Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany.,6Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Christian Kascholke
- 1Institute for Pharmacy, Pharmaceutical Technology, University Leipzig, Leipzig, Germany
| | | | - Martina Rauner
- 2Division of Endocrinology, Diabetes, and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.,3Center for Healthy Aging, TU Dresden Medical Center, Dresden, Germany
| | | | - Vera Hintze
- 4Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany
| | - Dieter Scharnweber
- 4Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany
| | | | - Michael C Hacker
- 1Institute for Pharmacy, Pharmaceutical Technology, University Leipzig, Leipzig, Germany
| | - Lorenz C Hofbauer
- 2Division of Endocrinology, Diabetes, and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.,3Center for Healthy Aging, TU Dresden Medical Center, Dresden, Germany.,8Center for Regenerative Therapies, Dresden, Germany
| | - Christine Hofbauer
- 9Orthopedics and Trauma Surgery Center, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
23
|
Dual Action of Sulfated Hyaluronan on Angiogenic Processes in Relation to Vascular Endothelial Growth Factor-A. Sci Rep 2019; 9:18143. [PMID: 31792253 PMCID: PMC6889296 DOI: 10.1038/s41598-019-54211-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/05/2019] [Indexed: 01/13/2023] Open
Abstract
Pathological healing characterized by abnormal angiogenesis presents a serious burden to patients’ quality of life requiring innovative treatment strategies. Glycosaminoglycans (GAG) are important regulators of angiogenic processes. This experimental and computational study revealed how sulfated GAG derivatives (sGAG) influence the interplay of vascular endothelial growth factor (VEGF)165 and its heparin-binding domain (HBD) with the signaling receptor VEGFR-2 up to atomic detail. There was profound evidence for a HBD-GAG-HBD stacking configuration. Here, the sGAG act as a “molecular glue” leading to recognition modes in which sGAG interact with two VEGF165-HBDs. A 3D angiogenesis model demonstrated the dual regulatory role of high-sulfated derivatives on the biological activity of endothelial cells. While GAG alone promote sprouting, they downregulate VEGF165-mediated signaling and, thereby, elicit VEGF165-independent and -dependent effects. These findings provide novel insights into the modulatory potential of sGAG derivatives on angiogenic processes and point towards their prospective application in treating abnormal angiogenesis.
Collapse
|
24
|
Bojarski KK, Becher J, Riemer T, Lemmnitzer K, Möller S, Schiller J, Schnabelrauch M, Samsonov SA. Synthesis and in silico characterization of artificially phosphorylated glycosaminoglycans. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.07.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Electroactive composite scaffold with locally expressed osteoinductive factor for synergistic bone repair upon electrical stimulation. Biomaterials 2019; 230:119617. [PMID: 31771859 DOI: 10.1016/j.biomaterials.2019.119617] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 10/30/2019] [Accepted: 11/10/2019] [Indexed: 02/05/2023]
Abstract
Tissue engineering is a promising strategy for the repair of large-scale bone defects, in which scaffolds and growth factors are two critical issues influencing the efficacy of bone regeneration. Unfortunately, the broad application of growth factors is limited by their poor stability in the scaffolds. In the present study, the strictly controlled expression of human bone morphogenetic protein-4 (hBMP-4) in the presence of doxycycline is achieved by adding an hBMP-4 gene fragment into a non-viral artificial restructuring plasmid vector (pSTAR) to form the pSTAR-hBMP-4 plasmid (phBMP-4). Furthermore, the controlled release of phBMP-4 is obtained with an electroactive tissue engineering scaffold, generated by combining a triblock copolymer of poly(l-lactic acid)-block-aniline pentamer-block-poly(l-lactic acid) (PLA-AP) with poly(lactic-co-glycolic acid)/hydroxyapatite (PLGA/HA). This PLGA/HA/PLA-AP/phBMP-4 composite scaffold, with controlled gene release and Dox-regulated gene expression upon electrical stimulation, operating synergistically, exhibits an improved cell proliferation ability, enhanced osteogenesis differentiation in vitro, and effective bone healing in vivo in a rabbit radial defect model. Taking these results together, the proposed smart PLGA/HA/PLA-AP/phBMP-4 scaffold lays a solid theoretical and experimental basis for future applications of such multi-functional materials in bone tissue engineering to help patients in need.
Collapse
|
26
|
Neuber C, Schulze S, Förster Y, Hofheinz F, Wodke J, Möller S, Schnabelrauch M, Hintze V, Scharnweber D, Rammelt S, Pietzsch J. Biomaterials in repairing rat femoral defects: In vivo insights from small animal positron emission tomography/computed tomography (PET/CT) studies. Clin Hemorheol Microcirc 2019; 73:177-194. [DOI: 10.3233/ch-199208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Christin Neuber
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Sabine Schulze
- Technische Universität Dresden, University Hospital Carl Gustav Carus, University Center for Orthopaedics and Traumatology, Dresden, Germany
- Technische Universität Dresden, Faculty of Medicine, Centre for Translational Bone, Joint and Soft Tissue Research, Dresden, Germany
| | - Yvonne Förster
- Technische Universität Dresden, University Hospital Carl Gustav Carus, University Center for Orthopaedics and Traumatology, Dresden, Germany
- Technische Universität Dresden, Faculty of Medicine, Centre for Translational Bone, Joint and Soft Tissue Research, Dresden, Germany
| | - Frank Hofheinz
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department Positron Emission Tomography, Dresden, Germany
| | - Johanna Wodke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | | | | | - Vera Hintze
- Technische Universität Dresden, Max Bergmann Center of Biomaterials, Institute of Materials Science, Dresden, Germany
| | - Dieter Scharnweber
- Technische Universität Dresden, Max Bergmann Center of Biomaterials, Institute of Materials Science, Dresden, Germany
- Center of Regenerative Therapies Dresden (CRTD), Dresden, Germany
| | - Stefan Rammelt
- Technische Universität Dresden, University Hospital Carl Gustav Carus, University Center for Orthopaedics and Traumatology, Dresden, Germany
- Technische Universität Dresden, Faculty of Medicine, Centre for Translational Bone, Joint and Soft Tissue Research, Dresden, Germany
- Center of Regenerative Therapies Dresden (CRTD), Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department Radiopharmaceutical and Chemical Biology, Dresden, Germany
- Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Dresden, Germany
| |
Collapse
|
27
|
Hachim D, Whittaker TE, Kim H, Stevens MM. Glycosaminoglycan-based biomaterials for growth factor and cytokine delivery: Making the right choices. J Control Release 2019; 313:131-147. [PMID: 31629041 PMCID: PMC6900262 DOI: 10.1016/j.jconrel.2019.10.018] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022]
Abstract
Controlled, localized drug delivery is a long-standing goal of medical research, realization of which could reduce the harmful side-effects of drugs and allow more effective treatment of wounds, cancers, organ damage and other diseases. This is particularly the case for protein "drugs" and other therapeutic biological cargoes, which can be challenging to deliver effectively by conventional systemic administration. However, developing biocompatible materials that can sequester large quantities of protein and release them in a sustained and controlled manner has proven challenging. Glycosaminoglycans (GAGs) represent a promising class of bio-derived materials that possess these key properties and can additionally potentially enhance the biological effects of the delivered protein. They are a diverse group of linear polysaccharides with varied functionalities and suitabilities for different cargoes. However, most investigations so far have focused on a relatively small subset of GAGs - particularly heparin, a readily available, promiscuously-binding GAG. There is emerging evidence that for many applications other GAGs are in fact more suitable for regulated and sustained delivery. In this review, we aim to illuminate the beneficial properties of various GAGs with reference to specific protein cargoes, and to provide guidelines for informed choice of GAGs for therapeutic applications.
Collapse
Affiliation(s)
- Daniel Hachim
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Thomas E Whittaker
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Hyemin Kim
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Molly M Stevens
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom.
| |
Collapse
|
28
|
Malaeb W, Bahmad HF, Abou-Kheir W, Mhanna R. The sulfation of biomimetic glycosaminoglycan substrates controls binding of growth factors and subsequent neural and glial cell growth. Biomater Sci 2019; 7:4283-4298. [PMID: 31407727 DOI: 10.1039/c9bm00964g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sulfated glycosaminoglycans (GAGs) are key structural and functional extracellular matrix (ECM) molecules involved in numerous signaling pathways mainly through their interaction with growth factors. Alginate sulfate mimics sulfated GAGs and binds growth factors such as basic fibroblast growth factor (FGF-2). Here, natural biomimetic substrates were engineered by immobilizing biotinylated alginate sulfates with varying degrees of sulfation (DS, from 0 to 2.7) on gold and polystyrene substrates using biotin-streptavidin binding. The build-up of films and the effect of the DS and biotinylation method on FGF-2 binding were assessed using quartz crystal microbalance with dissipation monitoring (QCM-D) and immunohistochemistry. The role of substrate sulfation and FGF-2 loading on the growth of A172 (human glioblastoma multiforme), SH-SY5Y (human neuroblastoma), and PC-12 (rat pheochromocytoma) cell lines was evaluated in vitro using proliferation and neurite outgrowth assessment. An increase in the DS of alginates resulted in augmented FGF-2 binding as evidenced by higher frequency and dissipation shifts measured with QCM-D and confirmed with immunostaining. All sulfated alginate substrates supported the attachment and growth of neural/glial cell lines better than controls with the highest increase in cell proliferation observed for the highest DS (p < 0.05 for all the cell lines). Moreover, FGF-2 loaded substrates with the highest DS induced the most significant increase in neurite-positive PC-12 cells and average neurite length. The developed biomimetic coatings can be used to functionalize substrates for biosensing applications (e.g. gold substrates) and to induce defined cellular responses via controlled growth factor delivery for basic and applied sciences.
Collapse
Affiliation(s)
- Waddah Malaeb
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon.
| | - Hisham F Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Rami Mhanna
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon.
| |
Collapse
|
29
|
Alshanski I, Blaszkiewicz J, Mervinetsky E, Rademann J, Yitzchaik S, Hurevich M. Sulfation Patterns of Saccharides and Heavy Metal Ion Binding. Chemistry 2019; 25:12083-12090. [DOI: 10.1002/chem.201901538] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/30/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Israel Alshanski
- Institute of Chemistry and Center for Nanoscience and NanotechnologyThe Hebrew University of Jerusalem, Safra Campus Givat Ram, Jerusalem 91904 Israel
| | - Joanna Blaszkiewicz
- Medicinal ChemistryFreie Universität Berlin Königin-Luise-Strasse 2+4 Berlin 14195 Germany
| | - Evgeniy Mervinetsky
- Institute of Chemistry and Center for Nanoscience and NanotechnologyThe Hebrew University of Jerusalem, Safra Campus Givat Ram, Jerusalem 91904 Israel
| | - Jörg Rademann
- Medicinal ChemistryFreie Universität Berlin Königin-Luise-Strasse 2+4 Berlin 14195 Germany
| | - Shlomo Yitzchaik
- Institute of Chemistry and Center for Nanoscience and NanotechnologyThe Hebrew University of Jerusalem, Safra Campus Givat Ram, Jerusalem 91904 Israel
| | - Mattan Hurevich
- Institute of Chemistry and Center for Nanoscience and NanotechnologyThe Hebrew University of Jerusalem, Safra Campus Givat Ram, Jerusalem 91904 Israel
| |
Collapse
|
30
|
Diez-Escudero A, Torreggiani E, Di Pompo G, Espanol M, Persson C, Ciapetti G, Baldini N, Ginebra MP. Effect of calcium phosphate heparinization on the in vitro inflammatory response and osteoclastogenesis of human blood precursor cells. J Tissue Eng Regen Med 2019; 13:1217-1229. [PMID: 31050382 DOI: 10.1002/term.2872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/12/2019] [Accepted: 04/29/2019] [Indexed: 12/27/2022]
Abstract
The immobilization of natural molecules on synthetic bone grafts stands as a strategy to enhance their biological interactions. During the early stages of healing, immune cells and osteoclasts (OC) modulate the inflammatory response and resorb the biomaterial, respectively. In this study, heparin, a naturally occurring molecule in the bone extracellular matrix, was covalently immobilized on biomimetic calcium-deficient hydroxyapatite (CDHA). The effect of heparin-functionalized CDHA on inflammation and osteoclastogenesis was investigated using primary human cells and compared with pristine CDHA and beta-tricalcium phosphate (β-TCP). Biomimetic substrates led to lower oxidative stresses by neutrophils and monocytes than sintered β-TCP, even though no further reduction was induced by the presence of heparin. In contrast, heparinized CDHA fostered osteoclastogenesis. Optical images of stained TRAP positive cells showed an earlier and higher presence of multinucleated cells, compatible with OC at 14 days, while pristine CDHA and β-TCP present OC at 21-28 days. Although no statistically significant differences were found in the OC activity, microscopy images evidenced early stages of degradation on heparinized CDHA, compatible with osteoclastic resorption. Overall, the results suggest that the functionalization with heparin fostered the formation and activity of OC, thus offering a promising strategy to integrate biomaterials in the bone remodelling cycle by increasing their OC-mediated resorption.
Collapse
Affiliation(s)
- Anna Diez-Escudero
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| | - Elena Torreggiani
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Gemma Di Pompo
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Montserrat Espanol
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| | - Cecilia Persson
- Applied Material Science, Department of Engineering Sciences, The Ångstrom Laboratory, Uppsala University, Uppsala, Sweden
| | - Gabriela Ciapetti
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain.,Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
31
|
Rother S, Krönert V, Hauck N, Berg A, Moeller S, Schnabelrauch M, Thiele J, Scharnweber D, Hintze V. Hyaluronan/collagen hydrogel matrices containing high-sulfated hyaluronan microgels for regulating transforming growth factor-β1. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:65. [PMID: 31127393 DOI: 10.1007/s10856-019-6267-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
Hyaluronan (HA)-based microgels generated in a microfluidic approach, containing an artificial extracellular matrix composed of collagen and high-sulfated hyaluronan (sHA3), were incorporated into a HA/collagen-based hydrogel matrix. This significantly enhanced the retention of noncrosslinked sHA3 within the gels enabling controlled sHA3 presentation. Gels containing sHA3 bound higher amounts of transforming growth factor-β1 (TGF-β1) compared to pure HA/collagen hydrogels. Moreover, the presence of sHA3-containing microgels improved the TGF-β1 retention within the hydrogels. These findings are promising for developing innovative biomaterials with adjustable sHA3 release and growth factor interaction profiles to foster skin repair, e.g., by rebalancing dysregulated TGF-β1 levels.
Collapse
Affiliation(s)
- Sandra Rother
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, 01069, Dresden, Germany.
| | - Vera Krönert
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, 01069, Dresden, Germany
| | - Nicolas Hauck
- Institute of Physical Chemistry and Polymer Physics, Leibniz-Institut für Polymerforschung Dresden e.V., 01069, Dresden, Germany
| | - Albrecht Berg
- Biomaterials Department, INNOVENT e.V., Prüssingstr. 27B, 07745, Jena, Germany
| | - Stephanie Moeller
- Biomaterials Department, INNOVENT e.V., Prüssingstr. 27B, 07745, Jena, Germany
| | | | - Julian Thiele
- Institute of Physical Chemistry and Polymer Physics, Leibniz-Institut für Polymerforschung Dresden e.V., 01069, Dresden, Germany
| | - Dieter Scharnweber
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, 01069, Dresden, Germany
| | - Vera Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, 01069, Dresden, Germany
| |
Collapse
|
32
|
Schneider M, Rother S, Möller S, Schnabelrauch M, Scharnweber D, Simon J, Hintze V, Savkovic V. Sulfated hyaluronan‐containing artificial extracellular matrices promote proliferation of keratinocytes and melanotic phenotype of melanocytes from the outer root sheath of hair follicles. J Biomed Mater Res A 2019; 107:1640-1653. [DOI: 10.1002/jbm.a.36680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/18/2019] [Accepted: 03/13/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Marie Schneider
- Saxon Incubator for Clinical TranslationLeipzig University TRR 67, Leipzig Germany
| | - Sandra Rother
- Max Bergmann Center of BiomaterialsInstitute of Materials Science, TU Dresden TRR 67, Dresden Germany
| | | | | | - Dieter Scharnweber
- Max Bergmann Center of BiomaterialsInstitute of Materials Science, TU Dresden TRR 67, Dresden Germany
| | - Jan‐Christoph Simon
- Clinic for Dermatology, Venerology and AllergologyFaculty of Medicine, Leipzig University Clinic TRR 67, Leipzig Germany
| | - Vera Hintze
- Max Bergmann Center of BiomaterialsInstitute of Materials Science, TU Dresden TRR 67, Dresden Germany
| | - Vuk Savkovic
- Saxon Incubator for Clinical TranslationLeipzig University TRR 67, Leipzig Germany
| |
Collapse
|
33
|
Wojak-Ćwik IM, Rumian Ł, Krok-Borkowicz M, Hess R, Bernhardt R, Dobrzyński P, Möller S, Schnabelrauch M, Hintze V, Scharnweber D, Pamuła E. Synergistic effect of bimodal pore distribution and artificial extracellular matrices in polymeric scaffolds on osteogenic differentiation of human mesenchymal stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:12-22. [DOI: 10.1016/j.msec.2018.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 10/16/2018] [Accepted: 12/05/2018] [Indexed: 12/16/2022]
|
34
|
Thönes S, Rother S, Wippold T, Blaszkiewicz J, Balamurugan K, Moeller S, Ruiz-Gómez G, Schnabelrauch M, Scharnweber D, Saalbach A, Rademann J, Pisabarro MT, Hintze V, Anderegg U. Hyaluronan/collagen hydrogels containing sulfated hyaluronan improve wound healing by sustained release of heparin-binding EGF-like growth factor. Acta Biomater 2019; 86:135-147. [PMID: 30660005 DOI: 10.1016/j.actbio.2019.01.029] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/08/2019] [Accepted: 01/14/2019] [Indexed: 12/21/2022]
Abstract
Functional biomaterials that are able to bind, stabilize and release bioactive proteins in a defined manner are required for the controlled delivery of such to the desired place of action, stimulating wound healing in health-compromised patients. Glycosaminoglycans (GAG) represent a very promising group of components since they may be functionally engineered and are well tolerated by the recipient tissues due to their relative immunological inertness. Ligands of the Epidermal Growth Factor (EGF) receptor (EGFR) activate keratinocytes and dermal fibroblasts and, thus, contribute to skin wound healing. Heparin-binding EGF-like growth factor (HB-EGF) bound to GAG in biomaterials (e.g. hydrogels) might serve as a reservoir that induces prolonged activation of the EGF receptor and to recover disturbed wound healing. Based on previous findings, the capacity of hyaluronan (HA) and its sulfated derivatives (sHA) to bind and release HB-EGF from HA/collagen-based hydrogels was investigated. Docking and molecular dynamics analysis of a molecular model of HB-EGF led to the identification of residues in the heparin-binding domain of the protein being essential for the recognition of GAG derivatives. Furthermore, molecular modeling and surface plasmon resonance (SPR) analyses demonstrated that sulfation of HA increases binding strength to HB-EGF thus providing a rationale for the development of sHA-containing hydrogels. In line with computational observations and in agreement with SPR results, gels containing sHA displayed a retarded HB-EGF release in vitro compared to pure HA/collagen gels. Hydrogels containing HA and collagen or a mixture with sHA were shown to bind and release bioactive HB-EGF over at least 72 h, which induced keratinocyte migration, EGFR-signaling and HGF expression in dermal fibroblasts. Importantly, hydrogels containing sHA strongly increased the effectivity of HB-EGF in inducing epithelial tip growth in epithelial wounds shown in a porcine skin organ culture model. These findings suggest that hydrogels containing HA and sHA can be engineered for smart and effective wound dressings. STATEMENT OF SIGNIFICANCE: Immobilization and sustained release of recombinant proteins from functional biomaterials might overcome the limited success of direct application of non-protected solute growth factors during the treatment of impaired wound healing. We developed HA/collagen-based hydrogels supplemented with acrylated sulfated HA for binding and release of HB-EGF. We analyzed the molecular basis of HB-EGF interaction with HA and its chemical derivatives by in silico modeling and surface plasmon resonance. These hydrogels bind HB-EGF reversibly. Using different in vitro assays and organ culture we demonstrate that the introduction of sulfated HA into the hydrogels significantly increases the effectivity of HB-EGF action on target cells. Therefore, sulfated HA-containing hydrogels are promising functional biomaterials for the development of mediator releasing wound dressings.
Collapse
|
35
|
Islam S, Laaf D, Infanzón B, Pelantová H, Davari MD, Jakob F, Křen V, Elling L, Schwaneberg U. KnowVolution Campaign of an Aryl Sulfotransferase Increases Activity toward Cellobiose. Chemistry 2018; 24:17117-17124. [DOI: 10.1002/chem.201803729] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Indexed: 01/19/2023]
Affiliation(s)
- Shohana Islam
- DWI-Leibniz Institute for Interactive Materials Forckenbeckstraße 50 52056 Aachen Germany
- Institute of BiotechnologyRWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Dominic Laaf
- Laboratory for BiomaterialsInstitute of Biotechnology and Helmholtz-Institute for Biomedical EngineeringRWTH Aachen University Pauwelsstraße 20 52074 Aachen Germany
| | - Belén Infanzón
- Institute of BiotechnologyRWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Helena Pelantová
- Institute of MicrobiologyCzech Academy of Sciences Vídeňská 1083 14220 Prague Czech Republic
| | - Mehdi D. Davari
- Institute of BiotechnologyRWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Felix Jakob
- DWI-Leibniz Institute for Interactive Materials Forckenbeckstraße 50 52056 Aachen Germany
- Institute of BiotechnologyRWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Vladimír Křen
- Institute of MicrobiologyCzech Academy of Sciences Vídeňská 1083 14220 Prague Czech Republic
| | - Lothar Elling
- Laboratory for BiomaterialsInstitute of Biotechnology and Helmholtz-Institute for Biomedical EngineeringRWTH Aachen University Pauwelsstraße 20 52074 Aachen Germany
| | - Ulrich Schwaneberg
- DWI-Leibniz Institute for Interactive Materials Forckenbeckstraße 50 52056 Aachen Germany
- Institute of BiotechnologyRWTH Aachen University Worringerweg 3 52074 Aachen Germany
| |
Collapse
|
36
|
Systems for localized release to mimic paracrine cell communication in vitro. J Control Release 2018; 278:24-36. [PMID: 29601931 DOI: 10.1016/j.jconrel.2018.03.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 12/27/2022]
Abstract
Paracrine cell communication plays a pivotal role for signal exchange between proximal cells in vivo. However, this localized, gradient type release of mediators at very low concentrations (pg/ml), relevant during physiological and pathological processes, is rarely reflected within in vitro approaches. This review gives an overview on state-of-the-art approaches, which transfer the paracrine cell-to-cell communication into in vitro cell culture model setups. The traditional methods like trans-well assays and more advanced microfluidic approaches are included. The review focusses on systems for localized release, mostly based on microparticles, which tightly mimic the paracrine interaction between single cells in 3D microenvironments. Approaches based on single microparticles, with the main focus on affinity-controlled storage and release of cytokines, are reviewed and their importance for understanding paracrine communication is highlighted. Various methods to study the cytokine release and their advantages and disadvantages are discussed. Basic principles of the release characteristics, like diffusion mechanisms, are quantitatively described, including the formation of resulting gradients around the local sources. In vitro cell experiments using such localized microparticle release systems in approaches to increase understanding of stem cell behavior within their niches and regulation of wound healing are highlighted as examples of successful localized release systems for mimicking paracrine cell communication.
Collapse
|
37
|
Diez-Escudero A, Espanol M, Bonany M, Lu X, Persson C, Ginebra MP. Heparinization of Beta Tricalcium Phosphate: Osteo-immunomodulatory Effects. Adv Healthc Mater 2018; 7. [PMID: 29266807 DOI: 10.1002/adhm.201700867] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/16/2017] [Indexed: 01/18/2023]
Abstract
Immune cells play a vital role in regulating bone dynamics. This has boosted the interest in developing biomaterials that can modulate both the immune and skeletal systems. In this study, calcium phosphates discs (i.e., beta-tricalcium phosphate, β-TCP) are functionalized with heparin to investigate the effects on immune and stem cell responses. The results show that the functionalized surfaces downregulate the release of hydrogen peroxide and proinflammatory cytokines (tumor necrosis factor alpha and interleukin 1 beta) from human monocytes and neutrophils, compared to nonfunctionalized discs. The macrophages show both elongated and round shapes on the two ceramic substrates, but the morphology of cells on heparinized β-TCP tends toward a higher elongation after 72 h. The heparinized substrates support rat mesenchymal stem cell (MSC) adhesion and proliferation, and anticipate the differentiation toward the osteoblastic lineage as compared to β-TCP and control. The coupling between the inflammatory response and osteogenesis is assessed by culturing MSCs with the macrophage supernatants. The downregulation of inflammation in contact with the heparinized substrates induces higher expression of bone-related markers by MSCs.
Collapse
Affiliation(s)
- Anna Diez-Escudero
- Biomaterials, Biomechanics and Tissue Engineering Group; Department of Materials Science and Metallurgical Engineering; Universitat Politècnica de Catalunya (UPC); EEBE; Av. Eduard Maristany 10-14 08019 Barcelona Spain
- Barcelona Research Centre for Multiscale Science and Engineering; Universitat Politècnica de Catalunya (UPC); EEBE; Av. Eduard Maristany 10-14 08019 Barcelona Spain
| | - Montserrat Espanol
- Biomaterials, Biomechanics and Tissue Engineering Group; Department of Materials Science and Metallurgical Engineering; Universitat Politècnica de Catalunya (UPC); EEBE; Av. Eduard Maristany 10-14 08019 Barcelona Spain
- Barcelona Research Centre for Multiscale Science and Engineering; Universitat Politècnica de Catalunya (UPC); EEBE; Av. Eduard Maristany 10-14 08019 Barcelona Spain
| | - Mar Bonany
- Biomaterials, Biomechanics and Tissue Engineering Group; Department of Materials Science and Metallurgical Engineering; Universitat Politècnica de Catalunya (UPC); EEBE; Av. Eduard Maristany 10-14 08019 Barcelona Spain
- Barcelona Research Centre for Multiscale Science and Engineering; Universitat Politècnica de Catalunya (UPC); EEBE; Av. Eduard Maristany 10-14 08019 Barcelona Spain
| | - Xi Lu
- Materials in Medicine Group; Division of Applied Materials Science; Department of Engineering Science; Uppsala University; Lägerhyddsy. 1 751 21 Uppsala Sweden
| | - Cecilia Persson
- Materials in Medicine Group; Division of Applied Materials Science; Department of Engineering Science; Uppsala University; Lägerhyddsy. 1 751 21 Uppsala Sweden
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group; Department of Materials Science and Metallurgical Engineering; Universitat Politècnica de Catalunya (UPC); EEBE; Av. Eduard Maristany 10-14 08019 Barcelona Spain
- Barcelona Research Centre for Multiscale Science and Engineering; Universitat Politècnica de Catalunya (UPC); EEBE; Av. Eduard Maristany 10-14 08019 Barcelona Spain
- Institute for Bioengineering of Catalonia (IBEC); Barcelona Institute of Science and Technology; C/ Baldiri Reixac 10-12 08028 Barcelona Spain
| |
Collapse
|
38
|
Nordsieck K, Baumann L, Hintze V, Pisabarro MT, Schnabelrauch M, Beck-Sickinger AG, Samsonov SA. The effect of interleukin-8 truncations on its interactions with glycosaminoglycans. Biopolymers 2018; 109:e23103. [DOI: 10.1002/bip.23103] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/23/2017] [Accepted: 01/08/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Karoline Nordsieck
- Institute of Biochemistry, Universität Leipzig, Brüderstr. 34; Leipzig 04103 Germany
| | - Lars Baumann
- Institute of Biochemistry, Universität Leipzig, Brüderstr. 34; Leipzig 04103 Germany
- Institute for Medical Physics and Biophysics, Universität Leipzig, Härtelstr. 16-18; Leipzig 04107 Germany
| | - Vera Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Strasse 27; Dresden 01069 Germany
| | - M. Teresa Pisabarro
- Structural Bioinformatics, BIOTEC TU Dresden, Tatzberg 47-49; Dresden 01307 Germany
| | | | | | - Sergey A. Samsonov
- Faculty of Chemistry; University of Gdańsk, ul. Wita Stwosza 63; Gdańsk 80-308 Poland
| |
Collapse
|
39
|
Biomaterials for Regenerative Medicine: Historical Perspectives and Current Trends. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1119:1-19. [PMID: 30406362 DOI: 10.1007/5584_2018_278] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Biomaterials are key components in tissue engineering and regenerative medicine applications, with the intended purpose of reducing the burden of disease and enhancing the quality of life of a large number of patients. The success of many regenerative medicine strategies, such as cell-based therapies, artificial organs, and engineered living tissues, is highly dependent on the ability to design or produce suitable biomaterials that can support and guide cells during tissue healing and remodelling processes. This chapter presents an overview about basic research concerning the use of different biomaterials for tissue engineering and regenerative medicine applications. Starting from a historical perspective, the chapter introduces the basic principles of designing biomaterials for tissue regeneration approaches. The main focus is set on describing the main classes of biomaterials that have been applied in regenerative medicine, including natural and synthetic polymers, bioactive ceramics, and composites. For each class of biomaterials, some of the most important physicochemical and biological properties are presented. Finally, some challenges and concerns that remain in this field are presented and discussed.
Collapse
|
40
|
Rahmati M, Pennisi CP, Mobasheri A, Mozafari M. Bioengineered Scaffolds for Stem Cell Applications in Tissue Engineering and Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1107:73-89. [DOI: 10.1007/5584_2018_215] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Szafraniec J, Błażejczyk A, Kus E, Janik M, Zając G, Wietrzyk J, Chlopicki S, Zapotoczny S. Robust oil-core nanocapsules with hyaluronate-based shells as promising nanovehicles for lipophilic compounds. NANOSCALE 2017; 9:18867-18880. [PMID: 29177344 DOI: 10.1039/c7nr05851a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The design of nanodelivery systems has been recently considered as a solution to the major challenge in pharmaceutical research - poor bioavailability of lipophilic drugs. Nanocapsules with liquid oil cores and shells based on amphiphilic polysaccharides were developed here as robust carriers of hydrophobic active compounds. A series of modified charged hyaluronates were synthesized and used as stabilizing shells ensuring also the biocompatibility of the nanocapsules that is crucial for applications related to the delivery of lipophilic drugs in vivo. Importantly, the oil nanodroplets were found to be stably suspended in water for at least 15 months without addition of low molar mass surfactants. Moreover, their size and stability may be tuned by varying the relative content of hydrophobic and hydrophilic groups in the hyaluronate derivatives as was confirmed by dynamic light scattering and nanoparticle tracking analysis as well as electron microscopy. In vivo studies demonstrated that hyaluronate-based nanocapsules accumulated preferentially in the liver as well as in the lungs. Moreover, their accumulation was dramatically potentiated in endotoxemic mice. In vitro studies showed that the nanocapsules were taken up by liver sinusoidal endothelial cells and by mouse lung vascular endothelial cells. Importantly, the capsules were found to be nontoxic in an acute oral toxicity experiment even at a dose of 2000 mg per kg b.w. Biocompatible hyaluronate-based nanocapsules with liquid cores described herein represent a promising and tunable nanodelivery system for lipophilic active compounds via both oral and intravenous administration.
Collapse
Affiliation(s)
- Joanna Szafraniec
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Bohaumilitzky L, Huber AK, Stork EM, Wengert S, Woelfl F, Boehm H. A Trickster in Disguise: Hyaluronan's Ambivalent Roles in the Matrix. Front Oncol 2017; 7:242. [PMID: 29062810 PMCID: PMC5640889 DOI: 10.3389/fonc.2017.00242] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/22/2017] [Indexed: 02/04/2023] Open
Abstract
Hyaluronan (HA) is a simple but diverse glycosaminoglycan. It plays a major role in aging, cellular senescence, cancer, and tissue homeostasis. In which way HA affects the surrounding tissues greatly depends on the molecular weight of HA. Whereas high molecular weight HA is associated with homeostasis and protective effects, HA fragments tend to be linked to the pathologic state. Furthermore, the interaction of HA with its binding partners, the hyaladherins, such as CD44, is essential for sustaining tissue integrity and is likewise related to cancer. The naked mole rat, a rodent species, possesses a special form of very high molecular weight (vHMW) HA, which is associated with the extraordinary cancer resistance and longevity of those animals. This review addresses HA and its diverse facets: from HA synthesis to degradation, from oligomeric HA to vHMW-HA and from its beneficial properties to the involvement in pathologies. We further discuss the functions of HA in the naked mole rat and compare them to human conditions. Though intensively researched, this simple polymer bears some secrets that may hold the key for a better understanding of cellular processes and the development of diseases, such as cancer.
Collapse
Affiliation(s)
- Lena Bohaumilitzky
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Ann-Kathrin Huber
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Eva Maria Stork
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Simon Wengert
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Franziska Woelfl
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Heike Boehm
- CSF Biomaterials, Max Planck Institute for Medical Research, Heidelberg, Germany.,Department of Biophysical Chemistry, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
43
|
A review of chemical methods for the selective sulfation and desulfation of polysaccharides. Carbohydr Polym 2017; 174:1224-1239. [DOI: 10.1016/j.carbpol.2017.07.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/22/2017] [Accepted: 07/06/2017] [Indexed: 11/24/2022]
|
44
|
Biomimetic electrospun scaffolds from main extracellular matrix components for skin tissue engineering application – The role of chondroitin sulfate and sulfated hyaluronan. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [DOI: 10.1016/j.msec.2017.05.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Schulze S, Wehrum D, Dieter P, Hempel U. A supplement-free osteoclast-osteoblast co-culture for pre-clinical application. J Cell Physiol 2017; 233:4391-4400. [PMID: 28667751 DOI: 10.1002/jcp.26076] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 06/29/2017] [Indexed: 12/31/2022]
Abstract
There is increasing demand for efficient and physiological in vitro cell culture systems suitable for testing new pharmaceutical drugs or for evaluating materials for tissue regeneration. In particular, co-cultures of two or more tissue-relevant cell types have the advantage to study the response of cells on diverse parameters in a more natural environment with respect to physiological complexity. We developed a direct bone cell co-culture system using human peripheral blood monocytes (hPBMC) and human bone marrow stromal cells (hBMSC) as osteoclast/osteoblast precursor cells, respectively, strictly avoiding external supplements for the induction of differentiation. The sophisticated direct hPBMC/hBMSC co-culture was characterized focusing on osteoclast function and was compared with two indirect approaches. Only in the direct co-culture, hPBMC were triggered by hBMSC into osteoclastogenesis and became active resorbing osteoclasts. Bisphosphonates and sulfated glycosaminoglycans were used to examine the suitability of the co-culture system for evaluating the influence of certain effectors on bone healing and bone regeneration and the contribution of each cell type thereby. The results show that the investigated substances had more pronounced effects on both osteoblasts and osteoclasts in the co-culture system than in respective monocultures.
Collapse
Affiliation(s)
- Sabine Schulze
- Faculty of Medicine Carl Gustav Carus, Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Diana Wehrum
- Faculty of Medicine Carl Gustav Carus, Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Peter Dieter
- Faculty of Medicine Carl Gustav Carus, Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Ute Hempel
- Faculty of Medicine Carl Gustav Carus, Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
46
|
Ansorge M, Sapudom J, Chkolnikov M, Wilde M, Anderegg U, Möller S, Schnabelrauch M, Pompe T. Mimicking Paracrine TGFβ1 Signals during Myofibroblast Differentiation in 3D Collagen Networks. Sci Rep 2017; 7:5664. [PMID: 28720779 PMCID: PMC5515936 DOI: 10.1038/s41598-017-05912-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/05/2017] [Indexed: 01/06/2023] Open
Abstract
TGFβ1 is a key regulator for induction of tissue remodeling after dermal wounding. We present a model of paracrine delivery of TGFβ1 for differentiation of dermal fibroblasts based on a fibrillar 3D collagen matrix and embedded TGFβ1 releasing microparticles. We found differentiation into myofibroblasts was achieved in a TGFβ1 dependent manner at much lower doses than systemic delivery. This effect is accounted to the slow and sustained TGFβ1 release mimicking paracrine cell signals.
Collapse
Affiliation(s)
- Michael Ansorge
- Universität Leipzig, Institute of Biochemistry, Johannisallee 21/23, 04103, Leipzig, Germany
| | - Jiranuwat Sapudom
- Universität Leipzig, Institute of Biochemistry, Johannisallee 21/23, 04103, Leipzig, Germany
| | - Marina Chkolnikov
- Universität Leipzig, Institute of Biochemistry, Johannisallee 21/23, 04103, Leipzig, Germany
| | - Martin Wilde
- Universität Leipzig, Institute of Biochemistry, Johannisallee 21/23, 04103, Leipzig, Germany
| | - Ulf Anderegg
- Universitätsklinikum Leipzig, Department of Dermatology, Venereology and Allergology, 04103, Leipzig, Germany
| | - Stephanie Möller
- Biomaterials Department, INNOVENT e. V., Prüssingstr. 27B, 07745, Jena, Germany
| | | | - Tilo Pompe
- Universität Leipzig, Institute of Biochemistry, Johannisallee 21/23, 04103, Leipzig, Germany.
| |
Collapse
|
47
|
Peerboom N, Block S, Altgärde N, Wahlsten O, Möller S, Schnabelrauch M, Trybala E, Bergström T, Bally M. Binding Kinetics and Lateral Mobility of HSV-1 on End-Grafted Sulfated Glycosaminoglycans. Biophys J 2017; 113:1223-1234. [PMID: 28697896 DOI: 10.1016/j.bpj.2017.06.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 06/13/2017] [Accepted: 06/14/2017] [Indexed: 01/08/2023] Open
Abstract
Many viruses, including herpes simplex (HSV), are recruited to their host cells via interaction between their envelope glycoproteins and cell-surface glycosaminoglycans (GAGs). This initial attachment is of a multivalent nature, i.e., it requires the establishment of multiple bonds between amino acids of viral glycoproteins and sulfated saccharides on the GAG chain. To gain understanding of how this binding process is modulated, we performed binding kinetics and mobility studies using end-grafted GAG chains that mimic the end attachment of these chains to proteoglycans. Total internal reflection fluorescence microscopy was used to probe binding and release, as well as the diffusion of single HSV-1 particles. To verify the hypothesis that the degree of sulfation, but also the arrangement of sulfate groups along the GAG chain, plays a key role in HSV binding, we tested two native GAGs (chondroitin sulfate and heparan sulfate) and compared our results to chemically sulfated hyaluronan. HSV-1 recognized all sulfated GAGs, but not the nonsulfated hyaluronan, indicating that binding is specific to the presence of sulfate groups. Furthermore we observed that a notable fraction of GAG-bound virions exhibit lateral mobility, although the multivalent binding to the immobilized GAG brushes ensures firm virus attachment to the interface. Diffusion was faster on the two native GAGs, one of which, chondroitin sulfate, was also characterized by the highest association rate per GAG chain. This highlights the complexity of multivalent virus-GAG interactions and suggests that the spatial arrangement of sulfates along native GAG chains may play a role in modulating the characteristics of the HSV-GAG interaction. Altogether, these results, obtained with a minimal and well-controlled model of the cell membrane, provide, to our knowledge, new insights into the dynamics of the HSV-GAG interaction.
Collapse
Affiliation(s)
- Nadia Peerboom
- Department of Physics, Chalmers University of Technology, Göteborg, Sweden
| | - Stephan Block
- Department of Physics, Chalmers University of Technology, Göteborg, Sweden; Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Noomi Altgärde
- Department of Physics, Chalmers University of Technology, Göteborg, Sweden
| | - Olov Wahlsten
- Department of Physics, Chalmers University of Technology, Göteborg, Sweden
| | | | | | - Edward Trybala
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| | - Tomas Bergström
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| | - Marta Bally
- Department of Physics, Chalmers University of Technology, Göteborg, Sweden.
| |
Collapse
|
48
|
Rother S, Galiazzo VD, Kilian D, Fiebig KM, Becher J, Moeller S, Hempel U, Schnabelrauch M, Waltenberger J, Scharnweber D, Hintze V. Hyaluronan/Collagen Hydrogels with Sulfated Hyaluronan for Improved Repair of Vascularized Tissue Tune the Binding of Proteins and Promote Endothelial Cell Growth. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700154] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/29/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Sandra Rother
- Institute of Materials Science; Max Bergmann Center of Biomaterials; TU Dresden, Budapester Str. 27 01069 Dresden Germany
| | - Vanessa D. Galiazzo
- Institute of Materials Science; Max Bergmann Center of Biomaterials; TU Dresden, Budapester Str. 27 01069 Dresden Germany
| | - David Kilian
- Institute of Materials Science; Max Bergmann Center of Biomaterials; TU Dresden, Budapester Str. 27 01069 Dresden Germany
| | - Karen M. Fiebig
- Institute of Materials Science; Max Bergmann Center of Biomaterials; TU Dresden, Budapester Str. 27 01069 Dresden Germany
| | - Jana Becher
- Biomaterials Department; INNOVENT e.V.; Prüssingstr. 27B 07745 Jena Germany
| | - Stephanie Moeller
- Biomaterials Department; INNOVENT e.V.; Prüssingstr. 27B 07745 Jena Germany
| | - Ute Hempel
- Institute of Physiological Chemistry; Carl Gustav Carus Faculty of Medicine; TU Dresden; Fiedlerstraße 42 01307 Dresden Germany
| | | | - Johannes Waltenberger
- Department of Cardiovascular Medicine; University of Münster; Albert-Schweitzer-Campus 1 48149 Münster Germany
| | - Dieter Scharnweber
- Institute of Materials Science; Max Bergmann Center of Biomaterials; TU Dresden, Budapester Str. 27 01069 Dresden Germany
| | - Vera Hintze
- Institute of Materials Science; Max Bergmann Center of Biomaterials; TU Dresden, Budapester Str. 27 01069 Dresden Germany
| |
Collapse
|
49
|
Mhanna R, Becher J, Schnabelrauch M, Reis RL, Pashkuleva I. Sulfated Alginate as a Mimic of Sulfated Glycosaminoglycans: Binding of Growth Factors and Effect on Stem Cell Behavior. ACTA ACUST UNITED AC 2017; 1:e1700043. [DOI: 10.1002/adbi.201700043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/15/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Rami Mhanna
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark 4806-909 Taipas Guimarães Portugal
- ICVS/3B's PT Government Associate Laboratory; Braga/Guimarães Portugal
- Biomedical Engineering and Chemical Engineering Program; American University of Beirut; Beirut 1107 2020 Lebanon
| | - Jana Becher
- INNOVENT e.V.; Biomaterials Department; Prüssingstraße 27 B D-07745 Jena Germany
| | | | - Rui L. Reis
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark 4806-909 Taipas Guimarães Portugal
- ICVS/3B's PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Iva Pashkuleva
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark 4806-909 Taipas Guimarães Portugal
- ICVS/3B's PT Government Associate Laboratory; Braga/Guimarães Portugal
| |
Collapse
|
50
|
Koehler L, Samsonov S, Rother S, Vogel S, Köhling S, Moeller S, Schnabelrauch M, Rademann J, Hempel U, Pisabarro MT, Scharnweber D, Hintze V. Sulfated Hyaluronan Derivatives Modulate TGF-β1:Receptor Complex Formation: Possible Consequences for TGF-β1 Signaling. Sci Rep 2017; 7:1210. [PMID: 28446792 PMCID: PMC5430790 DOI: 10.1038/s41598-017-01264-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/24/2017] [Indexed: 12/15/2022] Open
Abstract
Glycosaminoglycans are known to bind biological mediators thereby modulating their biological activity. Sulfated hyaluronans (sHA) were reported to strongly interact with transforming growth factor (TGF)-β1 leading to impaired bioactivity in fibroblasts. The underlying mechanism is not fully elucidated yet. Examining the interaction of all components of the TGF-β1:receptor complex with sHA by surface plasmon resonance, we could show that highly sulfated HA (sHA3) blocks binding of TGF-β1 to its TGF-β receptor-I (TβR-I) and -II (TβR-II). However, sequential addition of sHA3 to the TβR-II/TGF-β1 complex led to a significantly stronger recruitment of TβR-I compared to a complex lacking sHA3, indicating that the order of binding events is very important. Molecular modeling suggested a possible molecular mechanism in which sHA3 could potentially favor the association of TβR-I when added sequentially. For the first time bioactivity of TGF-β1 in conjunction with sHA was investigated at the receptor level. TβR-I and, furthermore, Smad2 phosphorylation were decreased in the presence of sHA3 indicating the formation of an inactive signaling complex. The results contribute to an improved understanding of the interference of sHA3 with TGF-β1:receptor complex formation and will help to further improve the design of functional biomaterials that interfere with TGF-β1-driven skin fibrosis.
Collapse
Affiliation(s)
- Linda Koehler
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Straße 27, 01069, Dresden, Germany
| | - Sergey Samsonov
- Structural Bioinformatics, BIOTEC TU Dresden, Tatzberg 47-51, 01307, Dresden, Germany
| | - Sandra Rother
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Straße 27, 01069, Dresden, Germany
| | - Sarah Vogel
- Medical Department, Institute of Physiological Chemistry, TU Dresden, Fiedlerstraße 42, 01307, Dresden, Germany
| | - Sebastian Köhling
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195, Berlin, Germany
| | - Stephanie Moeller
- Biomaterials Department, INNOVENT e.V., Prüssingstraße 27 B, 07745, Jena, Germany
| | | | - Jörg Rademann
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195, Berlin, Germany
| | - Ute Hempel
- Medical Department, Institute of Physiological Chemistry, TU Dresden, Fiedlerstraße 42, 01307, Dresden, Germany
| | - M Teresa Pisabarro
- Structural Bioinformatics, BIOTEC TU Dresden, Tatzberg 47-51, 01307, Dresden, Germany
| | - Dieter Scharnweber
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Straße 27, 01069, Dresden, Germany
| | - Vera Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Straße 27, 01069, Dresden, Germany.
| |
Collapse
|