1
|
Blaudez F, Vaquette C, Ivanovski S. Cell Seeding on 3D Scaffolds for Tissue Engineering and Disease Modeling Applications. Methods Mol Biol 2023; 2588:473-483. [PMID: 36418705 DOI: 10.1007/978-1-0716-2780-8_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Scaffold cell seeding is a crucial step for the standardization and homogeneous maturation of tissue engineered constructs. This is particularly critical in the context of additively manufactured scaffolds whereby large pore size and high porosity usually impedes the retention of the seeding solution resulting in poor seeding efficacy and heterogeneous cell distribution. To circumvent this limitation, a simple yet efficient cell seeding technique is described in this chapter consisting of preincubating the scaffold in 100% serum for 1 h leading to reproducible seeding. A proof of concept is demonstrated using highly porous melt electrowritten polycaprolactone scaffolds as the cell carrier. As cell density, cell distribution, and differentiation within the scaffold are important parameters, various assays are proposed to validate the seeding and perform quality control of the cellularized construct using techniques such as alizarin red, Sirius red, and immunostaining.
Collapse
Affiliation(s)
- Fanny Blaudez
- The University of Queensland, School of Dentistry, Brisbane, Australia
| | - Cedryck Vaquette
- The University of Queensland, School of Dentistry, Brisbane, Australia.,The University of Queensland, School of Dentistry, Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), Brisbane, Australia
| | - Sašo Ivanovski
- The University of Queensland, School of Dentistry, Brisbane, Australia. .,The University of Queensland, School of Dentistry, Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), Brisbane, Australia.
| |
Collapse
|
2
|
Cacciamali A, Villa R, Dotti S. 3D Cell Cultures: Evolution of an Ancient Tool for New Applications. Front Physiol 2022; 13:836480. [PMID: 35936888 PMCID: PMC9353320 DOI: 10.3389/fphys.2022.836480] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Recently, research is undergoing a drastic change in the application of the animal model as a unique investigation strategy, considering an alternative approach for the development of science for the future. Although conventional monolayer cell cultures represent an established and widely used in vitro method, the lack of tissue architecture and the complexity of such a model fails to inform true biological processes in vivo. Recent advances in cell culture techniques have revolutionized in vitro culture tools for biomedical research by creating powerful three-dimensional (3D) models to recapitulate cell heterogeneity, structure and functions of primary tissues. These models also bridge the gap between traditional two-dimensional (2D) single-layer cultures and animal models. 3D culture systems allow researchers to recreate human organs and diseases in one dish and thus holds great promise for many applications such as regenerative medicine, drug discovery, precision medicine, and cancer research, and gene expression studies. Bioengineering has made an important contribution in the context of 3D systems using scaffolds that help mimic the microenvironments in which cells naturally reside, supporting the mechanical, physical and biochemical requirements for cellular growth and function. We therefore speak of models based on organoids, bioreactors, organ-on-a-chip up to bioprinting and each of these systems provides its own advantages and applications. All of these techniques prove to be excellent candidates for the development of alternative methods for animal testing, as well as revolutionizing cell culture technology. 3D systems will therefore be able to provide new ideas for the study of cellular interactions both in basic and more specialized research, in compliance with the 3R principle. In this review, we provide a comparison of 2D cell culture with 3D cell culture, provide details of some of the different 3D culture techniques currently available by discussing their strengths as well as their potential applications.
Collapse
Affiliation(s)
| | | | - Silvia Dotti
- *Correspondence: Andrea Cacciamali, ; Silvia Dotti,
| |
Collapse
|
3
|
Saunders SK, Cole SY, Acuna Sierra V, Bracamonte JH, Toldo S, Soares JS. Evaluation of perfusion-driven cell seeding of small diameter engineered tissue vascular grafts with a custom-designed seed-and-culture bioreactor. PLoS One 2022; 17:e0269499. [PMID: 35709083 PMCID: PMC9202848 DOI: 10.1371/journal.pone.0269499] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/20/2022] [Indexed: 11/24/2022] Open
Abstract
Tissue engineering commonly entails combining autologous cell sources with biocompatible scaffolds for the replacement of damaged tissues in the body. Scaffolds provide functional support while also providing an ideal environment for the growth of new tissues until host integration is complete. To expedite tissue development, cells need to be distributed evenly within the scaffold. For scaffolds with a small diameter tubular geometry, like those used for vascular tissue engineering, seeding cells evenly along the luminal surface can be especially challenging. Perfusion-based cell seeding methods have been shown to promote increased uniformity in initial cell distribution onto porous scaffolds for a variety of tissue engineering applications. We investigate the seeding efficiency of a custom-designed perfusion-based seed-and-culture bioreactor through comparisons to a static injection counterpart method and a more traditional drip seeding method. Murine vascular smooth muscle cells were seeded onto porous tubular electrospun polycaprolactone scaffolds, 2 mm in diameter and 30 mm in length, using the three methods, and allowed to rest for 24 hours. Once harvested, scaffolds were evaluated longitudinally and circumferentially to assess the presence of viable cells using alamarBlue and live/dead cell assays and their distribution with immunohistochemistry and scanning electron microscopy. On average, bioreactor-mediated perfusion seeding achieved 35% more luminal surface coverage when compared to static methods. Viability assessment demonstrated that the total number of viable cells achieved across methods was comparable with slight advantage to the bioreactor-mediated perfusion-seeding method. The method described is a simple, low-cost method to consistently obtain even distribution of seeded cells onto the luminal surfaces of small diameter tubular scaffolds.
Collapse
Affiliation(s)
- Sarah K. Saunders
- Department of Mechanical and Nuclear Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Sam Y. Cole
- Department of Mechanical and Nuclear Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Valeria Acuna Sierra
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Johane H. Bracamonte
- Department of Mechanical and Nuclear Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Stefano Toldo
- Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Joao S. Soares
- Department of Mechanical and Nuclear Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
4
|
|
5
|
Munteanu C, Mireşan V, Răducu C, Ihuţ A, Uiuiu P, Pop D, Neacşu A, Cenariu M, Groza I. Can Cultured Meat Be an Alternative to Farm Animal Production for a Sustainable and Healthier Lifestyle? Front Nutr 2021; 8:749298. [PMID: 34671633 PMCID: PMC8522976 DOI: 10.3389/fnut.2021.749298] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Producing animal proteins requires large areas of agricultural land and is a major source of greenhouse gases. Cellular agriculture, especially cultured meat, could be a potential alternative for the environment and human health. It enables meat and other agricultural products to be grown from cells in a bioreactor without being taken from farm animals. This paper aims at an interdisciplinary review of literature focusing on potential benefits and risks associated with cultured meat. To achieve this goal, several international databases and governmental projects were thoroughly analyzed using keywords and phrases with specialty terms. This is a growing scientific domain, which has generated a series of debates regarding its potential effects. On the one hand the potential of beneficial effects is the reduction of agricultural land usage, pollution and the improvement of human health. Other authors question if cultured meat could be a sustainable alternative for reducing gas emissions. Interestingly, the energy used for cultured meat could be higher, due to the replacement of some biological functions, by technological processes. For potential effects to turn into results, a realistic understanding of the technology involved and more experimental studies are required.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Vioara Mireşan
- Department of Fundamental Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Camelia Răducu
- Department of Technological Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Andrada Ihuţ
- Department of Technological Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Paul Uiuiu
- Department of Fundamental Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Daria Pop
- Clinic of Obstetrics and Gynecology II "Dominic Stanca, " University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj-Napoca, Cluj-Napoca, Romania
| | - Alexandra Neacşu
- Department of Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Mihai Cenariu
- Department of Animal Reproduction and Reproductive Pathology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Ioan Groza
- Department of Animal Reproduction and Reproductive Pathology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
6
|
|
7
|
Aizad S, Zubairi SI, Yahaya BH, Lazim AM. Centella asiatica Extract Potentiates Anticancer Activity in an Improved 3-D PHBV-Composite-CMC A549 Lung Cancer Microenvironment Scaffold. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-05072-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Hepatic Polarization Accelerated by Mechanical Compaction Involves HNF4 α Activation. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8016306. [PMID: 32802875 PMCID: PMC7426769 DOI: 10.1155/2020/8016306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/23/2020] [Accepted: 07/07/2020] [Indexed: 11/25/2022]
Abstract
There remain few data about the role of homeostatic compaction in hepatic polarization. A previous study has found that mechanical compaction can accelerate hepatocyte polarization; however, the cellular mechanism underlying the effect is mostly unclear. Hepatocyte nuclear factor 4 alpha (HNF4α) is crucial for hepatic polarization in liver morphogenesis. Therefore, we sought to identify any possible involvement of HNF4α in the process of hepatocyte polarization accelerated by mechanical compaction. We first verified in the nonhepatic cell model HEK-293T, and the hepatic cell model primary hepatocytes that the mechanical compaction on cell aggregates simulated by using transient centrifugation can directly activate the expression of HNF4α promoters. Moreover, data using primary hepatocytes showed that the HNF4α expression is positively associated with the levels of compaction force: 2.1-folds higher at the mRNA level and 2.1-folds higher at the protein level for 500 g vs. 0 g. Furthermore, activated HNF4α expression is associated with the enhanced biliary canalicular formation and the increased production of albumin and urea. Pretreatment with Latrunculin B, an inhibitor of F-actin, and SHE78-7, an inhibitor of E-cadherin, which both interrupt the pathway of mechanical transduction, partially but significantly reduced the HNF4α expression and production of albumin and urea. In conclusion, HNF4α can be actively involved in the hepatic polarization in the context of environmental mechanical compaction.
Collapse
|
9
|
Blaudez F, Ivanovski S, Ipe D, Vaquette C. A comprehensive comparison of cell seeding methods using highly porous melt electrowriting scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111282. [PMID: 32919643 DOI: 10.1016/j.msec.2020.111282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 12/30/2022]
Abstract
Cell seeding is challenging in the case of additively manufactured 3-dimensional scaffolds, as the open macroscopic pore network impedes the retention of the seeding solution. The present study aimed at comparing several seeding conditions (no fetal bovine serum, 10% or 100% serum) and methods (Static seeding in Tissue Culture Treated plate (CT), Static seeding of the MES in non-Culture Treated plate (nCT), Seeding in nCT plate placed on an orbital shaker at 20 rpm (nCTR), Static seeding of the MES previously incubated with 100% FBS for 1 h to allow for protein adsorption (FBS)) commonly utilised in tissue engineering using highly porous melt electrowritten scaffolds, assessing their seeding efficacy, cell distribution homogeneity and reproducibility. Firstly, we demonstrated that the incubation in 100% serum was superior to the 10% serum pre-incubation and that 1 h only was sufficient to obtain enhanced cell attachment. We further compared this technique to the other methods and demonstrated significant and beneficial impact of the 100% serum pre-incubation, which resulted in enhanced efficacy, homogeneous cell distribution and high reproducibility, leading to accelerated colonisation/maturation of the tissue engineered constructs. We further showed the superior performance of this method using 3D-printed scaffolds also made of different polymers, demonstrating its capacity for up-scaling. Therefore, the pre-incubation of the scaffold in 100% serum is a simple yet highly effective method for enhancing cell adhesion and ensuring seeding reproducibility. This is crucial for tissue engineering applications, especially when cell availability is scarce, and for product standardisation from a translational perspective.
Collapse
Affiliation(s)
- Fanny Blaudez
- School of Dentistry and Oral Health, Gold Coast campus, Griffith University, QLD 4222, Australia
| | - Saso Ivanovski
- The University of Queensland, School of Dentistry, Herston, Queensland, Australia
| | - Deepak Ipe
- School of Dentistry and Oral Health, Gold Coast campus, Griffith University, QLD 4222, Australia
| | - Cedryck Vaquette
- The University of Queensland, School of Dentistry, Herston, Queensland, Australia.
| |
Collapse
|
10
|
Melke J, Zhao F, Ito K, Hofmann S. Orbital seeding of mesenchymal stromal cells increases osteogenic differentiation and bone-like tissue formation. J Orthop Res 2020; 38:1228-1237. [PMID: 31922286 PMCID: PMC7317919 DOI: 10.1002/jor.24583] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 12/12/2019] [Indexed: 02/04/2023]
Abstract
In bone tissue engineering (TE), an efficient seeding and homogenous distribution of cells is needed to avoid cell loss and damage as well as to facilitate tissue development. Dynamic seeding methods seem to be superior to the static ones because they tend to result in a more homogeneous cell distribution by using kinetic forces. However, most dynamic seeding techniques are elaborate or require special equipment and its influence on the final bone tissue-engineered construct is not clear. In this study, we applied a simple, dynamic seeding method using an orbital shaker to seed human bone marrow-derived mesenchymal stromal cells (hBMSCs) on silk fibroin scaffolds. Significantly higher cell numbers with a more homogenous cell distribution, increased osteogenic differentiation, and mineral deposition were observed using the dynamic approach both for 4 and 6 hours as compared to the static seeding method. The positive influence of dynamic seeding could be attributed to both cell density and distribution but also nutrient supply during seeding and shear stresses (0.0-3.0 mPa) as determined by computational simulations. The influence of relevant mechanical stimuli during seeding should be investigated in the future, especially regarding the importance of mechanical cues for bone TE applications. Our results highlight the importance of adequate choice of seeding method and its impact on developing tissue-engineered constructs. The application of this simple seeding technique is not only recommended for bone TE but can also be used for seeding similar porous scaffolds with hBMSCs in other TE fields.
Collapse
Affiliation(s)
- Johanna Melke
- Orthopaedic BiomechanicsDepartment of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands,Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhovenThe Netherlands
| | - Feihu Zhao
- Orthopaedic BiomechanicsDepartment of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands,Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhovenThe Netherlands
| | - Keita Ito
- Orthopaedic BiomechanicsDepartment of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands,Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhovenThe Netherlands
| | - Sandra Hofmann
- Orthopaedic BiomechanicsDepartment of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands,Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhovenThe Netherlands
| |
Collapse
|
11
|
Matsuno K, Saotome T, Shimada N, Nakamura K, Tabata Y. Effect of cell seeding methods on the distribution of cells into the gelatin hydrogel nonwoven fabric. Regen Ther 2020; 14:160-164. [PMID: 32110685 PMCID: PMC7033290 DOI: 10.1016/j.reth.2020.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/24/2019] [Accepted: 01/19/2020] [Indexed: 10/25/2022] Open
Affiliation(s)
- Kumiko Matsuno
- Research and Development Center, The Japan Wool Textile Co., Ltd., 440, Funamoto, Yoneda-cho, Kakogawa, Hyogo, 675-0053, Japan
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Research and Development Center, The Japan Wool Textile Co., Ltd., 440, Funamoto, Yoneda-cho, Kakogawa, Hyogo, 675-0053, Japan
- Research and Development Center, The Japan Wool Textile Co., Ltd., 440, Funamoto, Yoneda-cho, Kakogawa, Hyogo, 675-0053, Japan
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Toshiki Saotome
- Research and Development Center, The Japan Wool Textile Co., Ltd., 440, Funamoto, Yoneda-cho, Kakogawa, Hyogo, 675-0053, Japan
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Research and Development Center, The Japan Wool Textile Co., Ltd., 440, Funamoto, Yoneda-cho, Kakogawa, Hyogo, 675-0053, Japan
- Research and Development Center, The Japan Wool Textile Co., Ltd., 440, Funamoto, Yoneda-cho, Kakogawa, Hyogo, 675-0053, Japan
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Naoki Shimada
- Research and Development Center, The Japan Wool Textile Co., Ltd., 440, Funamoto, Yoneda-cho, Kakogawa, Hyogo, 675-0053, Japan
- Research and Development Center, The Japan Wool Textile Co., Ltd., 440, Funamoto, Yoneda-cho, Kakogawa, Hyogo, 675-0053, Japan
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Koichiro Nakamura
- Research and Development Center, The Japan Wool Textile Co., Ltd., 440, Funamoto, Yoneda-cho, Kakogawa, Hyogo, 675-0053, Japan
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
12
|
Xu C, Okpokwasili C, Huang Y, Shi X, Wu J, Liao J, Tang L, Hong Y. Optimizing Anisotropic Polyurethane Scaffolds to Mechanically Match with Native Myocardium. ACS Biomater Sci Eng 2020; 6:2757-2769. [PMID: 33313394 PMCID: PMC7725265 DOI: 10.1021/acsbiomaterials.9b01860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biodegradable cardiac patch is desirable to possess mechanical properties mimicking native myocardium for heart infarction treatment. We fabricated a series of anisotropic and biodegradable polyurethane porous scaffolds via thermally induced phase separation (TIPS) and tailored their mechanical properties by using various polyurethanes with different soft segments and varying polymer concentrations. The uniaxial mechanical properties, suture retention strength, ball-burst strength, and biaxial mechanical properties of the anisotropic porous scaffolds were optimized to mechanically match native myocardium. The optimal anisotropic scaffold had a ball burst strength (20.7 ± 1.5 N) comparable to that of native porcine myocardium (20.4 ± 6.0 N) and showed anisotropic behavior close to biaxial stretching behavior of the native porcine myocardium. Furthermore, the optimized porous scaffold was combined with a porcine myocardium-derived hydrogel to form a biohybrid scaffold. The biohybrid scaffold showed morphologies similar to the decellularized porcine myocardial matrix. This combination did not affect the mechanical properties of the synthetic scaffold alone. After in vivo rat subcutaneous implantation, the biohybrid scaffolds showed minimal immune response and exhibited higher cell penetration than the polyurethane scaffold alone. This biohybrid scaffold with biomimetic mechanics and good tissue compatibility would have great potential to be applied as a biodegradable acellular cardiac patch for myocardial infarction treatment.
Collapse
Affiliation(s)
- Cancan Xu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chuka Okpokwasili
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yihui Huang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaodan Shi
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jinglei Wu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jun Liao
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
13
|
Odeleye AOO, Baudequin T, Chui CY, Cui Z, Ye H. An additive manufacturing approach to bioreactor design for mesenchymal stem cell culture. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
A 3D computational model of perfusion seeding for investigating cell transport and adhesion within a porous scaffold. Biomech Model Mechanobiol 2020; 19:1461-1475. [PMID: 31900653 DOI: 10.1007/s10237-019-01281-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/17/2019] [Indexed: 10/25/2022]
Abstract
The process of cell seeding within a porous scaffold is an essential first step in the development of tissue-engineered bone grafts. Understanding the underlying mechanisms of cell distribution and adhesion is fundamental for the design and optimization of the seeding process. To that end, we present a numerical model to investigate the perfusion cell seeding process that incorporates cell mechanics, cell-fluid interaction, and cell-scaffold adhesion. The individual cells are modeled as deformable spherical capsules capable of adhering to the scaffold surface as well as to other cells with probabilistic bond formation and rupture. The mechanical deformation of the cell is calibrated with the stretching of mice mesenchymal stem cells induced by optical tweezers, while the predicted adhesive forces are consistent with the experimental data reported in the literature. A sub-domain is numerically reconstructed as the region of interest (ROI) which is representative of an actual scaffold. Through the simulations, the perfusion seeding kinetics within the ROI involving detailed transport and adhesion of cells over time is analyzed. The effects of the perfusion pressure and initial cell concentration on the seeding kinetics are studied in terms of adhesion rates, cell cluster formation, seeding uniformity, and efficiency, as well as scaffold permeability. The results highlight the importance of cell-fluid interaction and adhesion dynamics in modeling the dynamic seeding process. This bottom-up model provides a way to bridge detailed behaviors of individual cells to the seeding outcomes at the macroscopic scale, allowing for finding the best configuration to enhance cell seeding.
Collapse
|
15
|
Optimizing cell encapsulation condition in ECM-Collagen I hydrogels to support 3D neuronal cultures. J Neurosci Methods 2020; 329:108460. [DOI: 10.1016/j.jneumeth.2019.108460] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 01/05/2023]
|
16
|
Zhi Z, Xing F, Chen L, Li L, Long Y, Xiang Z. [Application of cell sheet technology in bone and cartilage tissue engineering]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:237-241. [PMID: 29806418 DOI: 10.7507/1002-1892.201707027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective To review the progress of cell sheet technology and its application in bone and cartilage engineering. Methods The recent literature concerning the cell sheet technology used in treatment of bone and cartilage defects was extensively reviewed and summarized. Results Cell sheet built through many different ways can protect extracellular matrix from proteolytic enzymes. As a three-dimensional structure, cell sheet can repair bone and cartilige defects via folding, wrapping scaffold, or be created by the layering of individual cell sheets. Conclusion The cell sheet technology would have a very broad prospects in bone and cartilage tissue engineering in future.
Collapse
Affiliation(s)
- Zhenya Zhi
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Fei Xing
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Long Chen
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Lang Li
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Ye Long
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Zhou Xiang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041,
| |
Collapse
|
17
|
Flow perfusion rate modulates cell deposition onto scaffold substrate during cell seeding. Biomech Model Mechanobiol 2017; 17:675-687. [PMID: 29188392 PMCID: PMC5948308 DOI: 10.1007/s10237-017-0985-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 11/13/2017] [Indexed: 12/21/2022]
Abstract
The combination of perfusion bioreactors with porous scaffolds is beneficial for the transport of cells during cell seeding. Nonetheless, the fact that cells penetrate into the scaffold pores does not necessarily imply the interception of cells with scaffold substrate and cell attachment. An in vitro perfusion system was built to relate the selected flow rate with seeding efficiency. However, the in vitro model does not elucidate how the flow rate affects the transport and deposition of cells onto the scaffold. Thus, a computational model was developed mimicking in vitro conditions to identify the mechanisms that bring cells to the scaffold from suspension flow. Static and dynamic cell seeding configurations were investigated. In static seeding, cells sediment due to gravity until they encounter the first obstacle. In dynamic seeding, 12, 120 and 600 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upmu \hbox {l/min}$$\end{document}μl/min flow rates were explored under the presence or the absence of gravity. Gravity and secondary flow were found to be key factors for cell deposition. In vitro and in silico seeding efficiencies are in the same order of magnitude and follow the same trend with the effect of fluid flow; static seeding results in higher efficiency than dynamic perfusion although irregular spatial distribution of cells was found. In dynamic seeding, 120 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upmu \hbox {l/min}$$\end{document}μl/min provided the best seeding results. Nevertheless, the perfusion approach reports low efficiencies for the scaffold used in this study which leads to cell waste and low density of cells inside the scaffold. This study suggests gravity and secondary flow as the driving mechanisms for cell-scaffold deposition. In addition, the present in silico model can help to optimize hydrodynamic-based seeding strategies prior to experiments and enhance cell seeding efficiency.
Collapse
|
18
|
µ-Particle tracking velocimetry and computational fluid dynamics study of cell seeding within a 3D porous scaffold. J Mech Behav Biomed Mater 2017; 75:463-469. [DOI: 10.1016/j.jmbbm.2017.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/25/2017] [Accepted: 08/02/2017] [Indexed: 12/22/2022]
|
19
|
Ratheesh G, Venugopal JR, Chinappan A, Ezhilarasu H, Sadiq A, Ramakrishna S. 3D Fabrication of Polymeric Scaffolds for Regenerative Therapy. ACS Biomater Sci Eng 2017; 3:1175-1194. [PMID: 33440508 DOI: 10.1021/acsbiomaterials.6b00370] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent advances in bioprinting technology have been used to precisely dispense cell-laden biomaterials for the construction of complex 3D functional living tissues or artificial organs. Organ printing and biofabrication provides great potential for the freeform fabrication of 3D living organs using cellular spheroids, biocomposite nanofibers, or bioinks as building blocks for regenerative therapy. Vascularization is often identified as a main technological barrier for building 3D organs in tissue engineering. 3D printing of living tissues starts with potential support of biomaterials to maintain structural integrity and degradation of certain time periods after printing of the scaffolds. Biofabrication is the production of complex living and nonliving biological products from raw materials such as cells, molecules, ECM, and biomaterials. Generally, two basic methods are used for the fabrication of scaffolds such as conventional/traditional fabrication processes and advance fabrication processes for engineering organs. A wide range of polymers and biomaterials are used for the fabrication of scaffolds in tissue engineering applications. 3D additive manufacturing is advancing day-by-day; however, there are various critical challenging factors used for fabricating 3D scaffolds. This review is aimed at understanding the various scaffold fabrication techniques, types of polymers and biomaterials used for the fabrication processes, various fields of applications, and different challenges faced in their fabrication of scaffolds in regenerative therapy.
Collapse
Affiliation(s)
- Greeshma Ratheesh
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576.,Science and Engineering Faculty, Queensland University of Technology, Brisbane, Australia
| | - Jayarama Reddy Venugopal
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576
| | - Amutha Chinappan
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576
| | - Hariharan Ezhilarasu
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576
| | - Asif Sadiq
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576
| | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576.,Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China
| |
Collapse
|
20
|
Campos Marin A, Grossi T, Bianchi E, Dubini G, Lacroix D. 2D µ-Particle Image Velocimetry and Computational Fluid Dynamics Study Within a 3D Porous Scaffold. Ann Biomed Eng 2016; 45:1341-1351. [PMID: 27957607 PMCID: PMC5397455 DOI: 10.1007/s10439-016-1772-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/02/2016] [Indexed: 01/14/2023]
Abstract
Transport properties of 3D scaffolds under fluid flow are critical for tissue development. Computational fluid dynamics (CFD) models can resolve 3D flows and nutrient concentrations in bioreactors at the scaffold-pore scale with high resolution. However, CFD models can be formulated based on assumptions and simplifications. μ-Particle image velocimetry (PIV) measurements should be performed to improve the reliability and predictive power of such models. Nevertheless, measuring fluid flow velocities within 3D scaffolds is challenging. The aim of this study was to develop a μPIV approach to allow the extraction of velocity fields from a 3D additive manufacturing scaffold using a conventional 2D μPIV system. The μ-computed tomography scaffold geometry was included in a CFD model where perfusion conditions were simulated. Good agreement was found between velocity profiles from measurements and computational results. Maximum velocities were found at the centre of the pore using both techniques with a difference of 12% which was expected according to the accuracy of the μPIV system. However, significant differences in terms of velocity magnitude were found near scaffold substrate due to scaffold brightness which affected the μPIV measurements. As a result, the limitations of the μPIV system only permits a partial validation of the CFD model. Nevertheless, the combination of both techniques allowed a detailed description of velocity maps within a 3D scaffold which is crucial to determine the optimal cell and nutrient transport properties.
Collapse
Affiliation(s)
- A Campos Marin
- Insigneo Institute for in silico Medicine, Department of Mechanical Engineering, University of Sheffield, Pam Liversidge Building, Mappin Street, Sheffield, S1 3JD, UK
| | - T Grossi
- Laboratory of Biological Structure Mechanics, Politecnico di Milano, Milan, Italy
| | - E Bianchi
- Laboratory of Biological Structure Mechanics, Politecnico di Milano, Milan, Italy
| | - G Dubini
- Laboratory of Biological Structure Mechanics, Politecnico di Milano, Milan, Italy
| | - D Lacroix
- Insigneo Institute for in silico Medicine, Department of Mechanical Engineering, University of Sheffield, Pam Liversidge Building, Mappin Street, Sheffield, S1 3JD, UK.
| |
Collapse
|
21
|
Costantini M, Colosi C, Mozetic P, Jaroszewicz J, Tosato A, Rainer A, Trombetta M, Święszkowski W, Dentini M, Barbetta A. Correlation between porous texture and cell seeding efficiency of gas foaming and microfluidic foaming scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:668-77. [DOI: 10.1016/j.msec.2016.02.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/25/2015] [Accepted: 02/03/2016] [Indexed: 01/26/2023]
|
22
|
Mohanty S, Sanger K, Heiskanen A, Trifol J, Szabo P, Dufva M, Emnéus J, Wolff A. Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 61:180-9. [DOI: 10.1016/j.msec.2015.12.032] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/27/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
|
23
|
Snyder J, Son AR, Hamid Q, Wu H, Sun W. Hetero-cellular prototyping by synchronized multi-material bioprinting for rotary cell culture system. Biofabrication 2016; 8:015002. [DOI: 10.1088/1758-5090/8/1/015002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
You F, Li Y, Zou Q, Zuo Y, Lu M, Chen X, Li J. Fabrication and Osteogenesis of a Porous Nanohydroxyapatite/Polyamide Scaffold with an Anisotropic Architecture. ACS Biomater Sci Eng 2015; 1:825-833. [PMID: 33445260 DOI: 10.1021/acsbiomaterials.5b00199] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Scaffolds are used in bone tissue engineering to provide a temporary structural template for cell seeding and extracellular matrix formation. However, tissue formation on scaffold outer edges after implantation due to insufficient interconnectivity may restrict cell infiltration and mass transfer to/from the scaffold center, leading to bone regeneration failure. To address this problem, we prepared nanohydroxyapatite/polyamide66 (n-HA/PA66) anisotropic scaffolds with axially aligned channels (300 μm) with the aim to enhance pore interconnectivity and subsequent cell and tissue infiltration throughout the scaffold. Anisotropic scaffolds with axially aligned channels had better mechanical properties and a higher porosity (86.37%) than isotropic scaffolds produced by thermally induced phase separation (TIPS). The channels in the anisotropic scaffolds provided cells with passageways to the scaffold center and thus facilitated cell attachment and proliferation inside the scaffolds. In vivo studies showed that the anisotropic scaffolds could better facilitate new bone ingrowth into the inner pores of the scaffold compared to the isotropic scaffolds. The anisotropic scaffolds also had improved vascular invasion into their inner parts, increasing the supply of oxygen and nutrients to the cells and thus facilitating revascularization and bone ingrowth. Enhanced cell and tissue penetration to the scaffold center was observed in the anisotropic scaffolds both in vitro and in vivo, indicating the axially aligned channels positively influenced cell and tissue infiltration. Thus, such scaffolds have great potential for applications in bone tissue engineering.
Collapse
Affiliation(s)
- Fu You
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610064, P. R. China.,Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan S7N5A9, Canada
| | - Yubao Li
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610064, P. R. China
| | - Qin Zou
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610064, P. R. China
| | - Yi Zuo
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610064, P. R. China
| | - Minpeng Lu
- Department of Orthopaedic Surgery, Yongchuan Hospital, Chongqing Medical University, 439 Xuanhua Road, Chongqing 402160, P. R. China
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan S7N5A9, Canada
| | - Jidong Li
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610064, P. R. China
| |
Collapse
|
25
|
Lv XG, Feng C, Fu Q, Xie H, Wang Y, Huang JW, Xie MK, Atala A, Xu YM, Zhao WX. Comparative study of different seeding methods based on a multilayer SIS scaffold: Which is the optimal procedure for urethral tissue engineering? J Biomed Mater Res B Appl Biomater 2015; 104:1098-108. [DOI: 10.1002/jbm.b.33460] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/27/2015] [Accepted: 05/13/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Xiang-Guo Lv
- Department of Urology; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai People's Republic of China
| | - Chao Feng
- Department of Urology; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai People's Republic of China
| | - Qiang Fu
- Department of Urology; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai People's Republic of China
| | - Hong Xie
- Department of Urology; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai People's Republic of China
| | - Ying Wang
- Department of Urology; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai People's Republic of China
| | - Jian-Wen Huang
- Department of Urology; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai People's Republic of China
| | - Min-Kai Xie
- Department of Urology; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai People's Republic of China
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University; Winston-Salem North Carolina
| | - Yue-Min Xu
- Department of Urology; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai People's Republic of China
| | - Wei-Xin Zhao
- Wake Forest Institute for Regenerative Medicine, Wake Forest University; Winston-Salem North Carolina
| |
Collapse
|
26
|
Manzano S, Moreno-Loshuertos R, Doblaré M, Ochoa I, Hamdy Doweidar M. Structural biology response of a collagen hydrogel synthetic extracellular matrix with embedded human fibroblast: computational and experimental analysis. Med Biol Eng Comput 2015; 53:721-35. [PMID: 25835213 DOI: 10.1007/s11517-015-1277-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/16/2015] [Indexed: 12/20/2022]
Abstract
Adherent cells exert contractile forces which play an important role in the spatial organization of the extracellular matrix (ECM). Due to these forces, the substrate experiments a volume reduction leading to a characteristic shape. ECM contraction is a key process in many biological processes such as embryogenesis, morphogenesis and wound healing. However, little is known about the specific parameters that control this process. With this aim, we present a 3D computational model able to predict the contraction process of a hydrogel matrix due to cell-substrate mechanical interaction. It considers cell-generated forces, substrate deformation, ECM density, cellular migration and proliferation. The model also predicts the cellular spatial distribution and concentration needed to reproduce the contraction process and confirms the minimum value of cellular concentration necessary to initiate the process observed experimentally. The obtained continuum formulation has been implemented in a finite element framework. In parallel, in vitro experiments have been performed to obtain the main model parameters and to validate it. The results demonstrate that cellular forces, migration and proliferation are acting simultaneously to display the ECM contraction.
Collapse
Affiliation(s)
- Sara Manzano
- Group of Structural Mechanics and Materials Modelling (GEMM), Aragón Institute of Engineering Research (13A), University of Zaragoza, Zaragoza, Spain
| | | | | | | | | |
Collapse
|
27
|
Bouet G, Marchat D, Cruel M, Malaval L, Vico L. In VitroThree-Dimensional Bone Tissue Models: From Cells to Controlled and Dynamic Environment. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:133-56. [DOI: 10.1089/ten.teb.2013.0682] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Guenaelle Bouet
- Laboratoire de Biologie du Tissu Osseux, Institut National de la Santé et de la Recherche Médicale—U1059, Université de Lyon—Université Jean Monnet, Saint-Etienne, France
| | - David Marchat
- Center for Biomedical and Healthcare Engineering, Ecole Nationale Supérieure des Mines, CIS-EMSE, CNRS:UMR 5307, Saint-Etienne, France
| | - Magali Cruel
- University of Lyon, LTDS, UMR CNRS 5513, Ecole Centrale de Lyon, Ecully, France
| | - Luc Malaval
- Laboratoire de Biologie du Tissu Osseux, Institut National de la Santé et de la Recherche Médicale—U1059, Université de Lyon—Université Jean Monnet, Saint-Etienne, France
| | - Laurence Vico
- Laboratoire de Biologie du Tissu Osseux, Institut National de la Santé et de la Recherche Médicale—U1059, Université de Lyon—Université Jean Monnet, Saint-Etienne, France
| |
Collapse
|
28
|
Song BR, Yang SS, Jin H, Lee SH, Park DY, Lee JH, Park SR, Park SH, Min BH. Three dimensional plotted extracellular matrix scaffolds using a rapid prototyping for tissue engineering application. Tissue Eng Regen Med 2015. [DOI: 10.1007/s13770-015-0107-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
29
|
Yamanaka K, Yamamoto K, Sakai Y, Suda Y, Shigemitsu Y, Kaneko T, Kato K, Kumagai T, Kato Y. Seeding of mesenchymal stem cells into inner part of interconnected porous biodegradable scaffold by a new method with a filter paper. Dent Mater J 2015; 34:78-85. [PMID: 25748462 DOI: 10.4012/dmj.2013-330] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An appropriate physical support provided by scaffolds creates a supportive environment that directs proliferation and differentiation of stem cells. However, it is difficult to homogenously inoculate stem cells into the inner part of scaffolds at high cell densities. In this study, mesenchymal stem cells were seeded into a hydroxyapatite/poly (D, L-lactic-co-glycolic acid) (HAP/PLGA) scaffold that had enough mechanical strength and porous 3-D structure. With an aid of a filter paper placed under the bottom of a HAP/PLGA block, the cells suspended in a culture medium flowed from the top to the bottom through interconnected pores in the scaffold, and distributed almost homogenously, as compared to cell distribution near the surface of the block by the conventional method using centrifugation or reduced pressure. This simple method with a filter paper may be useful in preparation of cell-scaffold complexes for tissue engineering.
Collapse
|
30
|
Koo MA, Kang JK, Lee MH, Seo HJ, Kwon BJ, You KE, Kim MS, Kim D, Park JC. Stimulated migration and penetration of vascular endothelial cells into poly (L-lactic acid) scaffolds under flow conditions. Biomater Res 2014; 18:7. [PMID: 26331058 PMCID: PMC4552445 DOI: 10.1186/2055-7124-18-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 05/30/2014] [Indexed: 11/21/2022] Open
Abstract
Background The initial procedure of the development of engineered tissues is cell seeding into three-dimensional polymer scaffolds. However, it is hard to make the cells invade into scaffold due to the characteristic of pore and material. Electrospun poly (L-lactic acid) scaffold and flow perfusion system were used to overcome these seeding problems. Results Before starting the experiment, we set up the parallel plate chamber system to observe endothelial cell migration under flow condition. In individual cell migration model, human umbilical endothelial cells started to migrate in the direction of flow at 8 dyne/cm2 and we observed the cytoskeleton alignment at 8 dyne/cm2. This study has demonstrated the possibility to evaluate and analyze cell migration using the parallel plate chamber system and we may predict in vivo cell migration under flow condition based on these results. Also the flow perfusion system was established for the effective cell seeding into at three dimensional scaffolds. Moreover, shear stress induced by flow can enhance cell migration into PLLA scaffold that is in the form of cotton. Conclusions Result indicated that cell penetration was achieved under flow condition better and more than under static condition throughout the matrix.
Collapse
Affiliation(s)
- Min-Ah Koo
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul, Korea ; Brain Korea PLUS 21 Project for Medical Science, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul, Korea
| | - Jae Kyeong Kang
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul, Korea ; Brain Korea PLUS 21 Project for Medical Science, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul, Korea
| | - Mi Hee Lee
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul, Korea
| | - Hyok Jin Seo
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul, Korea ; Brain Korea PLUS 21 Project for Medical Science, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul, Korea
| | - Byeong-Ju Kwon
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul, Korea ; Brain Korea PLUS 21 Project for Medical Science, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul, Korea
| | - Kyung Eun You
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul, Korea ; Brain Korea PLUS 21 Project for Medical Science, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul, Korea
| | - Min Sung Kim
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul, Korea ; Brain Korea PLUS 21 Project for Medical Science, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul, Korea
| | - Dohyun Kim
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul, Korea
| | - Jong-Chul Park
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul, Korea ; Brain Korea PLUS 21 Project for Medical Science, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul, Korea
| |
Collapse
|
31
|
Levorson EJ, Santoro M, Kurtis Kasper F, Mikos AG. Direct and indirect co-culture of chondrocytes and mesenchymal stem cells for the generation of polymer/extracellular matrix hybrid constructs. Acta Biomater 2014; 10:1824-35. [PMID: 24365703 DOI: 10.1016/j.actbio.2013.12.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 11/27/2013] [Accepted: 12/13/2013] [Indexed: 12/21/2022]
Abstract
In this work, the influence of direct cell-cell contact in co-cultures of mesenchymal stem cells (MSCs) and chondrocytes for the improved deposition of cartilage-like extracellular matrix (ECM) within nonwoven fibrous poly(∊-caprolactone) (PCL) scaffolds was examined. To this end, chondrocytes and MSCs were either co-cultured in direct contact by mixing on a single PCL scaffold or produced via indirect co-culture, whereby the two cell types were seeded on separate scaffolds which were then cultured together in the same system either statically or under media perfusion in a bioreactor. In static cultures, the chondrocyte scaffold of an indirectly co-cultured group generated significantly greater amounts of glycosaminoglycan and collagen than the direct co-culture group initially seeded with the same number of chondrocytes. Furthermore, improved ECM production was linked to greater cellular proliferation and distribution throughout the scaffold in static culture. In perfusion cultures, flow had a significant effect on the proliferation of the chondrocytes. The ECM contents within the chondrocyte-containing scaffolds of the indirect co-culture groups either approximated or surpassed the amounts generated within the direct co-culture group. Additionally, within bioreactor culture there were indications that chondrocytes had an influence on the chondrogenesis of MSCs as evidenced by increases in cartilaginous ECM synthetic capacity. This work demonstrates that it is possible to generate PCL/ECM hybrid scaffolds for cartilage regeneration by utilizing the factors secreted by two different cell types, chondrocytes and MSCs, even in the absence of juxtacrine signaling.
Collapse
|
32
|
Hoch AI, Leach JK. Concise review: optimizing expansion of bone marrow mesenchymal stem/stromal cells for clinical applications. Stem Cells Transl Med 2014; 3:643-52. [PMID: 24682286 DOI: 10.5966/sctm.2013-0196] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bone marrow-derived mesenchymal stem/stromal cells (MSCs) have demonstrated success in the clinical treatment of hematopoietic pathologies and cardiovascular disease and are the focus of treating other diseases of the musculoskeletal, digestive, integumentary, and nervous systems. However, during the requisite two-dimensional (2D) expansion to achieve a clinically relevant number of cells, MSCs exhibit profound degeneration in progenitor potency. Proliferation, multilineage potential, and colony-forming efficiency are fundamental progenitor properties that are abrogated by extensive monolayer culture. To harness the robust therapeutic potential of MSCs, a consistent, rapid, and minimally detrimental expansion method is necessary. Alternative expansion efforts have exhibited promise in the ability to preserve MSC progenitor potency better than the 2D paradigm by mimicking features of the native bone marrow niche. MSCs have been successfully expanded when stimulated by growth factors, under reduced oxygen tension, and in three-dimensional bioreactors. MSC therapeutic value can be optimized for clinical applications by combining system inputs to tailor culture parameters for recapitulating the niche with probes that nondestructively monitor progenitor potency. The purpose of this review is to explore how modulations in the 2D paradigm affect MSC progenitor properties and to highlight recent efforts in alternative expansion techniques.
Collapse
Affiliation(s)
- Allison I Hoch
- Department of Biomedical Engineering and Department of Orthopaedic Surgery, School of Medicine, University of California, Davis, Sacramento, California, USA
| | | |
Collapse
|
33
|
Various seeding methods for tissue development of human umbilical-cord-derived mesenchymal stem cells in 3-dimensional PET matrix. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-013-0291-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
A phase-field model for articular cartilage regeneration in degradable scaffolds. Bull Math Biol 2013; 75:2389-409. [PMID: 24072660 DOI: 10.1007/s11538-013-9897-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 08/15/2013] [Indexed: 10/26/2022]
Abstract
Degradable scaffolds represent a promising solution for tissue engineering of damaged or degenerated articular cartilage which due to its avascular nature, is characterized by a low self-repair capacity. To estimate the articular cartilage regeneration process employing degradable scaffolds, we propose a mathematical model as the extension of Olson and Haider's work (Int. J. Pure Appl. Math. 53:333-353, 2009). The simulated tissue engineering procedure consists in (i) the explant of a cylindrical sample, (ii) the removal of the inner core region, and (iii) the filling of the inner region with hydrogels, degradable scaffolds enriched with nutrients, such as oxygen and glucose. The phase-field model simulates the cartilage regeneration process at the scaffold-cartilage interface. It embeds reaction-diffusion equations, which are used to model the nutrient and regenerated extracellular matrix. The equations are solved using an unconditionally stable hybrid numerical scheme. Cartilage repair processes with full-thickness defects, which are controlled by properties of hydrogel materials and cartilage explant culture based on biological interest are observed. The implemented mathematical model shows the capability to simulate cartilage repairing processes, which can be virtually controlled evaluating hydrogel and cartilage material properties including nutrient supply and defected magnitude. In particular, the adopted methodology is able to explain the regeneration time of cartilage within hydrogel environments. With the numerical scheme, the numerical simulations are demonstrated for the potential improvement of hydrogel structures.
Collapse
|
35
|
Long TJ, Takeno M, Sprenger CC, Plymate SR, Ratner BD. Capillary force seeding of sphere-templated hydrogels for tissue-engineered prostate cancer xenografts. Tissue Eng Part C Methods 2013; 19:738-44. [PMID: 23373788 PMCID: PMC3719465 DOI: 10.1089/ten.tec.2012.0388] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 01/17/2013] [Indexed: 02/05/2023] Open
Abstract
Biomaterial-based tissue-engineered tumor models are now widely used in cancer biology studies. However, specific methods for efficient and reliable cell seeding into these and tissue-engineering constructs used for regenerative medicine often remain poorly defined. Here, we describe a capillary force-based method for seeding the human prostate cancer cell lines M12 and LNCaP C4-2 into sphere-templated poly(2-hydroxyethyl methacrylate) hydrogels. The capillary force seeding method improved the cell number and distribution within the porous scaffolds compared to well-established protocols such as static and centrifugation seeding. Seeding efficiency was found to be strongly dependent on the rounded cell diameter relative to the pore diameter and pore interconnect size, parameters that can be controllably modulated during scaffold fabrication. Cell seeding efficiency was evaluated quantitatively using a PicoGreen DNA assay, which demonstrated some variation in cell retention using the capillary force method. When cultured within the porous hydrogels, both cell lines attached and proliferated within the network, but histology showed the formation of a necrotic zone by 7 days likely due to oxygen and nutrient diffusional limitations. The necrotic zone thickness was decreased by dynamically culturing cells in an orbital shaker. Proliferation analysis showed that despite a variable seeding efficiency, by 7 days in culture, scaffolds contained a roughly consistent number of cells as they proliferated to fill the pores of the scaffold. These studies demonstrate that sphere-templated polymeric scaffolds have the potential to serve as an adaptable cell culture substrate for engineering a three-dimensional prostate cancer model.
Collapse
Affiliation(s)
- Thomas J. Long
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Marc Takeno
- Department of Bioengineering, University of Washington, Seattle, Washington
| | | | - Stephen R. Plymate
- Department of Medicine, University of Washington, Seattle, Washington
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington
| | - Buddy D. Ratner
- Department of Bioengineering, University of Washington, Seattle, Washington
| |
Collapse
|
36
|
Liu N, Ouyang A, Li Y, Yang ST. Three-dimensional neural differentiation of embryonic stem cells with ACM induction in microfibrous matrices in bioreactors. Biotechnol Prog 2013; 29:1013-22. [PMID: 23657995 DOI: 10.1002/btpr.1742] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 03/17/2013] [Indexed: 12/21/2022]
Abstract
The clinical use of pluripotent stem cell (PSC)-derived neural cells requires an efficient differentiation process for mass production in a bioreactor. Toward this goal, neural differentiation of murine embryonic stem cells (ESCs) in three-dimensional (3D) polyethylene terephthalate microfibrous matrices was investigated in this study. To streamline the process and provide a platform for process integration, the neural differentiation of ESCs was induced with astrocyte-conditioned medium without the formation of embryoid bodies, starting from undifferentiated ESC aggregates expanded in a suspension bioreactor. The 3D neural differentiation was able to generate a complex neural network in the matrices. When compared to 2D differentiation, 3D differentiation in microfibrous matrices resulted in a higher percentage of nestin-positive cells (68% vs. 54%) and upregulated gene expressions of nestin, Nurr1, and tyrosine hydroxylase. High purity of neural differentiation in 3D microfibrous matrix was also demonstrated in a spinner bioreactor with 74% nestin + cells. This study demonstrated the feasibility of a scalable process based on 3D differentiation in microfibrous matrices for the production of ESC-derived neural cells.
Collapse
Affiliation(s)
- Ning Liu
- William G. Lowrie Dept. of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
37
|
Liu N, Li Y, Yang ST. Microfibrous carriers for integrated expansion and neural differentiation of embryonic stem cells in suspension bioreactor. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
38
|
Lee H, Ahn S, Bonassar LJ, Chun W, Kim G. Cell-laden poly(ɛ-caprolactone)/alginate hybrid scaffolds fabricated by an aerosol cross-linking process for obtaining homogeneous cell distribution: fabrication, seeding efficiency, and cell proliferation and distribution. Tissue Eng Part C Methods 2013; 19:784-93. [PMID: 23469894 DOI: 10.1089/ten.tec.2012.0651] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Generally, solid-freeform fabricated scaffolds show a controllable pore structure (pore size, porosity, pore connectivity, and permeability) and mechanical properties by using computer-aided techniques. Although the scaffolds can provide repeated and appropriate pore structures for tissue regeneration, they have a low biological activity, such as low cell-seeding efficiency and nonuniform cell density in the scaffold interior after a long culture period, due to a large pore size and completely open pores. Here we fabricated three different poly(ɛ-caprolactone) (PCL)/alginate scaffolds: (1) a rapid prototyped porous PCL scaffold coated with an alginate, (2) the same PCL scaffold coated with a mixture of alginate and cells, and (3) a multidispensed hybrid PCL/alginate scaffold embedded with cell-laden alginate struts. The three scaffolds had similar micropore structures (pore size = 430-580 μm, porosity = 62%-68%, square pore shape). Preosteoblast cells (MC3T3-E1) were used at the same cell density in each scaffold. By measuring cell-seeding efficiency, cell viability, and cell distribution after various periods of culturing, we sought to determine which scaffold was more appropriate for homogeneously regenerated tissues.
Collapse
Affiliation(s)
- HyeongJin Lee
- Department of Bio-Mechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | | | | | | | | |
Collapse
|
39
|
Domingos M, Intranuovo F, Gloria A, Gristina R, Ambrosio L, Bártolo PJ, Favia P. Improved osteoblast cell affinity on plasma-modified 3-D extruded PCL scaffolds. Acta Biomater 2013; 9:5997-6005. [PMID: 23313115 DOI: 10.1016/j.actbio.2012.12.031] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/22/2012] [Accepted: 12/30/2012] [Indexed: 11/19/2022]
Abstract
Cellular adhesion and proliferation inside three-dimensional synthetic scaffolds represent a major challenge in tissue engineering. Besides the surface chemistry of the polymers, it is well recognized that scaffold internal architecture, namely pore size/shape and interconnectivity, has a strong effect on the biological response of cells. This study reports for the first time how polycaprolactone (PCL) scaffolds with controlled micro-architecture can be effectively produced via bioextrusion and used to enhance the penetration of plasma deposited species. Low-pressure nitrogen-based coatings were employed to augment cell adhesion and proliferation without altering the mechanical properties of the structures. X-ray photoelectron spectroscopy carried out on different sections of the scaffolds indicates a uniform distribution of nitrogen-containing groups throughout the entire porous structure. In vitro biological assays confirm that plasma deposition sensitively promotes the activity of Saos-2 osteoblast cells, leading to a homogeneous colonization of the PCL scaffolds.
Collapse
Affiliation(s)
- M Domingos
- Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Portugal
| | | | | | | | | | | | | |
Collapse
|
40
|
Chou J, Green DW, Singh K, Hao J, Ben-Nissan B, Milthorpe B. Adipose Stem Cell Coating of Biomimetic β-TCP Macrospheres by Use of Laboratory Centrifuge. Biores Open Access 2013; 2:67-71. [PMID: 23515356 PMCID: PMC3569929 DOI: 10.1089/biores.2012.0269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Biomimetic materials such as coral exoskeletons possess unique architectural structures with a uniform and interconnected porous network that can be beneficial as a scaffold material. In addition, these marine structures can be hydrothermally converted to calcium phosphates, while retaining the original structural properties. The ability of biomaterials to stimulate the local microenvironment is one of the main focuses in tissue engineering, and directly coating the scaffold with stem cells facilitates future potential applications in therapeutics and regenerative medicine. In this article we describe a new and simple method that uses a laboratory centrifuge to coat hydrothermally derived beta-tricalcium phosphate macrospheres from coral exoskeleton with stem cells. In this research the optimal seeding duration and speed were determined to be 1 min and 700 g. Scanning electron micrographs showed complete surface coverage by stem cells within 7 days of seeding. This study constitutes an important step toward achieving functional tissue-engineered implants by increasing our understanding of the influence of dynamic parameters on the efficiency and distribution of stem cell attachment to biomimetic materials and how stem cells interact with biomimetic materials.
Collapse
Affiliation(s)
- Joshua Chou
- Advanced Tissue Regeneration and Drug Delivery Group, School of Medical and Molecular Biosciences, University of Technology Sydney , Sydney, Australia
| | | | | | | | | | | |
Collapse
|
41
|
Na S, Zhang H, Huang F, Wang W, Ding Y, Li D, Jin Y. Regeneration of dental pulp/dentine complex with a three-dimensional and scaffold-free stem-cell sheet-derived pellet. J Tissue Eng Regen Med 2013; 10:261-70. [PMID: 23365018 DOI: 10.1002/term.1686] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 10/13/2012] [Accepted: 11/14/2012] [Indexed: 01/09/2023]
Abstract
Dental pulp/dentine complex regeneration is indispensable to the construction of biotissue-engineered tooth roots and represents a promising approach to therapy for irreversible pulpitis. We used a tissue-engineering method based on odontogenic stem cells to design a three-dimensional (3D) and scaffold-free stem-cell sheet-derived pellet (CSDP) with the necessary physical and biological properties. Stem cells were isolated and identified and stem cells from root apical papilla (SCAPs)-based CSDPs were then fabricated and examined. Compact cell aggregates containing a high proportion of extracellular matrix (ECM) components were observed, and the CSDP culture time was prolonged. The expression of alkaline phosphatase (ALP), dentine sialoprotein (DSPP), bone sialoprotein (BSP) and runt-related gene 2 (RUNX2) mRNA was higher in CSDPs than in cell sheets (CSs), indicating that CSDPs have greater odonto/osteogenic potential. To further investigate this hypothesis, CSDPs and CSs were inserted into human treated dentine matrix fragments (hTDMFs) and transplanted into the subcutaneous space in the backs of immunodeficient mice, where they were cultured in vivo for 6 weeks. The root space with CSDPs was filled entirely with a dental pulp-like tissue with well-established vascularity, and a continuous layer of dentine-like tissue was deposited onto the existing dentine. A layer of odontoblast-like cells was found to express DSPP, ALP and BSP, and human mitochondria lined the surface of the newly formed dentine-like tissue. These results clearly indicate that SCAP-CSDPs with a mount of endogenous ECM have a strong capacity to form a heterotopic dental pulp/dentine complex in empty root canals; this method can be used in the fabrication of bioengineered dental roots and also provides an alternative treatment approach for pulp disease.
Collapse
Affiliation(s)
- Sijia Na
- Research and Development Centre for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.,Department of Oral and Maxillofacial Surgery, College of Stomatology, Jiamusi University, Jiamusi, Hei Longjiang, People's Republic of China
| | - Hao Zhang
- Research and Development Centre for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.,Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Fang Huang
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Jiamusi University, Jiamusi, Hei Longjiang, People's Republic of China
| | - Weiqi Wang
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Jiamusi University, Jiamusi, Hei Longjiang, People's Republic of China
| | - Yin Ding
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Dechao Li
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Jiamusi University, Jiamusi, Hei Longjiang, People's Republic of China
| | - Yan Jin
- Research and Development Centre for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.,Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
42
|
Thébaud NB, Siadous R, Bareille R, Remy M, Daculsi R, Amédée J, Bordenave L. Whatever their differentiation status, human progenitor derived - or mature - endothelial cells induce osteoblastic differentiation of bone marrow stromal cells. J Tissue Eng Regen Med 2012; 6:e51-60. [PMID: 22740324 DOI: 10.1002/term.1539] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 02/16/2012] [Accepted: 04/18/2012] [Indexed: 01/01/2023]
Abstract
Association of the bone-forming osteoblasts (OBs) and vascular endothelial cells (ECs) into a biomaterial composite provides a live bone graft substitute that can repair the bone defect when implanted. An intimate functional relationship exists between these cell types. This communication is crucial to the coordinated cell behaviour necessary for bone development and remodelling. Previous studies have shown that direct co-culture of primary human osteoprogenitors (HOPs) with primary human umbilical vein endothelial cells (HUVECs) stimulates HOPs differentiation and induces tubular-like networks. The present work aims to test the use of human bone marrow stromal cells (HBMSCs) co-cultured with human endothelial progenitor cells in order to assess whether progenitor-derived ECs (PDECs) could support osteoblastic differentiation as mature ECs do. Indeed, data generated from the literature by different laboratories considering these co-culture systems appear difficult to compare. Monocultures of HUVECs, HOPs, HBMSCs (in a non-orientated lineage), PDECs (from cord blood) were used as controls and four combinations of co-cultures were undertaken: HBMSCs-PDECs, HBMSCs-HUVECs, HOPs-PDECs, HOPs-HUVECs with ECs (mature or progenitor) for 6 h to 7 days. At the end of the chosen co-culture time, intracellular alkaline phosphatase (ALP) activity was detected in HOPs and HBMSCs and quantified in cell extracts. Quantitative real-time polymerase chain reaction (qPCR) of ALP was performed over time and vascular endothelial growth factor (VEGF) was measured. After 21 days, calcium deposition was observed, comparing mono- and co-cultures. We confirm that ECs induce osteoblastic differentiation of mesenchymal stem cells in vitro. Moreover, HUVECs can be replaced by PDECs, the latter being of great interest in tissue engineering.
Collapse
|
43
|
Olivares AL, Lacroix D. Simulation of cell seeding within a three-dimensional porous scaffold: a fluid-particle analysis. Tissue Eng Part C Methods 2012; 18:624-31. [PMID: 22372887 DOI: 10.1089/ten.tec.2011.0660] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cell seeding is a critical step in tissue engineering. A high number of cells evenly distributed in scaffolds after seeding are associated with a more functional tissue culture. Furthermore, high cell densities have shown the possibility to reduce culture time or increase the formation of tissue. Experimentally, it is difficult to predict the cell-seeding process. In this study, a new methodology to simulate the cell-seeding process under perfusion conditions is proposed. The cells are treated as spherical particles dragged by the fluid media, where the physical parameters are computed through a Lagrangian formulation. The methodology proposed enables to define the kinetics of cell seeding continuously over time. An exponential relationship was found to optimize the seeding time and the number of cells seeded in the scaffold. The cell distribution and cell efficiency predicted using this methodology were similar to the experimental results of Melchels et al. One of the main advantages of this method is to be able to determine the three-dimensional position of all the seeded cells and to, therefore, better know the initial conditions for further cell proliferation and differentiation studies. This study opens up the field of numerical predictions related to the interactions between biomaterials, cells, and dynamics media.
Collapse
Affiliation(s)
- Andy L Olivares
- Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
| | | |
Collapse
|
44
|
Adebiyi AA, Taslim ME, Crawford KD. The use of computational fluid dynamic models for the optimization of cell seeding processes. Biomaterials 2011; 32:8753-70. [DOI: 10.1016/j.biomaterials.2011.08.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 08/10/2011] [Indexed: 11/15/2022]
|
45
|
Mohebbi-Kalhori D, Rukhlova M, Ajji A, Bureau M, Moreno MJ. A novel automated cell-seeding device for tissue engineering of tubular scaffolds: design and functional validation. J Tissue Eng Regen Med 2011; 6:710-20. [PMID: 21948700 DOI: 10.1002/term.476] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 06/20/2011] [Accepted: 07/05/2011] [Indexed: 11/12/2022]
Abstract
Obtaining an efficient, uniform and reproducible cell seeding of porous tubular scaffolds constitutes a major challenge for the successful development of tissue-engineered vascular grafts. In this study, a novel automated cell-seeding device utilizing direct cell deposition, patterning techniques and scaffold rotation was designed to improve the cell viability, uniformity and seeding efficiency of tubular constructs. Quantification methods and imaging techniques were used to evaluate these parameters on the luminal and abluminal sides of fibrous polymer scaffolds. With the automated seeding method, a high cell-seeding efficiency (~89%), viability (~85%) and uniformity (~85-92%) were achieved for both aortic smooth muscle cells (AoSMCs) and aortic endothelial cells (AoECs). The duration of the seeding process was < 8 min. Initial cell density, cell suspension in matrix-containing media, duration of seeding process and scaffold rotation were found to affect the seeding efficiency. After few days of culture, a uniform longitudinal and circumferential cell distribution was achieved without affecting cell viability. Both cell types were viable and spread along the fibres after 28 h and 6 days of static incubation. This new automated cell-seeding method for tubular scaffolds is efficient, reliable and meets all the requirements for clinical applicability.
Collapse
Affiliation(s)
- Davod Mohebbi-Kalhori
- Institute for Biological Sciences, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON K1A 0R6, Canada.,Industrial Materials Institute, National Research Council of Canada, 75 Boulevard de Mortagne, Boucherville, QC J4B 6Y4, Canada.,Chemical Engineering Departement, École Polytechnique de Montréal, C. P. 6079, Succursale Centre-ville, Montréal, QC H3C 3A7, Canada
| | - Marina Rukhlova
- Institute for Biological Sciences, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON K1A 0R6, Canada
| | - Abdellah Ajji
- Chemical Engineering Departement, École Polytechnique de Montréal, C. P. 6079, Succursale Centre-ville, Montréal, QC H3C 3A7, Canada
| | - Martin Bureau
- Industrial Materials Institute, National Research Council of Canada, 75 Boulevard de Mortagne, Boucherville, QC J4B 6Y4, Canada.,Biomedical Science and Technology Research Group (GRSTB/FRSQ), École Polytechnique, C. P. 6079, Succursale Centre-ville, Montréal, QC H3C 3A7, Canada
| | - Maria J Moreno
- Institute for Biological Sciences, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON K1A 0R6, Canada
| |
Collapse
|
46
|
Lasky LC, Sullenbarger B. Manipulation of oxygenation and flow-induced shear stress can increase the in vitro yield of platelets from cord blood. Tissue Eng Part C Methods 2011; 17:1081-8. [PMID: 21877917 DOI: 10.1089/ten.tec.2011.0108] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A method to produce clinically useful platelets in vitro would help overcome the frequent shortages, donor deferrals, disease transmission, and alloimmunization with volunteer donor-derived platelets. Using CD34 positively selected cord blood cells, we investigated ways to increase platelet quality and yield in a three-dimensional modular perfusion bioreactor system. We found a two- to threefold increase in platelet numbers produced only when the early phases of the culture process were carried out at 5% oxygen, versus when 20% oxygen was used throughout the culture period (p<0.05), and much more than when 5% oxygen was used throughout. When the medium was routed through the cell-scaffold construct, versus when it flowed under and over the construct, or just intermittent feeding was used, the number of platelets increased two- to threefold (p<0.05), and enhanced collagen-induced aggregation. The 5% oxygen early in the culture process mimics the marrow adjacent to the bone where early progenitors proliferate. Flow through the cell-scaffold construct creates shear forces that mimic the flow in central venous sinuses of the marrow and enhances platelet production from proplatelets. The use of altered oxygen levels and cross flow enhanced platelet numbers and quality, and will contribute to eventual in vitro platelet production for clinical use.
Collapse
Affiliation(s)
- Larry C Lasky
- Pathology Department, The Ohio State University, Columbus, Ohio, USA.
| | | |
Collapse
|
47
|
Jeong D, Yun A, Kim J. Mathematical model and numerical simulation of the cell growth in scaffolds. Biomech Model Mechanobiol 2011; 11:677-88. [PMID: 21830072 DOI: 10.1007/s10237-011-0342-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 07/29/2011] [Indexed: 11/29/2022]
Abstract
A scaffold is a three-dimensional matrix that provides a structural base to fill tissue lesion and provides cells with a suitable environment for proliferation and differentiation. Cell-seeded scaffolds can be implanted immediately or be cultured in vitro for a period of time before implantation. To obtain uniform cell growth throughout the entire volume of the scaffolds, an optimal strategy on cell seeding into scaffolds is important. We propose an efficient and accurate numerical scheme for a mathematical model to predict the growth and distribution of cells in scaffolds. The proposed numerical algorithm is a hybrid method which uses both finite difference approximations and analytic closed-form solutions. The effects of each parameter in the mathematical model are numerically investigated. Moreover, we propose an optimization algorithm which finds the best set of model parameters that minimize a discrete l(2) error between numerical and experimental data. Using the mathematical model and its efficient and accurate numerical simulations, we could interpret experimental results and identify dominating mechanisms.
Collapse
Affiliation(s)
- Darae Jeong
- Department of Mathematics, Korea University, Seoul 136-701, Republic of Korea
| | | | | |
Collapse
|
48
|
See EYS, Toh SL, Goh JCH. Simulated intervertebral disc-like assembly using bone marrow-derived mesenchymal stem cell sheets and silk scaffolds for annulus fibrosus regeneration. J Tissue Eng Regen Med 2011; 6:528-35. [DOI: 10.1002/term.457] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 06/11/2011] [Indexed: 12/13/2022]
|
49
|
Self-assembled composite matrix in a hierarchical 3-D scaffold for bone tissue engineering. Acta Biomater 2011; 7:2244-55. [PMID: 21195810 DOI: 10.1016/j.actbio.2010.12.031] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 12/27/2010] [Accepted: 12/29/2010] [Indexed: 11/21/2022]
Abstract
It is of high clinical relevance in bone tissue engineering that scaffolds promote a high seeding efficiency of cells capable of osteogenic differentiation, such as human bone marrow-derived mesenchymal stem cells (hMSCs). We evaluated the effects of a novel polycaprolactone (PCL) scaffold on hMSC seeding efficiency, proliferation, distribution and differentiation. Porous PCL meshes prepared by fused deposition modeling (FDM) were embedded in matrix of hyaluronic acid, methylated collagen and terpolymer via polyelectrolyte complex coacervation. Scaffolds were cultured statically and dynamically in osteogenic stimulation medium for up to 28 days. Compared to naked PCL scaffolds, embedded scaffolds provided a higher cell seeding efficiency (t-test, P<0.05), a more homogeneous cell distribution and more osteogenically differentiated cells, verified by a more pronounced gene expression of the bone markers alkaline phosphatase, osteocalcin, bone sialoprotein I and bone sialoprotein II. Dynamic culture resulted in higher amounts of DNA (day 14 and day 21) and calcium (day 21 and day 28), compared to static culture. Dynamic culture and the embedding synergistically enhanced the calcium deposition of hMSC on day 21 and day 28. This in vitro study provides evidence that hybrid scaffolds made from natural and synthetic polymers improve cellular seeding efficiency, proliferation, distribution and osteogenic differentiation.
Collapse
|
50
|
David B, Bonnefont-Rousselot D, Oudina K, Degat MC, Deschepper M, Viateau V, Bensidhoum M, Oddou C, Petite H. A Perfusion Bioreactor for Engineering Bone Constructs: An In Vitro and In Vivo Study. Tissue Eng Part C Methods 2011; 17:505-16. [DOI: 10.1089/ten.tec.2010.0468] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Bertrand David
- Laboratoire Mécanique des Sols, Structures et Matériaux (MSSMat), UMR CNRS 8579, École Centrale Paris, Châtenay-Malabry Cedex, France
| | - Dominique Bonnefont-Rousselot
- Département de Biologie Expérimentale, Métabolique et Clinique, EA 4466, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France
- Service de Biochimie Métabolique, Groupe Hospitalier Pitié-Salpêtrière (AP-HP), Paris, France
| | - Karim Oudina
- Laboratoire de Bioingénierie et Biomécanique Ostéoarticulaire (B2OA), UMR CNRS 7052, Université Paris 7, Paris, France
| | - Marie-Christelle Degat
- Laboratoire de Bioingénierie et Biomécanique Ostéoarticulaire (B2OA), UMR CNRS 7052, Université Paris 7, Paris, France
| | - Mickael Deschepper
- Laboratoire de Bioingénierie et Biomécanique Ostéoarticulaire (B2OA), UMR CNRS 7052, Université Paris 7, Paris, France
| | - Véronique Viateau
- Laboratoire de Bioingénierie et Biomécanique Ostéoarticulaire (B2OA), UMR CNRS 7052, Université Paris 7, Paris, France
| | - Morad Bensidhoum
- Laboratoire de Bioingénierie et Biomécanique Ostéoarticulaire (B2OA), UMR CNRS 7052, Université Paris 7, Paris, France
| | - Christian Oddou
- Laboratoire Modélisation et Simulation Multi Echelle (MSME), UMR CNRS 8208, Université Paris-Est Créteil, France
| | - Hervé Petite
- Laboratoire de Bioingénierie et Biomécanique Ostéoarticulaire (B2OA), UMR CNRS 7052, Université Paris 7, Paris, France
| |
Collapse
|