1
|
Belcher DA, Lucas A, Cabrales P, Palmer AF. Tumor vascular status controls oxygen delivery facilitated by infused polymerized hemoglobins with varying oxygen affinity. PLoS Comput Biol 2020; 16:e1008157. [PMID: 32817659 PMCID: PMC7462268 DOI: 10.1371/journal.pcbi.1008157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 09/01/2020] [Accepted: 07/16/2020] [Indexed: 11/19/2022] Open
Abstract
Oxygen (O2) delivery facilitated by hemoglobin (Hb)-based O2 carriers (HBOCs) is a promising strategy to increase the effectiveness of chemotherapeutics for treatment of solid tumors. However, the heterogeneous vascular structures present within tumors complicates evaluating the oxygenation potential of HBOCs within the tumor microenvironment. To account for spatial variations in the vasculature and tumor tissue that occur during tumor growth, we used a computational model to develop artificial tumor constructs. With these simulated tumors, we performed a polymerized human hemoglobin (hHb) (PolyhHb) enhanced oxygenation simulation accounting for differences in the physiologic characteristics of human and mouse blood. The results from this model were used to determine the potential effectiveness of different treatment options including a top load (low volume) and exchange (large volume) infusion of a tense quaternary state (T-State) PolyhHb, relaxed quaternary state (R-State) PolyhHb, and a non O2 carrying control. Principal component analysis (PCA) revealed correlations between the different regimes of effectiveness within the different simulated dosage options. In general, we found that infusion of T-State PolyhHb is more likely to decrease tissue hypoxia and modulate the metabolic rate of O2 consumption. Though the developed models are not a definitive descriptor of O2 carrier interaction in tumor capillary networks, we accounted for factors such as non-uniform vascular density and permeability that limit the applicability of O2 carriers during infusion. Finally, we have used these validated computational models to establish potential benchmarks to guide tumor treatment during translation of PolyhHb mediated therapies into clinical applications.
Collapse
Affiliation(s)
- Donald A. Belcher
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Alfredo Lucas
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Pedro Cabrales
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Andre F. Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
2
|
Belcher DA, Munoz C, Pires IS, Williams AT, Cabrales P, Palmer AF. Apohemoglobin-haptoglobin complexes attenuate the hypertensive response to low-molecular-weight polymerized hemoglobin. Blood Adv 2020; 4:2739-2750. [PMID: 32559292 PMCID: PMC7322967 DOI: 10.1182/bloodadvances.2020002045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/15/2020] [Indexed: 01/21/2023] Open
Abstract
Polymerized hemoglobin (PolyHb) is a promising hemoglobin (Hb)-based oxygen carrier currently undergoing development as a red blood cell substitute. Unfortunately, commercially developed products are composed of low-molecular-weight (LMW) PolyHb molecules, which extravasate, scavenge nitric oxide, and result in vasoconstriction and hypertension. The naturally occurring Hb-scavenging species haptoglobin (Hp), combined with the purified heme-scavenging species apohemoglobin (apoHb), is a potential candidate to alleviate the pressor effect of PolyHb. This study evaluated the protective activity of administering the apoHb-Hp complex to mitigate the vasoactive response induced by the transfusion of LMW PolyHb. Hp binding to PolyHb was characterized in vitro. The effectiveness of apoHb-Hp administration on reducing the vasoconstriction and pressor effects of PolyHb was assessed by measuring systemic and microcirculatory hemodynamics. Transfusion of LMW PolyHb to vehicle control pretreated animals increased mean arterial pressure while decreasing arteriole diameter and functional capillary density. However, transfusion of LMW PolyHb to apoHb-Hp pretreated animals prevented changes in mean arterial pressure, heart rate, arteriole diameter, blood flow, and functional capillary density relative to before transfusion. These results indicate that the increased size of PolyHb after binding to the apoHb-Hp complex may help compartmentalize PolyHb in the vascular space and thus reduce extravasation, nitric oxide scavenging, and toxicity responsible for vasoconstriction and systemic hypertension.
Collapse
Affiliation(s)
- Donald A Belcher
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH; and
| | - Carlos Munoz
- Department of Bioengineering, University of California San Diego, La Jolla, CA
| | - Ivan S Pires
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH; and
| | | | - Pedro Cabrales
- Department of Bioengineering, University of California San Diego, La Jolla, CA
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH; and
| |
Collapse
|
3
|
Hyakutake T, Kishimoto T. Numerical investigation of oxygen transport by hemoglobin-based carriers through microvessels. J Artif Organs 2017; 20:341-349. [PMID: 28755016 DOI: 10.1007/s10047-017-0974-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/09/2017] [Indexed: 11/25/2022]
Abstract
The small size of hemoglobin-based oxygen carriers (HBOCs) may expand the realm of new treatment possibilities for various circulatory diseases. The parametric evaluation of HBOC performance for oxygen transport within tissue is essential for effectively characterizing its performance for each circulatory disease assessed. Thus, the overarching objective of this present study was to numerically investigate the reaction-diffusion phenomenon of oxygenated HBOCs and oxygen on tissues through microvessels. We considered dissociation rate coefficients, oxygen affinity, and diffusion coefficients due to Brownian motion as the biophysical parameters for estimating HBOC performance for oxygen transport. A two-dimensional computational domain, including vessel and tissue regions, was, therefore, accordingly assumed. It was observed that HBOC flows in a microvessel with a diameter of 25 μm and a length of 1 mm, and that the dissociated oxygen diffuses to the tissue region. The results indicated that oxyhemoglobin saturation and partial oxygen tension in a downstream region changed according to each biophysical parameter of HBOC. Moreover, the change in oxygen consumption rate in the tissue region had considerable influence on the oxyhemoglobin saturation level within the vessel. Comparison between simulation results and existing in vitro experimental data of actual HBOCs and RBC showed qualitatively good agreement. These results provide important information for the effective design of robust HBOCs in future.
Collapse
Affiliation(s)
- Toru Hyakutake
- Faculty of Engineering, Yokohama National University, 79-5, Hodogaya, Yokohama, 240-8501, Japan.
| | - Takumi Kishimoto
- Graduate School of Engineering, Yokohama National University, 79-5, Hodogaya, Yokohama, 240-8501, Japan
| |
Collapse
|
4
|
Paul LEH, Therrien B, Furrer J. Interactions of arene ruthenium metallaprisms with human proteins. Org Biomol Chem 2015; 13:946-53. [DOI: 10.1039/c4ob02194k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interactions between three hexacationic arene ruthenium metallaprisms and human proteins have been studied using NMR spectroscopy, mass spectrometry and circular dichroism spectroscopy, showing that proteins are potential biological targets for these metallaprisms.
Collapse
Affiliation(s)
- Lydia E. H. Paul
- Departement für Chemie und Biochemie
- Universität Bern
- CH-3012 Bern
- Switzerland
| | - Bruno Therrien
- Institut de Chimie
- Université de Neuchâtel
- CH-2000 Neuchâtel
- Switzerland
| | - Julien Furrer
- Departement für Chemie und Biochemie
- Universität Bern
- CH-3012 Bern
- Switzerland
| |
Collapse
|
5
|
Hai CM. Systems biology of HBOC-induced vasoconstriction. Curr Drug Discov Technol 2012; 9:204-11. [PMID: 21726185 DOI: 10.2174/157016312802650751] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 01/25/2011] [Accepted: 07/01/2011] [Indexed: 01/24/2023]
Abstract
Vasoconstriction is a major adverse effect of HBOCs. The use of a single drug for attenuating HBOC-induced vasoconstriction has been tried with limited success. Since HBOC causes disruptions at multiple levels of organization in the vascular system, a systems approach is helpful to explore avenues to counteract the effects of HBOC at multiple levels by targeting multiple sites in the system. A multi-target approach is especially appropriate for HBOC-induced vasoconstriction, because HBOC disrupts the cascade of amplification by NO-cGMP signaling and protein phosphorylation, ultimately resulting in vasoconstriction. Targeting multiple steps in the cascade may alter the overall gain of amplification, thereby limiting the propagation of disruptive effects through the cascade. As a result, targeting multiple sites may accomplish a relatively high overall efficacy at submaximal drug doses. Identifying targets and doses for developing a multi-target combination HBOC regimen for oxygen therapeutics requires a detailed understanding of the systems biology and phenotypic heterogeneity of the vascular system at multiple layers of organization, which can be accomplished by successive iterations between experimental studies and mathematical modeling at multiple levels of vascular systems and organ systems. Towards this goal, this article addresses the following topics: a) NO-scavenging by HBOC, b) HBOC autoxidation-induced reactive oxygen species generation and endothelial barrier dysfunction, c) NO- cGMP signaling in vascular smooth muscle cells, d) NO and cGMP-dependent regulation of contractile filaments in vascular smooth muscle cells, e) phenotypic heterogeneity of vascular systems, f) systems biology as an approach to developing a multi-target HBOC regimen.
Collapse
Affiliation(s)
- Chi-Ming Hai
- Department of Molecular Pharmacology, Physiology & Biotechnology, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
6
|
Zhou Y, Cabrales P, Palmer AF. Simulation of NO and O2 transport facilitated by polymerized hemoglobin solutions in an arteriole that takes into account wall shear stress-induced NO production. Biophys Chem 2012; 162:45-60. [PMID: 22285312 DOI: 10.1016/j.bpc.2011.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 12/20/2011] [Accepted: 12/20/2011] [Indexed: 10/14/2022]
Abstract
A mathematical model was developed to study nitric oxide (NO) and oxygen (O(2)) transport in an arteriole and surrounding tissues exposed to a mixture of red blood cells (RBCs) and hemoglobin (Hb)-based O(2) carriers (HBOCs). A unique feature of this model is the inclusion of blood vessel wall shear stress-induced production of endothelial-derived NO, which is very sensitive to the viscosity of the RBC and HBOC mixture traversing the blood vessel lumen. Therefore in this study, a series of polymerized bovine Hb (PolyHb) solutions with high viscosity, varying O(2) affinities, NO dioxygenation rate constants and O(2) dissociation rate constants that were previously synthesized and characterized by our group was evaluated via mathematical modeling, in order to investigate the effect of these biophysical properties on the transport of NO and O(2) in an arteriole and its surrounding tissues subjected to anemia with the commercial HBOC Oxyglobin® and cell-free bovine Hb (bHb) serving as appropriate controls. The computer simulation results indicated that transfusion of high viscosity PolyHb solutions promoted blood vessel wall shear stress dependent generation of the vasodilator NO, especially in the blood vessel wall and should transport enough NO inside the smooth muscle layer to activate vasodilation compared to the commercial HBOC Oxyglobin® and cell-free bHb. However, NO scavenging in the arteriole lumen was unavoidable due to the intrinsic high NO dioxygenation rate constant of the HBOCs being studied. This study also observed that all PolyHbs could potentially improve tissue oxygenation under hypoxic conditions, while low O(2) affinity PolyHbs were more effective in oxygenating tissues under normoxic conditions compared with high O(2) affinity PolyHbs. In addition, all ultrahigh molecular weight PolyHbs displayed higher O(2) transfer rates than the commercial HBOC Oxyglobin® and cell-free bHb. Therefore, these results suggest that ultrahigh molecular weight PolyHb solutions could be used as safe and efficacious O(2) carriers for use in transfusion medicine. It also suggests that future generations of PolyHb solutions should possess lower NO dioxygenation reaction rate constants in order to reduce NO scavenging, while maintaining high solution viscosity to take advantage of wall shear stress-induced NO production. Taken together, we suggest that this mathematical model can be used to predict the vasoactivity of HBOCs and help guide the design and optimization of the next generation of HBOCs for use in transfusion medicine.
Collapse
Affiliation(s)
- Yipin Zhou
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, 43210, USA.
| | | | | |
Collapse
|
7
|
Abstract
Recent advances in genome inspired target discovery, small molecule screens, development of biological and nanotechnology have led to the introduction of a myriad of new differently sized agents into the clinic. The differences in small and large molecule delivery are becoming increasingly important in combination therapies as well as the use of drugs that modify the physiology of tumors such as anti-angiogenic treatment. The complexity of targeting has led to the development of mathematical models to facilitate understanding, but unfortunately, these studies are often only applicable to a particular molecule, making pharmacokinetic comparisons difficult. Here we develop and describe a framework for categorizing primary pharmacokinetics of drugs in tumors. For modeling purposes, we define drugs not by their mechanism of action but rather their rate-limiting step of delivery. Our simulations account for variations in perfusion, vascularization, interstitial transport, and non-linear local binding and metabolism. Based on a comparison of the fundamental rates determining uptake, drugs were classified into four categories depending on whether uptake is limited by blood flow, extravasation, interstitial diffusion, or local binding and metabolism. Simulations comparing small molecule versus macromolecular drugs show a sharp difference in distribution, which has implications for multi-drug therapies. The tissue-level distribution differs widely in tumors for small molecules versus macromolecular biologic drugs, and this should be considered in the design of agents and treatments. An example using antibodies in mouse xenografts illustrates the different in vivo behavior. This type of transport analysis can be used to aid in model development, experimental data analysis, and imaging and therapeutic agent design.
Collapse
|
8
|
Nadithe V, Bae YH. Hemoglobin conjugates with antioxidant enzymes (hemoglobin-superoxide dismutase-catalase) via poly(ethylene glycol) crosslinker for protection of pancreatic beta RINm5F cells in hypoxia. Tissue Eng Part A 2011; 17:2453-62. [PMID: 21599537 DOI: 10.1089/ten.tea.2010.0509] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A low p50 hemoglobin (Hb) (p50 indicates O(2) tension at which Hb is half-saturated)-based oxygen carrier conjugated to antioxidant enzymes via dicarboxymethylated poly(ethylene glycol) (PEG) linker may have the beneficial effect in protecting pancreatic beta cells from severe hypoxia at transplantation sites. In this study, the oxygen dissociation curves, Hill plots, Bohr Effect, and oxygen content of Hb conjugates were measured. The protective effect due to incubation of Hb-conjugates (Hb/PEG molar ratio 1:10) with pancreatic beta cells (RINm5F) against hypoxia (6%, 3%, and 1% oxygen) was evaluated by an MTT assay and confocal microscopy. Quantitatively, Hb conjugates with antioxidant enzymes offered statistically significant protection (p<0.01, increased viability ∼80%) from hypoxia compared to control cells in 1% oxygen environment. Confocal images also showed that the low p50 Hb conjugates with antioxidants protected RINm5F cells from hypoxia.
Collapse
Affiliation(s)
- Venkatareddy Nadithe
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84108, USA
| | | |
Collapse
|
9
|
Gundersen SI, Chen G, Palmer AF. Mathematical model of NO and O2 transport in an arteriole facilitated by hemoglobin based O2 carriers. Biophys Chem 2009; 143:1-17. [PMID: 19318228 PMCID: PMC2717632 DOI: 10.1016/j.bpc.2009.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 02/10/2009] [Accepted: 02/10/2009] [Indexed: 01/01/2023]
Abstract
The increasing demand for donated human blood has spurred research to develop hemoglobin-based O(2) carriers (HBOCs) that can be used as red blood cell (RBC) substitutes. However, in vivo studies of acellular HBOCs have shown an increase in mean arterial pressure following transfusion that has been attributed to the HBOC's ability to scavenge NO (an important vasodilator that is synthesized by endothelial cells in the blood vessel wall that signals neighboring smooth muscle cells to relax). In this study, a mathematical model was developed to describe NO and O(2) transport in an arteriole containing a mixture of acellular HBOCs and RBCs. The acellular HBOCs studied in this work possessed a wide range of O(2) affinities, O(2) dissociation rate constants and NO reactivities in order to evaluate their effect on O(2) tension and NO concentration in the arteriole tissue region. By focusing on the concentration of NO that is localized in the arteriole smooth muscle cell region, the model can predict the vasopressor response of HBOCs. The results of this study confirmed that acellular HBOCs scavenge large amounts of NO from the entire arteriole (approximately 50% or more NO compared to RBCs only). A recombinant Hb, rHb3011, displayed the least NO reactivity and consequently left the most NO remaining in the arteriole. The NO concentration in the arteriole with respect to the other HBOCs studied was proportional to their NO reactivity. Therefore, the results of this study demonstrate that NO scavenging is an unavoidable consequence of transfusing HBOCs. To prevent or reduce vasodilatation, we suggest administration of NO by either inhaling NO or transfusing nitrite into the blood stream followed by transfusion of HBOC.
Collapse
Affiliation(s)
- Sharon Irene Gundersen
- The Ohio State University Department of Chemical and Biomolecular Engineering 140 West 19 Avenue Columbus, OH 43210
| | - Guo Chen
- The Ohio State University Department of Chemical and Biomolecular Engineering 140 West 19 Avenue Columbus, OH 43210
| | - Andre Francis Palmer
- The Ohio State University Department of Chemical and Biomolecular Engineering 140 West 19 Avenue Columbus, OH 43210
| |
Collapse
|
10
|
Harris DR, Palmer AF. Modern cross-linking strategies for synthesizing acellular hemoglobin-based oxygen carriers. Biotechnol Prog 2009; 24:1215-25. [PMID: 19194934 DOI: 10.1002/btpr.85] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Unmodified cell-free hemoglobin (Hb) is structurally unstable when transfused into the blood stream (Valeri et al., Artif Cells Blood Substit Immobil Biotechnol. 2000;28:451-475; Chan et al., Toxicol Pathol. 2000;28:635-642; Eike, Dissertation, 2005; Eike and Palmer, Biotechnol Prog. 2004;20:946-952). This review examines some of the latest chemical strategies used over the last 5 years to intra- and intermolecularly cross-link Hb, thereby stabilizing its quaternary structure. Therefore, this work will address the following aspects: (1) site-specific chemical modifications of Hb and (2) non-site-specific chemical modifications of Hb, including, but not limited to, PolyHeme, Hemopure, Oxyglobin, and SOD-Hb. Current strategies for synthesizing PEGylated Hb is outside the scope of this review and will not be discussed herein. For a more thorough review of PEGylated Hb, the reader is directed to the following works: Cabrales and Friedman, Transfus Alternatives in Transfus Med. 2007;9:281-293 and Winslow, Biochim Biophys Acta, 2008;1784(10):1382-1386.
Collapse
Affiliation(s)
- David Raphael Harris
- Dept. of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
11
|
Chin C. Identification of Novel Metabolic Proteins Released by Insulin Signaling of the Rat Hypothalmus Using Liquid Chromatography-Mass Spectrometry (LC-MS). J Korean Neurosurg Soc 2008; 42:470-4. [PMID: 19096591 DOI: 10.3340/jkns.2007.42.6.470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Accepted: 11/12/2007] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE The brain is dependent on glucose as an energy source. Intricate homeostatic mechanisms have been implicated in maintaining the blood glucose concentration in the brain. The aim of this study is to find the way to identify the metabolic proteins regulating the glucose in rat hypothalamus. METHODS In this study, we analysed the secretome from rat hypothalamus in vivo. We introduced 500 nM of insulin into the rat hypothalamus. The chromatographic patterns of the secretome were identified, after which Mass Spectrometry-Mass Spectrometry (MS-MS) analysis was performed. RESULTS In Liquid Chromatography-Mass Spectrometry (LC-MS) analysis, 60 proteins were identified in the secretome. Among them, 8 novel proteins were unveiled and were associated with the energy metabolism of insulin signaling in mitochondria of rat hypothalamic neuron. Nineteen other proteins have unknown functions. These ligands were confirmed to be secreting from the rat hypothalmus on insulin signaling by western blotting. CONCLUSION The hypothalamus is the master endocrine gland responsible for the regulation of various physiological and metabolic processes. Proteomics using LC-MS analysis offer a efficient means for generating a comprehensive analysis of hypothalamic protein expression by insulin signaling.
Collapse
Affiliation(s)
- Chur Chin
- Department of Neurological Surgery, Ulsan University Hospital, Ulsan, Korea
| |
Collapse
|
12
|
Gundersen SI, Palmer AF. Hemoglobin-based oxygen carrier enhanced tumor oxygenation: A novel strategy for cancer therapy. Biotechnol Prog 2008; 24:1353-64. [DOI: 10.1002/btpr.56] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Escobar C, Méndez F. Unloading oxygen in a capillary vessel under a pathological condition. Math Biosci 2008; 215:127-36. [PMID: 18694766 DOI: 10.1016/j.mbs.2008.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 06/19/2008] [Accepted: 07/11/2008] [Indexed: 11/20/2022]
Abstract
In this work, we study theoretically the unloading of oxygen from a hemoglobin molecule to the wall of a typical capillary vessel, considering that the hemoglobin under pathological conditions, obeys the rheological Maxwell model. Based on recent experimental evidences in hypertension, we consider that the red blood cells (RBCs) are composed by a single continuous medium in contrast with the classical particulate or discrete RBC models, which are only valid under normal physiological conditions. The analysis considers the hemodynamic interactions between the plasma and the hemoglobin, both circulating in a long horizontal capillary. We apply numerical and analytical methods to obtain the main fluid-dynamic characteristics for both fluids in the limit of low Reynolds and Womersley numbers. A diffusion boundary layer formulation for the oxygen transport in the combined plasma-hemoglobin core region is presented. The main aspects derived are the time and spatial evolution of the membrane. The hemoglobin and plasma velocities and the pressure distributions are shown. For the oxygen unloading the results are the oxy-hemoglobin saturation, the oxygen flux and the oxygen concentration in the cell-free plasma layer. The volume fraction of red blood cells and the Strouhal number have a great influence on the hemodynamic interactions.
Collapse
Affiliation(s)
- C Escobar
- Facultad de Ingeniería, UNAM, Avenida Universidad 3000, 04510 México DF, Mexico
| | | |
Collapse
|
14
|
Cole R, Vandegriff K, Szeri A, Savas O, Winslow R. Targeted O2 delivery by blood substitutes: in vitro arteriolar simulations of first- and second-generation products. Microvasc Res 2008; 76:169-79. [PMID: 18671987 DOI: 10.1016/j.mvr.2008.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/10/2008] [Accepted: 07/01/2008] [Indexed: 11/18/2022]
Abstract
The O(2) transport from mixtures of commercially produced hemoglobin-based O(2) carriers (HBOCs) and red blood cells (RBCs) flowing through arteriolar-sized (25-mum) conduits is simulated. A generalized treatment of extraluminal O(2) transport processes is used to reflect variations in physiological conditions, such as increased O(2) consumption. Of the HBOCs considered, polymerized bovine hemoglobin (PolyBvHb, p50=54 mmHg), tetrameric cross-linked human hemoglobin (alphaalphaHb, p50=33 mmHg), and PEGylated human hemoglobin (MP4, p50=5 mmHg), only MP4 does not increase O(2) extraction ratios when compared to RBC suspensions alone. A reduction in arteriolar O(2) extraction is likely to be beneficial for HBOCs by preventing O(2)-induced vasoactivity and maximizing the supply of O(2) available to the capillaries. Results from in vivo HBOC transfusion experiments cannot be predicted by the model, unless PolyBvHb has a significant decrease in extraluminal O(2) transport resistance as compared to MP4. This result is consistent with the literature that shows arteriolar O(2) consumption to increase with intravascular pO(2).
Collapse
Affiliation(s)
- Russell Cole
- Department of Mechanical Engineering, 140 Hesse Hall, University of California, Berkeley, California 94720, USA.
| | | | | | | | | |
Collapse
|
15
|
Dimino ML, Palmer AF. Hemoglobin-based O2 carrier O2 affinity and capillary inlet pO2 are important factors that influence O2 transport in a capillary. Biotechnol Prog 2007; 23:921-31. [PMID: 17555329 PMCID: PMC2533853 DOI: 10.1021/bp0700298] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hemopure (Biopure; Cambridge, MA) and PolyHeme (Northfield Laboratories; Evanston, IL) are two acellular hemoglobin-based O2 carriers (HBOCs) currently in phase III clinical trials for use as red blood cell substitutes. The most common adverse side effect that these HBOCs exhibit is increased vasoconstriction. Autoregulatory theory has been presented as a possible explanation for this physiological effect, where it is hypothesized that low-affinity HBOCs over-deliver O2 to tissues surrounding arterioles, thereby eliciting vasoconstriction. In this paper, we wanted to investigate HBOC oxygenation of tissue surrounding a capillary, which is the smallest element of the circulatory system. An a priori model has been developed in which the performance of mixtures of acellular HBOCs (synthesized by our group and others) and human red blood cells (hRBCs) has been simulated using a Krogh tissue cylinder model (KTCM) comprising a capillary surrounded by a capillary membrane and skeletal muscle tissue in cylindrical coordinates with specified tissue O2 consumption rates and Michaelis-Menten kinetics. In this study, the total hemoglobin (hRBCs and HBOCs) concentration was kept constant. The HBOCs studied possessed O2 affinities that were higher and lower compared to hRBCs (P50's spanned 5-55 mmHg), and the equilibrium binding/release of oxygen to/from the HBOCs was modeled using the Adair equation. At normoxic inlet pO2's, there was no correlation between O2 flux out of the capillary and the O2 affinity of the HBOC. However, a correlation was found between the average pO2 tension in the capillary and the O2 affinity of the HBOC. Additionally, we studied the change in the O2 equilibrium curve of HBOCs with different O2 affinities over a wide range of inlet pO2's and found that changing the inlet pO2 greatly affected which HBOC, having a unique O2 affinity, best delivered O2 to the surrounding tissue. The analysis of oxygen transport presented could lead to a better prediction of which acellular HBOC is best suited for a specific transfusion application that many times depends on the capillary inlet pO2 tension.
Collapse
Affiliation(s)
- Michael L Dimino
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, 182 Fitzpatrick Hall, Notre Dame, Indiana 46556, USA
| | | |
Collapse
|
16
|
Dimino ML, Palmer AF. Hemoglobin-Based O2Carrier O2Affinity and Capillary Inlet pO2Are Important Factors That Influence O2Transport in a Capillary. Biotechnol Prog 2007. [DOI: 10.1002/bp0700298] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|