1
|
Saavedra JPP, Silva-Santos AR, Duarte SOD, Azevedo AM. Scalable purification of bacteriophages preparations. J Chromatogr A 2025; 1749:465890. [PMID: 40154192 DOI: 10.1016/j.chroma.2025.465890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/07/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
The use of bacteriophages to treat bacterial infections, known as phage therapy, has regained interest due to the rise of antibiotic-resistant bacteria. To make phage therapy more widely available, scalable purification methods that can adequately remove endotoxins, proteins and host cell DNA must be implemented. This is particularly important when considering intravenous (IV) administration, since the presence of these impurities is highly controlled by regulatory agencies. This work aimed at developing a purification workflow amenable to large-scale manufacturing, centred on the use anion-exchange chromatography (AEC). Lytic phage T4 and Escherichia coli K12 were used as the infection agent and host, respectively. Since endotoxins and phages are negatively charged, the use of an alkaline phosphatase (AP) prior to AEC was investigated to reduce their net negative charge and allow an efficient separation during chromatography. AP was used at 20 or 200 U/mL, and different AEC ligands and stationary phases were tested. H-bond chromatography (without enzymatic treatment) was exploited as well. Final phage titres up to 1.26 × 1011 PFU/mL (plaque forming units) and global recoveries up to 45.1 % were obtained. The highest removal of endotoxins (98.8 %) was obtained after treatment with 20 U/mL of AP, followed by AEC with a quaternary amine packed-bed column. Virtually all proteins and DNA were removed in all workflows. Some of the obtained phage preparations would be suitable for IV administration, regarding endotoxin content. These results demonstrate that an enzymatic treatment in combination with AEC is a promising and scalable alternative to current phage purification techniques.
Collapse
Affiliation(s)
- João P P Saavedra
- iBB- Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Department of Bioengineering, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - A Rita Silva-Santos
- iBB- Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Department of Bioengineering, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Sofia O D Duarte
- iBB- Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Department of Bioengineering, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana M Azevedo
- iBB- Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Department of Bioengineering, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
2
|
Wang A, Sahraeian T, Badu-Tawiah AK, Olesik SV. DEAE-cellulose based ultrathin layer chromatography - mass spectrometry for protein separation and characterization. Anal Chim Acta 2025; 1350:343832. [PMID: 40155163 DOI: 10.1016/j.aca.2025.343832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/16/2025] [Accepted: 02/20/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Ultrathin layer chromatography is an efficient method that is fast and requires a small amount of sample for the separation. This method may be valuable in for the separation of biological samples in many different industries such as pharmaceutical analyses as well as clinical analyses. This is the first example of the use of nanofibers of DEAE-cellulose for UTLC for protein separations. This is combined with the detection of the proteins using paper spray ionization mass spectrometry. RESULTS Protein and protein-complexes were readily separated and detected using the combination of these new separation and detection methods. SIGNIFICANCE This work illustrates the capability of DEAE-cellulose UTLC plates in protein separation and the feasibility of combining nanofiber UTLC with paper spray MS for further characterization. Successful characterization of both monomeric and complex proteins was obtained using this MS ionization methodology where charge state distributions of proteins showed effective performance of our UTLC separation procedure.
Collapse
Affiliation(s)
- Anpu Wang
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Ave, Columbus, OH, 43210, USA.
| | - Taghi Sahraeian
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Ave, Columbus, OH, 43210, USA.
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Ave, Columbus, OH, 43210, USA.
| | - Susan V Olesik
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
3
|
Chen G, Wan Y, Ghosh R. Bioseparation using membrane chromatography: Innovations, and challenges. J Chromatogr A 2025; 1744:465733. [PMID: 39893917 DOI: 10.1016/j.chroma.2025.465733] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
The resin-based column continues to be the dominant incumbent in bioprocess chromatography. While alternative formats such as membrane-, monolith- and fiber-based chromatography are more visible than before, each still plays minor roles. The reasons for this are complex and some of these are explained in this paper. However, the fact remains that membrane chromatography has come a long way since its early days of development. The main advantage of membrane chromatography continues to be its convection dominant transport mechanism, the resultant benefit being fast and scalable separation. Also, resolution obtained with properly designed devices could be comparable or even better than resin-based chromatography. Significant progress has been made in new membrane development, membrane characterization, device design and novel applications development. A wider range of new membrane matrices, ligands, and ligand-matrix linking chemistries are now available. New membrane modules, formats, and process configurations have also helped improve membrane performance. However, some significant challenges still exist, and these need to be addressed if membrane chromatography is to become more mainstream in the field of bioprocessing. Also, membrane chromatography has significant potential for application in analytical separations and this space has hardly been explored. In this paper, the advances in the areas of membrane preparation, device design and process development are reviewed. A high-level cost analysis is presented and the role of process design in membrane chromatography is discussed.
Collapse
Affiliation(s)
- Guoqiang Chen
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, PR China; Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, PR China
| | - Raja Ghosh
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada.
| |
Collapse
|
4
|
Pasquier V, Botelho Ferreira K, Lergenmuller M, Tottoli A, Perilleux A, Souquet J, Bielser JM. Assessment of membrane-based downstream purification processes as a replacement to traditional resin bead for monoclonal antibody purification. Biotechnol Prog 2025; 41:e3508. [PMID: 39279354 DOI: 10.1002/btpr.3508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/18/2024]
Abstract
Membrane chromatography devices are a viable alternative to packed-bed resins and enable highly productive purification cascades for monoclonal antibodies and Fc-fusion proteins. In this study, ion exchange and protein A membrane chromatography performances were assessed and compared with their resin counterparts. Protein A dynamic binding capacities were higher than 50 g/L for two of the tested membranes and with a residence time of 0.2 min. For polishing, it was observed that aggregate clearance was generally less performant with membrane separation when compared to resins with similar ligands. However, the comparable yield and increased productivity of membranes could be enough to consider their implementation. In addition, lifetime studies demonstrated that the performance of membranes remained robust over cycles. One hundred cycles were reached for most of the tested membranes with no impact on the process performance nor product quality. Finally, purification cascades were fully operated with membranes, from capture to polishing, reaching good levels of host cells proteins (less than 50 ppm) and aggregates (equal to or less than 1%). The outcome of this study demonstrated that resin chromatography could be fully replaced by membranes for monoclonal antibody and Fc-fusion protein purification processes.
Collapse
Affiliation(s)
- Victor Pasquier
- Biotech Development Center, Merck Serono SA (an affiliate of Merck KGaA, Darmstadt, Germany), Fenil-sur-Corsier, Switzerland
| | - Kevin Botelho Ferreira
- Biotech Development Center, Merck Serono SA (an affiliate of Merck KGaA, Darmstadt, Germany), Fenil-sur-Corsier, Switzerland
| | - Morgane Lergenmuller
- Biotech Development Center, Merck Serono SA (an affiliate of Merck KGaA, Darmstadt, Germany), Fenil-sur-Corsier, Switzerland
| | - Alexis Tottoli
- Biotech Development Center, Merck Serono SA (an affiliate of Merck KGaA, Darmstadt, Germany), Fenil-sur-Corsier, Switzerland
| | - Arnaud Perilleux
- Biotech Development Center, Merck Serono SA (an affiliate of Merck KGaA, Darmstadt, Germany), Fenil-sur-Corsier, Switzerland
| | - Jonathan Souquet
- Biotech Development Center, Merck Serono SA (an affiliate of Merck KGaA, Darmstadt, Germany), Fenil-sur-Corsier, Switzerland
| | - Jean-Marc Bielser
- Biotech Development Center, Merck Serono SA (an affiliate of Merck KGaA, Darmstadt, Germany), Fenil-sur-Corsier, Switzerland
| |
Collapse
|
5
|
Takata T, Masauji T, Motoo Y. Potential of the Novel Slot Blot Method with a PVDF Membrane for Protein Identification and Quantification in Kampo Medicines. MEMBRANES 2023; 13:896. [PMID: 38132900 PMCID: PMC10745123 DOI: 10.3390/membranes13120896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Kampo is a Japanese traditional medicine modified from traditional Chinese medicine. Kampo medicines contain various traditional crude drugs with unknown compositions due to the presence of low-molecular-weight compounds and proteins. However, the proteins are generally rare and extracted with high-polarity solvents such as water, making their identification and quantification difficult. To develop methods for identifying and quantifying the proteins in Kampo medicines, in the current study we employ previous technology (e.g., column chromatography, electrophoresis, and membrane chromatography), focusing on membrane chromatography with a polyvinylidene difluoride (PVDF) membrane. Moreover, we consider slot blot analysis based on the principle of membrane chromatography, which is beneficial for analyzing the proteins in Kampo medicines as the volume of the samples is not limited. In this article, we assess a novel slot blot method developed in 2017 and using a PVDF membrane and special lysis buffer to quantify advanced glycation end products-modified proteins against other slot blots. We consider our slot blot analysis superior for identifying and quantifying proteins in Kampo medicines compared with other methods as the data obtained with our novel slot blot can be shown with both error bars and the statistically significant difference, and our operation step is simpler than those of other methods.
Collapse
Affiliation(s)
- Takanobu Takata
- Division of Molecular and Genetic Biology, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
- Department of Pharmacy, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan;
| | - Togen Masauji
- Department of Pharmacy, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan;
| | - Yoshiharu Motoo
- Department of Internal Medicine, Fukui Saiseikai Hospital, Wadanakacho 918-8503, Fukui, Japan
| |
Collapse
|
6
|
Roshankhah R, Pelton R, Ghosh R. Optimization of fluid flow in membrane chromatography devices using computational fluid dynamic simulations. J Chromatogr A 2023; 1699:464030. [PMID: 37137192 DOI: 10.1016/j.chroma.2023.464030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
Flow uniformity within the device is critically important in membrane chromatography. Recent studies have shown that the design of the device has a significant impact on flow uniformity, and thereby on separation efficiency. The main premise of this work is that computational fluid dynamics (CFD) could serve as a fast and inexpensive tool for preliminary optimization of the design of a membrane chromatography device. CFD also helps in identifying factors that affect flow uniformity. In this paper, CFD is used to compare the fluidic attributes of conventional membrane chromatography devices such as the stacked disc and radial flow devices with those of more recently developed ones such as the different versions of the laterally-fed membrane chromatography (LFMC) device. These are compared based on pulse tracer solute dispersion, which is a useful metric for measuring flow uniformity, and is thereby a good predictor of chromatographic separation performance. The poor separation performance typically observed with conventional membrane chromatography devices could be attributed to the high degree of solute dispersion within these devices. CFD is then used to analyze the impact of factors such as membrane aspect ratio, and channel dimensions on the performance of z2-laterally-fed membrane chromatography (z2LFMC) devices. The results discussed in the paper demonstrate that CFD could indeed serve as a powerful optimization and performance prediction tool for membrane chromatography.
Collapse
Affiliation(s)
- Roxana Roshankhah
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Robert Pelton
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Raja Ghosh
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada.
| |
Collapse
|
7
|
Schmitz F, Kruse T, Minceva M, Kampmann M. Integrated double flow-through purification of monoclonal antibodies using membrane adsorbers and single-pass tangential flow filtration. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
8
|
Butani N, Xu Y, Pan S, Durocher Y, Ghosh R. A fast, efficient, and scalable method for purifying recombinant SARS-CoV-2 spike protein. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1215:123579. [PMID: 36603473 PMCID: PMC9810479 DOI: 10.1016/j.jchromb.2022.123579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Recombinant SARS-CoV-2 trimeric spike protein produced by mammalian cell culture is a potential candidate for a COVID-19 vaccine. However, this protein is much larger than most typical biopharmaceutical proteins and its large-scale manufacture is therefore challenging. Particularly, its purification using resin-based chromatography is difficult as the diffusive transport of this protein to and from its binding site within the pores of the stationary phase particles is slow. Therefore, very low flow rates need to be used during binding and elution, and this slows down the purification process. Also, due to its large size, the binding capacity of this protein on resin-based media is low. Membrane chromatography is an efficient and scalable technique for purifying biopharmaceuticals. The predominant mode of solute transport in a membrane is convective and hence it is considered better than resin-based chromatography for purifying large proteins. In this paper, we propose a membrane chromatography-based purification method for fast and scalable manufacture of recombinant SARS-CoV-2 trimeric spike protein. A combination of cation exchange z2 laterally-fed membrane chromatography and size exclusion chromatography was found to be suitable for obtaining a homogeneous spike protein sample from mammalian cell culture supernatant. The proposed method is both fast and scalable and could be explored as a method for manufacturing vaccine grade spike protein.
Collapse
Affiliation(s)
- Nikhila Butani
- Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
| | - Yating Xu
- Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
| | - Si Pan
- Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
| | - Yves Durocher
- National Research Council of Canada, Montreal, QC H4P 2R2, Canada; Département de biochimie et médecine moléculaire, Faculté de médecine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Raja Ghosh
- Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada.
| |
Collapse
|
9
|
Abstract
Membrane chromatography (MC) is an emerging bioseparation technology combining the principles of membrane filtration and chromatography. In this process, one type of molecule is adsorbed in the stationary phase, whereas the other type of molecule is passed through the membrane pores without affecting the adsorbed molecule. In subsequent the step, the adsorbed molecule is recovered by an elution buffer with a unique ionic strength and pH. Functionalized microfiltration membranes are usually used in radial flow, axial flow, and lateral flow membrane modules in MC systems. In the MC process, the transport of a solute to a stationary phase is mainly achieved through convection and minimum pore diffusion. Therefore, mass transfer resistance and pressure drop become insignificant. Other characteristics of MC systems are a minimum clogging tendency in the stationary phase, the capability of operating with a high mobile phase flow rate, and the disposable (short term) application of stationary phase. The development and application of MC systems for the fractionation of individual proteins from whey for investigation and industrial-scale production are promising. A significant income from individual whey proteins together with the marketing of dairy foods may provide a new commercial outlook in dairy industry. In this review, information about the development of a MC system and its applications for the fractionation of individual protein from whey are presented in comprehensive manner.
Collapse
|
10
|
Schmidt M, Abdul Latif A, Prager A, Gläser R, Schulze A. Highly Efficient One-Step Protein Immobilization on Polymer Membranes Supported by Response Surface Methodology. Front Chem 2022; 9:804698. [PMID: 35118049 PMCID: PMC8804297 DOI: 10.3389/fchem.2021.804698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/20/2021] [Indexed: 12/26/2022] Open
Abstract
Immobilization of proteins by covalent coupling to polymeric materials offers numerous excellent advantages for various applications, however, it is usually limited by coupling strategies, which are often too expensive or complex. In this study, an electron-beam-based process for covalent coupling of the model protein bovine serum albumin (BSA) onto polyvinylidene fluoride (PVDF) flat sheet membranes was investigated. Immobilization can be performed in a clean, fast, and continuous mode of operation without any additional chemicals involved. Using the Design of Experiments (DoE) approach, nine process factors were investigated for their influence on graft yield and homogeneity. The parameters could be reduced to only four highly significant factors: BSA concentration, impregnation method, impregnation time, and electron beam irradiation dose. Subsequently, optimization of the process was performed using the Response Surface Methodology (RSM). A one-step method was developed, resulting in a high BSA grafting yield of 955 mg m−2 and a relative standard deviation of 3.6%. High efficiency was demonstrated by reusing the impregnation solution five times consecutively without reducing the final BSA grafting yield. Comprehensive characterization was conducted by X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), and measurements of zeta potential, contact angle and surface free energy, as well as filtration performance. In addition, mechanical properties and morphology were examined using mercury porosimetry, tensile testing, and scanning electron microscopy (SEM).
Collapse
Affiliation(s)
- Martin Schmidt
- Leibniz Institute of Surface Engineering (IOM), Leipzig, Germany
| | | | - Andrea Prager
- Leibniz Institute of Surface Engineering (IOM), Leipzig, Germany
| | - Roger Gläser
- Institute of Chemical Technology, Leipzig University, Leipzig, Germany
| | - Agnes Schulze
- Leibniz Institute of Surface Engineering (IOM), Leipzig, Germany
- *Correspondence: Agnes Schulze,
| |
Collapse
|
11
|
Chang YK, Cheng HI, Ooi CW, Song CP, Liu BL. Adsorption and purification performance of lysozyme from chicken egg white using ion exchange nanofiber membrane modified by ethylene diamine and bromoacetic acid. Food Chem 2021; 358:129914. [PMID: 34000689 DOI: 10.1016/j.foodchem.2021.129914] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 04/07/2021] [Accepted: 04/18/2021] [Indexed: 12/23/2022]
Abstract
A high-performance polyacid ion exchange (IEX) nanofiber membrane was used in membrane chromatography for the recovery of lysozyme from chicken egg white (CEW). The polyacid IEX nanofiber membrane (P-BrA) was prepared by the functionalization of polyacrylonitrile (PAN) nanofiber membrane with ethylene diamine (EDA) and bromoacetic acid (BrA). The adsorption performance of P-BrA was evaluated under various operating conditions using Pall filter holder. The results showed that optimal conditions of IEX membrane chromatography for lysozyme adsorption were 10% (w/v) of CEW, pH 9 and 0.1 mL/min. The purification factor and yield of lysozyme were 402 and 91%, respectively. The adsorption process was further scaled up to a larger loading volume, and the purification performance was found to be consistent. Furthermore, the regeneration of IEX nanofiber membrane was achieved under mild conditions. The adsorption process was repeated for five times and the adsorption capacity of adsorber was found to be unaffected.
Collapse
Affiliation(s)
- Yu-Kaung Chang
- Department of Chemical Engineering, Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City 24303, Taiwan.
| | - Hsing-I Cheng
- Department of Chemical Engineering, Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City 24303, Taiwan
| | - Chien Wei Ooi
- Chemical Engineering Discipline, School of Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Cher Pin Song
- Chemical Engineering Discipline, School of Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Bing-Lan Liu
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung 413310, Taiwan.
| |
Collapse
|
12
|
Morita K, Takeda S, Yunoki A, Tsuchii T, Tanaka T, Maruyama T. Preparation of affinity membranes using polymer phase separation and azido-containing surfactants. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Beschkov V, Yankov D. Chemical engineering methods in downstream processing in biotechnology. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2018-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Downstream processing in industrial biotechnology is a very important part of the overall bioproduct manufacturing. Sometimes the cost for this part of biotechnologies is up to 50% of the overall expenses. It comprises product concentration, separation and purification to different extents, as requested. The usually low product concentrations, the large volumes of fermentation broth and the product sensitivity toward higher temperatures lead to specific methods, similar but not identical to the ones in traditional chemical technology.
This article summarizes briefly the unit operations in downstream processing in industrial biotechnology, making a parallel between biotechnology and chemical technology.
Collapse
Affiliation(s)
- V. Beschkov
- Institute of Chemical Engineering , Bulgarian Academy of Sciences , Acad.G.Bonchev St., Block 103 , Sofia , 1113 Bulgaria
| | - D. Yankov
- Institute of Chemical Engineering , Bulgarian Academy of Sciences , Acad.G.Bonchev St., Block 103 , Sofia , 1113 Bulgaria
| |
Collapse
|
14
|
Huong DTM, Liu BL, Chai WS, Show PL, Tsai SL, Chang YK. Highly efficient dye removal and lysozyme purification using strong and weak cation-exchange nanofiber membranes. Int J Biol Macromol 2020; 165:1410-1421. [DOI: 10.1016/j.ijbiomac.2020.10.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/21/2020] [Accepted: 10/05/2020] [Indexed: 01/15/2023]
|
15
|
Wahab RA, Elias N, Abdullah F, Ghoshal SK. On the taught new tricks of enzymes immobilization: An all-inclusive overview. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104613] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
16
|
Mechanism of carboxymethyl chitosan hybrid montmorillonite and adsorption of Pb(II) and Congo red by CMC-MMT organic-inorganic hybrid composite. Int J Biol Macromol 2020; 149:1161-1169. [DOI: 10.1016/j.ijbiomac.2020.01.201] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 11/19/2022]
|
17
|
Moringo NA, Bishop LDC, Shen H, Misiura A, Carrejo NC, Baiyasi R, Wang W, Ye F, Robinson JT, Landes CF. A mechanistic examination of salting out in protein-polymer membrane interactions. Proc Natl Acad Sci U S A 2019; 116:22938-22945. [PMID: 31659038 PMCID: PMC6859367 DOI: 10.1073/pnas.1909860116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Developing a mechanistic understanding of protein dynamics and conformational changes at polymer interfaces is critical for a range of processes including industrial protein separations. Salting out is one example of a procedure that is ubiquitous in protein separations yet is optimized empirically because there is no mechanistic description of the underlying interactions that would allow predictive modeling. Here, we investigate peak narrowing in a model transferrin-nylon system under salting out conditions using a combination of single-molecule tracking and ensemble separations. Distinct surface transport modes and protein conformational changes at the negatively charged nylon interface are quantified as a function of salt concentration. Single-molecule kinetics relate macroscale improvements in chromatographic peak broadening with microscale distributions of surface interaction mechanisms such as continuous-time random walks and simple adsorption-desorption. Monte Carlo simulations underpinned by the stochastic theory of chromatography are performed using kinetic data extracted from single-molecule observations. Simulations agree with experiment, revealing a decrease in peak broadening as the salt concentration increases. The results suggest that chemical modifications to membranes that decrease the probability of surface random walks could reduce peak broadening in full-scale protein separations. More broadly, this work represents a proof of concept for combining single-molecule experiments and a mechanistic theory to improve costly and time-consuming empirical methods of optimization.
Collapse
Affiliation(s)
| | | | - Hao Shen
- Department of Chemistry, Rice University, Houston, TX 77251
| | | | | | - Rashad Baiyasi
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77251
| | - Wenxiao Wang
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77251
| | - Fan Ye
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77251
| | - Jacob T Robinson
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77251
- Department of Bioengineering, Rice University, Houston, TX 77251
| | - Christy F Landes
- Department of Chemistry, Rice University, Houston, TX 77251;
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77251
- Smalley-Curl Institute, Rice University, Houston, TX 77251
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77251
| |
Collapse
|
18
|
An annular-flow, hollow-fiber membrane chromatography device for fast, high-resolution protein separation at low pressure. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Rahmatika AM, Goi Y, Kitamura T, Widiyastuti W, Ogi T. TEMPO-oxidized cellulose nanofiber (TOCN) decorated macroporous silica particles: Synthesis, characterization, and their application in protein adsorption. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110033. [PMID: 31546405 DOI: 10.1016/j.msec.2019.110033] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/22/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023]
Abstract
Effective protein adsorption has attracted attention for broad application in the biomedical field. In this study, we introduce the synthesis of a TEMPO-oxidized cellulose nanofiber (TOCN) decorated macroporous SiO2 (TOCN@macroporous SiO2) particle and its protein adsorption performance. The TOCN@macroporous SiO2 particles have a unique cellulose nanofiber network structure on the macroporous, highly-negative zeta potential (-62 ± 2 mV) and high surface area (30.8 m2/g) for dried-state cellulose based particles. These characteristics provide sites that are rich in electrostatic interaction to exhibit an outstanding adsorption capacity of lysozyme (1865 mg/g). Furthermore, the TOCN@macroporous SiO2 particles have remarkably high reusability (>90% adsorption capacity) and good release of adsorbate (>80%) after 10 times of use. The material proposed in this paper has the potential for application in drug delivery, protein adsorption, biosensors, and other biomedical fields.
Collapse
Affiliation(s)
- Annie M Rahmatika
- Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan; Department of Biotechnology and Veterinary, Vocational School, Gadjah Mada University, Sekip Unit 1 Catur Tunggal, Depok Sleman, D.I. Yogyakarta 55281, Indonesia
| | - Yohsuke Goi
- R&D Headquarters, DKS Co. Ltd., 5 Ogawara-Cho, Kisshoin, Minami-Ku, Kyoto 601-8391, Japan
| | - Takeo Kitamura
- R&D Headquarters, DKS Co. Ltd., 5 Ogawara-Cho, Kisshoin, Minami-Ku, Kyoto 601-8391, Japan
| | - W Widiyastuti
- Department of Chemical Engineering, Faculty of Industrial Technology, Sepuluh Nopember Institute of Technology, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
| | - Takashi Ogi
- Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan.
| |
Collapse
|
20
|
Zeng R, Jin BK, Yang ZH, Guan R, Quan C. Preparation of a modified crosslinked chitosan/polyvinyl alcohol blended affinity membrane for purification of His-tagged protein. J Appl Polym Sci 2018. [DOI: 10.1002/app.47347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rong Zeng
- College of Chemistry and Chemical Engineering, Hubei University; Wuhan 430062 China
| | - Bu-Kun Jin
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology; Wuhan 430081 China
| | - Zhong-Hua Yang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology; Wuhan 430081 China
| | - Rong Guan
- College of Chemistry and Chemical Engineering, Hubei University; Wuhan 430062 China
| | - Can Quan
- Division of Chemical Metrology and Analytical Science; National Institute of Metrology; Beijing 102200 China
| |
Collapse
|
21
|
Abdallah H, Taman R, Elgayar D, Farag H. Antibacterial blend polyvinylidene fluoride/polyethyleneimine membranes for salty oil emulsion separation. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.09.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Shoparwe NF, Otitoju TA, Ahmad AL. Fouling evaluation of polyethersulfone (PES)/sulfonated cation exchange resin (SCER) membrane for BSA separation. J Appl Polym Sci 2017. [DOI: 10.1002/app.45854] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Noor Fazliani Shoparwe
- School of Chemical Engineering, Engineering Campus; Universiti Sains Malaysia; 14300 Nibong Tebal, Seberang Perai Selatan Pulau Pinang Malaysia
| | - Tunmise Ayode Otitoju
- School of Chemical Engineering, Engineering Campus; Universiti Sains Malaysia; 14300 Nibong Tebal, Seberang Perai Selatan Pulau Pinang Malaysia
| | - Abdul Latif Ahmad
- School of Chemical Engineering, Engineering Campus; Universiti Sains Malaysia; 14300 Nibong Tebal, Seberang Perai Selatan Pulau Pinang Malaysia
| |
Collapse
|
23
|
Chisca S, Torsello M, Avanzato M, Xie Y, Boi C, Nunes SP. Highly porous polytriazole ion exchange membranes cast from solutions in non-toxic cosolvents. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
He S, Simpson BK, Sun H, Ngadi MO, Ma Y, Huang T. Phaseolus vulgaris lectins: A systematic review of characteristics and health implications. Crit Rev Food Sci Nutr 2017; 58:70-83. [PMID: 26479307 DOI: 10.1080/10408398.2015.1096234] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Legume lectins are carbohydrate-binding proteins of non-immune origin. Significant amounts of lectins have been found in Phaseolus vulgaris beans as far back as in the last century; however, many questions about their potential biological roles still remain obscure. Studies have shown that lectins are anti-nutritional factors that can cause intestinal disorders. Owing to their ability to act as toxic allergens and hemagglutinins, the Phaseolus vulgaris lectins are of grave concern for human health and safety. Nonetheless, their potential beneficial health effects, such as anti-cancer, anti-human immunodeficiency virus (anti-HIV), anti-microbial infection, preventing mucosal atrophy, reducing type 2 diabetes and obesity, promoting nutrients absorption and targeting drugs, are of immense interest. The significance of Phaseolus vulgaris lectins in biological researches and the potential biomedical applications have placed tremendous emphasis on the development of purification strategies to obtain the protein in pure and stable forms. These purification strategies entail considerations such as effects of proteolysis, heating, gamma radiation, and high-hydrostatic-pressure that can have crucial outcomes in either eliminating or improving bioactivities of the lectins. Thus, up-to-date research findings of Phaseolus vulgaris lectins on different aspects such as anti-nutritional and health impacts, purification strategies and novel processing trends, are systematically reviewed.
Collapse
Affiliation(s)
- Shudong He
- a School of Biotechnology and Food Engineering , Hefei University of Technology , Hefei , Anhui , China.,b School of Food Science and Engineering , Harbin Institute of Technology , Harbin , Heilongjiang , China.,c Department of Food Science and Agricultural Chemistry , Macdonald Campus, McGill University , Ste-Anne-de-Bellevue, Québec , Canada
| | - Benjamin K Simpson
- c Department of Food Science and Agricultural Chemistry , Macdonald Campus, McGill University , Ste-Anne-de-Bellevue, Québec , Canada
| | - Hanju Sun
- a School of Biotechnology and Food Engineering , Hefei University of Technology , Hefei , Anhui , China
| | - Michael O Ngadi
- d Department of Bioresource Engineering , Macdonald Campus, McGill University , Ste-Anne-de-Bellevue, Québec , Canada
| | - Ying Ma
- b School of Food Science and Engineering , Harbin Institute of Technology , Harbin , Heilongjiang , China
| | - Tiemin Huang
- e Advanced Electrophoresis Solutions Ltd. , Cambridge , Ontario , Canada
| |
Collapse
|
25
|
Hang Hu Y, Nagarajan R, Alexandridis P. Eli Ruckenstein - A Rare Researcher, Teacher, and Mentor par Excellence. Adv Colloid Interface Sci 2017. [PMID: 28645485 DOI: 10.1016/j.cis.2017.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Fan J, Luo J, Song W, Wan Y. One-step purification of α1-antitrypsin by regulating polyelectrolyte ligands on mussel-inspired membrane adsorber. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.01.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
In situ chitin isolation from body parts of a centipede and lysozyme adsorption studies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 70:552-563. [PMID: 27770928 DOI: 10.1016/j.msec.2016.08.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/29/2016] [Accepted: 08/20/2016] [Indexed: 11/21/2022]
Abstract
Isolation of structurally intact chitin samples for biotechnological applications has gained much recent attention. So far, three-dimensional chitin isolates have been obtained from only diplopods and sponges. In this study, three-dimensional chitin isolates were obtained from the body parts of centipede Scolopendra sp. (antennae, head, forcipule, collum, trunk, trunk legs and last pair of legs) without leading to structural failure. FT-IR spectra of chitin isolates confirmed that chitin samples are in α allomorph. TGA, XRD and SEM analyses and lysozyme adsorption studies revealed that each chitin isolate had different thermal stability, crystallinity and surface characteristics. Among the chitin isolates, Cu(II)-immobilized forcipule chitin showed the highest affinity for lysozyme (54.1mg/g), whereas chitin from last pair of legs exhibited the lowest affinity (3.7mg/g). This study demonstrated that structurally intact chitin isolates can be obtained from the body parts of centipede Scolopendra sp. (antennae, head, forcipule, collum, trunk, trunk legs and last pair of legs) by using a simple chemical procedure. Also, it gives a biotechnological perspective to the organisms in the group of Chilipoda.
Collapse
|
28
|
A label-free fluorescence biosensor for highly sensitive detection of lectin based on carboxymethyl chitosan-quantum dots and gold nanoparticles. Anal Chim Acta 2016; 932:88-97. [DOI: 10.1016/j.aca.2016.05.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/09/2016] [Accepted: 05/12/2016] [Indexed: 12/27/2022]
|
29
|
Shamsinar N, Saufi SM. Adsorptive Cation Exchanger Mixed Matrix Membrane Chromatography for the Isolation of Lysozyme from Chicken Egg White. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2015. [DOI: 10.1007/s13369-015-1939-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Wang G, Xin Y, Uyama H. Facile fabrication of mesoporous poly(ethylene- co -vinyl alcohol)/chitosan blend monoliths. Carbohydr Polym 2015; 132:345-50. [DOI: 10.1016/j.carbpol.2015.06.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/29/2015] [Accepted: 06/12/2015] [Indexed: 10/23/2022]
|
31
|
Barbosa O, Ortiz C, Berenguer-Murcia Á, Torres R, Rodrigues RC, Fernandez-Lafuente R. Strategies for the one-step immobilization–purification of enzymes as industrial biocatalysts. Biotechnol Adv 2015; 33:435-56. [DOI: 10.1016/j.biotechadv.2015.03.006] [Citation(s) in RCA: 491] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 01/06/2023]
|
32
|
Affiliation(s)
- Yong-Ming Wei
- Chemical Engineering Research Center; East China University of Science and Technology; Shanghai 200237 China
| | - Yanxiang Li
- Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 China
| | - Chuanfang Yang
- Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 China
| | - E. L. Cussler
- Dept. of Chemical Engineering and Materials Science; University of Minnesota; Minneapolis MN 55455
| |
Collapse
|
33
|
Megaporous poly(hydroxy ethylmethacrylate) based poly(glycidylmethacrylate-N-methacryloly-(l)-tryptophan) embedded composite cryogel. Colloids Surf B Biointerfaces 2015; 130:61-8. [DOI: 10.1016/j.colsurfb.2015.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 11/23/2022]
|
34
|
|
35
|
Ning W, Wijeratne S, Dong J, Bruening ML. Immobilization of carboxymethylated polyethylenimine-metal-ion complexes in porous membranes to selectively capture his-tagged protein. ACS APPLIED MATERIALS & INTERFACES 2015; 7:2575-84. [PMID: 25574836 DOI: 10.1021/am507607j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Membrane adsorbers rapidly capture tagged proteins because flow through membrane pores efficiently conveys proteins to binding sites. Effective adsorbers, however, require membrane pores coated with thin films that bind multilayers of proteins. This work employs adsorption of polyelectrolytes that chelate metal ions to create functionalized membranes that selectively capture polyhistidine-tagged (His-tagged) proteins with binding capacities equal to those of high-binding commercial beads. Adsorption of functional polyelectrolytes is simpler than previous membrane-modification strategies such as growth of polymer brushes or derivatization of adsorbed layers with chelating moieties. Sequential adsorption of protonated poly(allylamine) (PAH) and carboxymethylated branched polyethylenimine (CMPEI) leads to membranes that bind Ni(2+) and capture ∼60 mg of His-tagged ubiquitin per mL of membrane. Moreover, these membranes enable isolation of His-tagged protein from cell lysates in <15 min. The backbone amine groups in CMPEI likely increase swelling in water to double protein binding compared to films composed of PAH and the chelating polymer poly[(N,N-dicarboxymethyl)allylamine] (PDCMAA), which has a hydrocarbon backbone. Metal leaching from PAH/CMPEI- and PAH/PDCMAA-modified membranes is similar to that from GE Hitrap FF columns. Eluates with 0.5 M imidazole contain <10 ppm of Ni(2+).
Collapse
Affiliation(s)
- Wenjing Ning
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | | | | | | |
Collapse
|
36
|
Dods SR, Hardick O, Stevens B, Bracewell DG. Fabricating electrospun cellulose nanofibre adsorbents for ion-exchange chromatography. J Chromatogr A 2014; 1376:74-83. [PMID: 25541092 PMCID: PMC4289918 DOI: 10.1016/j.chroma.2014.12.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 11/29/2022]
Abstract
Protein separation is an integral step in biopharmaceutical manufacture with diffusion-limited packed bed chromatography remaining the default choice for industry. Rapid bind-elute separation using convective mass transfer media offers advantages in productivity by operating at high flowrates. Electrospun nanofibre adsorbents are a non-woven fibre matrix of high surface area and porosity previously investigated as a bioseparation medium. The effects of compression and bed layers, and subsequent heat treatment after electrospinning cellulose acetate nanofibres were investigated using diethylaminoethyl (DEAE) or carboxylate (COO) functionalisations. Transbed pressures were measured and compared by compression load, COO adsorbents were 30%, 70% and 90% higher than DEAE for compressions 1, 5 and 10MPa, respectively, which was attributed to the swelling effect of hydrophilic COO groups. Dynamic binding capacities (DBCs) at 10% breakthrough were measured between 2000 and 12,000CV/h (2s and 0.3s residence times) under normal binding conditions, and DBCs increased with reactant concentration from 4 to 12mgBSA/mL for DEAE and from 10 to 21mglysozyme/mL for COO adsorbents. Comparing capacities of compression loads applied after electrospinning showed that the lowest load tested, 1MPa, yielded the highest DBCs for DEAE and COO adsorbents at 20mgBSA/mL and 27mglysozyme/mL, respectively. At 1MPa, DBCs were the highest for the lowest flowrate tested but stabilised for flowrates above 2000CV/h. For compression loads of 5MPa and 10MPa, adsorbents recorded lower DBCs than 1MPa as a result of nanofibre packing and reduced surface area. Increasing the number of bed layers from 4 to 12 showed decreasing DBCs for both adsorbents. Tensile strengths were recorded to indicate the mechanical robustness of the adsorbent and be related to packing the nanofibre adsorbents in large scale configurations such as pleated cartridges. Compared with an uncompressed adsorbent, compressions of 1, 5 and 10MPa showed increases of 30%, 110% and 110%, respectively, for both functionalisations. The data presented show that capacity and mechanical strength can be balanced through compression after electrospinning and is particular to different functionalisations. This trade-off is critical to the development of nanofibre adsorbents into different packing configurations for application and scale up in bioseparation.
Collapse
Affiliation(s)
- Stewart R Dods
- Department of Biochemical Engineering, University College London, Bernard Katz Building, London WC1H 0AH, UK; Innovations Technology Access Centre - Micro and Nanotechnology, Rutherford Appleton Laboratory, Science and Technology Facilities Council, Harwell Oxford, Didcot OX11 0QX, UK
| | - Oliver Hardick
- Department of Biochemical Engineering, University College London, Bernard Katz Building, London WC1H 0AH, UK
| | - Bob Stevens
- School of Science and Technology, Nottingham Trent University, Nottingham, NG1 4BU, UK
| | - Daniel G Bracewell
- Department of Biochemical Engineering, University College London, Bernard Katz Building, London WC1H 0AH, UK.
| |
Collapse
|
37
|
Song Y, Li Y, Liu Z, Liu L, Wang X, Su X, Ma Q. A novel ultrasensitive carboxymethyl chitosan-quantum dot-based fluorescence “turn on–off” nanosensor for lysozyme detection. Biosens Bioelectron 2014; 61:9-13. [DOI: 10.1016/j.bios.2014.04.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/18/2014] [Accepted: 04/21/2014] [Indexed: 10/25/2022]
|
38
|
Synthesis of membrane adsorbers via surface initiated ATRP of 2-dimethylaminoethyl methacrylate from microporous PVDF membranes. CHINESE JOURNAL OF POLYMER SCIENCE 2014. [DOI: 10.1007/s10118-014-1462-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Ünlüer ÖB, Özcan A, Uzun L. Preparation of a novel hydrophobic affinity cryogel for adsorption of lipase and its utilization as a chromatographic adsorbent for fast protein liquid chromatography. Biotechnol Prog 2014; 30:376-82. [DOI: 10.1002/btpr.1863] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 11/08/2013] [Indexed: 11/07/2022]
Affiliation(s)
| | - Ayça Özcan
- Dept. of Chemistry; Anadolu University; Eskisehir Turkey
| | - Lokman Uzun
- Dept. of Chemistry, Biochemistry Div.; Hacettepe University; Ankara Turkey
| |
Collapse
|
40
|
Saufi SM, Fee CJ. Mixed matrix membrane chromatography based on hydrophobic interaction for whey protein fractionation. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2013.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Muthukumar S, Rathore AS. High throughput process development (HTPD) platform for membrane chromatography. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2013.04.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
|
43
|
Wang C, Fan Y, Hu MX, Xu W, Wu J, Ren PF, Xu ZK. Glycosylation of the polypropylene membrane surface via thiol-yne click chemistry for lectin adsorption. Colloids Surf B Biointerfaces 2013; 110:105-12. [PMID: 23708686 DOI: 10.1016/j.colsurfb.2013.04.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 04/18/2013] [Accepted: 04/23/2013] [Indexed: 11/15/2022]
Abstract
Glycosylated membrane, as one of the most important affinity membranes, permits affinity separation/purification of proteins based on carbohydrate-protein interactions. It is an important scientific issue to screen facile method for fabricating the glycosylated membrane surface with high glycosyl density. Such a surface can be fabricated by the direct covalent immobilization of carbohydrate ligands on the surfaces of microporous polypropylene membrane (MPPM). First, alkyne-functionalized membrane surface was fabricated by plasma pretreatment combined with UV-induced graft polymerization of 3-(trimethylsilyl) propargyl methacrylate. Then, the glycosylated membrane surface was directly fabricated with the thiol-yne click reaction to ensure rapid process, improved efficiency, and high glycosyl density. Chemical and physical properties of the membrane surface were characterized by ATR/FT-IR, XPS, FESEM and water contact angle measurement. Static lectin adsorption indicates that the glycosylated membrane can specifically adsorb lectin concanavalin A (Con A) other than peanut agglutinin (PNA). Break through curves from dynamic Con A adsorption show the membrane has unique properties such as strong specificity, high adsorption capacity, and reversible binding capability. We suggest that the prepared glycosylated membrane is of great potentials in affinity membrane chromatography for rapid and high-resolution separation/purification of lectins.
Collapse
Affiliation(s)
- Cang Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Affinity membrane development from PBT nonwoven by photo-induced graft polymerization, hydrophilization and ligand attachment. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2012.09.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Smrekar V, Smrekar F, Štrancar A, Podgornik A. Single step plasmid DNA purification using methacrylate monolith bearing combination of ion-exchange and hydrophobic groups. J Chromatogr A 2013; 1276:58-64. [DOI: 10.1016/j.chroma.2012.12.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/12/2012] [Accepted: 12/16/2012] [Indexed: 01/31/2023]
|
46
|
Surface-modified anodic aluminum oxide membrane with hydroxyethyl celluloses as a matrix for bilirubin removal. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 912:1-7. [DOI: 10.1016/j.jchromb.2012.10.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/27/2012] [Accepted: 10/01/2012] [Indexed: 11/17/2022]
|
47
|
Meng XL, Fang Y, Wan LS, Huang XJ, Xu ZK. Glycopolymer brushes for the affinity adsorption of RCA120: effects of thickness, grafting density, and epitope density. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:13616-13623. [PMID: 22950871 DOI: 10.1021/la302389e] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The interactions between glycopolymer brushes and lectin are very important for the development of affinity membrane chromatography in protein separation. Here, we report the combination of surface-initiated atom transfer radical polymerization (SI-ATRP) and surface plasmon resonance (SPR) to investigate the relationship between the structure of glycopolymer brushes and the affinity adsorption of lectin. The glycopolymer brushes were fabricated from self-assembly of 11-mercapto-1-undecanol (MUD)/1-undecanethiol (UDT) mixture, immobilization of ATRP initiators, and then SI-ATRP of 2-lactobionamidoethyl methacrylate (LAMA). Brush thickness and grafting density were adjusted by controlling polymerization time and thiol ratio in MUD/UDT mixture, respectively. Sugar epitope density was also controlled through copolymerization of 2-hydroxylethyl methacrylate (HEMA) with LAMA. Ricinus communis agglutinin (RCA(120)), one kind of lectin that can bind galactose specifically, was chosen to study the effects of brush architectures on lectin adsorption. SPR results indicate not only the thickness but also the grafting density and the epitope density of glycopolymer brushes can achieve the best performance of sugar cluster effect in affinity adsorption of lectin. In addition, the mass transport effect is crucial in the adsorption process. We propose that it is important to keep the balance between the sugar cluster effect and the mass transport effect in the preparation of high-performance affinity membrane chromatography.
Collapse
Affiliation(s)
- Xiang-Lin Meng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | | | | | | | | |
Collapse
|
48
|
Sousa Â, Sousa F, Queiroz JA. Advances in chromatographic supports for pharmaceutical-grade plasmid DNA purification. J Sep Sci 2012; 35:3046-58. [DOI: 10.1002/jssc.201200307] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/28/2012] [Accepted: 06/02/2012] [Indexed: 01/04/2023]
Affiliation(s)
- Ângela Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde; Universidade da Beira Interior; Covilhã Portugal
| | - Fani Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde; Universidade da Beira Interior; Covilhã Portugal
| | - João A. Queiroz
- CICS-UBI - Centro de Investigação em Ciências da Saúde; Universidade da Beira Interior; Covilhã Portugal
| |
Collapse
|
49
|
Liu Y, Feng Z, Shao Z, Chen X. Chitosan-based membrane chromatography for protein adsorption and separation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012; 32:1669-73. [DOI: 10.1016/j.msec.2012.04.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 03/01/2012] [Accepted: 04/24/2012] [Indexed: 11/27/2022]
|
50
|
Das R, Ghosh S, Bhattacharjee C. Enzyme membrane reactor in isolation of antioxidative peptides from oil industry waste: A comparison with non-peptidic antioxidants. Lebensm Wiss Technol 2012. [DOI: 10.1016/j.lwt.2012.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|