1
|
Yang L, Hou H, Li J. Frontiers in fluorescence imaging: tools for the in situ sensing of disease biomarkers. J Mater Chem B 2024. [PMID: 39668682 DOI: 10.1039/d4tb01867b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Fluorescence imaging has been recognized as a powerful tool for the real-time detection and specific imaging of biomarkers within living systems, which is crucial for early diagnosis and treatment evaluation of major diseases. Over the years, significant advancements in this field have been achieved, particularly with the development of novel fluorescent probes and advanced imaging technologies such as NIR-II imaging, super-resolution imaging, and 3D imaging. These technologies have enabled deeper tissue penetration, higher image contrast, and more accurate detection of disease-related biomarkers. Despite these advancements, challenges such as improving probe specificity, enhancing imaging depth and resolution, and optimizing signal-to-noise ratios still remain. The emergence of artificial intelligence (AI) has injected new vitality into the designs and performances of fluorescent probes, offering new tools for more precise disease diagnosis. This review will not only discuss chemical modifications of classic fluorophores and in situ visualization of various biomarkers including metal ions, reactive species, and enzymes, but also share some breakthroughs in AI-driven fluorescence imaging, aiming to provide a comprehensive understanding of these advancements. Future prospects of fluorescence imaging for biomarkers including the potential impact of AI in this rapidly evolving field are also highlighted.
Collapse
Affiliation(s)
- Lei Yang
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
| | - Hongwei Hou
- Beijing Life Science Academy, Beijing 102209, China.
| | - Jinghong Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
- Beijing Life Science Academy, Beijing 102209, China.
| |
Collapse
|
2
|
Yuan Q, Wang M, Ma M, Sun P, Zeng C, Chi W. Computational chemistry facilitates the development of second near-infrared xanthene-based dyes. J Mol Model 2024; 30:385. [PMID: 39467901 DOI: 10.1007/s00894-024-06179-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024]
Abstract
CONTEXT The dyes in the second near-infrared (NIR-II) region play a crucial role in advancing imaging technology. However, developing small-molecule dyes in NIR-II poses a significant bottleneck to meet the substantial demands in biological fields, which may be attributed to the lack of a rational design strategy. Herein, we designed a series of rhodamine analogs with more red-shifted emission by replacing the oxygen-bridge atom in xanthene-based dyes with -C(CH3)2, -Si(CH3)2, -SO2, and -P(O)Ph. We investigated the frontier molecular orbital, electrostatic potential surfaces, the interaction region indicator, electron-hole distribution, and absorption and emission spectrum of xanthene-based dyes using (time-dependent) density functional theory. Our results demonstrated that these designed small molecular dyes exhibit long emission wavelengths covering 1377-1809 nm. We expected these findings to enable the targeted design of long-wavelength rhodamines. METHOD Geometry optimization of dyes in the ground and excited states was carried out at ω-B97XD/Def2SVP level using Gaussian 16 A03. The absorption and emission wavelengths were evaluated using 13 functional, including TPSSH, O3LYP, B3LYP*, B3LYP, PBE0, MPW1B95, PBE-1/3, PBE38, MPWB1K, MN15, BHandHLYP, ω-B97XD, and CAM-B3LYP.
Collapse
Affiliation(s)
- Qinlin Yuan
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Mingyu Wang
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Mingyue Ma
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Pingping Sun
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China.
| | - Chaoyuan Zeng
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China.
| | - Weijie Chi
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China.
| |
Collapse
|
3
|
Wang Z, Liu C, Wu Y, Yao H, He S, Zhao L, Zeng X. A Mitochondria-Targeting Water-Soluble Fluorescent Probe for Selective Detection of Glyoxal in Living Cells. J Fluoresc 2024:10.1007/s10895-024-03994-1. [PMID: 39441259 DOI: 10.1007/s10895-024-03994-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Glyoxal (GL) is a physiological reactive α-oxoaldehyde metabolite, produced by lipid peroxidation and autoxidation of glucose. In this work, a specific mitochondria-targeting fluorescent probe Z-GL for glyoxal has been developed by an introducing isopropyl group on the recognition site to tune the selectivity toward glyoxal. The probe showed high selectivity and sensitivity for glyoxal in an aqueous system. Importantly, the probe was able to visualize exogenous and endogenous glyoxal in living cells. Furthermore, the probe was mitochondria-targetable, and could be used for monitoring the level of intracellular glyoxal.
Collapse
Affiliation(s)
- Zhiming Wang
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Chang Liu
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yuanyuan Wu
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Huirong Yao
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Song He
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Liancheng Zhao
- School of Materials Science & Engineering, Institute of Information Functional Materials & Devices, Harbin Institute of Technology, Harbin, 150001, China
| | - Xianshun Zeng
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China.
| |
Collapse
|
4
|
Zhang XX, Yang F, Zhao X, Wu Q, He L, Li Z, Zhou Z, Ren TB, Zhang XB, Yuan L. Dihydropyridopyrazine Functionalized Xanthene: Generating Stable NIR Dyes with Small-Molecular Weight by Enhanced Charge Separation. Angew Chem Int Ed Engl 2024; 63:e202410666. [PMID: 39007416 DOI: 10.1002/anie.202410666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/16/2024]
Abstract
Near-infrared region (NIR; 650-1700 nm) dyes offer many advantages over traditional dyes with absorption and emission in the visible region. However, developing new NIR dyes, especially organic dyes with long wavelengths, small molecular weight, and excellent stability and biocompatibility, is still quite challenging. Herein, we present a general method to enhance the absorption and emission wavelengths of traditional fluorophores by simply appending a charge separation structure, dihydropyridopyrazine. These novel NIR dyes not only exhibited greatly redshifted wavelengths compared to their parent dyes, but also displayed a small molecular weight increase together with retained stability and biocompatibility. Specifically, dye NIR-OX, a dihydropyridopyra-zine derivative of oxazine with a molecular mass of 386.2 Da, exhibited an absorption at 822 nm and an emission extending to 1200 nm, making it one of the smallest molecular-weight NIR-II emitting dyes. Thanks to its rapid metabolism and long wave-length, NIR-OX enabled high-contrast bioimaging and assessment of cholestatic liver injury in vivo and also facilitated the evalua-tion of the efficacy of liver protection medicines against cholestatic liver injury.
Collapse
Affiliation(s)
- Xing-Xing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Feiyu Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Xinyu Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Qian Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Long He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Zhe Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Zhixuan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| |
Collapse
|
5
|
Ertl F, Kopanchuk S, Dijon NC, Veikšina S, Tahk MJ, Laasfeld T, Schettler F, Gattor AO, Hübner H, Archipowa N, Köckenberger J, Heinrich MR, Gmeiner P, Kutta RJ, Holliday ND, Rinken A, Keller M. Dually Labeled Neurotensin NTS 1R Ligands for Probing Radiochemical and Fluorescence-Based Binding Assays. J Med Chem 2024; 67:16664-16691. [PMID: 39261089 PMCID: PMC11440508 DOI: 10.1021/acs.jmedchem.4c01470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
The determination of ligand-receptor binding affinities plays a key role in the development process of pharmaceuticals. While the classical radiochemical binding assay uses radioligands, fluorescence-based binding assays require fluorescent probes. Usually, radio- and fluorescence-labeled ligands are dissimilar in terms of structure and bioactivity, and can be used in either radiochemical or fluorescence-based assays. Aiming for a close comparison of both assay types, we synthesized tritiated fluorescent neurotensin receptor ligands ([3H]13, [3H]18) and their nontritiated analogues (13, 18). The labeled probes were studied in radiochemical and fluorescence-based (high-content imaging, flow cytometry, fluorescence anisotropy) binding assays. Equilibrium saturation binding yielded well-comparable ligand-receptor affinities, indicating that all these setups can be used for the screening of new drugs. In contrast, discrepancies were found in the kinetic behavior of the probes, which can be attributed to technical differences of the methods and require further studies with respect to the elucidation of the underlying mechanisms.
Collapse
Affiliation(s)
- Fabian
J. Ertl
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraβe 31, D-93053 Regensburg, Germany
| | - Sergei Kopanchuk
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Nicola C. Dijon
- School
of Life Sciences, University of Nottingham,
Queen’s Medical Centre, Nottingham NG7 2UH, U.K.
| | - Santa Veikšina
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Maris-Johanna Tahk
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Tõnis Laasfeld
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Franziska Schettler
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraβe 31, D-93053 Regensburg, Germany
| | - Albert O. Gattor
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraβe 31, D-93053 Regensburg, Germany
| | - Harald Hübner
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich Alexander University, Nikolaus-Fiebiger-Straβe 10, D-91058 Erlangen, Germany
| | - Nataliya Archipowa
- Institute
of Biophysics and Physical Biochemistry, Faculty of Biology and Preclinical
Medicine, University of Regensburg, Universitätsstraβe
31, D-93053 Regensburg, Germany
| | - Johannes Köckenberger
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich Alexander University, Nikolaus-Fiebiger-Straβe 10, D-91058 Erlangen, Germany
| | - Markus R. Heinrich
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich Alexander University, Nikolaus-Fiebiger-Straβe 10, D-91058 Erlangen, Germany
| | - Peter Gmeiner
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich Alexander University, Nikolaus-Fiebiger-Straβe 10, D-91058 Erlangen, Germany
| | - Roger J. Kutta
- Institute
of Physical and Theoretical Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraβe 31, D-93053 Regensburg, Germany
| | - Nicholas D. Holliday
- School
of Life Sciences, University of Nottingham,
Queen’s Medical Centre, Nottingham NG7 2UH, U.K.
| | - Ago Rinken
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Max Keller
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraβe 31, D-93053 Regensburg, Germany
| |
Collapse
|
6
|
Guo L, Yang M, Dong B, Lewman S, Van Horn A, Jia S. Engineering Central Substitutions in Heptamethine Dyes for Improved Fluorophore Performance. JACS AU 2024; 4:3007-3017. [PMID: 39211623 PMCID: PMC11350720 DOI: 10.1021/jacsau.4c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
As a major family of red-shifted fluorophores that operate beyond visible light, polymethine dyes are pivotal in light-based biological techniques. However, methods for tuning this kind of fluorophores by structural modification remain restricted to bottom-up synthesis and modification using coupling or nucleophilic substitutions. In this study, we introduce a two-step, late-stage functionalization process for heptamethine dyes. This process enables the substitution of the central chlorine atom in the commonly used 4'-chloro heptamethine scaffold with various aryl groups using aryllithium reagents. This method borrows the building block and designs from the xanthene dye community and offers a mild and convenient way for the diversification of heptamethine fluorophores. Notably, this efficient conversion allows for the synthesis of heptamethine-X, the heptamethine scaffold with two ortho-substituents on the 4'-aryl modification, which brings enhanced stability and reduced aggregation to the fluorophore. We showcase the utility of this method by a facile synthesis of a fluorogenic, membrane-localizing fluorophore that outperforms its commercial counterparts with a significantly higher brightness and contrast. Overall, this method establishes the synthetic similarities between polymethine and xanthene fluorophores and provides a versatile and feasible toolbox for future optimizing heptamethine fluorophores for their biological applications.
Collapse
Affiliation(s)
- Lei Guo
- Department
of Civil Engineering, University of Arkansas,
Fayetteville, Fayetteville, Arkansas 72701, United States
| | - Meek Yang
- Department
of Chemistry and Biochemistry, University
of Arkansas, Fayetteville, Fayetteville, Arkansas 72701, United States
| | - Bin Dong
- Department
of Chemistry and Biochemistry, University
of Arkansas, Fayetteville, Fayetteville, Arkansas 72701, United States
| | - Seth Lewman
- Department
of Chemistry and Biochemistry, University
of Arkansas, Fayetteville, Fayetteville, Arkansas 72701, United States
| | - Alex Van Horn
- Department
of Chemistry and Biochemistry, University
of Arkansas, Fayetteville, Fayetteville, Arkansas 72701, United States
| | - Shang Jia
- Department
of Chemistry and Biochemistry, University
of Arkansas, Fayetteville, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
7
|
Brøndsted F, Stains CI. Xanthene-Based Dyes for Photoacoustic Imaging and their Use as Analyte-Responsive Probes. Chemistry 2024; 30:e202400598. [PMID: 38662806 PMCID: PMC11219268 DOI: 10.1002/chem.202400598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Indexed: 06/15/2024]
Abstract
Developing imaging tools that can report on the presence of disease-relevant analytes in multicellular organisms can provide insight into fundamental disease mechanisms as well as provide diagnostic tools for the clinic. Photoacoustic imaging (PAI) is a light-in, sound-out imaging technique that allows for high resolution, deep-tissue imaging with applications in pre-clinical and point-of-care settings. The continued development of near-infrared (NIR) absorbing small-molecule dyes promises to improve the capabilities of this emerging imaging modality. For example, new dye scaffolds bearing chemoselective functionalities are enabling the detection and quantification of disease-relevant analytes through activity-based sensing (ABS) approaches. Recently described strategies to engineer NIR absorbing xanthenes have enabled development of analyte-responsive PAI probes using this classic dye scaffold. Herein, we present current strategies for red-shifting the spectral properties of xanthenes via bridging heteroatom or auxochrome modifications. Additionally, we explore how these strategies, coupled with chemoselective spiroring-opening approaches, have been employed to create ABS probes for in vivo detection of hypochlorous acid, nitric oxide, copper (II), human NAD(P)H: quinone oxidoreductase isozyme 1, and carbon monoxide. Given the versatility of the xanthene scaffold, we anticipate continued growth and development of analyte-responsive PAI imaging probes based on this dye class.
Collapse
Affiliation(s)
- Frederik Brøndsted
- Department of Chemistry, University of Virginia, 22904, Charlottesville, VA, USA
| | - Cliff I Stains
- Department of Chemistry, University of Virginia, 22904, Charlottesville, VA, USA
- University of Virginia Cancer Center, University of Virginia, 22908, Charlottesville, VA, USA
- Virginia Drug Discovery Consortium, 24061, Blacksburg, VA, USA
| |
Collapse
|
8
|
Ohno H, Sasaki E, Yamada S, Hanaoka K. Recent advances in Si-rhodamine-based fluorescent probes for live-cell imaging. Org Biomol Chem 2024; 22:3099-3108. [PMID: 38444309 DOI: 10.1039/d4ob00130c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Fluorescence imaging is a powerful technique for visualizing biological events in living samples with high temporal and spatial resolution. Fluorescent probes emitting far-red to near infrared (NIR) fluorescence are particularly advantageous for in vivo imaging due to their high tissue permeability and low autofluorescence, as well as their suitability for multicolor imaging. Among the far-red to NIR fluorophores, Si-rhodamine is one of the most practical fluorophores for the development of tailor-made NIR fluorescent probes because of the relative ease of synthesis of various derivatives, the unique intramolecular spirocyclization behavior, and the relatively high water solubility and high photostability of the probes. This review summarizes these features of Si-rhodamines and presents recent advances in the synthesis and applications of far-red to NIR fluorescent probes based on Si-rhodamines, focusing on live-cell imaging applications such as fluorogenic probes, super-resolution imaging and dye-protein hybrid-based indicators.
Collapse
Affiliation(s)
- Hisashi Ohno
- Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan.
| | - Eita Sasaki
- Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan.
- Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Sota Yamada
- Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan.
| | - Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan.
- Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| |
Collapse
|
9
|
Hoelzel C, Bai Y, Wang M, Liu Y, Zhang X. High-Fidelity Assay Based on Turn-Off Fluorescence to Detect the Perturbations of Cellular Proteostasis. ACS BIO & MED CHEM AU 2024; 4:111-118. [PMID: 38645930 PMCID: PMC11027126 DOI: 10.1021/acsbiomedchemau.3c00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 04/23/2024]
Abstract
The persistence of neurodegenerative diseases has necessitated the development of new strategies to monitor protein homeostasis (proteostasis). Previous efforts in our laboratory have focused on the development of fluorogenic strategies to observe the onset and progression of proteostatic stress. These works utilized solvatochromic and viscosity sensitive fluorophores to sense protein folded states, enabling stressor screening with an increase in the emission intensity upon aggregation. In this work, we present a novel, high-fidelity assay to detect perturbations of cellular proteostasis, where the fluorescence intensity decreases with the onset of proteostatic stress. Utilizing a fluorogenic, hydroxymethyl silicon-rhodamine probe to differentiate between protein folded states, we establish the validity of this technology in living cells by demonstrating a two-fold difference in fluorescence intensity between unstressed and stressed conditions.
Collapse
Affiliation(s)
- Conner Hoelzel
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yulong Bai
- Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian, Liaoning 116023, China
- Department
of Chemistry, School of Science and Research Center for Industries
of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang
Province China
- Institute
of Natural Sciences, Westlake Institute for Advanced Study, Westlake
Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province China
| | - Mengdie Wang
- Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian, Liaoning 116023, China
| | - Yu Liu
- Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian, Liaoning 116023, China
| | - Xin Zhang
- Department
of Chemistry, School of Science and Research Center for Industries
of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang
Province China
- Institute
of Natural Sciences, Westlake Institute for Advanced Study, Westlake
Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province China
| |
Collapse
|
10
|
Liu J, Yang X, Wu S, Gong P, Pan F, Zhang P, Lee CS, Liu C, Wong KMC. Iridium(III) complexes decorated with silicane-modified rhodamine: near-infrared light-initiated photosensitizers for efficient deep-tissue penetration photodynamic therapy. J Mater Chem B 2024; 12:3710-3718. [PMID: 38529668 DOI: 10.1039/d4tb00075g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Meeting the demand for efficient photosensitizers in photodynamic therapy (PDT), a series of iridium(III) complexes decorated with silicane-modified rhodamine (Si-rhodamine) was meticulously designed and synthesized. These complexes demonstrate exceptional PDT potential owing to their strong absorption in the near-infrared (NIR) spectrum, particularly responsive to 808 nm laser stimulation. This feature is pivotal, enabling deep-penetration laser excitation and overcoming depth-related challenges in clinical PDT applications. The molecular structures of these complexes allow for reliable tuning of singlet oxygen generation with NIR excitation, through modification of the cyclometalating ligand. Notably, one of the complexes (4) exhibits a remarkable ROS quantum yield of 0.69. In vivo results underscore the efficacy of 4, showcasing significant tumor regression at depths of up to 8.4 mm. This study introduces a promising paradigm for designing photosensitizers capable of harnessing NIR light effectively for deep PDT applications.
Collapse
Affiliation(s)
- Jiqiang Liu
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen 518055, China.
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Xing Yang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
| | - Siye Wu
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen 518055, China.
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
| | - Fan Pan
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
| | - Chi-Sing Lee
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Chuangjun Liu
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, 463000 Zhumadian, China
| | - Keith Man-Chung Wong
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen 518055, China.
| |
Collapse
|
11
|
Dunlop D, Horváth P, Klán P, Slanina T, Šebej P. Central Ring Puckering Enhances the Stokes Shift of Xanthene Dyes. Chemistry 2024; 30:e202400024. [PMID: 38197554 DOI: 10.1002/chem.202400024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/11/2024]
Abstract
Small-molecule dyes are generally designed based on well-understood electronic effects. However, steric hindrance can promote excited-state geometric relaxation, increasing the difference between the positions of absorption and emission bands (the Stokes shift). Accordingly, we hypothesized that sterically induced central ring puckering in xanthene dyes could be used to systematically increase their Stokes shift. Through a combined experimental/quantum-chemical approach, we screened a group of (9-acylimino)-pyronin dyes with a perturbed central ring geometry. Our results showed that an atom with sp3 hybridization in position 10 of (9-acylimino)-pyronins induces central ring puckering and facilitates excited-state geometric relaxation, thereby markedly enhancing their Stokes shifts (by up to ~2000 cm-1). Thus, we prepared fluorescent (9-acylimino)-pyronin pH sensors, which showed a Stokes shift disparity between acid and base forms of up to ~8700 cm-1. Moreover, the concept of ring puckering-enhanced Stokes shift can be applied to a wide range of xanthene analogues found in the literature. Therefore, central ring puckering may be reliably used as a strategy for enhancing Stokes shifts in the rational design of dyes.
Collapse
Affiliation(s)
- David Dunlop
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, Prague 6, 160 00, Czech Republic
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2, 128 40, Czech Republic
| | - Peter Horváth
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Klán
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Tomáš Slanina
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, Prague 6, 160 00, Czech Republic
| | - Peter Šebej
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| |
Collapse
|
12
|
Zhou G, Finney N, Wang Y. Desulfitative Sonogashira cross-coupling of thiopyronin for the synthesis of NIR arylacetylene-containing rhodamines. Chem Commun (Camb) 2024; 60:3039-3042. [PMID: 38376450 DOI: 10.1039/d3cc05995b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
A classical, safe and efficient red-shift strategy contributing to NIR arylacetylene-containing rhodamines has been developed via the desulfitative Sonogashira cross-coupling reaction of thiopyronin for the first time, exhibiting a broad substrate scope with good yields. In addition, compound 3m shows great potential for application as a singlet oxygen probe, demonstrating the practicality of the method.
Collapse
Affiliation(s)
- Guangshuai Zhou
- School of Pharmaceutical Sciences and Technology, Health Sciences Platform, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China.
| | - Nathaniel Finney
- School of Pharmaceutical Sciences and Technology, Health Sciences Platform, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China.
| | - Yali Wang
- Department of Chemistry, College of Pharmacy, North China University of Science and Technology, Tang Shan, P. R. China.
| |
Collapse
|
13
|
Jiang G, Liu H, Liu H, Ke G, Ren TB, Xiong B, Zhang XB, Yuan L. Chemical Approaches to Optimize the Properties of Organic Fluorophores for Imaging and Sensing. Angew Chem Int Ed Engl 2024; 63:e202315217. [PMID: 38081782 DOI: 10.1002/anie.202315217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 12/30/2023]
Abstract
Organic fluorophores are indispensable tools in cells, tissue and in vivo imaging, and have enabled much progress in the wide range of biological and biomedical fields. However, many available dyes suffer from insufficient performances, such as short absorption and emission wavelength, low brightness, poor stability, small Stokes shift, and unsuitable permeability, restricting their application in advanced imaging technology and complex imaging. Over the past two decades, many efforts have been made to improve these performances of fluorophores. Starting with the luminescence principle of fluorophores, this review clarifies the mechanisms of the insufficient performance for traditional fluorophores to a certain extent, systematically summarizes the modified approaches of optimizing properties, highlights the typical applications of the improved fluorophores in imaging and sensing, and indicates existing problems and challenges in this area. This progress not only proves the significance of improving fluorophores properties, but also provide a theoretical guidance for the development of high-performance fluorophores.
Collapse
Affiliation(s)
- Gangwei Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Han Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Hong Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Bin Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| |
Collapse
|
14
|
Reja SI, Minoshima M, Hori Y, Kikuchi K. Recent advancements of fluorescent biosensors using semisynthetic probes. Biosens Bioelectron 2024; 247:115862. [PMID: 38147718 DOI: 10.1016/j.bios.2023.115862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 12/28/2023]
Abstract
Fluorescent biosensors are crucial experimental tools for live-cell imaging and the quantification of different biological analytes. Fluorescent protein (FP)-based biosensors are widely used for imaging applications in living systems. However, the use of FP-based biosensors is hindered by their large size, poor photostability, and laborious genetic manipulations required to improve their properties. Recently, semisynthetic fluorescent biosensors have been developed to address the limitations of FP-based biosensors using chemically modified fluorescent probes and self-labeling protein tag/peptide tags or DNA/RNA-based hybrid systems. Semisynthetic biosensors have unique advantages, as they can be easily modified using different probes. Moreover, the self-labeling protein tag, which labels synthetically developed ligands via covalent bonds, has immense potential for biosensor development. This review discusses the recent progress in different types of fluorescent biosensors for metabolites, protein aggregation and degradation, DNA methylation, endocytosis and exocytosis, membrane tension, and cellular viscosity. Here, we explain in detail the design strategy and working principle of these biosensors. The information presented will help the reader to create new biosensors using self-labeling protein tags for various applications.
Collapse
Affiliation(s)
- Shahi Imam Reja
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masafumi Minoshima
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yuichiro Hori
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Kazuya Kikuchi
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, 565-0871, Japan; Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
15
|
Ma J, Sun R, Xia K, Xia Q, Liu Y, Zhang X. Design and Application of Fluorescent Probes to Detect Cellular Physical Microenvironments. Chem Rev 2024; 124:1738-1861. [PMID: 38354333 DOI: 10.1021/acs.chemrev.3c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The microenvironment is indispensable for functionality of various biomacromolecules, subcellular compartments, living cells, and organisms. In particular, physical properties within the biological microenvironment could exert profound effects on both the cellular physiology and pathology, with parameters including the polarity, viscosity, pH, and other relevant factors. There is a significant demand to directly visualize and quantitatively measure the fluctuation in the cellular microenvironment with spatiotemporal resolution. To satisfy this need, analytical methods based on fluorescence probes offer great opportunities due to the facile, sensitive, and dynamic detection that these molecules could enable in varying biological settings from in vitro samples to live animal models. Herein, we focus on various types of small molecule fluorescent probes for the detection and measurement of physical parameters of the microenvironment, including pH, polarity, viscosity, mechanical force, temperature, and electron potential. For each parameter, we primarily describe the chemical mechanisms underlying how physical properties are correlated with changes of various fluorescent signals. This review provides both an overview and a perspective for the development of small molecule fluorescent probes to visualize the dynamic changes in the cellular environment, to expand the knowledge for biological process, and to enrich diagnostic tools for human diseases.
Collapse
Affiliation(s)
- Junbao Ma
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang Province, China
| | - Rui Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Kaifu Xia
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang Province, China
| | - Qiuxuan Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, Chinese Academy of Sciences Dalian Liaoning 116023, China
| | - Xin Zhang
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
16
|
Hanaoka K, Ikeno T, Iwaki S, Deguchi S, Takayama K, Mizuguchi H, Tao F, Kojima N, Ohno H, Sasaki E, Komatsu T, Ueno T, Maeda K, Kusuhara H, Urano Y. A general fluorescence off/on strategy for fluorogenic probes: Steric repulsion-induced twisted intramolecular charge transfer (sr-TICT). SCIENCE ADVANCES 2024; 10:eadi8847. [PMID: 38363840 PMCID: PMC10871538 DOI: 10.1126/sciadv.adi8847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/17/2024] [Indexed: 02/18/2024]
Abstract
Various control strategies are available for building fluorogenic probes to visualize biological events in terms of a fluorescence change. Here, we performed the time-dependent density functional theory (TD-DFT) computational analysis of the twisted intramolecular charge transfer (TICT) process in rhodamine dyes. On the basis of the results, we designed and synthesized a series of rhodamine dyes and established a fluorescence quenching strategy that we call steric repulsion-induced TICT (sr-TICT), in which the fluorescence quenching process is greatly accelerated by simple intramolecular twisting. As proof of concept of this design strategy, we used it to develop a fluorogenic probe, 2-Me PeER (pentyloxyethylrhodamine), for the N-dealkylation activity of CYP3A4. We applied 2-Me PeER for CYP3A4 activity-based fluorescence-activated cell sorting (FACS), providing access to homogeneous, highly functional human-induced pluripotent stem cell (hiPSC)-derived hepatocytes and intestinal epithelial cells. Our results suggest that sr-TICT represents a general fluorescence control method for fluorogenic probes.
Collapse
Affiliation(s)
- Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minoto-ku, Tokyo 105-8512, Japan
| | - Takayuki Ikeno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shimpei Iwaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sayaka Deguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuo Takayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka 565-0871, Japan
- National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Fumiya Tao
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Nobuhiko Kojima
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Hisashi Ohno
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minoto-ku, Tokyo 105-8512, Japan
| | - Eita Sasaki
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minoto-ku, Tokyo 105-8512, Japan
| | - Toru Komatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tasuku Ueno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuya Maeda
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Kusuhara
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
17
|
Sakamoto DM, Tamura I, Yi B, Hasegawa S, Saito Y, Yamada N, Takakusagi Y, Kubota SI, Kobayashi M, Harada H, Hanaoka K, Taki M, Nangaku M, Tainaka K, Sando S. Whole-Body and Whole-Organ 3D Imaging of Hypoxia Using an Activatable Covalent Fluorescent Probe Compatible with Tissue Clearing. ACS NANO 2024; 18:5167-5179. [PMID: 38301048 DOI: 10.1021/acsnano.3c12716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Elucidation of biological phenomena requires imaging of microenvironments in vivo. Although the seamless visualization of in vivo hypoxia from the level of whole-body to single-cell has great potential to discover unknown phenomena in biological and medical fields, no methodology for achieving it has been established thus far. Here, we report the whole-body and whole-organ imaging of hypoxia, an important microenvironment, at single-cell resolution using activatable covalent fluorescent probes compatible with tissue clearing. We initially focused on overcoming the incompatibility of fluorescent dyes and refractive index matching solutions (RIMSs), which has greatly hindered the development of fluorescent molecular probes in the field of tissue clearing. The fluorescent dyes compatible with RIMS were then incorporated into the development of activatable covalent fluorescent probes for hypoxia. We combined the probes with tissue clearing, achieving comprehensive single-cell-resolution imaging of hypoxia in a whole mouse body and whole organs.
Collapse
Affiliation(s)
- Daichi M Sakamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Iori Tamura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Bo Yi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Sho Hasegawa
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Yutaro Saito
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Naoki Yamada
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yoichi Takakusagi
- Quantum Hyperpolarized MRI Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba-city 263-8555, Japan
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba-city 263-8555, Japan
| | - Shimpei I Kubota
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido 060-0815, Japan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kenjiro Hanaoka
- Division of Analytical Chemistry for Drug Discovery, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Masayasu Taki
- Institute of Transformative Bio-Molecules, Nagoya University, Furo, Chikusa, Nagoya 464-8601, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata 951-8585, Japan
- Gftd DeSci, Gftd DAO, Nishikawa Building, 20 Kikuicho, Shinjuku-ku, Tokyo 162-0044, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
18
|
Lesiak L, Dadina N, Zheng S, Schelvis M, Schepartz A. A Bright, Photostable, and Far-Red Dye That Enables Multicolor, Time-Lapse, and Super-Resolution Imaging of Acidic Organelles. ACS CENTRAL SCIENCE 2024; 10:19-27. [PMID: 38292604 PMCID: PMC10823512 DOI: 10.1021/acscentsci.3c01173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 02/01/2024]
Abstract
Lysosomes have long been known for their acidic lumens and efficient degradation of cellular byproducts. In recent years, it has become clear that their function is far more sophisticated, involving multiple cell signaling pathways and interactions with other organelles. Unfortunately, their acidic interior, fast dynamics, and small size make lysosomes difficult to image with fluorescence microscopy. Here we report a far-red small molecule, HMSiR680-Me, that fluoresces only under acidic conditions, causing selective labeling of acidic organelles in live cells. HMSiR680-Me can be used alongside other far-red dyes in multicolor imaging experiments and is superior to existing lysosome probes in terms of photostability and maintaining cell health and lysosome motility. We demonstrate that HMSiR680-Me is compatible with overnight time-lapse experiments as well as time-lapse super-resolution microscopy with a frame rate of 1.5 fps for at least 1000 frames. HMSiR680-Me can also be used alongside silicon rhodamine dyes in a multiplexed super-resolution microscopy experiment to visualize interactions between mitochondria and lysosomes with only a single excitation laser and simultaneous depletion. We envision this dye permitting a more detailed study of the role of lysosomes in dynamic cellular processes and disease.
Collapse
Affiliation(s)
- Lauren Lesiak
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Neville Dadina
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Shuai Zheng
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Marianne Schelvis
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Alanna Schepartz
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Department
of Molecular and Cell Biology, University
of California, Berkeley, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California 94720, United States
- Chan
Zuckerberg Biohub, San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
19
|
Brøndsted F, Fang Y, Li L, Zhou X, Grant S, Stains CI. Single Atom Stabilization of Phosphinate Ester-Containing Rhodamines Yields Cell Permeable Probes for Turn-On Photoacoustic Imaging. Chemistry 2024; 30:e202303038. [PMID: 37852935 PMCID: PMC10926271 DOI: 10.1002/chem.202303038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 10/20/2023]
Abstract
Photoacoustic imaging (PAI) is an emerging imaging technique that uses pulsed laser excitation with near-infrared (NIR) light to elicit local temperature increases through non-radiative relaxation events, ultimately leading to the production of ultrasound waves. The classical xanthene dye scaffold has found numerous applications in fluorescence imaging, however, xanthenes are rarely utilized for PAI since they do not typically display NIR absorbance. Herein, we report the ability of Nebraska Red (NR) xanthene dyes to produce photoacoustic (PA) signal and provide a rational design approach to reduce the hydrolysis rate of ester containing dyes, affording cell permeable probes. To demonstrate the utility of this approach, we construct the first cell permeable rhodamine-based, turn-on PAI imaging probe for hypochlorous acid (HOCl) with maximal absorbance within the range of commercial PA instrumentation. This probe, termed SNR700 -HOCl, is capable of detecting exogenous HOCl in mice. This work provides a new set of rhodamine-based PAI agents as well as a rational design approach to stabilize esterified versions of NR dyes with desirable properties for PAI. In the long term, the reagents described herein could be utilized to enable non-invasive imaging of HOCl in disease-relevant model systems.
Collapse
Affiliation(s)
- Frederik Brøndsted
- Department of Chemistry, University of Virginia, 22904, Charlottesville, VA, USA
| | - Yuan Fang
- Department of Chemistry, University of Virginia, 22904, Charlottesville, VA, USA
| | - Lin Li
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, 23298, Richmond, VA, USA
| | - Xinqi Zhou
- Department of Chemistry, University of Nebraska-Lincoln, 68588, Lincoln, NE, USA
- Current Address: Department of Chemistry, University of California, 94720, Berkeley, CA, USA
| | - Steven Grant
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, 23298, Richmond, VA, USA
- Massey Cancer Center, Virginia Commonwealth University, 23298, Richmond, VA, USA
| | - Cliff I Stains
- Department of Chemistry, University of Virginia, 22904, Charlottesville, VA, USA
- University of Virginia Cancer Center, University of Virginia, 22908, Charlottesville, VA, USA
- Virginia Drug Discovery Consortium, 24061, Blacksburg, VA, USA
| |
Collapse
|
20
|
Kumada R, Sakama A, Shindo Y, Kuronuma Y, Iwasawa N, Citterio D, Oka K, Hiruta Y. Development of Phosphinate Ligand-Based Low-Affinity Ca 2+ Fluorescent Probes and Application to Intracellular Ca 2+ Imaging. Anal Chem 2023; 95:16683-16691. [PMID: 37922450 DOI: 10.1021/acs.analchem.3c03266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Divalent metal cations such as calcium ion (Ca2+) and magnesium ion (Mg2+) are indispensable to the regulation of various cellular activities. In this research, we developed the KLCA series utilizing o-aminophenol-N,N-diacetate-O-methylene-methylphosphinate (APDAP) as a target binding site, which was reported recently as a highly free Mg2+-selective ligand. KLCA-301 with orange fluorescence based on a rhodamine fluorophore and KLCA-501 with near-infrared (NIR) fluorescence based on a Si-rhodamine fluorophore were synthesized, intended for application to multicolor imaging. The evaluation of the fluorescence response to Ca2+ and Mg2+ of the KLCA series indicated the applicability as low-affinity Ca2+ probes. While KLCA-301 mainly localized in the cytosol in cultured rat hippocampal neurons, KLCA-501 localized to the cytosol and granular organelles in neurons. Comparison of the fluorescence response of KLCA-301 and the high-affinity Ca2+ probe Fluo-4 upon stimulation by glutamate in stained neurons revealed that KLCA-301 could reflect the secondary large rise of intracellular Ca2+, which Fluo-4 could not detect. In addition, KLCA-501 showed a fluorescence response similar to the low-affinity Ca2+ probe Fluo-5N upon stimulation by glutamate in stained neurons, concluding that KLCA-301 and KLCA-501 could be used as low-affinity Ca2+ probes. The KLCA series offers new options for low-affinity Ca2+ probes. Moreover, KLCA-501 achieved simultaneous visualization of the change in Ca2+ and ATP concentrations and also in mitochondrial inner membrane potential in neurons. KLCA-501 is expected to be a strong tool that enables simultaneous multicolor imaging of multiple targets and elucidation of their relationship in cells.
Collapse
Affiliation(s)
- Rei Kumada
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Akihiro Sakama
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yutaka Shindo
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
- School of Frontier Engineering, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Yuzuka Kuronuma
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Naoko Iwasawa
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Daniel Citterio
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Kotaro Oka
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
- School of Frontier Engineering, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
- Waseda Research Institute for Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan
- College of Medicine, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
| | - Yuki Hiruta
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
21
|
Archipowa N, Wittmann L, Köckenberger J, Ertl FJ, Gleixner J, Keller M, Heinrich MR, Kutta RJ. Characterization of Fluorescent Dyes Frequently Used for Bioimaging: Photophysics and Photocatalytical Reactions with Proteins. J Phys Chem B 2023; 127:9532-9542. [PMID: 37903729 DOI: 10.1021/acs.jpcb.3c04484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Derivatives of the rhodamine-based dye 5-TAMRA (5-carboxy-tetramethylrhodamine) and the indocarbocyanine-type Cy3B (cyclized derivative of the cyanine dye Cy3), both representing important fluorophores frequently used for the labeling of biomolecules (proteins, nucleic acids) and bioactive compounds, such as receptor ligands, were photophysically investigated in aqueous solution, i.e., in neat phosphate-buffered saline (PBS) and in PBS supplemented with 1 wt % bovine serum albumin (BSA). The dyes exhibit comparable absorption (λabs,max: 550-569 nm) and emission wavelengths (λem,max: 580-582 nm), and similar S1 lifetimes (2.27-2.75 ns), and their excited state deactivation proceeds mainly via the lowest excited singlet state (triplet quantum yield ca. 1%). However, the probes show marked differences with respect to their fluorescence quantum yield and photostability. While 5-TAMRA shows a lower quantum yield (37-39%) than the Cy3B derivative (ca. 57%), its photostability is considerably higher compared to Cy3B. Generally, the impact of the protein on the photophysics is low. However, on prolonged illumination, both fluorescent dyes undergo a photocatalytic reaction with tryptophan residues of BSA mediated by sensitized singlet oxygen resulting in a tryptophan photoproduct with an absorption maximum around 330 nm. The overall results of this work will assist in choosing the right dye for the labeling of bioactive compounds, and the study demonstrates that experiments performed with 5-TAMRA or Cy3B-labeled compounds in a biological environment may be influenced by photochemical modification of experimentally relevant proteins at aromatic amino acid residues.
Collapse
Affiliation(s)
- Nataliya Archipowa
- Institute of Biophysics and Physical Biochemistry, Faculty of Biology and Preclinical Medicine, University of Regensburg, D-93053 Regensburg, Germany
| | - Lukas Wittmann
- Institute of Physical and Theoretical Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Johannes Köckenberger
- Department of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Fabian J Ertl
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Jakob Gleixner
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Markus R Heinrich
- Department of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Roger Jan Kutta
- Institute of Physical and Theoretical Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| |
Collapse
|
22
|
Grimm J, Tkachuk AN, Patel R, Hennigan ST, Gutu A, Dong P, Gandin V, Osowski AM, Holland KL, Liu ZJ, Brown TA, Lavis LD. Optimized Red-Absorbing Dyes for Imaging and Sensing. J Am Chem Soc 2023; 145:23000-23013. [PMID: 37842926 PMCID: PMC10603817 DOI: 10.1021/jacs.3c05273] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Indexed: 10/17/2023]
Abstract
Rhodamine dyes are excellent scaffolds for developing a broad range of fluorescent probes. A key property of rhodamines is their equilibrium between a colorless lactone and fluorescent zwitterion. Tuning the lactone-zwitterion equilibrium constant (KL-Z) can optimize dye properties for specific biological applications. Here, we use known and novel organic chemistry to prepare a comprehensive collection of rhodamine dyes to elucidate the structure-activity relationships that govern KL-Z. We discovered that the auxochrome substituent strongly affects the lactone-zwitterion equilibrium, providing a roadmap for the rational design of improved rhodamine dyes. Electron-donating auxochromes, such as julolidine, work in tandem with fluorinated pendant phenyl rings to yield bright, red-shifted fluorophores for live-cell single-particle tracking (SPT) and multicolor imaging. The N-aryl auxochrome combined with fluorination yields red-shifted Förster resonance energy transfer (FRET) quencher dyes useful for creating a new semisynthetic indicator to sense cAMP using fluorescence lifetime imaging microscopy (FLIM). Together, this work expands the synthetic methods available for rhodamine synthesis, generates new reagents for advanced fluorescence imaging experiments, and describes structure-activity relationships that will guide the design of future probes.
Collapse
Affiliation(s)
- Jonathan
B. Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Ariana N. Tkachuk
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Ronak Patel
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - S. Thomas Hennigan
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Alina Gutu
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Peng Dong
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Valentina Gandin
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Anastasia M. Osowski
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Katie L. Holland
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Zhe J. Liu
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Timothy A. Brown
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Luke D. Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| |
Collapse
|
23
|
Harada M, Kutsuna M, Kitamura T, Usui Y, Ujiki M, Nakamura Y, Obata T, Tanioka M, Uchiyama M, Sawada D, Kamino S. Nucleophile-Triggered π-Topological Transformation: A New Synthetic Approach to Near-Infrared-Emissive Rhodamines. Chemistry 2023; 29:e202301969. [PMID: 37500585 DOI: 10.1002/chem.202301969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023]
Abstract
We describe a π-topological transformation-based synthetic method for the preparation of a new type of near-infrared (NIR)-emissive rhodamine dye called Polymethine-embedded Rhodamine Fluorophore (PeR Fluor). In contrast to conventional NIR-emissive dyes that require tedious synthetic steps and/or a high cost, linear fully π-conjugated PeR Fluor can be regioselectively prepared in one step by mixing different nucleophiles with ABPXs, a family of rhodamines with a cross-conjugated structure. PeR Fluor exhibits bright NIR fluorescence emission and high photostability owing to the cooperative π-electron system of rhodamines and polymethine scaffolds. Large bathochromic shifts of the absorption and fluorescence emission maxima can be achieved by modifying the N-substituted group to obtain NIR-absorbing/emitting PeR Fluor. We also demonstrate the stimulus-responsive functionality of PeR Fluor through the addition of chemicals (acid/base), which shows switchable NIR and visible fluorescence response. Our π-topological transformation-based synthetic method is a promising approach to produce new functionalized rhodamine dyes.
Collapse
Affiliation(s)
- Mei Harada
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Misa Kutsuna
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama-shi, Okayama, 700-8530, Japan
| | - Taichi Kitamura
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Yusuke Usui
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Masayoshi Ujiki
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Yuka Nakamura
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Tohru Obata
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Masaru Tanioka
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Research Initiative for Supra-Materials (RISM), Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Daisuke Sawada
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama-shi, Okayama, 700-8530, Japan
| | - Shinichiro Kamino
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| |
Collapse
|
24
|
Guo S, Gu D, Yang Y, Tian J, Chen X. Near-infrared photodynamic and photothermal co-therapy based on organic small molecular dyes. J Nanobiotechnology 2023; 21:348. [PMID: 37759287 PMCID: PMC10523653 DOI: 10.1186/s12951-023-02111-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Near-infrared (NIR) organic small molecule dyes (OSMDs) are effective photothermal agents for photothermal therapy (PTT) due to their advantages of low cost and toxicity, good biodegradation, and strong NIR absorption over a wide wavelength range. Nevertheless, OSMDs have limited applicability in PTT due to their low photothermal conversion efficiency and inadequate destruction of tumor regions that are nonirradiated by NIR light. However, they can also act as photosensitizers (PSs) to produce reactive oxygen species (ROS), which can be further eradicated by using ROS-related therapies to address the above limitations of PTT. In this review, the synergistic mechanism, composition, and properties of photodynamic therapy (PDT)-PTT nanoplatforms were comprehensively discussed. In addition, some specific strategies for further improving the combined PTT and PDT based on OSMDs for cancer to completely eradicate cancer cells were outlined. These strategies include performing image-guided co-therapy, enhancing tumor infiltration, increasing H2O2 or O2 in the tumor microenvironment, and loading anticancer drugs onto nanoplatforms to enable combined therapy with phototherapy and chemotherapy. Meanwhile, the intriguing prospects and challenges of this treatment modality were also summarized with a focus on the future trends of its clinical application.
Collapse
Affiliation(s)
- Shuang Guo
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Dongyu Gu
- College of Marine Science and Environment, Dalian Ocean University, Dalian, 116023, China
| | - Yi Yang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine, Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
25
|
Dai M, Yang YJ, Sarkar S, Ahn KH. Strategies to convert organic fluorophores into red/near-infrared emitting analogues and their utilization in bioimaging probes. Chem Soc Rev 2023; 52:6344-6358. [PMID: 37608780 DOI: 10.1039/d3cs00475a] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Organic fluorophores aided by current microscopy imaging modalities are essential for studying biological systems. Recently, red/near-infrared emitting fluorophores have attracted great research efforts, as they enable bioimaging applications with reduced autofluorescence interference and light scattering, two significant obstacles for deep-tissue imaging, as well as reduced photodamage and photobleaching. Herein, we analyzed the current strategies to convert key organic fluorophores bearing xanthene, coumarin, and naphthalene cores into longer wavelength-emitting derivatives by focussing on their effectiveness and limitations. Together, we introduced typical examples of how such fluorophores can be used to develop molecular probes for biological analytes, along with key sensing features. Finally, we listed several critical issues to be considered in developing new fluorophores.
Collapse
Affiliation(s)
- Mingchong Dai
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, South Korea.
- CEDAR, Knight Cancer Institute, School of Medicine, Oregon Health & Science University, Portland, Oregon, 97201, USA.
| | - Yun Jae Yang
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, South Korea.
| | - Sourav Sarkar
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, South Korea.
| | - Kyo Han Ahn
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, South Korea.
| |
Collapse
|
26
|
Du Z, Wang W, Luo S, Zhang L, Yuan S, Hei Y, Bao Z, Chen C, Lin Y, Chu L. Self-Renewable Tag for Photostable Fluorescence Imaging of Proteins. J Am Chem Soc 2023; 145:18968-18976. [PMID: 37596976 DOI: 10.1021/jacs.3c06102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
We report the development of a self-renewable tag (srTAG) for protein fluorescence imaging. srTAG leverages the "on-protein" fluorophore equilibrium between the fluorescent zwitterion and non-fluorescent spirocyclic form and the reversible fluorescence labeling to enable self-recovery of fluorescence after photobleaching. This small-sized srTAG allows 2-6 times longer imaging duration compared to other commonly used self-labeling tags and is compatible with fluorophores with different spectral properties. This study provides a new strategy for fine tuning of self-labeling tags.
Collapse
Affiliation(s)
- Zhichao Du
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Wenjing Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Siyuan Luo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Lingjie Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Shuowei Yuan
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yongzhen Hei
- School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Zhangbin Bao
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, Beijing 100084, China
| | - Chunlai Chen
- School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Yi Lin
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, Beijing 100084, China
| | - Ling Chu
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
27
|
Andreeva VD, Ehlers H, R C AK, Presselt M, J van den Broek L, Bonnet S. Combining nitric oxide and calcium sensing for the detection of endothelial dysfunction. Commun Chem 2023; 6:179. [PMID: 37644120 PMCID: PMC10465535 DOI: 10.1038/s42004-023-00973-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide and are not typically diagnosed until the disease has manifested. Endothelial dysfunction is an early, reversible precursor in the irreversible development of cardiovascular diseases and is characterized by a decrease in nitric oxide production. We believe that more reliable and reproducible methods are necessary for the detection of endothelial dysfunction. Both nitric oxide and calcium play important roles in the endothelial function. Here we review different types of molecular sensors used in biological settings. Next, we review the current nitric oxide and calcium sensors available. Finally, we review methods for using both sensors for the detection of endothelial dysfunction.
Collapse
Affiliation(s)
| | - Haley Ehlers
- Mimetas B.V., De limes 7, 2342 DH, Oegstgeest, The Netherlands
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Aswin Krishna R C
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Martin Presselt
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Str. 9, 07745, Jena, Germany
- Sciclus GmbH & Co. KG, Moritz-von-Rohr-Str. 1a, 07745, Jena, Germany
| | | | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
28
|
Zeng S, Liu X, Kafuti YS, Kim H, Wang J, Peng X, Li H, Yoon J. Fluorescent dyes based on rhodamine derivatives for bioimaging and therapeutics: recent progress, challenges, and prospects. Chem Soc Rev 2023; 52:5607-5651. [PMID: 37485842 DOI: 10.1039/d2cs00799a] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Since their inception, rhodamine dyes have been extensively applied in biotechnology as fluorescent markers or for the detection of biomolecules owing to their good optical physical properties. Accordingly, they have emerged as a powerful tool for the visualization of living systems. In addition to fluorescence bioimaging, the molecular design of rhodamine derivatives with disease therapeutic functions (e.g., cancer and bacterial infection) has recently attracted increased research attention, which is significantly important for the construction of molecular libraries for diagnostic and therapeutic integration. However, reviews focusing on integrated design strategies for rhodamine dye-based diagnosis and treatment and their wide application in disease treatment are extremely rare. In this review, first, a brief history of the development of rhodamine fluorescent dyes, the transformation of rhodamine fluorescent dyes from bioimaging to disease therapy, and the concept of optics-based diagnosis and treatment integration and its significance to human development are presented. Next, a systematic review of several excellent rhodamine-based derivatives for bioimaging, as well as for disease diagnosis and treatment, is presented. Finally, the challenges in practical integration of rhodamine-based diagnostic and treatment dyes and the future outlook of clinical translation are also discussed.
Collapse
Affiliation(s)
- Shuang Zeng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
| | - Xiaosheng Liu
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
| | - Yves S Kafuti
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
| | - Heejeong Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Jingyun Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Haidong Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
- Provincial Key Laboratory of Interdisciplinary Medical Engineering for Gastrointestinal Carcinoma, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning 110042, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
29
|
Lesiak L, Dadina N, Zheng S, Schelvis M, Schepartz A. A Bright, Photostable Dye that Enables Multicolor, Time Lapse, and Super-Resolution Imaging of Acidic Organelles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552058. [PMID: 37577591 PMCID: PMC10418513 DOI: 10.1101/2023.08.04.552058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Lysosomes have long been known for their acidic lumen and efficient degradation of cellular byproducts. In recent years it has become clear that their function is far more sophisticated, involving multiple cell signaling pathways and interactions with other organelles. Unfortunately, their acidic interior, fast dynamics, and small size makes lysosomes difficult to image with fluorescence microscopy. Here we report a far-red small molecule, HMSiR680-Me, that fluoresces only under acidic conditions, causing selective labeling of acidic organelles in live cells. HMSiR680-Me can be used alongside other far-red dyes in multicolor imaging experiments and is superior to existing lysosome probes in terms of photostability and maintaining cell health and lysosome motility. We demonstrate that HMSiR680-Me is compatible with overnight time lapse experiments, as well as time lapse super-resolution microscopy with a fast frame rate for at least 1000 frames. HMSiR680-Me can also be used alongside silicon rhodamine dyes in a multiplexed super-resolution microscopy experiment to visualize interactions between the inner mitochondrial membrane and lysosomes with only a single excitation laser and simultaneous depletion. We envision this dye permitting more detailed study of the role of lysosomes in dynamic cellular processes and disease.
Collapse
Affiliation(s)
- Lauren Lesiak
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Neville Dadina
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Shuai Zheng
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Marianne Schelvis
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Alanna Schepartz
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
30
|
Rajapaksha IN, Wang J, Leszczynski J, Scott CN. Investigating the Effects of Donors and Alkyne Spacer on the Properties of Donor-Acceptor-Donor Xanthene-Based Dyes. Molecules 2023; 28:4929. [PMID: 37446594 DOI: 10.3390/molecules28134929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/08/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023] Open
Abstract
NIR dyes have become popular for many applications, including biosensing and imaging. For this reason, the molecular switch mechanism of the xanthene dyes makes them useful for in vivo detection and imaging of bioanalytes. Our group has been designing NIR xanthene-based dyes by the donor-acceptor-donor approach; however, the equilibrium between their opened and closed forms varies depending on the donors and spacer. We synthesized donor-acceptor-donor NIR xanthene-based dyes with an alkyne spacer via the Sonogashira coupling reaction to investigate the effects of the alkyne spacer and the donors on the maximum absorption wavelength and the molecular switching (ring opening) process of the dyes. We evaluated the strength and nature of the donors and the presence and absence of the alkyne spacer on the properties of the dyes. It was shown that the alkyne spacer extended the conjugation of the dyes, leading to absorption wavelengths of longer values compared with the dyes without the alkyne group. In addition, strong charge transfer donors shifted the absorption wavelength towards the NIR region, while donors with strong π-donation resulted in xanthene dyes with a smaller equilibrium constant. DFT/TDDFT calculations corroborated the experimental data in most of the cases. Dye 2 containing the N,N-dimethylaniline group gave contrary results and is being further investigated.
Collapse
Affiliation(s)
- Ishanka N Rajapaksha
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| | - Jing Wang
- Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA
| | - Jerzy Leszczynski
- Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA
| | - Colleen N Scott
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
31
|
Mao Z, Rha H, Kim J, You X, Zhang F, Tao W, Kim JS. THQ-Xanthene: An Emerging Strategy to Create Next-Generation NIR-I/II Fluorophores. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301177. [PMID: 37114796 PMCID: PMC10288261 DOI: 10.1002/advs.202301177] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Near-infrared fluorescence imaging is vital for exploring the biological world. The short emissions (<650 nm) and small Stokes shifts (<30 nm) of current xanthene dyes obstruct their biological applications since a long time. Recently, a potent and universal THQ structural modification technique that shifts emission to the NIR-I/II range and enables a substantial Stokes shift (>100 nm) for THQ-modified xanthene dyes is established. Thus, a timely discussion of THQ-xanthene and its applications is extensive. Hence, the advent, working principles, development trajectory, and biological applications of THQ-xanthene dyes, especially in the fields of fluorescence probe-based sensing and imaging, cancer theranostics, and super-resolution imaging, are introduced. It is envisioned that the THQ modification tactic is a simple yet exceptional approach to upgrade the performance of conventional xanthene dyes. THQ-xanthene will advance the strides of xanthene-based potentials in early fluorescent diagnosis of diseases, cancer theranostics, and imaging-guided surgery.
Collapse
Affiliation(s)
- Zhiqiang Mao
- College of Health Science and EngineeringCollege of Chemistry and Chemical EngineeringHubei UniversityWuhan430062China
- Department of ChemistryKorea UniversitySeoul02841South Korea
| | - Hyeonji Rha
- Department of ChemistryKorea UniversitySeoul02841South Korea
| | - Jungryun Kim
- Department of ChemistryKorea UniversitySeoul02841South Korea
| | - Xinru You
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Fan Zhang
- College of Health Science and EngineeringCollege of Chemistry and Chemical EngineeringHubei UniversityWuhan430062China
| | - Wei Tao
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Jong Seung Kim
- Department of ChemistryKorea UniversitySeoul02841South Korea
| |
Collapse
|
32
|
Kamino S, Uchiyama M. Xanthene-based functional dyes: towards new molecules operating in the near-infrared region. Org Biomol Chem 2023; 21:2458-2471. [PMID: 36661341 DOI: 10.1039/d2ob02208g] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Xanthene-based functional dyes have diverse applications in life science and materials science. A current challenge is to develop new dyes with suitable physicochemical properties, including near-infrared (NIR) operation, for advanced biological applications such as medical diagnostics and molecular imaging. In this review, we first present an overview of xanthene-based functional dyes and then focus on synthetic strategies for modulating the absorption and fluorescence of dyes that operate in the NIR wavelength region with bright emission and good photostability. We also introduce our work on aminobenzopyranoxanthenes (ABPXs) and bridged tetra-aryl-p-quinodimethanes (BTAQs) as new xanthene-based far-red (FR)/NIR absorbing/emitting molecules whose absorption/fluorescence wavelengths change in response to external stimuli.
Collapse
Affiliation(s)
- Shinichiro Kamino
- School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan.
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Research Initiative for Supra-Materials (RISM), Shinshu University, 3-15-1 Tokita, Ueda, Japan
| |
Collapse
|
33
|
Efforts toward PET-Activatable Red-Shifted Silicon Rhodamines and Silicon Pyronine Dyes. Pharmaceuticals (Basel) 2023; 16:ph16030401. [PMID: 36986500 PMCID: PMC10053042 DOI: 10.3390/ph16030401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 03/09/2023] Open
Abstract
Tracers for bimodal optical imaging and positron emission tomography unite multiple advantages in a single molecule. Their tumor-specific uptake can be visualized after their PET activation by radiofluorination via PET/CT or PET/MRI allowing for staging or therapy planning, while their non-radioactive moiety additionally facilitates the visualization of malignant tissue during intraoperative fluorescence-guided surgery or in histological assessments. The silicon-bridged xanthene core offers the opportunity for radiofluorination with SiFA isotope exchange to obtain a small-molecule, PET-activatable NIR dye that can be linked to different target vectors. Herein, we demonstrate for the first time the PET-activation of a fluorinated silicon pyronine, belonging to a class of low-molecular-weight fluorescence dyes with a large Stokes shift (up to 129 nm) and solvent-dependent NIR dye properties, with a successful radiochemical conversion of 70%. The non-fluorinated pyronine precursor is easily accessible by a three-step sequence from commercially starting material with a 12% overall yield. Moreover, a library of seven unusually functionalized (by approximately 15 nm), red-shifted silicon rhodamines were synthesized in three- to four-step sequences and the optical properties of the novel dyes were characterized. It was also shown that the synthesized silicon rhodamine dyes can be easily conjugated by amide bond formation or ‘click-reaction’ approaches.
Collapse
|
34
|
Zhang J, Shi H, Huang C, Mei L, Guo Q, Cheng K, Wu P, Su D, Chen Q, Gan S, Wing Chan CK, Shi J, Chen JL, Jonathan Choi CH, Yao SQ, Chen XK, Tang BZ, He J, Sun H. De Novo Designed Self-Assembling Rhodamine Probe for Real-Time, Long-Term and Quantitative Live-Cell Nanoscopy. ACS NANO 2023; 17:3632-3644. [PMID: 36744992 DOI: 10.1021/acsnano.2c10467] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Super-resolution imaging provides a powerful approach to image dynamic biomolecule events at nanoscale resolution. An ingenious method involving tuning intramolecular spirocyclization in rhodamine offers an appealing strategy to design cell-permeable fluorogenic probes for super-resolution imaging. Nevertheless, precise control of rhodamine spirocyclization presents a significant challenge. Through detailed study of the structure-activity relationship, we identified that multiple key factors control rhodamime spirocyclization. The findings provide opportunities to create fluorogenic probes with tailored properties. On the basis of our findings, we constructed self-assembling rhodamine probes for no-wash live-cell confocal and super-resolution imaging. The designed self-assembling probe Rho-2CF3 specifically labeled its target proteins and displayed high ring-opening ability, fast labeling kinetics (<1 min), and large turn-on fold (>80 folds), which is very difficult to be realized by the existing methods. Using the probe, we achieved high-contrast super-resolution imaging of nuclei and mitochondria with a spatial resolution of up to 42 nm. The probe also showed excellent photostability and proved ideal for real-time and long-term tracking of mitochondrial fission and fusion events with high spatiotemporal resolution. Furthermore, Rho-2CF3 could resolve the ultrastructure of mitochondrial cristae and quantify their morphological changes under drug treatment at nanoscale. Our strategy thus demonstrates its usefulness in designing self-assembling probes for super-resolution imaging.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong, 999077, China
| | - Heng Shi
- Departments of Neuroscience and Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong Province 510530, China
| | - Chen Huang
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Le Mei
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Qiang Guo
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Good Shepherd Street, Ho Man Tin, Hong Kong SAR, 999077, China
| | - Ke Cheng
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Pingzhou Wu
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Dan Su
- Departments of Neuroscience and Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Qingxin Chen
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Shenglong Gan
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Cecilia Ka Wing Chan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Jiahai Shi
- Departments of Neuroscience and Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Jian Lin Chen
- Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Good Shepherd Street, Ho Man Tin, Hong Kong SAR, 999077, China
| | - Chung Hang Jonathan Choi
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Xian-Kai Chen
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Jufang He
- Departments of Neuroscience and Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong, 999077, China
| | - Hongyan Sun
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
35
|
Chen Z, Yang L, Xu W, Xu F, Sheng J, Xiao Q, Song X, Chen W. Homoadamantane-Fused Tetrahydroquinoxaline as a Robust Electron-Donating Unit for High-Performance Asymmetric NIR Rhodamine Development. Anal Chem 2023; 95:3325-3331. [PMID: 36716181 DOI: 10.1021/acs.analchem.2c04445] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rhodamines have emerged as a useful class of dye for bioimaging. However, intrinsic issues such as short emission wavelengths and small Stokes shifts limit their widespread applications in living systems. By taking advantage of the homoadamantane-fused tetrahydroquinoxaline (HFT) moiety as an electron donor, we developed a new class of asymmetric NIR rhodamine dyes, NNR1-7. These new dyes retained ideal photophysical properties from the classical rhodamine scaffold and showed large Stokes shifts (>80 nm) with improved chemo/photostability. We found that NNR1-7 specifically target cellular mitochondria with superior photobleaching resistance and improved tolerance for cell fixation compared to commercial mitochondria trackers. Based on NNR4, a novel NIR pH sensor (NNR4M) was also constructed and successfully applied for real-time monitoring of variations in lysosomal pH. We envision this design strategy would find broad applications in the development of highly stable NIR dyes with a large Stokes shift.
Collapse
Affiliation(s)
- Zhipeng Chen
- Guangxi Zhuang Autonomous Region Ecological and Environmental Monitoring Centre, Nanning 530028, PR China
| | - Lei Yang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Wenju Xu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials Science, Nanning Normal University, Mingxiu Rd. 175, Nanning 530001, China
| | - Feifei Xu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Jiarong Sheng
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials Science, Nanning Normal University, Mingxiu Rd. 175, Nanning 530001, China
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials Science, Nanning Normal University, Mingxiu Rd. 175, Nanning 530001, China
| | - Xiangzhi Song
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province 410083, P. R. China
| | - Wenqiang Chen
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials Science, Nanning Normal University, Mingxiu Rd. 175, Nanning 530001, China
| |
Collapse
|
36
|
Khan Z, Sekar N. Deep Red to NIR Emitting Xanthene Hybrids: Xanthene‐Hemicyanine Hybrids and Xanthene‐Coumarin Hybrids. ChemistrySelect 2023. [DOI: 10.1002/slct.202203377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Zeba Khan
- Department of Dyestuff Technology (Currently named as Department of Specialty Chemicals Technology) Institute of Chemical Technology, Matunga (E) Mumbai Maharashtra India, PIN 400019
| | - Nagaiyan Sekar
- Department of Dyestuff Technology (Currently named as Department of Specialty Chemicals Technology) Institute of Chemical Technology, Matunga (E) Mumbai Maharashtra India, PIN 400019
| |
Collapse
|
37
|
Taylor EL, Abounorinejad F, Jacobo EP, Dixon ADC, Lam KT, Brozik JA. Photophysical Rate Constants and Oxygen Dependence for Si and Ge Rhodamine Zwitterions. J Phys Chem A 2023; 127:851-860. [PMID: 36689273 DOI: 10.1021/acs.jpca.2c06244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The family of group XIV rhodamine zwitterions are fluorescence probes with carbon, silicon, germanium, or tin substituted in the 10-position of the xanthene ring. Because of their inherent near-infrared fluorescence, photostability and high quantum yields in aqueous solutions, the Si and Ge containing fluorophores in this class have become increasingly important for fluorescent labeling of proteins and biological molecules. This study fully characterizes photophysical rates derived from a model consisting of a singlet ground state, the lowest singlet excited state, and the lowest triplet excited state for two exemplar group XIV rhodamine zwitterions, one containing Si and the other Ge. Within a simple Jablonski diagram, all radiative and non-radiative rates, including intersystem crossing and triplet depopulation rates, were measured as a function of oxygen concentration. It was shown that the triplet depopulation rates are intrinsically fast in comparison with traditional xanthene containing fluorophores, probably due to the increased spin-obit coupling from the Si and Ge substitution in the xanthene ring. Dissolved oxygen increases both the intersystem crossing and triplet depopulation rates. Stern-Volmer analysis was conducted to estimate rates of quenching by oxygen. The experimental data was used to estimate the initial rates for reactive oxygen production by Si and Ge containing fluorophores in aqueous solutions containing different concentrations of dissolved O2. These estimates showed a significantly slower initial rate of reactive oxygen production in comparison with rhodamine 6G. This goes a long way to explaining their inherent photostability. Spectroscopic experiments were also conducted in 77 K viscous aqueous glasses where it was observed that the fluorescence spectra remained unchanged, and the quantum yields increased from 0.53 to 0.84 and from 0.52 to 0.89 for the Si and Ge containing fluorophores respectively; no phosphorescence was observed. All intersystem crossing and triplet depopulation rates were measured using fluorescence correlation spectroscopy (FCS) and analyzed using a new method that extrapolated the power dependence of the FCS curves to optical saturation. This method was verified using published data.
Collapse
Affiliation(s)
- Evan L Taylor
- Materials Science & Engineering Program, Washington State University, Pullman, Washington99163-2711, United States
| | - Faraz Abounorinejad
- Department of Chemistry, Washington State University, Pullman, Washington99163-4630, United States
| | - Eric P Jacobo
- Department of Chemistry, Washington State University, Pullman, Washington99163-4630, United States
| | - Alexandre D C Dixon
- Department of Chemistry, Washington State University, Pullman, Washington99163-4630, United States
| | - Kui Ting Lam
- Department of Chemistry, Washington State University, Pullman, Washington99163-4630, United States
| | - James A Brozik
- Department of Chemistry, Washington State University, Pullman, Washington99163-4630, United States.,Materials Science & Engineering Program, Washington State University, Pullman, Washington99163-2711, United States
| |
Collapse
|
38
|
DiMeglio D, Zhou X, Wirth T, Brøndsted F, Lesiak L, Fang Y, Shadmehr M, Stains CI. Experimentally Calibrated Computational Prediction Enables Accurate Fine-Tuning of Near-Infrared Rhodamines for Multiplexing. Chemistry 2023; 29:e202202861. [PMID: 36282517 PMCID: PMC9898109 DOI: 10.1002/chem.202202861] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
A significant barrier inhibiting multiplexed imaging in the near-infrared (NIR) is the extensive trial and error associated with fine-tuning NIR dyes. In particular, the need to synthesize and experimentally evaluate dye derivatives in order to empirically identify those that can be used in multiplexing applications, requires a large investment of time. While coarse-tuning efforts benefit from computational prediction that can be used to identify target dye structures for synthetic campaigns, errors in computational prediction remain too large to accurately parse modifications aimed at fine-tuning changes in dye absorbance and emission. To address this issue, we screened different levels of theory and identified a time-dependent density functional theory (TD-DFT) approach that can rapidly, as opposed to synthesis and experimental evaluation, estimate absorbance and emission. By calibrating these computational estimations of absorbance and emission to experimentally determined parameters for a panel of existing NIR dyes, we obtain calibration curves that can be used to accurately predict the effect of fine-tuning modifications in new dyes. We demonstrate the predictive power of this calibrated dataset using seven previously unreported dyes, obtaining mean percent errors in absorbance and emission of 2.2 and 2.8 %, respectively. This approach provides a significant timesavings, relative to synthesis and evaluation of dye derivatives, and can be used to focus synthetic campaigns on the most promising dye structures. The new dyes described herein can be utilized for multiplexed imaging, and the experimentally calibrated dataset will provide the dye chemistry community with a means to rapidly identify fine-tuned NIR dyes in silico to guide subsequent synthetic campaigns.
Collapse
Affiliation(s)
- David DiMeglio
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Xinqi Zhou
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE68588, USA
- Current Address: Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Tatiana Wirth
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Frederik Brøndsted
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Lauren Lesiak
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE68588, USA
- Current Address: Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Yuan Fang
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Mehrdad Shadmehr
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Cliff I. Stains
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
- University of Virginia Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
- Virginia Drug Discovery Consortium, Blacksburg, VA 24061, USA
| |
Collapse
|
39
|
Komori Y, Sugimoto S, Sato T, Okawara H, Watanabe R, Takano Y, Kitaoka S, Egawa Y. A New Boron-Rhodamine-Containing Carboxylic Acid as a Sugar Chemosensor. SENSORS (BASEL, SWITZERLAND) 2023; 23:1528. [PMID: 36772569 PMCID: PMC9921257 DOI: 10.3390/s23031528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
We propose a boron-rhodamine-containing carboxylic acid (BRhoC) substance as a new sugar chemosensor. BRhoC was obtained by the Friedel-Crafts reaction of 4-formylbenzoic acid and N,N-dimethylphenylboronic acid, followed by chloranil oxidation. In an aqueous buffer solution at pH 7.4, BRhoC exhibited an absorption maximum (Absmax) at 621 nm. Its molar absorption coefficient at Absmax was calculated to be 1.4 × 105 M-1 cm-1, and it exhibited an emission maximum (Emmax) at 644 nm for the excitation at 621 nm. The quantum yield of BRhoC in CH3OH was calculated to be 0.16. The borinate group of BRhoC reacted with a diol moiety of sugar to form a cyclic ester, which induced a change in the absorbance and fluorescence spectra. An increase in the D-fructose (Fru) concentration resulted in the red shift of the Absmax (621 nm without sugar and 637 nm with 100 mM Fru) and Emmax (644 nm without sugar and 658 nm with 100 mM Fru) peaks. From the curve fitting of the plots of the fluorescence intensity ratio at 644 nm and 658 nm, the binding constants (K) were determined to be 2.3 × 102 M-1 and 3.1 M-1 for Fru and D-glucose, respectively. The sugar-binding ability and presence of a carboxyl group render BRhoC a suitable building block for the fabrication of highly advanced chemosensors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuya Egawa
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 350-0295, Saitama, Japan
| |
Collapse
|
40
|
Kikuchi K, Adair LD, Lin J, New EJ, Kaur A. Photochemical Mechanisms of Fluorophores Employed in Single-Molecule Localization Microscopy. Angew Chem Int Ed Engl 2023; 62:e202204745. [PMID: 36177530 PMCID: PMC10100239 DOI: 10.1002/anie.202204745] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 02/02/2023]
Abstract
Decoding cellular processes requires visualization of the spatial distribution and dynamic interactions of biomolecules. It is therefore not surprising that innovations in imaging technologies have facilitated advances in biomedical research. The advent of super-resolution imaging technologies has empowered biomedical researchers with the ability to answer long-standing questions about cellular processes at an entirely new level. Fluorescent probes greatly enhance the specificity and resolution of super-resolution imaging experiments. Here, we introduce key super-resolution imaging technologies, with a brief discussion on single-molecule localization microscopy (SMLM). We evaluate the chemistry and photochemical mechanisms of fluorescent probes employed in SMLM. This Review provides guidance on the identification and adoption of fluorescent probes in single molecule localization microscopy to inspire the design of next-generation fluorescent probes amenable to single-molecule imaging.
Collapse
Affiliation(s)
- Kai Kikuchi
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Melbourne, VIC 305, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Liam D Adair
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jiarun Lin
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Elizabeth J New
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Amandeep Kaur
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Melbourne, VIC 305, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
41
|
Xanthene dyes for cancer imaging and treatment: A material odyssey. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
East AK, Lee MC, Smaga LP, Jiang C, Mallojjala SC, Hirschi JS, Chan J. Synthesis of Silicon-Substituted Hemicyanines for Multimodal SWIR Imaging. Org Lett 2022; 24:8509-8513. [PMID: 36374323 PMCID: PMC10112353 DOI: 10.1021/acs.orglett.2c03382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
SWIR dyes offer many advantages over their more common NIR congeners; however, the available options are limited. New SWIR imaging agents can be accessed by remodeling existing NIR molecules (i.e., hemicyanines (HDs)). In this study, we synthesized SWIR-HD, a modified HD featuring dimethylsilicon and benzo[cd]indolium groups that are designed to red-shift the absorbance and emission to 988 and 1126 nm, respectively. SWIR-HD was employed to visualize the liver and tumors via multimodal SWIR imaging.
Collapse
Affiliation(s)
- Amanda K. East
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Michael C. Lee
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Lukas P. Smaga
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Chang Jiang
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Sharath C. Mallojjala
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Jennifer S. Hirschi
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
43
|
Grossenbacher P, Essers MC, Moser J, Singer SA, Häusler S, Stieger B, Rougier JS, Lochner M. Bioorthogonal site-selective conjugation of fluorescent dyes to antibodies: method and potential applications. RSC Adv 2022; 12:28306-28317. [PMID: 36320493 PMCID: PMC9533196 DOI: 10.1039/d2ra05580e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Antibodies are immensely useful tools for biochemical research and have found application in numerous protein detection and purification methods. Moreover, monoclonal antibodies are increasingly utilised as therapeutics or, conjugated to active pharmaceutical ingredients, in targeted chemotherapy. Several reagents and protocols are reported to synthesise fluorescent antibodies for protein target detection and immunofluorescence applications. However, most of these protocols lead to non-selective conjugation, over-labelling or in the worst case antigen binding site modification. Here, we have used the antibody disulphide cleavage and re-bridging strategy to introduce bright fluorescent dyes without loss of the antibody function. The resulting fluorescent IgG1 type antibodies were shown to be effective imaging tools in western blot and direct immunofluorescence experiments.
Collapse
Affiliation(s)
- Philipp Grossenbacher
- Institute of Biochemistry and Molecular Medicine, University of BernBühlstrasse 283012 BernSwitzerland
| | - Maria C. Essers
- Institute of Biochemistry and Molecular Medicine, University of BernBühlstrasse 283012 BernSwitzerland
| | - Joël Moser
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of BernFreiestrasse 33012 BernSwitzerland
| | - Simon A. Singer
- Institute of Biochemistry and Molecular Medicine, University of BernBühlstrasse 283012 BernSwitzerland
| | - Stephanie Häusler
- Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, University of ZürichRämistrasse 1008091 ZürichSwitzerland
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, University of ZürichRämistrasse 1008091 ZürichSwitzerland
| | - Jean-Sébastien Rougier
- Institute of Biochemistry and Molecular Medicine, University of BernBühlstrasse 283012 BernSwitzerland
| | - Martin Lochner
- Institute of Biochemistry and Molecular Medicine, University of BernBühlstrasse 283012 BernSwitzerland
| |
Collapse
|
44
|
Zhang YK, Li M, Ruan L, An P. A tetrazole-ene photoactivatable fluorophore with improved brightness and stability in protic solution. Chem Commun (Camb) 2022; 58:10404-10407. [PMID: 36039909 DOI: 10.1039/d2cc03482d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The pyrazoline fluorophore, generated by photoinduced tetrazole-ene cycloaddition, shows faint fluorescence in protic solvents. To suppress this fluorescence-quenching, we rationally designed a series of substituted diaryl tetrazoles at the N-side phenyl ring to produce a tetrazole-ene based photoactivatable fluorophore. Spectroscopic and cellular imaging studies demonstrated that the version of the fluorophore with a bis(trifluoromethyl)benzene substituent exhibited significantly enhanced brightness and photostability.
Collapse
Affiliation(s)
- Yi-Kang Zhang
- School of Chemical Science and Technology & Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091, P. R. China.
| | - Meng Li
- School of Chemical Science and Technology & Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091, P. R. China.
| | - Lan Ruan
- School of Chemical Science and Technology & Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091, P. R. China.
| | - Peng An
- School of Chemical Science and Technology & Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091, P. R. China.
| |
Collapse
|
45
|
Liu M, Zhang J, Chen Z. Emerging Trends in Fluorescence Bioimaging of Divalent Metal Cations Using Small‐Molecule Indicators. Chemistry 2022; 28:e202200587. [DOI: 10.1002/chem.202200587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Mingqiao Liu
- College of Future Technology Institute of Molecular Medicine National Biomedical Imaging Center Beijing Key Laboratory of Cardiometabolic Molecular Medicine Peking University 100871 Beijing China
- Academy for Advanced Interdisciplinary Studies Peking University 100871 Beijing China
| | - Junwei Zhang
- College of Future Technology Institute of Molecular Medicine National Biomedical Imaging Center Beijing Key Laboratory of Cardiometabolic Molecular Medicine Peking University 100871 Beijing China
| | - Zhixing Chen
- College of Future Technology Institute of Molecular Medicine National Biomedical Imaging Center Beijing Key Laboratory of Cardiometabolic Molecular Medicine Peking University 100871 Beijing China
- Academy for Advanced Interdisciplinary Studies Peking University 100871 Beijing China
- Peking-Tsinghua Center for Life Science Peking University 100871 Beijing China
| |
Collapse
|
46
|
Koda K, Keller S, Kojima R, Kamiya M, Urano Y. Measuring the pH of Acidic Vesicles in Live Cells with an Optimized Fluorescence Lifetime Imaging Probe. Anal Chem 2022; 94:11264-11271. [PMID: 35913787 DOI: 10.1021/acs.analchem.2c01840] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acidification of intracellular vesicles, such as endosomes and lysosomes, is a key pathway for regulating the function of internal proteins. Most conventional methods of measuring pH are not satisfactory for quantifying the pH inside these vesicles. Here, we investigated the molecular requirements for a fluorescence probe to measure the intravesicular acidic pH in living cells by means of fluorescence lifetime imaging microscopy (FLIM). The developed probe, m-DiMeNAF488, exhibits a pH-dependent equilibrium between highly fluorescent and moderately fluorescent forms, which has distinct and detectable fluorescence lifetimes of 4.36 and 0.58 ns, respectively. The pKa(τ) value of m-DiMeNAF488 was determined to be 4.58, which would be favorable for evaluating the pH in the acidic vesicles. We were able to monitor the pH changes in phagosomes during phagocytosis by means of FLIM using m-DiMeNAF488. This probe is expected to be a useful tool for investigating acidic pH-regulated biological phenomena.
Collapse
Affiliation(s)
| | | | - Ryosuke Kojima
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Mako Kamiya
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Yasuteru Urano
- AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
47
|
Sun Y, Sun P, Li Z, Qu L, Guo W. Natural flavylium-inspired far-red to NIR-II dyes and their applications as fluorescent probes for biomedical sensing. Chem Soc Rev 2022; 51:7170-7205. [PMID: 35866752 DOI: 10.1039/d2cs00179a] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fluorescent probes that emit in the far-red (600-700 nm), first near-infrared (NIR-I, 700-900 nm), and second NIR (NIR-II, 900-1700 nm) regions possess unique advantages, including low photodamage and deep penetration into biological samples. Notably, NIR-II optical imaging can achieve tissue penetration as deep as 5-20 mm, which is critical for biomedical sensing and clinical applications. Much research has focused on developing far-red to NIR-II dyes to meet the needs of modern biomedicine. Flavylium compounds are natural colorants found in many flowers and fruits. Flavylium-inspired dyes are ideal platforms for constructing fluorescent probes because of their far-red to NIR emissions, high quantum yields, high molar extinction coefficients, and good water solubilities. The synthetic and structural diversities of flavylium dyes also enable NIR-II probe development, which markedly advance the field of NIR-II in vivo imaging. In the last decade, there have been huge developments in flavylium-inspired dyes and their applications as far-red to NIR fluorescent probes for biomedical applications. In this review, we highlight the optical properties of representative flavylium dyes, design strategies, sensing mechanisms, and applications as fluorescent probes for detecting and visualizing important biomedical species and events. This review will prompt further research not only on flavylium dyes, but also into all far-red to NIR fluorophores and fluorescent probes. Moreover, this interest will hopefully spillover into applications related to complex biological systems and clinical treatments, ranging in focus from the sub-organelle to whole-animal levels.
Collapse
Affiliation(s)
- Yuanqiang Sun
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Pengjuan Sun
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhaohui Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Lingbo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Wei Guo
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
48
|
Lincoln R, Bossi ML, Remmel M, D'Este E, Butkevich AN, Hell SW. A general design of caging-group-free photoactivatable fluorophores for live-cell nanoscopy. Nat Chem 2022; 14:1013-1020. [PMID: 35864152 PMCID: PMC9417988 DOI: 10.1038/s41557-022-00995-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 06/09/2022] [Indexed: 11/17/2022]
Abstract
The controlled switching of fluorophores between non-fluorescent and fluorescent states is central to every super-resolution fluorescence microscopy (nanoscopy) technique, and the exploration of radically new switching mechanisms remains critical to boosting the performance of established, as well as emerging super-resolution methods. Photoactivatable dyes offer substantial improvements to many of these techniques, but often rely on photolabile protecting groups that limit their applications. Here we describe a general method to transform 3,6-diaminoxanthones into caging-group-free photoactivatable fluorophores. These photoactivatable xanthones (PaX) assemble rapidly and cleanly into highly fluorescent, photo- and chemically stable pyronine dyes upon irradiation with light. The strategy is extendable to carbon- and silicon-bridged xanthone analogues, yielding a family of photoactivatable labels spanning much of the visible spectrum. Our results demonstrate the versatility and utility of PaX dyes in fixed and live-cell labelling for conventional microscopy, as well as the coordinate-stochastic and deterministic nanoscopies STED, PALM and MINFLUX. ![]()
The design of photoactivatable fluorophores—which are required for some super-resolution fluorescence microscopy methods—usually relies on light-sensitive protecting groups imparting lipophilicity and generating reactive by-products. Now, it has been shown that by exploiting a unique intramolecular photocyclization, bright and highly photostable fluorophores can be rapidly generated in situ from appropriately substituted 1-alkenyl-3,6-diaminoxanthone precursors.
Collapse
Affiliation(s)
- Richard Lincoln
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Mariano L Bossi
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Michael Remmel
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Elisa D'Este
- Optical Microscopy Facility, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Alexey N Butkevich
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg, Germany.
| | - Stefan W Hell
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg, Germany. .,Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
49
|
He D, Zhang L, Sun Y. Meso-substituented pyronine: colorful emission and versatile platform for the rational design of fluorescent probes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
50
|
Ren M, Zhou C, Wang L, Lv X, Guo W. Rationally designed meso-benzimidazole-pyronin with emission wavelength beyond 700 nm enabling in vivo visualization of acute-liver-injury-induced peroxynitrite. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|