1
|
Suwanakitti N, Talawanich Y, Vanichtanankul J, Taweechai S, Yuthavong Y, Kamchonwongpaisan S, Kongkasuriyachai D. folA thyA knockout E. coli as a suitable surrogate model for evaluation of antifolate sensitivity against PfDHFR-TS. Acta Trop 2024; 258:107360. [PMID: 39142549 DOI: 10.1016/j.actatropica.2024.107360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/06/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
A new superior bacteria complementation model was achieved for testing antifolate compounds and investigating antifolate resistance in the dihydrofolate reductase (DHFR) enzyme of the malaria parasite. Earlier models depended on the addition of trimethoprim (TMP) to chemically suppress the host Escherichia coli (Ec) DHFR function. However, incomplete suppression of EcDHFR and potential interference of antibiotics needed to maintain plasmids for complementary gene expression can complicate the interpretations. To overcome such limitations, the folA (F) and thyA (T) genes were genetically knocked out (Δ) in E. coli BL21(DE3). The resulting EcΔFΔT cells were thymidine auxotroph where thymidine supplementation or functional complementation with heterologous DHFR-thymidylate synthase (TS) is needed to restore the loss of gene functions. When tested against pyrimethamine (PYR) and its analogs designed to target Plasmodium falciparum (Pf) DHFR-TS, the 50 % inhibitory concentration values obtained from EcΔFΔT surrogates expressing wildtype (PfTM4) or double mutant (PfK1) DHFR-TS showed strong correlations to the results obtained from the standard in vitro P. falciparum growth inhibition assay. Interestingly, while TMP had little effect on the susceptibility to PYR and analogs in EcΔFΔT expressing PfDHFR-TS, it hypersensitized the chemically knockdown E. coli BL21(DE3) expressing PfTM4 DHFR-TS but desensitized the one carrying PfK1 DHFR-TS. The low intrinsic expression level of PfTM4 in E. coli BL21(DE3) by western blot analysis may explain the hypersensitive to antifolates of chemical knockdown bacteria surrogate. These results demonstrated the usefulness of EcΔFΔT surrogate as a new tool for antifolate antimalarial screening with potential application for investigation of antifolate resistance mechanism.
Collapse
Affiliation(s)
- Nattida Suwanakitti
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park, Pathumthani, Thailand
| | - Yuwadee Talawanich
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park, Pathumthani, Thailand
| | - Jarunee Vanichtanankul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park, Pathumthani, Thailand
| | - Supannee Taweechai
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park, Pathumthani, Thailand
| | - Yongyuth Yuthavong
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park, Pathumthani, Thailand
| | - Sumalee Kamchonwongpaisan
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park, Pathumthani, Thailand
| | - Darin Kongkasuriyachai
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park, Pathumthani, Thailand.
| |
Collapse
|
2
|
Francesconi V, Rizzo M, Pozzi C, Tagliazucchi L, Konchie Simo CU, Saporito G, Landi G, Mangani S, Carbone A, Schenone S, Santarém N, Tavares J, Cordeiro-da-Silva A, Costi MP, Tonelli M. Identification of Innovative Folate Inhibitors Leveraging the Amino Dihydrotriazine Motif from Cycloguanil for Their Potential as Anti- Trypanosoma brucei Agents. ACS Infect Dis 2024; 10:2755-2774. [PMID: 38953453 PMCID: PMC11537224 DOI: 10.1021/acsinfecdis.4c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/06/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024]
Abstract
Folate enzymes, namely, dihydrofolate reductase (DHFR) and pteridine reductase (PTR1) are acknowledged targets for the development of antiparasitic agents against Trypanosomiasis and Leishmaniasis. Based on the amino dihydrotriazine motif of the drug Cycloguanil (Cyc), a known inhibitor of both folate enzymes, we have identified two novel series of inhibitors, the 2-amino triazino benzimidazoles (1) and 2-guanidino benzimidazoles (2), as their open ring analogues. Enzymatic screening was carried out against PTR1, DHFR, and thymidylate synthase (TS). The crystal structures of TbDHFR and TbPTR1 in complex with selected compounds experienced in both cases a substrate-like binding mode and allowed the rationalization of the main chemical features supporting the inhibitor ability to target folate enzymes. Biological evaluation of both series was performed against T. brucei and L. infantum and the toxicity against THP-1 human macrophages. Notably, the 5,6-dimethyl-2-guanidinobenzimidazole 2g resulted to be the most potent (Ki = 9 nM) and highly selective TbDHFR inhibitor, 6000-fold over TbPTR1 and 394-fold over hDHFR. The 5,6-dimethyl tricyclic analogue 1g, despite showing a lower potency and selectivity profile than 2g, shared a comparable antiparasitic activity against T. brucei in the low micromolar domain. The dichloro-substituted 2-guanidino benzimidazoles 2c and 2d revealed their potent and broad-spectrum antitrypanosomatid activity affecting the growth of T. brucei and L. infantum parasites. Therefore, both chemotypes could represent promising templates that could be valorized for further drug development.
Collapse
Affiliation(s)
- Valeria Francesconi
- Department
of Pharmacy, University of Genoa, viale Benedetto XV n.3, Genoa 16132, Italy
| | - Marco Rizzo
- Department
of Pharmacy, University of Genoa, viale Benedetto XV n.3, Genoa 16132, Italy
| | - Cecilia Pozzi
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, Siena 53100, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIMMP), Via Luigi Sacconi 6, Sesto Fiorentino (FI) 50019, Italy
| | - Lorenzo Tagliazucchi
- Department
of Life Science, University of Modena and
Reggio Emilia, via Campi 103, Modena 41125, Italy
- Doctorate
School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Via Campi 287, Modena 41125, Italy
| | - Claude U. Konchie Simo
- Department
of Life Science, University of Modena and
Reggio Emilia, via Campi 103, Modena 41125, Italy
| | - Giulia Saporito
- Department
of Life Science, University of Modena and
Reggio Emilia, via Campi 103, Modena 41125, Italy
| | - Giacomo Landi
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, Siena 53100, Italy
| | - Stefano Mangani
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, Siena 53100, Italy
| | - Anna Carbone
- Department
of Pharmacy, University of Genoa, viale Benedetto XV n.3, Genoa 16132, Italy
| | - Silvia Schenone
- Department
of Pharmacy, University of Genoa, viale Benedetto XV n.3, Genoa 16132, Italy
| | - Nuno Santarém
- i3S
- Institute
for Research and Innovation in Health, University
of Porto, Rua Alfredo
Allen, 208, Porto 4200-135, Portugal
| | - Joana Tavares
- i3S
- Institute
for Research and Innovation in Health, University
of Porto, Rua Alfredo
Allen, 208, Porto 4200-135, Portugal
| | - Anabela Cordeiro-da-Silva
- i3S
- Institute
for Research and Innovation in Health, University
of Porto, Rua Alfredo
Allen, 208, Porto 4200-135, Portugal
- Department
of Life Science, Faculty of Pharmacy, University
of Porto, Rua de Jorge
Viterbo Ferreira, 228, Porto 4050-313, Portugal
| | - Maria Paola Costi
- Department
of Life Science, University of Modena and
Reggio Emilia, via Campi 103, Modena 41125, Italy
| | - Michele Tonelli
- Department
of Pharmacy, University of Genoa, viale Benedetto XV n.3, Genoa 16132, Italy
| |
Collapse
|
3
|
Akakpo L, Gasu EN, Mensah JO, Borquaye LS. Oplodiol and nitidine as potential inhibitors of Plasmodium falciparum dihydrofolate reductase: insights from a computational study. J Biomol Struct Dyn 2024; 42:1655-1669. [PMID: 37194452 DOI: 10.1080/07391102.2023.2212815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/05/2023] [Indexed: 05/18/2023]
Abstract
Many natural products have been shown to possess antiplasmodial activities, but their protein targets are unknown. This work employed molecular docking and molecular dynamics simulations to explore the inhibitory activity of some antiplasmodial natural products against wild-type and mutant strains of Plasmodium falciparum dihydrofolate reductase (PfDHFR). From the molecular docking study, 6 ligands preferentially bind at the active site of the DHFR domain with binding energies ranging from -6.4 to -9.5 kcal/mol. Interactions of compounds with MET55 and PHE58 were mostly observed in the molecular docking study. From the molecular dynamics study, the binding of 2 of the ligands-nitidine and oplodiol-was observed to be stable against all tested strains of PfDHFR. The average binding free energy of oplodiol in complex with the various PfDHFR strains was -93.701 kJ/mol whereas that of nitidine was -106.206 kJ/mol. The impressive in silico activities of the 2 compounds suggest they could be considered for development as potential antifolate agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Loretta Akakpo
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Edward Ntim Gasu
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Central Laboratory, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Lawrence Sheringham Borquaye
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Central Laboratory, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
4
|
Bisbenzylisoquinolines from Cissampelos pareira L. as antimalarial agents: Molecular docking, pharmacokinetics analysis, and molecular dynamic simulation studies. Comput Biol Chem 2023; 104:107826. [PMID: 36848855 DOI: 10.1016/j.compbiolchem.2023.107826] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/14/2023]
Abstract
Malaria is a major global health issue due to the emergence of resistance to most of the available antimalarial drugs. There is an urgent need to discover new antimalarials to tackle the resistance issue. The present study aims to explore the antimalarial potential of chemical constituents reported from Cissampelos pareira L., a medicinal plant traditionally known for treating malaria. Phytochemically, benzylisoquinolines and bisbenzylisoquinolines are the major classes of alkaloids reported from this plant. In silico molecular docking revealed prominent interactions of bisbenzylisoquinolines such as hayatinine and curine with Pfdihydrofolate reductase (-6.983 Kcal/mol and -6.237 Kcal/mol), PfcGMP-dependent protein kinase (-6.652 Kcal/mol and -7.158 Kcal/mol), and Pfprolyl-tRNA synthetase (-7.569 Kcal/mol and -7.122 Kcal/mol). The binding affinity of hayatinine and curine with identified antimalarial targets was further evaluated using MD-simulation analysis. Among the identified antimalarial targets, the RMSD, RMSF, the radius of gyration, and PCA indicated the formation of stable complexes of hayatinine and curine with Pfprolyl-tRNA synthetase. The outcomes of in silico investigation putatively suggested that bisbenzylisoquinolines may act on the translation of the Plasmodium parasite to exhibit antimalarial potency.
Collapse
|
5
|
The Broad-Spectrum Antitrypanosomal Inhibitory Efficiency of the Antimetabolite/Anticancer Drug Raltitrexed. Processes (Basel) 2022. [DOI: 10.3390/pr10112158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Raltitrexed is a classical antifolate drug with antimetabolite and anticancer properties. In this research, we provide its detailed antitrypanosomal inhibition against six Trypanosoma species and investigate its potential mode of action. Molecular dynamics (MD) simulations and in silico analyses were used to track the binding strength and stability. Raltitrexed showed broad-spectrum trypanocidal actions against Trypanosoma brucei brucei GUTat3.1, T. b. rhodesiense IL1501, T. b. gambiense IL1922, T. evansi Tansui, T. equiperdum IVM-t1 and T. congolense IL3000. The estimated IC50 was found to be in the range of 5.18–24.13 µg/mL, indicating inhibition of Trypanosoma in the low micromolar range. Although the co-crystallized ligand had robust hydrogen bonding and lipophilic characteristics, its docking score was only −4.6 compared to raltitrexed’s −7.78, indicating strong binding with T. brucei dihydrofolate reductase-thymidylate synthase (TbDHFR-TS). MD simulations support the strong binding of raltitrexed with TbDHFR-TS evidenced by low root mean square deviation (RMSD), low residues fluctuations, a tight radius of gyration (ROG) and an average of 3.38 ± 1.3 hydrogen bonds during 50 ns MD simulation. The prospective extended spectrum of raltitrexed against Trypanosoma species grants further research for the synthesis of raltitrexed derivatives and repurposing against other protozoa.
Collapse
|
6
|
Panecka-Hofman J, Poehner I, Wade R. Anti-trypanosomatid structure-based drug design - lessons learned from targeting the folate pathway. Expert Opin Drug Discov 2022; 17:1029-1045. [PMID: 36073204 DOI: 10.1080/17460441.2022.2113776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Trypanosomatidic parasitic infections of humans and animals caused by Trypanosoma brucei, Trypanosoma cruzi, and Leishmania species pose a significant health and economic burden in developing countries. There are few effective and accessible treatments for these diseases, and the existing therapies suffer from problems such as parasite resistance and side effects. Structure-based drug design (SBDD) is one of the strategies that has been applied to discover new compounds targeting trypanosomatid-borne diseases. AREAS COVERED We review the current literature (mostly over the last 5 years, searched in PubMed database on Nov 11th 2021) on the application of structure-based drug design approaches to identify new anti-trypanosomatidic compounds that interfere with a validated target biochemical pathway, the trypanosomatid folate pathway. EXPERT OPINION The application of structure-based drug design approaches to perturb the trypanosomatid folate pathway has successfully provided many new inhibitors with good selectivity profiles, most of which are natural products or their derivatives or have scaffolds of known drugs. However, the inhibitory effect against the target protein(s) often does not translate to anti-parasitic activity. Further progress is hampered by our incomplete understanding of parasite biology and biochemistry, which is necessary to complement SBDD in a multiparameter optimization approach to discovering selective anti-parasitic drugs.
Collapse
Affiliation(s)
- Joanna Panecka-Hofman
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5a, 02-097 Warsaw, Poland
| | - Ina Poehner
- School of Pharmacy, University of Eastern Finland, Kuopio, Yliopistonranta 1C, PO Box 1627, FI-70211 Kuopio, Finland
| | - Rebecca Wade
- Center for Molecular Biology (ZMBH), Heidelberg University, Im Neuenheimer Feld 282, Heidelberg 69120, Germany.,Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, Heidelberg 69118, Germany.,DKFZ-ZMBH Alliance and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 205, Heidelberg 69120, Germany
| |
Collapse
|
7
|
Seetin S, Saparpakorn P, Vanichtanankul J, Vitsupakorn D, Yuthavong Y, Kamchonwongpaisan S, Hannongbua S. Key interactions of pyrimethamine derivatives specific to wild-type and mutant P. falciparum dihydrofolate reductase based on 3D-QSAR, MD simulations and quantum chemical calculations. J Biomol Struct Dyn 2022:1-16. [DOI: 10.1080/07391102.2022.2096114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Sasipha Seetin
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, Thailand
- Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, Kasetsart University, Chatuchak, Bangkok, Thailand
| | - Patchreenart Saparpakorn
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, Thailand
- Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, Kasetsart University, Chatuchak, Bangkok, Thailand
| | - Jarunee Vanichtanankul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Klong Luang, PathumThani, Thailand
| | - Danoo Vitsupakorn
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Klong Luang, PathumThani, Thailand
| | - Yongyuth Yuthavong
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Klong Luang, PathumThani, Thailand
| | - Sumalee Kamchonwongpaisan
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Klong Luang, PathumThani, Thailand
| | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, Thailand
- Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, Kasetsart University, Chatuchak, Bangkok, Thailand
| |
Collapse
|
8
|
Vanichtanankul J, Yoomuang A, Taweechai S, Saeyang T, Pengon J, Yuvaniyama J, Tarnchompoo B, Yuthavong Y, Kamchonwongpaisan S. Structural Insight into Effective Inhibitors' Binding to Toxoplasma gondii Dihydrofolate Reductase Thymidylate Synthase. ACS Chem Biol 2022; 17:1691-1702. [PMID: 35715223 DOI: 10.1021/acschembio.1c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pyrimethamine (Pyr), a known dihydrofolate reductase (DHFR) inhibitor, has long been used to treat toxoplasmosis caused by Toxoplasma gondii (Tg) infection. However, Pyr is effective only at high doses with associated toxicity to patients, calling for safer alternative treatments. In this study, we investigated a series of Pyr analogues, previously developed as DHFR inhibitors of Plasmodium falciparum bifunctional DHFR-thymidylate synthase (PfDHFR-TS), for their activity against T. gondii DHFR-TS (TgDHFR-TS). Of these, a set of compounds with a substitution at the C6 position of the pyrimidine ring exhibited high binding affinities (in a low nanomolar range) against TgDHFR-TS and in vitro T. gondii inhibitory activity. Three-dimensional structures of TgDHFR-TS reported here include the ternary complexes with Pyr, P39, or P40. A comparison of these structures showed the minor steric strain between the p-chlorophenyl group of Pyr and Thr83 of TgDHFR-TS. Such a conflict was relieved in the complexes with the two analogues, P39 and P40, explaining their highest binding affinities described herein. Moreover, these structures suggested that the hydrophobic environment in the active-site pocket could be used for drug design to increase the potency and selectivity of antifolate inhibitors. These findings would accelerate the development of new antifolate drugs to treat toxoplasmosis.
Collapse
Affiliation(s)
- Jarunee Vanichtanankul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Aphisit Yoomuang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Supannee Taweechai
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Thanaya Saeyang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Jutharat Pengon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Jirundon Yuvaniyama
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| | - Bongkoch Tarnchompoo
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Yongyuth Yuthavong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Sumalee Kamchonwongpaisan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
9
|
An In Silico Study of the Interactions of Alkaloids from Cryptolepis sanguinolenta with Plasmodium falciparum Dihydrofolate Reductase and Dihydroorotate Dehydrogenase. J CHEM-NY 2022. [DOI: 10.1155/2022/5314179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Plasmodium falciparum dihydrofolate reductase (PfDHFR) and dihydroorotate dehydrogenase (PfDHODH) are essential for Plasmodium falciparum growth and development, and have been validated as targets for the development of new antimalarial agents. Several alkaloids isolated from Cryptolepis sanguinolenta have been reported to have antiplasmodial activity, but their protein targets are unknown. Therefore, molecular docking and molecular dynamics simulations were used to investigate the interactions and stability of the alkaloids with PfDHFR and PfDHODH. Based on physicochemical characteristics, alkaloids were grouped as sterically bulky (sb) or planar (pg). Docking results revealed strong binding affinities (−6.0 to −13.4 kcal/mol) of the alkaloids against PfDHODH and various strains of PfDHFR while interacting with key residues such as Asp54 and Phe58 in PfDHFR. The pg alkaloids had high binding affinity and preference for the inhibitor binding domain over the flavin mononucleotide (FMN) binding domain in PfDHODH due to size considerations. From the molecular dynamics trajectories, protein-alkaloid complexes were stable throughout the simulation, with supporting evidence from root mean square deviations, root mean square fluctuations, radius of gyration, free binding energies, and other parameters. We report herein that biscryptolepine and cryptomisrine (sb class), as well as cryptolepinone, cryptoheptine, cryptolepine, and neocryptolepine (pg class), are capable of inhibiting PfDHFR effectively in pyrimethamine sensitive and resistant cells. Also, our results show that alkaloids of the pg class can inhibit PfDHODH as FMN decoys, as well as direct enzyme inhibitors, thereby halting crucial protein function.
Collapse
|
10
|
Possart K, Herrmann FC, Jose J, Costi MP, Schmidt TJ. Sesquiterpene Lactones with Dual Inhibitory Activity against the Trypanosoma brucei Pteridine Reductase 1 and Dihydrofolate Reductase. Molecules 2021; 27:149. [PMID: 35011381 PMCID: PMC8747069 DOI: 10.3390/molecules27010149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022] Open
Abstract
The parasite Trypanosoma brucei (T. brucei) is responsible for human African trypanosomiasis (HAT) and the cattle disease "Nagana" which to this day cause severe medical and socio-economic issues for the affected areas in Africa. So far, most of the available treatment options are accompanied by harmful side effects and are constantly challenged by newly emerging drug resistances. Since trypanosomatids are auxotrophic for folate, their pteridine metabolism provides a promising target for an innovative chemotherapeutic treatment. They are equipped with a unique corresponding enzyme system consisting of the bifunctional dihydrofolate reductase-thymidylate synthase (TbDHFR-TS) and the pteridine reductase 1 (TbPTR1). Previously, gene knockout experiments with PTR1 null mutants have underlined the importance of these enzymes for parasite survival. In a search for new chemical entities with a dual inhibitory activity against the TbPTR1 and TbDHFR, a multi-step in silico procedure was employed to pre-select promising candidates against the targeted enzymes from a natural product database. Among others, the sesquiterpene lactones (STLs) cynaropicrin and cnicin were identified as in silico hits. Consequently, an in-house database of 118 STLs was submitted to an in silico screening yielding 29 further virtual hits. Ten STLs were subsequently tested against the target enzymes in vitro in a spectrophotometric inhibition assay. Five compounds displayed an inhibition over 50% against TbPTR1 as well as three compounds against TbDHFR. Cynaropicrin turned out to be the most interesting hit since it inhibited both TbPTR1 and TbDHFR, reaching IC50 values of 12.4 µM and 7.1 µM, respectively.
Collapse
Affiliation(s)
- Katharina Possart
- Institute of Pharmaceutical Biology and Phytochemistry (IPBP), University of Muenster, PharmaCampus, Corrensstrasse 48, D-48149 Muenster, Germany; (K.P.); (F.C.H.)
| | - Fabian C. Herrmann
- Institute of Pharmaceutical Biology and Phytochemistry (IPBP), University of Muenster, PharmaCampus, Corrensstrasse 48, D-48149 Muenster, Germany; (K.P.); (F.C.H.)
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, University of Muenster, PharmaCampus, Corrensstrasse 48, D-48149 Muenster, Germany;
| | - Maria P. Costi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy;
| | - Thomas J. Schmidt
- Institute of Pharmaceutical Biology and Phytochemistry (IPBP), University of Muenster, PharmaCampus, Corrensstrasse 48, D-48149 Muenster, Germany; (K.P.); (F.C.H.)
| |
Collapse
|
11
|
Santucci M, Luciani R, Gianquinto E, Pozzi C, Pisa FD, dello Iacono L, Landi G, Tagliazucchi L, Mangani S, Spyrakis F, Costi MP. Repurposing the Trypanosomatidic GSK Kinetobox for the Inhibition of Parasitic Pteridine and Dihydrofolate Reductases. Pharmaceuticals (Basel) 2021; 14:ph14121246. [PMID: 34959646 PMCID: PMC8704748 DOI: 10.3390/ph14121246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 11/20/2022] Open
Abstract
Three open-source anti-kinetoplastid chemical boxes derived from a whole-cell phenotypic screening by GlaxoSmithKline (Tres Cantos Anti-Kinetoplastid Screening, TCAKS) were exploited for the discovery of a novel core structure inspiring new treatments of parasitic diseases targeting the trypansosmatidic pteridine reductase 1 (PTR1) and dihydrofolate reductase (DHFR) enzymes. In total, 592 compounds were tested through medium-throughput screening assays. A subset of 14 compounds successfully inhibited the enzyme activity in the low micromolar range of at least one of the enzymes from both Trypanosoma brucei and Lesihmania major parasites (pan-inhibitors), or from both PTR1 and DHFR-TS of the same parasite (dual inhibitors). Molecular docking studies of the protein–ligand interaction focused on new scaffolds not reproducing the well-known antifolate core clearly explaining the experimental data. TCMDC-143249, classified as a benzenesulfonamide derivative by the QikProp descriptor tool, showed selective inhibition of PTR1 and growth inhibition of the kinetoplastid parasites in the 5 μM range. In our work, we enlarged the biological profile of the GSK Kinetobox and identified new core structures inhibiting selectively PTR1, effective against the kinetoplastid infectious protozoans. In perspective, we foresee the development of selective PTR1 and DHFR inhibitors for studies of drug combinations.
Collapse
Affiliation(s)
- Matteo Santucci
- Department of Life Science, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy; (M.S.); (R.L.); (L.T.)
| | - Rosaria Luciani
- Department of Life Science, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy; (M.S.); (R.L.); (L.T.)
| | - Eleonora Gianquinto
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Turin, Italy; (E.G.); (F.S.)
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy—Department of Excellence 2018–2020, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (C.P.); (F.d.P.); (L.d.I.); (G.L.); (S.M.)
| | - Flavio di Pisa
- Department of Biotechnology, Chemistry and Pharmacy—Department of Excellence 2018–2020, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (C.P.); (F.d.P.); (L.d.I.); (G.L.); (S.M.)
| | - Lucia dello Iacono
- Department of Biotechnology, Chemistry and Pharmacy—Department of Excellence 2018–2020, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (C.P.); (F.d.P.); (L.d.I.); (G.L.); (S.M.)
| | - Giacomo Landi
- Department of Biotechnology, Chemistry and Pharmacy—Department of Excellence 2018–2020, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (C.P.); (F.d.P.); (L.d.I.); (G.L.); (S.M.)
| | - Lorenzo Tagliazucchi
- Department of Life Science, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy; (M.S.); (R.L.); (L.T.)
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy—Department of Excellence 2018–2020, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (C.P.); (F.d.P.); (L.d.I.); (G.L.); (S.M.)
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Turin, Italy; (E.G.); (F.S.)
| | - Maria Paola Costi
- Department of Life Science, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy; (M.S.); (R.L.); (L.T.)
- Correspondence:
| |
Collapse
|
12
|
WONG KT, OSMAN H, PARUMASİVAM T, ABDULLAH JM, HASSAN MZ, MOHAMAD TAİB MNA. Antimalarial Evaluation of the Chemical Constituents Isolated from Dendrocalamus asper. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2021. [DOI: 10.18596/jotcsa.904529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
13
|
Tanramluk D, Pakotiprapha D, Phoochaijaroen S, Chantravisut P, Thampradid S, Vanichtanankul J, Narupiyakul L, Akavipat R, Yuvaniyama J. MANORAA: A machine learning platform to guide protein-ligand design by anchors and influential distances. Structure 2021; 30:181-189.e5. [PMID: 34614393 DOI: 10.1016/j.str.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/25/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
The MANORAA platform uses structure-based approaches to provide information on drug design originally derived from mapping tens of thousands of amino acids on a grid. In-depth analyses of the pockets, frequently occurring atoms, influential distances, and active-site boundaries are used for the analysis of active sites. The algorithms derived provide model equations that can predict whether changes in distances, such as contraction or expansion, will result in improved binding affinity. The algorithm is confirmed using kinetic studies of dihydrofolate reductase (DHFR), together with two DHFR-TS crystal structures. Empirical analyses of 881 crystal structures involving 180 ligands are used to interpret protein-ligand binding affinities. MANORAA links to major biological databases for web-based analysis of drug design. The frequency of atoms inside the main protease structures, including those from SARS-CoV-2, shows how the rigid part of the ligand can be used as a probe for molecular design (http://manoraa.org).
Collapse
Affiliation(s)
- Duangrudee Tanramluk
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand; Integrative Computational BioScience (ICBS) Center, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand.
| | - Danaya Pakotiprapha
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| | - Sakao Phoochaijaroen
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Pattra Chantravisut
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Sirikanya Thampradid
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| | - Jarunee Vanichtanankul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Lalita Narupiyakul
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand; Department of Computer Engineering, Faculty of Engineering, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Ruj Akavipat
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Jirundon Yuvaniyama
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| |
Collapse
|
14
|
Sakpal S, Bastikar A, Kothari SL, Bastikar V. In silico analysis of the pyretic effect of drugs on antimalarial receptors. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Ozarkar A, Kanyal A, Dass S, Deshpande P, Deobagkar D, Karmodiya K. Analysis of drug resistance marker genes of Plasmodium falciparum after implementation of artemisinin-based combination therapy in Pune district, India. J Biosci 2021. [DOI: 10.1007/s12038-021-00200-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Tassone G, Landi G, Linciano P, Francesconi V, Tonelli M, Tagliazucchi L, Costi MP, Mangani S, Pozzi C. Evidence of Pyrimethamine and Cycloguanil Analogues as Dual Inhibitors of Trypanosoma brucei Pteridine Reductase and Dihydrofolate Reductase. Pharmaceuticals (Basel) 2021; 14:636. [PMID: 34209148 PMCID: PMC8308740 DOI: 10.3390/ph14070636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Trypanosoma and Leishmania parasites are the etiological agents of various threatening neglected tropical diseases (NTDs), including human African trypanosomiasis (HAT), Chagas disease, and various types of leishmaniasis. Recently, meaningful progresses in the treatment of HAT, due to Trypanosoma brucei (Tb), have been achieved by the introduction of fexinidazole and the combination therapy eflornithine-nifurtimox. Nevertheless, due to drug resistance issues and the exitance of animal reservoirs, the development of new NTD treatments is still required. For this purpose, we explored the combined targeting of two key folate enzymes, dihydrofolate reductase (DHFR) and pteridine reductase 1 (PTR1). We formerly showed that the TbDHFR inhibitor cycloguanil (CYC) also targets TbPTR1, although with reduced affinity. Here, we explored a small library of CYC analogues to understand how their substitution pattern affects the inhibition of both TbPTR1 and TbDHFR. Some novel structural features responsible for an improved, but preferential, ability of CYC analogues to target TbPTR1 were disclosed. Furthermore, we showed that the known drug pyrimethamine (PYR) effectively targets both enzymes, also unveiling its binding mode to TbPTR1. The structural comparison between PYR and CYC binding modes to TbPTR1 and TbDHFR provided key insights for the future design of dual inhibitors for HAT therapy.
Collapse
Affiliation(s)
- Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy; (G.T.); (G.L.); (S.M.)
| | - Giacomo Landi
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy; (G.T.); (G.L.); (S.M.)
| | - Pasquale Linciano
- Department of Life Science, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy; (P.L.); (L.T.); (M.P.C.)
| | - Valeria Francesconi
- Department of Pharmacy, University of Genoa, Viale Benedetto XV n.3, 16132 Genoa, Italy; (V.F.); (M.T.)
| | - Michele Tonelli
- Department of Pharmacy, University of Genoa, Viale Benedetto XV n.3, 16132 Genoa, Italy; (V.F.); (M.T.)
| | - Lorenzo Tagliazucchi
- Department of Life Science, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy; (P.L.); (L.T.); (M.P.C.)
| | - Maria Paola Costi
- Department of Life Science, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy; (P.L.); (L.T.); (M.P.C.)
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy; (G.T.); (G.L.); (S.M.)
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy; (G.T.); (G.L.); (S.M.)
| |
Collapse
|
17
|
Hoarau M, Vanichtanankul J, Srimongkolpithak N, Vitsupakorn D, Yuthavong Y, Kamchonwongpaisan S. Discovery of new non-pyrimidine scaffolds as Plasmodium falciparum DHFR inhibitors by fragment-based screening. J Enzyme Inhib Med Chem 2021; 36:198-206. [PMID: 33530764 PMCID: PMC8759724 DOI: 10.1080/14756366.2020.1854244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In various malaria-endemic regions, the appearance of resistance has precluded the use of pyrimidine-based antifolate drugs. Here, a three-step fragment screening was used to identify new non-pyrimidine Plasmodium falciparum dihydrofolate reductase (PfDHFR) inhibitors. Starting from a 1163-fragment commercial library, a two-step differential scanning fluorimetry screen identified 75 primary fragment hits. Subsequent enzyme inhibition assay identified 11 fragments displaying IC50 in the 28-695 μM range and selectivity for PfDHFR. In addition to the known pyrimidine, three new anti-PfDHFR chemotypes were identified. Fragments from each chemotype were successfully co-crystallized with PfDHFR, revealing a binding in the active site, in the vicinity of catalytic residues, which was confirmed by molecular docking on all fragment hits. Finally, comparison with similar non-hit fragments provides preliminary input on available growth vectors for future drug development.
Collapse
Affiliation(s)
- Marie Hoarau
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Jarunee Vanichtanankul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Nitipol Srimongkolpithak
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Danoo Vitsupakorn
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Yongyuth Yuthavong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Sumalee Kamchonwongpaisan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| |
Collapse
|
18
|
Allostery and Epistasis: Emergent Properties of Anisotropic Networks. ENTROPY 2020; 22:e22060667. [PMID: 33286439 PMCID: PMC7517209 DOI: 10.3390/e22060667] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 11/17/2022]
Abstract
Understanding the underlying mechanisms behind protein allostery and non-additivity of substitution outcomes (i.e., epistasis) is critical when attempting to predict the functional impact of mutations, particularly at non-conserved sites. In an effort to model these two biological properties, we extend the framework of our metric to calculate dynamic coupling between residues, the Dynamic Coupling Index (DCI) to two new metrics: (i) EpiScore, which quantifies the difference between the residue fluctuation response of a functional site when two other positions are perturbed with random Brownian kicks simultaneously versus individually to capture the degree of cooperativity of these two other positions in modulating the dynamics of the functional site and (ii) DCIasym, which measures the degree of asymmetry between the residue fluctuation response of two sites when one or the other is perturbed with a random force. Applied to four independent systems, we successfully show that EpiScore and DCIasym can capture important biophysical properties in dual mutant substitution outcomes. We propose that allosteric regulation and the mechanisms underlying non-additive amino acid substitution outcomes (i.e., epistasis) can be understood as emergent properties of an anisotropic network of interactions where the inclusion of the full network of interactions is critical for accurate modeling. Consequently, mutations which drive towards a new function may require a fine balance between functional site asymmetry and strength of dynamic coupling with the functional sites. These two tools will provide mechanistic insight into both understanding and predicting the outcome of dual mutations.
Collapse
|
19
|
Flexible diaminodihydrotriazine inhibitors of Plasmodium falciparum dihydrofolate reductase: Binding strengths, modes of binding and their antimalarial activities. Eur J Med Chem 2020; 195:112263. [DOI: 10.1016/j.ejmech.2020.112263] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 01/12/2023]
|
20
|
Shaykoon MS, Marzouk AA, Soltan OM, Wanas AS, Radwan MM, Gouda AM, Youssif BGM, Abdel-Aziz M. Design, synthesis and antitrypanosomal activity of heteroaryl-based 1,2,4-triazole and 1,3,4-oxadiazole derivatives. Bioorg Chem 2020; 100:103933. [PMID: 32446119 DOI: 10.1016/j.bioorg.2020.103933] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/10/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
Abstract
Two series of novel 1,2,4-triazol-3-yl-thioacetamide 3a-b and 4a-b and 5-pyrazin-2-yl-3H-[1,3,4]oxadiazole-2-thiones 9a-h were designed and synthesized. The compounds prepared have been identified using 1H NMR, 13C NMR and elemental analyses. The synthesized compounds 3a, 3b, 4a, 4b, 9a, 9b, 9d-e and 9f have been evaluated with α-difluoromethylornithine (DFMO) as a control drug for their in vitro antitrypanosomal activity against Trypanosoma brucei. Results showed that 3b was the most active compound in general and also more potent than control DFMO. 3b was 8 folds more potent than the reference with IC50 of 0.79 μM and IC90 of 1.35 μM, respectively compared to DFMO (IC50 = 6.10 μM and IC90 of 8.66 μM). The tested compounds showed moderate cytotoxicity with selectivity indices ranging from 12 (9d) to 102 (3b) against L6 cells. Docking study was performed into ten of T. brucei enzymes which have been identified as potential/valid targets for most of the antitrypanosomal agents. The results of the docking study revealed high binding scores toward many of the selected enzymes. A good correlation was observed only between log (IC50) of antitrypanosomal activity of the new compounds and their calculated Ki values against TryR enzyme (R2 = 0.726). Compound 3b, the most active as antitrypanosomal agents exhibited similar binding orientation and interaction to those of WP6 against TryR enzyme. However, in a next round of work, a complementary studies will be carried out to clarify the mechanism of action of these compounds.
Collapse
Affiliation(s)
- Montaser Sh Shaykoon
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Adel A Marzouk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Osama M Soltan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Amira S Wanas
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA; Pharmacognosy Department, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Mohamed M Radwan
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA
| | - Ahmed M Gouda
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt.
| |
Collapse
|
21
|
Chopra R, Singh L, Chibale K, Singh K. Synthesis, In Silico Molecular Docking, ADME Evaluation and In Vitro Antiplasmodial Activity of Pyrimidine‐Based Hybrid Molecules. ChemistrySelect 2019. [DOI: 10.1002/slct.201903031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rakesh Chopra
- Department of ChemistryUGC Centre for Advanced Study-IIGuru Nanak Dev University Amritsar – 143005 India
| | - Lovepreet Singh
- Department of ChemistryUGC Centre for Advanced Study-IIGuru Nanak Dev University Amritsar – 143005 India
| | - Kelly Chibale
- Department of ChemistrySouth African Medical Research Council Drug Discovery and Development Research UnitInstitute of Infectious Disease and Molecular MedicineUniversity of Cape Town Rondebosch 7701 South Africa
| | - Kamaljit Singh
- Department of ChemistryUGC Centre for Advanced Study-IIGuru Nanak Dev University Amritsar – 143005 India
| |
Collapse
|
22
|
Nenarokova A, Záhonová K, Krasilnikova M, Gahura O, McCulloch R, Zíková A, Yurchenko V, Lukeš J. Causes and Effects of Loss of Classical Nonhomologous End Joining Pathway in Parasitic Eukaryotes. mBio 2019; 10:e01541-19. [PMID: 31311886 PMCID: PMC6635534 DOI: 10.1128/mbio.01541-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 01/22/2023] Open
Abstract
We report frequent losses of components of the classical nonhomologous end joining pathway (C-NHEJ), one of the main eukaryotic tools for end joining repair of DNA double-strand breaks, in several lineages of parasitic protists. Moreover, we have identified a single lineage among trypanosomatid flagellates that has lost Ku70 and Ku80, the core C-NHEJ components, and accumulated numerous insertions in many protein-coding genes. We propose a correlation between these two phenomena and discuss the possible impact of the C-NHEJ loss on genome evolution and transition to the parasitic lifestyle.IMPORTANCE Parasites tend to evolve small and compact genomes, generally endowed with a high mutation rate, compared with those of their free-living relatives. However, the mechanisms by which they achieve these features, independently in unrelated lineages, remain largely unknown. We argue that the loss of the classical nonhomologous end joining pathway components may be one of the crucial steps responsible for characteristic features of parasite genomes.
Collapse
Affiliation(s)
- Anna Nenarokova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Kristína Záhonová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
| | - Marija Krasilnikova
- Wellcome Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
| | - Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Richard McCulloch
- Wellcome Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Vyacheslav Yurchenko
- Martsinovsky Institute of Medical Parasitology, Sechenov University, Moscow, Russia
- Life Science Research Centre and Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
23
|
Landi G, Linciano P, Borsari C, Bertolacini CP, Moraes CB, Cordeiro-da-Silva A, Gul S, Witt G, Kuzikov M, Costi MP, Pozzi C, Mangani S. Structural Insights into the Development of Cycloguanil Derivatives as Trypanosoma brucei Pteridine-Reductase-1 Inhibitors. ACS Infect Dis 2019; 5:1105-1114. [PMID: 31012301 DOI: 10.1021/acsinfecdis.8b00358] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cycloguanil is a known dihydrofolate-reductase (DHFR) inhibitor, but there is no evidence of its activity on pteridine reductase (PTR), the main metabolic bypass to DHFR inhibition in trypanosomatid parasites. Here, we provide experimental evidence of cycloguanil as an inhibitor of Trypanosoma brucei PTR1 (TbPTR1). A small library of cycloguanil derivatives was developed, resulting in 1 and 2a having IC50 values of 692 and 186 nM, respectively, toward TbPTR1. Structural analysis revealed that the increased potency of 1 and 2a is due to the combined contributions of hydrophobic interactions, H-bonds, and halogen bonds. Moreover, in vitro cell-growth-inhibition tests indicated that 2a is also effective on T. brucei. The simultaneous inhibition of DHFR and PTR1 activity in T. brucei is a promising new strategy for the treatment of human African trypanosomiasis. For this purpose, 1,6-dihydrotriazines represent new molecular tools to develop potent dual PTR and DHFR inhibitors.
Collapse
Affiliation(s)
- Giacomo Landi
- Department of Biotechnology, Chemistry and Pharmacy—Department of Excellence 2018−2020, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Pasquale Linciano
- Department of Life Science, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Chiara Borsari
- Department of Life Science, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Claudia P. Bertolacini
- National Laboratory of Biosciences, National Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Carolina B. Moraes
- National Laboratory of Biosciences, National Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Anabela Cordeiro-da-Silva
- Instituto de Investigação e Inovação em Saúde and IBMC-Institute for Molecular and Cell Biology, Universidade do Porto and Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto (FFUP), 4150-180 Porto, Portugal
| | - Sheraz Gul
- Fraunhofer Institute for Molecular Biology & Applied Ecology—ScreeningPort, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | - Gesa Witt
- Fraunhofer Institute for Molecular Biology & Applied Ecology—ScreeningPort, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | - Maria Kuzikov
- Fraunhofer Institute for Molecular Biology & Applied Ecology—ScreeningPort, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | - Maria Paola Costi
- Department of Life Science, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy—Department of Excellence 2018−2020, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy—Department of Excellence 2018−2020, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
24
|
Manhas A, Lone MY, Jha PC. Multicomplex-based pharmacophore modeling in conjunction with multi-target docking and molecular dynamics simulations for the identification of PfDHFR inhibitors. J Biomol Struct Dyn 2019; 37:4181-4199. [DOI: 10.1080/07391102.2018.1540362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Anu Manhas
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Mohsin Y. Lone
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India
| | - Prakash C. Jha
- Centre for Applied Chemistry, Central University of Gujarat, Gandhinagar, Gujarat, India
| |
Collapse
|
25
|
Agnello S, Brand M, Chellat MF, Gazzola S, Riedl R. A Structural View on Medicinal Chemistry Strategies against Drug Resistance. Angew Chem Int Ed Engl 2019; 58:3300-3345. [PMID: 29846032 DOI: 10.1002/anie.201802416] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/24/2018] [Indexed: 12/31/2022]
Abstract
The natural phenomenon of drug resistance is a widespread issue that hampers the performance of drugs in many major clinical indications. Antibacterial and antifungal drugs are affected, as well as compounds for the treatment of cancer, viral infections, or parasitic diseases. Despite the very diverse set of biological targets and organisms involved in the development of drug resistance, the underlying molecular mechanisms have been identified to understand the emergence of resistance and to overcome this detrimental process. Detailed structural information on the root causes for drug resistance is nowadays frequently available, so next-generation drugs can be designed that are anticipated to suffer less from resistance. This knowledge-based approach is essential for fighting the inevitable occurrence of drug resistance.
Collapse
Affiliation(s)
- Stefano Agnello
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Michael Brand
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Mathieu F Chellat
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Silvia Gazzola
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Rainer Riedl
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| |
Collapse
|
26
|
Agnello S, Brand M, Chellat MF, Gazzola S, Riedl R. Eine strukturelle Evaluierung medizinalchemischer Strategien gegen Wirkstoffresistenzen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201802416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Stefano Agnello
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Michael Brand
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Mathieu F. Chellat
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Silvia Gazzola
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Rainer Riedl
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| |
Collapse
|
27
|
Kimuda MP, Laming D, Hoppe HC, Tastan Bishop Ö. Identification of Novel Potential Inhibitors of Pteridine Reductase 1 in Trypanosoma brucei via Computational Structure-Based Approaches and in Vitro Inhibition Assays. Molecules 2019; 24:molecules24010142. [PMID: 30609681 PMCID: PMC6337619 DOI: 10.3390/molecules24010142] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 11/16/2022] Open
Abstract
Pteridine reductase 1 (PTR1) is a trypanosomatid multifunctional enzyme that provides a mechanism for escape of dihydrofolate reductase (DHFR) inhibition. This is because PTR1 can reduce pterins and folates. Trypanosomes require folates and pterins for survival and are unable to synthesize them de novo. Currently there are no anti-folate based Human African Trypanosomiasis (HAT) chemotherapeutics in use. Thus, successful dual inhibition of Trypanosoma brucei dihydrofolate reductase (TbDHFR) and Trypanosoma brucei pteridine reductase 1 (TbPTR1) has implications in the exploitation of anti-folates. We carried out molecular docking of a ligand library of 5742 compounds against TbPTR1 and identified 18 compounds showing promising binding modes. The protein-ligand complexes were subjected to molecular dynamics to characterize their molecular interactions and energetics, followed by in vitro testing. In this study, we identified five compounds which showed low micromolar Trypanosome growth inhibition in in vitro experiments that might be acting by inhibition of TbPTR1. Compounds RUBi004, RUBi007, RUBi014, and RUBi018 displayed moderate to strong antagonism (mutual reduction in potency) when used in combination with the known TbDHFR inhibitor, WR99210. This gave an indication that the compounds might inhibit both TbPTR1 and TbDHFR. RUBi016 showed an additive effect in the isobologram assay. Overall, our results provide a basis for scaffold optimization for further studies in the development of HAT anti-folates.
Collapse
Affiliation(s)
- Magambo Phillip Kimuda
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa.
- College of Veterinary Medicine, Animal Resources and Biosecurity (COVAB), Makerere University, P.O. Box 7062, Kampala 00256, Uganda.
| | - Dustin Laming
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa.
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown 6140, South Africa.
| | - Heinrich C Hoppe
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa.
- Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown 6140, South Africa.
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa.
| |
Collapse
|
28
|
Cullia G, Tamborini L, Conti P, De Micheli C, Pinto A. Folates in Trypanosoma brucei
: Achievements and Opportunities. ChemMedChem 2018; 13:2150-2158. [DOI: 10.1002/cmdc.201800500] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Gregorio Cullia
- Institute of Biomolecules Max Mousseron (IBMM); UMR5247; CNRS; University of Montpellier; ENSCM; Place Eugène Battaillon 34095 Montpellier cedex 5 France
| | - Lucia Tamborini
- Department of Pharmaceutical Sciences (DISFARM); University of Milan; via Luigi Mangiagalli 25 20133 Milano Italy
| | - Paola Conti
- Department of Pharmaceutical Sciences (DISFARM); University of Milan; via Luigi Mangiagalli 25 20133 Milano Italy
| | - Carlo De Micheli
- Department of Pharmaceutical Sciences (DISFARM); University of Milan; via Luigi Mangiagalli 25 20133 Milano Italy
| | - Andrea Pinto
- Department of Food Environmental and Nutritional Sciences; University of Milan; via Giovanni Celoria 2 20133 Milano Italy
| |
Collapse
|
29
|
Sureshkumar B, Mary Y, Resmi K, Suma S, Armaković S, Armaković SJ, Van Alsenoy C, Narayana B, Sobhana D. Spectroscopic characterization of hydroxyquinoline derivatives with bromine and iodine atoms and theoretical investigation by DFT calculations, MD simulations and molecular docking studies. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.04.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Sharma VK, Abbat S, Bharatam PV. Pharmacoinformatic Study on the Selective Inhibition of the Protozoan Dihydrofolate Reductase Enzymes. Mol Inform 2017; 36. [PMID: 28605138 DOI: 10.1002/minf.201600156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 05/16/2017] [Indexed: 12/27/2022]
Abstract
Dihydrofolate reductase (DHFR) is an essential enzyme of the folate metabolic pathway in protozoa and it is a validated, potential drug target in many infectious diseases. Information about unique conserved residues of the DHFR enzyme is required to understand residual selectivity of the protozoan DHFR enzyme. The three dimensional crystal structures are not available for all the protozoan DHFR enzymes. Enzyme-substrate/inhibitor interaction information is required for the binding mode characterization in protozoan DHFR for selective inhibitor design. In this work, multiple sequence analysis was carried out in all the studied species. Homology models were built for protozoan DHFR enzymes, for which 3D structures are not available in PDB. The molecular docking and Prime-MMGBSA calculations of the natural substrate (dihydrofolate, DHF) and classical DHFR inhibitor (methotrexate, MTX) were performed in protozoan DHFR enzymes. Comparative sequence analysis showed that an overall sequence identity between the studied species ranging from 22.94 % (CfDHFR-BgDHFR) to 94.61 % (LdDHFR-LmDHFR). Interestingly, it was observed that most of the active site residues were conserved in all the cases and all the enzymes exhibit similar key binding interactions with DHF and MTX in molecular docking analysis, but there are a few key binding residues which differ in protozoan species that makes it suitable for target selectivity. This information can be used to design selective and potent protozoan DHFR enzyme inhibitors.
Collapse
Affiliation(s)
- Vishnu K Sharma
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar-, 160 062, Punjab, India
| | - Sheenu Abbat
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar-, 160 062, Punjab, India
| | - P V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar-160 062, Punjab, India
| |
Collapse
|
31
|
Jain V, Sharma A, Singh G, Yogavel M, Sharma A. Structure-Based Targeting of Orthologous Pathogen Proteins Accelerates Antiparasitic Drug Discovery. ACS Infect Dis 2017; 3:281-292. [PMID: 28195698 DOI: 10.1021/acsinfecdis.6b00181] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Parasitic diseases caused by eukaryotic pathogens impose significant health and economic burden worldwide. The level of research funding available for many parasitic diseases is insufficient in relation to their adverse social and economic impact. In this article, we discuss that extant 3D structural data on protein-inhibitor complexes can be harnessed to accelerate drug discovery against many related pathogens. Assessment of sequence conservation within drug/inhibitor-binding residues in enzyme-inhibitor complexes can be leveraged to predict and validate both new lead compounds and their molecular targets in multiple parasitic diseases. Hence, structure-based targeting of orthologous pathogen proteins accelerates the discovery of new antiparasitic drugs. This approach offers significant benefits for jumpstarting the discovery of new lead compounds and their molecular targets in diverse human, livestock, and plant pathogens.
Collapse
Affiliation(s)
- Vitul Jain
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Road, New Delhi 110067, India
| | - Arvind Sharma
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Road, New Delhi 110067, India
| | - Gajinder Singh
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Road, New Delhi 110067, India
| | - Manickam Yogavel
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Road, New Delhi 110067, India
| | - Amit Sharma
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Road, New Delhi 110067, India
| |
Collapse
|
32
|
Ogungbe IV, Setzer WN. The Potential of Secondary Metabolites from Plants as Drugs or Leads against Protozoan Neglected Diseases-Part III: In-Silico Molecular Docking Investigations. Molecules 2016; 21:E1389. [PMID: 27775577 PMCID: PMC6274513 DOI: 10.3390/molecules21101389] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/06/2016] [Accepted: 10/12/2016] [Indexed: 12/11/2022] Open
Abstract
Malaria, leishmaniasis, Chagas disease, and human African trypanosomiasis continue to cause considerable suffering and death in developing countries. Current treatment options for these parasitic protozoal diseases generally have severe side effects, may be ineffective or unavailable, and resistance is emerging. There is a constant need to discover new chemotherapeutic agents for these parasitic infections, and natural products continue to serve as a potential source. This review presents molecular docking studies of potential phytochemicals that target key protein targets in Leishmania spp., Trypanosoma spp., and Plasmodium spp.
Collapse
Affiliation(s)
- Ifedayo Victor Ogungbe
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA.
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| |
Collapse
|
33
|
Antosiewicz A, Jarmuła A, Przybylska D, Mosieniak G, Szczepanowska J, Kowalkowska A, Rode W, Cieśla J. Human dihydrofolate reductase and thymidylate synthase form a complex in vitro and co-localize in normal and cancer cells. J Biomol Struct Dyn 2016; 35:1474-1490. [PMID: 27187663 DOI: 10.1080/07391102.2016.1186560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Enzymes involved in thymidylate biosynthesis, thymidylate synthase (TS), and dihydrofolate reductase (DHFR) are well-known targets in cancer chemotherapy. In this study, we demonstrated for the first time, that human TS and DHFR form a strong complex in vitro and co-localize in human normal and colon cancer cell cytoplasm and nucleus. Treatment of cancer cells with methotrexate or 5-fluorouracil did not affect the distribution of either enzyme within the cells. However, 5-FU, but not MTX, lowered the presence of DHFR-TS complex in the nucleus by 2.5-fold. The results may suggest the sequestering of TS by FdUMP in the cytoplasm and thereby affecting the translocation of DHFR-TS complex to the nucleus. Providing a strong likelihood of DHFR-TS complex formation in vivo, the latter complex is a potential new drug target in cancer therapy. In this paper, known 3D structures of human TS and human DHFR, and some protozoan bifunctional DHFR-TS structures as templates, are used to build an in silico model of human DHFR-TS complex structure, consisting of one TS dimer and two DHFR monomers. This complex structure may serve as an initial 3D drug target model for prospective inhibitors targeting interfaces between the DHFR and TS enzymes.
Collapse
Affiliation(s)
- Anna Antosiewicz
- a Faculty of Chemistry , Warsaw University of Technology , Noakowskiego 3, 00-664 Warsaw , Poland
| | - Adam Jarmuła
- b Nencki Institute of Experimental Biology , Polish Academy of Sciences , Pasteura 3, 02-093 , Warsaw , Poland
| | - Dorota Przybylska
- b Nencki Institute of Experimental Biology , Polish Academy of Sciences , Pasteura 3, 02-093 , Warsaw , Poland
| | - Grażyna Mosieniak
- b Nencki Institute of Experimental Biology , Polish Academy of Sciences , Pasteura 3, 02-093 , Warsaw , Poland
| | - Joanna Szczepanowska
- b Nencki Institute of Experimental Biology , Polish Academy of Sciences , Pasteura 3, 02-093 , Warsaw , Poland
| | - Anna Kowalkowska
- a Faculty of Chemistry , Warsaw University of Technology , Noakowskiego 3, 00-664 Warsaw , Poland
| | - Wojciech Rode
- b Nencki Institute of Experimental Biology , Polish Academy of Sciences , Pasteura 3, 02-093 , Warsaw , Poland
| | - Joanna Cieśla
- a Faculty of Chemistry , Warsaw University of Technology , Noakowskiego 3, 00-664 Warsaw , Poland
| |
Collapse
|
34
|
Nyíri K, Vértessy BG. Perturbation of genome integrity to fight pathogenic microorganisms. Biochim Biophys Acta Gen Subj 2016; 1861:3593-3612. [PMID: 27217086 DOI: 10.1016/j.bbagen.2016.05.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/05/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Resistance against antibiotics is unfortunately still a major biomedical challenge for a wide range of pathogens responsible for potentially fatal diseases. SCOPE OF REVIEW In this study, we aim at providing a critical assessment of the recent advances in design and use of drugs targeting genome integrity by perturbation of thymidylate biosynthesis. MAJOR CONCLUSION We find that research efforts from several independent laboratories resulted in chemically highly distinct classes of inhibitors of key enzymes within the routes of thymidylate biosynthesis. The present article covers numerous studies describing perturbation of this metabolic pathway in some of the most challenging pathogens like Mycobacterium tuberculosis, Plasmodium falciparum, and Staphylococcus aureus. GENERAL SIGNIFICANCE Our comparative analysis allows a thorough summary of the current approaches to target thymidylate biosynthesis enzymes and also include an outlook suggesting novel ways of inhibitory strategies. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo.
Collapse
Affiliation(s)
- Kinga Nyíri
- Dept. Biotechnology, Budapest University of Technology and Economics, 4 Szent Gellért tér, Budapest HU 1111, Hungary; Institute of Enzymology, RCNS, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, Budapest HU 1117, Hungary.
| | - Beáta G Vértessy
- Dept. Biotechnology, Budapest University of Technology and Economics, 4 Szent Gellért tér, Budapest HU 1111, Hungary; Institute of Enzymology, RCNS, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, Budapest HU 1117, Hungary.
| |
Collapse
|
35
|
Mokmak W, Chunsrivirot S, Hannongbua S, Yuthavong Y, Tongsima S, Kamchonwongpaisan S. Molecular dynamics of interactions between rigid and flexible antifolates and dihydrofolate reductase from pyrimethamine-sensitive and pyrimethamine-resistant Plasmodium falciparum. Chem Biol Drug Des 2014; 84:450-61. [PMID: 24716467 DOI: 10.1111/cbdd.12334] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/04/2014] [Accepted: 04/03/2014] [Indexed: 01/16/2023]
Abstract
Currently, the usefulness of antimalarials such as pyrimethamine (PYR) is drastically reduced due to the emergence of resistant Plasmodium falciparum (Pf) caused by its dihydrofolate reductase (PfDHFR) mutations, especially the quadruple N51I/C59R/S108N/I164L mutations. The resistance was due to the steric conflict of PYR with S108N. WR99210 (WR), a dihydrotriazine antifolate with a flexible side chain that can avoid such conflict, can overcome this resistance through tight binding with the mutant. To understand factors contributing to different binding affinities of PYR/WR to the wild type (WT) and quadruple mutant (QM), we performed simulations on WR-WT, WR-QM, PYR-WT, and PYR-QM complexes and found that Ile14 and Asp54 were crucial for PYR/WR binding to PfDHFR due to strong hydrogen bonds. The quadruple mutations cause PYR to form, on average, fewer hydrogen bonds with Ile14 and Leu164, and to be displaced from its optimal orientation for Asp54 interaction. The predicted binding affinity ranking (WR-QM ≈ WR-WT ≈ PYR-WT >> PYR-QM) reasonably agrees with the inhibition constant (K(i)) ranking. Our results reveal important residues for tight binding of PYR/WR to WT/QM, which may be used to evaluate the inhibition effectiveness of antimalarials and to provide fundamental information for designing new drugs effective against drug-resistant P. falciparum.
Collapse
Affiliation(s)
- Wanwimon Mokmak
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Klong Luang, Pathum Thani, 12120, Thailand
| | | | | | | | | | | |
Collapse
|
36
|
Design and synthesis of guanylthiourea derivatives as potential inhibitors of Plasmodium falciparum dihydrofolate reductase enzyme. Bioorg Med Chem Lett 2014; 24:613-7. [DOI: 10.1016/j.bmcl.2013.12.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/22/2013] [Accepted: 12/02/2013] [Indexed: 11/18/2022]
|
37
|
Pacheco Homem D, Flores R, Tosqui P, de Castro Rozada T, Abicht Basso E, Gasparotto Junior A, Augusto Vicente Seixas F. Homology modeling of dihydrofolate reductase from T. gondii bonded to antagonists: molecular docking and molecular dynamics simulations. MOLECULAR BIOSYSTEMS 2013; 9:1308-15. [DOI: 10.1039/c3mb25530a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Bourne CR, Wakeham N, Nammalwar B, Tseitin V, Bourne PC, Barrow EW, Mylvaganam S, Ramnarayan K, Bunce RA, Berlin KD, Barrow WW. Structure-activity relationship for enantiomers of potent inhibitors of B. anthracis dihydrofolate reductase. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1834:46-52. [PMID: 22999981 PMCID: PMC3530638 DOI: 10.1016/j.bbapap.2012.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/09/2012] [Accepted: 09/04/2012] [Indexed: 01/07/2023]
Abstract
BACKGROUND Bacterial resistance to antibiotic therapies is increasing and new treatment options are badly needed. There is an overlap between these resistant bacteria and organisms classified as likely bioterror weapons. For example, Bacillus anthracis is innately resistant to the anti-folate trimethoprim due to sequence changes found in the dihydrofolate reductase enzyme. Development of new inhibitors provides an opportunity to enhance the current arsenal of anti-folate antibiotics while also expanding the coverage of the anti-folate class. METHODS We have characterized inhibitors of B. anthracis dihydrofolate reductase by measuring the K(i) and MIC values and calculating the energetics of binding. This series contains a core diaminopyrimidine ring, a central dimethoxybenzyl ring, and a dihydrophthalazine moiety. We have altered the chemical groups extended from a chiral center on the dihydropyridazine ring of the phthalazine moiety. The interactions for the most potent compounds were visualized by X-ray structure determination. RESULTS We find that the potency of individual enantiomers is divergent with clear preference for the S-enantiomer, while maintaining a high conservation of contacts within the binding site. The preference for enantiomers seems to be predicated largely by differential interactions with protein residues Leu29, Gln30 and Arg53. CONCLUSIONS These studies have clarified the activity of modifications and of individual enantiomers, and highlighted the role of the less-active R-enantiomer in effectively diluting the more active S-enantiomer in racemic solutions. This directly contributes to the development of new antimicrobials, combating trimethoprim resistance, and treatment options for potential bioterrorism agents.
Collapse
Affiliation(s)
- Christina R. Bourne
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078,Corresponding authors: CRB: phone +1 (405) 744-6737 fax +1 (405) 744-5275 , WWB: phone +1 (405) 744-1842 fax +1 (405) 744-3738
| | - Nancy Wakeham
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078
| | - Baskar Nammalwar
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078
| | | | - Philip C. Bourne
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078
| | - Esther W. Barrow
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078
| | | | | | - Richard A. Bunce
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078
| | - K. Darrell Berlin
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078
| | - William W. Barrow
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078,Corresponding authors: CRB: phone +1 (405) 744-6737 fax +1 (405) 744-5275 , WWB: phone +1 (405) 744-1842 fax +1 (405) 744-3738
| |
Collapse
|
39
|
|
40
|
Setzer WN, Ogungbe IV. In-silico investigation of antitrypanosomal phytochemicals from Nigerian medicinal plants. PLoS Negl Trop Dis 2012; 6:e1727. [PMID: 22848767 PMCID: PMC3404109 DOI: 10.1371/journal.pntd.0001727] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 05/26/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Human African trypanosomiasis (HAT), a parasitic protozoal disease, is caused primarily by two subspecies of Trypanosoma brucei. HAT is a re-emerging disease and currently threatens millions of people in sub-Saharan Africa. Many affected people live in remote areas with limited access to health services and, therefore, rely on traditional herbal medicines for treatment. METHODS A molecular docking study has been carried out on phytochemical agents that have been previously isolated and characterized from Nigerian medicinal plants, either known to be used ethnopharmacologically to treat parasitic infections or known to have in-vitro antitrypanosomal activity. A total of 386 compounds from 19 species of medicinal plants were investigated using in-silico molecular docking with validated Trypanosoma brucei protein targets that were available from the Protein Data Bank (PDB): Adenosine kinase (TbAK), pteridine reductase 1 (TbPTR1), dihydrofolate reductase (TbDHFR), trypanothione reductase (TbTR), cathepsin B (TbCatB), heat shock protein 90 (TbHSP90), sterol 14α-demethylase (TbCYP51), nucleoside hydrolase (TbNH), triose phosphate isomerase (TbTIM), nucleoside 2-deoxyribosyltransferase (TbNDRT), UDP-galactose 4' epimerase (TbUDPGE), and ornithine decarboxylase (TbODC). RESULTS This study revealed that triterpenoid and steroid ligands were largely selective for sterol 14α-demethylase; anthraquinones, xanthones, and berberine alkaloids docked strongly to pteridine reductase 1 (TbPTR1); chromenes, pyrazole and pyridine alkaloids preferred docking to triose phosphate isomerase (TbTIM); and numerous indole alkaloids showed notable docking energies with UDP-galactose 4' epimerase (TbUDPGE). Polyphenolic compounds such as flavonoid gallates or flavonoid glycosides tended to be promiscuous docking agents, giving strong docking energies with most proteins. CONCLUSIONS This in-silico molecular docking study has identified potential biomolecular targets of phytochemical components of antitrypanosomal plants and has determined which phytochemical classes and structural manifolds likely target trypanosomal enzymes. The results could provide the framework for synthetic modification of bioactive phytochemicals, de novo synthesis of structural motifs, and lead to further phytochemical investigations.
Collapse
Affiliation(s)
- William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, Alabama, USA.
| | | |
Collapse
|
41
|
Dihydrofolate reductase as a therapeutic target for infectious diseases: opportunities and challenges. Future Med Chem 2012; 4:1335-65. [DOI: 10.4155/fmc.12.68] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Infectious diseases caused by parasites continue to take a massive toll on human health in the poor regions of the world. Filling the anti-infective drug-discovery pipeline has never been as challenging as it is now. The organisms responsible for these diseases have interesting biology with many potential biochemical targets. Inhibition of metabolic enzymes has been established as an attractive strategy for anti-infectious drug development. In this field, dihydrofolate reductase (DHFR) is an important enzyme in nucleic and amino acid synthesis and an extensively studied drug target over the past 50 years. The challenges for novel DHFR inhibition-based chemotherapeutics for the treatment of infectious diseases are now focused on overcoming the resistance problem as well as cost–effectiveness. Each year, the large number of literature citations attest the continued popularity of DHFR. It becomes truly the ‘enzyme of choice for all seasons and almost all reasons’. Herein, we summarize the opportunities and challenges in developing novel lead based on this target.
Collapse
|
42
|
Combined spatial limitation around residues 16 and 108 of Plasmodium falciparum dihydrofolate reductase explains resistance to cycloguanil. Antimicrob Agents Chemother 2012; 56:3928-35. [PMID: 22526319 DOI: 10.1128/aac.00301-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural mutations of Plasmodium falciparum dihydrofolate reductase (PfDHFR) at A16V and S108T specifically confer resistance to cycloguanil (CYC) but not to pyrimethamine (PYR). In order to understand the nature of CYC resistance, the effects of various mutations at A16 on substrate and inhibitor binding were examined. Three series of mutations at A16 with or without the S108T/N mutation were generated. Only three mutants with small side chains at residue 16 (G, C, and S) were viable from bacterial complementation assay in the S108 series, whereas these three and an additional four mutants (T, V, M, and I) with slightly larger side chains were viable with simultaneous S108T mutation. Among these combinations, the A16V+S108T mutant was the most CYC resistant, and all of the S108T series ranged from being highly to moderately sensitive to PYR. In the S108N series, a strict requirement for alanine was observed at position 16. Crystal structure analyses reveal that in PfDHFR-TS variant T9/94 (A16V+S108T) complexed with CYC, the ligand has substantial steric conflicts with the side chains of both A16V and S108T, whereas in the complex with PYR, the ligand only showed mild conflict with S108T. CYC analogs designed to avoid such conflicts improved the binding affinity of the mutant enzymes. These results show that there is greater spatial limitation around the S108T/N residue when combined with the limitation imposed by A16V. The limitation of mutation of this series provides opportunities for drug design and development against antifolate-resistant malaria.
Collapse
|