1
|
da Silva Zanzarini I, Henrique Kita D, Scheiffer G, Karoline Dos Santos K, de Paula Dutra J, Augusto Pastore M, Gomes de Moraes Rego F, Picheth G, Ambudkar SV, Pulvirenti L, Cardullo N, Rotuno Moure V, Muccilli V, Tringali C, Valdameri G. Magnolol derivatives as specific and noncytotoxic inhibitors of breast cancer resistance protein (BCRP/ABCG2). Bioorg Chem 2024; 146:107283. [PMID: 38513324 PMCID: PMC11069345 DOI: 10.1016/j.bioorg.2024.107283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/20/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
The breast cancer resistance protein (BCRP/ABCG2) transporter mediates the efflux of numerous antineoplastic drugs, playing a central role in multidrug resistance related to cancer. The absence of successful clinical trials using specific ABCG2 inhibitors reveals the urge to identify new compounds to attend this critical demand. In this work, a series of 13 magnolol derivatives was tested as ABCG2 inhibitors. Only two compounds, derivatives 10 and 11, showed partial and complete ABCG2 inhibitory effect, respectively. This inhibition was selective toward ABCG2, since none of the 13 compounds inhibited neither P-glycoprotein nor MRP1. Both inhibitors (10 and 11) were not transported by ABCG2 and demonstrated a low cytotoxic profile even at high concentrations (up to 100 µM). 11 emerged as the most promising compound of the series, considering the ratio between cytotoxicity (IG50) and ABCG2 inhibition potency (IC50), showing a therapeutic ratio (TR) higher than observed for 10 (10.5 versus 1.6, respectively). This derivative showed a substrate-independent and a mixed type of inhibition. The effect of compound 11 on the ABCG2 ATPase activity and thermostability revealed allosteric protein changes. This compound did not affect the expression levels of ABCG2 and increased the binding of the conformational-sensitive antibody 5D3. A docking study showed that 11 did not share the same binding site with ABCG2 substrate mitoxantrone. Finally, 11 could revert the chemoresistance to SN-38 mediated by ABCG2.
Collapse
Affiliation(s)
- Isadora da Silva Zanzarini
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Brazil
| | - Diogo Henrique Kita
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Brazil; Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gustavo Scheiffer
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Brazil
| | - Kelly Karoline Dos Santos
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Brazil
| | - Julia de Paula Dutra
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Brazil
| | - Matteo Augusto Pastore
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Brazil
| | | | - Geraldo Picheth
- Department of Clinical Analysis, Federal University of Parana, Curitiba, Brazil
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Luana Pulvirenti
- Istituto di Chimica Biomolecolare del Consiglio Nazionale delle Ricerche (ICB-CNR), Catania, Italy
| | - Nunzio Cardullo
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - Vivian Rotuno Moure
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Brazil
| | - Vera Muccilli
- Department of Chemical Sciences, University of Catania, Catania, Italy.
| | - Corrado Tringali
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - Glaucio Valdameri
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Brazil.
| |
Collapse
|
2
|
Yu S, Zheng J, Zhang Y, Meng D, Wang Y, Xu X, Liang N, Shabiti S, Zhang X, Wang Z, Yang Z, Mi P, Zheng X, Li W, Chen H. The mechanisms of multidrug resistance of breast cancer and research progress on related reversal agents. Bioorg Med Chem 2023; 95:117486. [PMID: 37847948 DOI: 10.1016/j.bmc.2023.117486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023]
Abstract
Chemotherapy is the mainstay in the treatment of breast cancer. However, many drugs that are commonly used in clinical practice have a high incidence of side effects and multidrug resistance (MDR), which is mainly caused by overexpression of drug transporters and related enzymes in breast cancer cells. In recent years, researchers have been working hard to find newer and safer drugs to overcome MDR in breast cancer. In this review, we provide the molecule mechanism of MDR in breast cancer, categorize potential lead compounds that inhibit single or multiple drug transporter proteins, as well as related enzymes. Additionally, we have summarized the structure-activity relationship (SAR) based on potential breast cancer MDR modulators with lower side effects. The development of novel approaches to suppress MDR is also addressed. These lead compounds hold great promise for exploring effective chemotherapy agents to overcome MDR, providing opportunities for curing breast cancer in the future.
Collapse
Affiliation(s)
- Shiwen Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China; Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Jinling Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China; Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Yan Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China
| | - Dandan Meng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China; Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Yujue Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China
| | - Xiaoyu Xu
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Na Liang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Shayibai Shabiti
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Xu Zhang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zixi Wang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zehua Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China
| | - Pengbing Mi
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China
| | - Xing Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China; Department of Pharmacy, Hunan Vocational College of Science and Technology, Third Zhongyi Shan Road, Changsha, Hunan Province 425101, PR China.
| | - Wenjun Li
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Hongfei Chen
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China.
| |
Collapse
|
3
|
Valdameri G, Kita DH, Dutra JDP, Gomes DL, Tonduru AK, Kronenberger T, Gavinho B, Rossi IV, Carvalho MMD, Pérès B, Zattoni IF, Rego FGDM, Picheth G, Freitas RAD, Poso A, Ambudkar SV, Ramirez MI, Boumendjel A, Moure VR. Characterization of Potent ABCG2 Inhibitor Derived from Chromone: From the Mechanism of Inhibition to Human Extracellular Vesicles for Drug Delivery. Pharmaceutics 2023; 15:pharmaceutics15041259. [PMID: 37111745 PMCID: PMC10144134 DOI: 10.3390/pharmaceutics15041259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Inhibition of ABC transporters is a promising approach to overcome multidrug resistance in cancer. Herein, we report the characterization of a potent ABCG2 inhibitor, namely, chromone 4a (C4a). Molecular docking and in vitro assays using ABCG2 and P-glycoprotein (P-gp) expressing membrane vesicles of insect cells revealed that C4a interacts with both transporters, while showing selectivity toward ABCG2 using cell-based transport assays. C4a inhibited the ABCG2-mediated efflux of different substrates and molecular dynamic simulations demonstrated that C4a binds in the Ko143-binding pocket. Liposomes and extracellular vesicles (EVs) of Giardia intestinalis and human blood were used to successfully bypass the poor water solubility and delivery of C4a as assessed by inhibition of the ABCG2 function. Human blood EVs also promoted delivery of the well-known P-gp inhibitor, elacridar. Here, for the first time, we demonstrated the potential use of plasma circulating EVs for drug delivery of hydrophobic drugs targeting membrane proteins.
Collapse
Affiliation(s)
- Glaucio Valdameri
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| | - Diogo Henrique Kita
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba 80210-170, PR, Brazil
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4256, USA
| | - Julia de Paula Dutra
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| | - Diego Lima Gomes
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| | - Arun Kumar Tonduru
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Thales Kronenberger
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery & Development (TüCAD2), Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Bruno Gavinho
- Microbiology, Parasitology and Pathology Program, Federal University of Parana, Curitiba 81530-000, PR, Brazil
| | - Izadora Volpato Rossi
- Cell and Molecular Biology Program, Federal University of Parana, Curitiba 81530-000, PR, Brazil
| | - Mariana Mazetto de Carvalho
- Biopol, Graduate Program in Pharmaceutical Sciences, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| | - Basile Pérès
- Département de Pharmacochimie Moléculaire UMR 5063, Université Grenoble Alpes, 38041 Grenoble, France
| | - Ingrid Fatima Zattoni
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| | | | - Geraldo Picheth
- Graduate Program in Pharmaceutical Sciences, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| | - Rilton Alves de Freitas
- Biopol, Graduate Program in Pharmaceutical Sciences, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery & Development (TüCAD2), Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4256, USA
| | - Marcel I Ramirez
- Laboratory of Cell Biology, Carlos Chagas Institute, Fiocruz, Curitiba 81310-020, PR, Brazil
| | | | - Vivian Rotuno Moure
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| |
Collapse
|
4
|
Sein KL, Lertnitikul N, Suttisri R, Jianmongkol S. Anticancer and chemosensitizing activities of stilbenoids from three orchid species. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 396:749-758. [PMID: 36472629 DOI: 10.1007/s00210-022-02352-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
Abstract
Recently, we have isolated and identified several bioactive flavonoids and stilbenoids with potential anticancer activity from Thai orchids. In this study, we further investigated the cytotoxic and chemosensitizing activities of these phytochemicals (namely, pinocembrin, cardamonin, isalpinin, galangin, pinosylvin monomethyl ether, 2,3'-dihydroxy-5'-methoxystilbene, (E)-2,5'-dihydroxy-2'-(4-hydroxybenzyl)-3'-methoxystilbene, 2,3-dihydroxy-3',5'-dimethoxystilbene, 2,3'-dihydroxy-5,5'-dimethoxystilbene, 3,4'-dihydroxy-5-methoxystilbene and batatasin III) against breast cancer MCF7 cells and its two multidrug resistant (MDR) sublines (MCF7/DOX and MCF7/MX). Cytotoxicity was determined with MTT assay for the estimation of the half maximal cytotoxic concentrations (IC50). Effects of the test compounds on activities of efflux transporters (BCRP, P-gp, MRP1, and MRP2) were evaluated with substrate accumulation assays using fluorometry and flow cytometry analysis. Out of these 11 test compounds, the stilbene pinosylvin monomethyl ether displayed its cytotoxicity specifically toward MCF7 cells (IC50 = 6.2 ± 1.2 μM, 72-h incubation) with 4.96 folds higher than normal fibroblast. Its potency decreased in MCF7/DOX and MCF7/MX cells by 3.94 and 7.38 folds, respectively. Our transporter assay indicated that this stilbene significantly reduced the activities of P-gp, MRP1, and MRP2, but not BCRP. After 48-h co-incubation, this stilbene (at 2 μM) synergistically increased doxorubicin- and mitoxantrone-mediated cytotoxicity in MCF7, MCF7/DOX, and MCF7/MX cells potentially by increasing the intracellular level of cytotoxic drug. Pinosylvin monomethyl ether could sensitize breast cancer cells to chemotherapy and overcome MDR, in part, via the inhibition of drug efflux transporters.
Collapse
|
5
|
Updated chemical scaffolds of ABCG2 inhibitors and their structure-inhibition relationships for future development. Eur J Med Chem 2022; 241:114628. [DOI: 10.1016/j.ejmech.2022.114628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 11/19/2022]
|
6
|
Targeting breast cancer resistance protein (BCRP/ABCG2): Functional inhibitors and expression modulators. Eur J Med Chem 2022; 237:114346. [DOI: 10.1016/j.ejmech.2022.114346] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 12/16/2022]
|
7
|
Zattoni IF, Kronenberger T, Kita DH, Guanaes LD, Guimarães MM, de Oliveira Prado L, Ziasch M, Vesga LC, Gomes de Moraes Rego F, Picheth G, Gonçalves MB, Noseda MD, Ducatti DRB, Poso A, Robey RW, Ambudkar SV, Moure VR, Gonçalves AG, Valdameri G. A new porphyrin as selective substrate-based inhibitor of breast cancer resistance protein (BCRP/ABCG2). Chem Biol Interact 2021; 351:109718. [PMID: 34717915 DOI: 10.1016/j.cbi.2021.109718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/25/2022]
Abstract
The ABCG2 transporter plays a pivotal role in multidrug resistance, however, no clinical trial using specific ABCG2 inhibitors have been successful. Although ABC transporters actively extrude a wide variety of substrates, photodynamic therapeutic agents with porphyrinic scaffolds are exclusively transported by ABCG2. In this work, we describe for the first time a porphyrin derivative (4B) inhibitor of ABCG2 and capable to overcome multidrug resistance in vitro. The inhibition was time-dependent and 4B was not itself transported by ABCG2. Independently of the substrate, the porphyrin 4B showed an IC50 value of 1.6 μM and a mixed type of inhibition. This compound inhibited the ATPase activity and increased the binding of the conformational-sensitive antibody 5D3. A thermostability assay confirmed allosteric protein changes triggered by the porphyrin. Long-timescale molecular dynamics simulations revealed a different behavior between the ABCG2 porphyrinic substrate pheophorbide a and the porphyrin 4B. Pheophorbide a was able to bind in three different protein sites but 4B showed one binding conformation with a strong ionic interaction with GLU446. The inhibition was selective toward ABCG2, since no inhibition was observed for P-glycoprotein and MRP1. Finally, this compound successfully chemosensitized cells that overexpress ABCG2. These findings reinforce that substrates may be a privileged source of chemical scaffolds for identification of new inhibitors of multidrug resistance-linked ABC transporters.
Collapse
Affiliation(s)
- Ingrid Fatima Zattoni
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, PR, Brazil
| | - Thales Kronenberger
- School of Pharmacy, University of Eastern Finland, Faculty of Health Sciences, Kuopio, 70211, Finland; Department of Medical Oncology and Pneumology, Internal Medicine VIII, University Hospital of Tübingen, Otfried-Müller-Strasse 14, 72076, Tübingen, Germany
| | - Diogo Henrique Kita
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, PR, Brazil; Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | - Melanie Ziasch
- Department of Clinical Analysis, Federal University of Parana, Curitiba, PR, Brazil
| | - Luis C Vesga
- School of Pharmacy, University of Eastern Finland, Faculty of Health Sciences, Kuopio, 70211, Finland; Research Group in Biochemistry and Microbiology (GIBIM), School of Chemistry, Industrial University of Santander, A.A. 678, Bucaramanga, Colombia; Research Group on Organic Compounds of Medicinal Interest (CODEIM), Technological Park of Guatiguara, Industrial University of Santander, A. A. 678, Piedecuesta, Colombia
| | | | - Geraldo Picheth
- Department of Clinical Analysis, Federal University of Parana, Curitiba, PR, Brazil
| | - Marcos Brown Gonçalves
- Department of Physics, Federal Technological University of Paraná, 80230-901 Curitiba, Parana, Brazil
| | - Miguel D Noseda
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Diogo R B Ducatti
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Antti Poso
- School of Pharmacy, University of Eastern Finland, Faculty of Health Sciences, Kuopio, 70211, Finland; Department of Medical Oncology and Pneumology, Internal Medicine VIII, University Hospital of Tübingen, Otfried-Müller-Strasse 14, 72076, Tübingen, Germany
| | - Robert W Robey
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vivian Rotuno Moure
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, PR, Brazil; Department of Clinical Analysis, Federal University of Parana, Curitiba, PR, Brazil
| | | | - Glaucio Valdameri
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, PR, Brazil; Department of Clinical Analysis, Federal University of Parana, Curitiba, PR, Brazil.
| |
Collapse
|
8
|
Vesga LC, Kronenberger T, Tonduru AK, Kita DH, Zattoni IF, Bernal CC, Bohórquez ARR, Mendez‐Sánchez SC, Ambudkar SV, Valdameri G, Poso A. Tetrahydroquinoline/4,5-Dihydroisoxazole Molecular Hybrids as Inhibitors of Breast Cancer Resistance Protein (BCRP/ABCG2). ChemMedChem 2021; 16:2686-2694. [PMID: 33844464 PMCID: PMC8518119 DOI: 10.1002/cmdc.202100188] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Indexed: 11/28/2022]
Abstract
Multidrug resistance (MDR) is one of the major factors in the failure of many chemotherapy approaches. In cancer cells, MDR is mainly associated with the expression of ABC transporters such as P-glycoprotein, MRP1 and ABCG2. Despite major efforts to develop new selective and potent inhibitors of ABC drug transporters, no ABCG2-specific inhibitors for clinical use are yet available. Here, we report the evaluation of sixteen tetrahydroquinoline/4,5-dihydroisoxazole derivatives as a new class of ABCG2 inhibitors. The affinity of the five best inhibitors was further investigated by the vanadate-sensitive ATPase assay. Molecular modelling data, proposing a potential binding mode, suggest that they can inhibit the ABCG2 activity by binding on site S1, previously reported as inhibitors binding region, as well targeting site S2, a selective region for substrates, and by specifically interacting with residues Asn436, Gln398, and Leu555. Altogether, this study provided new insights into THQ/4,5-dihydroisoxazole molecular hybrids, generating great potential for the development of novel most potent ABCG2 inhibitors.
Collapse
Affiliation(s)
- Luis C. Vesga
- Faculty of Health SciencesUniversity of Eastern FinlandKuopio70211Finland
- Escuela de QuímicaUniversidad Industrial de SantanderA. A. 678BucaramangaColombia
- Grupo de Investigación en Compuestos Orgánicos de Interés Medicinal CODEIMUniversidad Industrial de SantanderA. A. 678PiedecuestaColombia
| | - Thales Kronenberger
- Faculty of Health SciencesUniversity of Eastern FinlandKuopio70211Finland
- Department of Medical Oncology and PneumologyInternal Medicine VIIIUniversity Hospital of TübingenOtfried-Müller-Strasse 1472076TübingenGermany
| | - Arun Kumar Tonduru
- Faculty of Health SciencesUniversity of Eastern FinlandKuopio70211Finland
| | - Diogo Henrique Kita
- Laboratory of Cancer Drug ResistanceFederal University of ParanáPR 80210-170CuritibaBrazil
- Laboratory of Cell BiologyCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Ingrid Fatima Zattoni
- Laboratory of Cancer Drug ResistanceFederal University of ParanáPR 80210-170CuritibaBrazil
| | - Cristian Camilo Bernal
- Grupo de Investigación en Compuestos Orgánicos de Interés Medicinal CODEIMUniversidad Industrial de SantanderA. A. 678PiedecuestaColombia
| | - Arnold R. Romero Bohórquez
- Grupo de Investigación en Compuestos Orgánicos de Interés Medicinal CODEIMUniversidad Industrial de SantanderA. A. 678PiedecuestaColombia
| | - Stelia Carolina Mendez‐Sánchez
- Escuela de QuímicaUniversidad Industrial de SantanderA. A. 678BucaramangaColombia
- Grupo de Investigación en Compuestos Orgánicos de Interés Medicinal CODEIMUniversidad Industrial de SantanderA. A. 678PiedecuestaColombia
| | - Suresh V. Ambudkar
- Laboratory of Cell BiologyCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Glaucio Valdameri
- Laboratory of Cancer Drug ResistanceFederal University of ParanáPR 80210-170CuritibaBrazil
| | - Antti Poso
- Faculty of Health SciencesUniversity of Eastern FinlandKuopio70211Finland
- Department of Medical Oncology and PneumologyInternal Medicine VIIIUniversity Hospital of TübingenOtfried-Müller-Strasse 1472076TübingenGermany
| |
Collapse
|
9
|
Kita DH, Guragossian N, Zattoni IF, Moure VR, Rego FGDM, Lusvarghi S, Moulenat T, Belhani B, Picheth G, Bouacida S, Bouaziz Z, Marminon C, Berredjem M, Jose J, Gonçalves MB, Ambudkar SV, Valdameri G, Le Borgne M. Mechanistic basis of breast cancer resistance protein inhibition by new indeno[1,2-b]indoles. Sci Rep 2021; 11:1788. [PMID: 33469044 PMCID: PMC7815716 DOI: 10.1038/s41598-020-79892-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
The ATP-binding cassette transporter ABCG2 mediates the efflux of several chemotherapeutic drugs, contributing to the development of multidrug resistance (MDR) in many cancers. The most promising strategy to overcome ABCG2-mediated MDR is the use of specific inhibitors. Despite many efforts, the identification of new potent and specific ABCG2 inhibitors remains urgent. In this study, a structural optimization of indeno[1,2-b]indole was performed and a new generation of 18 compounds was synthesized and tested as ABCG2 inhibitors. Most compounds showed ABCG2 inhibition with IC50 values below 0.5 µM. The ratio between cytotoxicity (IG50) and ABCG2 inhibition potency (IC50) was used to identify the best inhibitors. In addition, it was observed that some indeno[1,2-b]indole derivatives produced complete inhibition, while others only partially inhibited the transport function of ABCG2. All indeno[1,2-b]indole derivatives are not transported by ABCG2, and even the partial inhibitors are able to fully chemosensitize cancer cells overexpressing ABCG2. The high affinity of these indeno[1,2-b]indole derivatives was confirmed by the strong stimulatory effect on ABCG2 ATPase activity. These compounds did not affect the binding of conformation-sensitive antibody 5D3 binding, but stabilized the protein structure, as revealed by the thermostabilization assay. Finally, a docking study showed the indeno[1,2-b]indole derivatives share the same binding site as the substrate estrone-3-sulfate.
Collapse
Affiliation(s)
- Diogo Henrique Kita
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, PR, 80210-170, Brazil.,Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nathalie Guragossian
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie - ISPB, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, Université Claude Bernard Lyon 1, Univ Lyon, 69373, Lyon, France
| | - Ingrid Fatima Zattoni
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, PR, 80210-170, Brazil
| | - Vivian Rotuno Moure
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, PR, 80210-170, Brazil.,Department of Clinical Analysis, Federal University of Parana, Curitiba, PR, 80210-170, Brazil
| | | | - Sabrina Lusvarghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Moulenat
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie - ISPB, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, Université Claude Bernard Lyon 1, Univ Lyon, 69373, Lyon, France
| | - Billel Belhani
- Laboratory of Applied Organic Chemistry, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar-Annaba University, Box 12, 23000, Annaba, Algeria
| | - Geraldo Picheth
- Department of Clinical Analysis, Federal University of Parana, Curitiba, PR, 80210-170, Brazil
| | - Sofiane Bouacida
- Département Sciences de la Matière, Faculté des Sciences exactes et Sciences de la nature et de la vie, Université Larbi Ben M'hidi, Oum El Bouaghi, Algeria.,Research Unit for Chemistry of the Environment and Molecular Structural, University of Constantine 1, Constantine, Algeria
| | - Zouhair Bouaziz
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie - ISPB, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, Université Claude Bernard Lyon 1, Univ Lyon, 69373, Lyon, France
| | - Christelle Marminon
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie - ISPB, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, Université Claude Bernard Lyon 1, Univ Lyon, 69373, Lyon, France.,Small Molecules for Biological Targets Team, Centre de recherche en cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, Univ Lyon, 69373, Lyon, France
| | - Malika Berredjem
- Laboratory of Applied Organic Chemistry, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar-Annaba University, Box 12, 23000, Annaba, Algeria
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Marcos Brown Gonçalves
- Department of Physics, Federal Technological University of Paraná, Curitiba, PR, 80230-901, Brazil
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Glaucio Valdameri
- Pharmaceutical Sciences Graduate Program, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, PR, 80210-170, Brazil. .,Department of Clinical Analysis, Federal University of Parana, Curitiba, PR, 80210-170, Brazil.
| | - Marc Le Borgne
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie - ISPB, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, Université Claude Bernard Lyon 1, Univ Lyon, 69373, Lyon, France. .,Small Molecules for Biological Targets Team, Centre de recherche en cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, Univ Lyon, 69373, Lyon, France.
| |
Collapse
|
10
|
Saquib M, Ansari MI, Johnson CR, Khatoon S, Kamil Hussain M, Coop A. Recent advances in the targeting of human DNA ligase I as a potential new strategy for cancer treatment. Eur J Med Chem 2019; 182:111657. [PMID: 31499361 DOI: 10.1016/j.ejmech.2019.111657] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/24/2019] [Accepted: 08/28/2019] [Indexed: 11/29/2022]
Abstract
The emergence of drug resistance, coupled with the issue of low tumor selectivity and toxicity is a major pitfall in cancer chemotherapy. It has necessitated the urgent need for the discovery of less toxic and more potent new anti-cancer pharmaceuticals, which target the interactive mechanisms involved in division and metastasis of cancer cells. Human DNA ligase I (hligI) plays an important role in DNA replication by linking Okazaki fragments on the lagging strand of DNA, and also participates in DNA damage repair processes. Dysregulation of the functioning of such ligases can severely impact DNA replication and repair pathways events that are generally targeted in cancer treatment. Although, several human DNA ligase inhibitors have been reported in the literature but unfortunately not a single inhibitor is currently being used in cancer chemotherapy. Results of pre-clinical studies also support the fact that human DNA ligases are an attractive target for the development of new anticancer agents which work by the selective inhibition of rapidly proliferating cancer cells. In this manuscript, we discuss, in brief, the structure, synthesis, structure-activity-relationship (SAR) and anticancer activity of recently reported hLigI inhibitors.
Collapse
Affiliation(s)
- Mohammad Saquib
- Department of Chemistry, University of Allahabad, Allahabad, 211002, India
| | - Mohd Imran Ansari
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine St., Baltimore, MD, 21201, USA
| | - Chad R Johnson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine St., Baltimore, MD, 21201, USA
| | | | - Mohd Kamil Hussain
- Department of Chemistry, Govt. Raza Post Graduate College, Rampur, 244901, India.
| | - Andrew Coop
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine St., Baltimore, MD, 21201, USA.
| |
Collapse
|
11
|
Elshaer M, Chen Y, Wang XJ, Tang X. Resveratrol: An overview of its anti-cancer mechanisms. Life Sci 2018; 207:340-349. [DOI: 10.1016/j.lfs.2018.06.028] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023]
|
12
|
Synthesis and biological investigation of 2,4-substituted quinazolines as highly potent inhibitors of breast cancer resistance protein (ABCG2). Eur J Med Chem 2017; 139:587-611. [PMID: 28841513 DOI: 10.1016/j.ejmech.2017.08.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/25/2017] [Accepted: 08/07/2017] [Indexed: 11/23/2022]
Abstract
Expression of ABCG2, a member of the ABC transporter superfamily, has been correlated to the clinical outcome of multiple cancers and is often associated with the occurrence of multidrug resistance (MDR) in chemotherapy. Inhibition of the transport protein by potent and selective inhibitors might be a way to treat cancer more efficiently and improve the therapy of cancer patients. Recently we reported the synthesis of new inhibitors based on a quinazoline scaffold. In the present study more structural variations were explored. Compounds with 3,4-dimethoxy groups and meta or para nitro substituents were found to be highly potent inhibitors of ABCG2. The most potent compound was more than five-fold more potent than Ko143, one of the best inhibitors of ABCG2. To determine the new compounds selectivity toward ABCG2 their inhibitory effects on ABCB1 and ABCC1 were also investigated identifying selective as well as broadspectrum inhibitors. Furthermore, intrinsic cytotoxicity and efficacy regarding the reversal of multidrug resistance toward SN-38 and mitoxantrone were explored. The most potent compounds were able to reverse the resistance toward the cytostatic agents with EC50 values below 20 nM. Additionally, the type of interaction between inhibitors and the ABCG2 substrate Hoechst 33342 was investigated yielding competitive and non-competitive interactions suggesting different modes of binding. Finally the effect of the derivatives on vanadate-sensitive ATPase activity of ABCG2 was determined. According to the different effects on ATPase activity we conclude the existence of different binding sites. This study provides the structural requirements for high potency inhibition and elucidates the interaction with ABCG2 setting the basis for further studies.
Collapse
|
13
|
De Filippis B, Ammazzalorso A, Fantacuzzi M, Giampietro L, Maccallini C, Amoroso R. Anticancer Activity of Stilbene-Based Derivatives. ChemMedChem 2017; 12:558-570. [PMID: 28266812 DOI: 10.1002/cmdc.201700045] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/28/2017] [Indexed: 12/27/2022]
Abstract
Stilbene is an abundant structural scaffold in nature, and stilbene-based compounds have been widely reported for their biological activity. Notably, (E)-resveratrol and its natural stilbene-containing derivatives have been extensively investigated as cardioprotective, potent antioxidant, anti-inflammatory, and anticancer agents. Starting from its potent chemotherapeutic activity against a wide variety of cancers, the stilbene scaffold has been subject to synthetic manipulations with the aim of obtaining new analogues with improved anticancer activity and better bioavailability. Within the last decade, the majority of new synthetic stilbene derivatives have demonstrated significant anticancer activity against a large number of cancer cell lines, depending on the type and position of substituents on the stilbene skeleton. This review focuses on the structure-activity relationship of the key compounds containing a stilbene scaffold and describes how the structural modifications affect their anticancer activity.
Collapse
Affiliation(s)
- Barbara De Filippis
- Dipartimento di Farmacia, Università "G. d'Annunzio", via dei Vestini 31, 66100, Chieti, Italy
| | - Alessandra Ammazzalorso
- Dipartimento di Farmacia, Università "G. d'Annunzio", via dei Vestini 31, 66100, Chieti, Italy
| | - Marialuigia Fantacuzzi
- Dipartimento di Farmacia, Università "G. d'Annunzio", via dei Vestini 31, 66100, Chieti, Italy
| | - Letizia Giampietro
- Dipartimento di Farmacia, Università "G. d'Annunzio", via dei Vestini 31, 66100, Chieti, Italy
| | - Cristina Maccallini
- Dipartimento di Farmacia, Università "G. d'Annunzio", via dei Vestini 31, 66100, Chieti, Italy
| | - Rosa Amoroso
- Dipartimento di Farmacia, Università "G. d'Annunzio", via dei Vestini 31, 66100, Chieti, Italy
| |
Collapse
|
14
|
Peña-Solórzano D, Stark SA, König B, Sierra CA, Ochoa-Puentes C. ABCG2/BCRP: Specific and Nonspecific Modulators. Med Res Rev 2016; 37:987-1050. [PMID: 28005280 DOI: 10.1002/med.21428] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/17/2016] [Accepted: 11/03/2016] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) in cancer cells is the development of resistance to a variety of structurally and functionally nonrelated anticancer drugs. This phenomenon has become a major obstacle to cancer chemotherapy seriously affecting the clinical outcome. MDR is associated with increased drug efflux from cells mediated by an energy-dependent mechanism involving the ATP-binding cassette (ABC) transporters, mainly P-glycoprotein (ABCB1), the MDR-associated protein-1 (ABCC1), and the breast cancer resistance protein (ABCG2). The first two transporters have been widely studied already and reviews summarized the results. The ABCG2 protein has been a subject of intense study since its discovery as its overexpression has been detected in resistant cell lines in numerous types of human cancers. To date, a long list of modulators of ABCG2 exists and continues to increase. However, little is known about the clinical consequences of ABCG2 modulation. This makes the design of novel, potent, and nontoxic inhibitors of this efflux protein a major challenge to reverse MDR and thereby increase the success of chemotherapy. The aim of the present review is to describe and highlight specific and nonspecific modulators of ABCG2 reported to date based on the selectivity of the compounds, as many of them are effective against one or more ABC transport proteins.
Collapse
Affiliation(s)
- Diana Peña-Solórzano
- Grupo de Investigación en Macromoléculas, Departamento de Química, Universidad Nacional de Colombia-Sede Bogotá, 5997, Bogotá, Colombia
| | | | - Burkhard König
- Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Cesar Augusto Sierra
- Grupo de Investigación en Macromoléculas, Departamento de Química, Universidad Nacional de Colombia-Sede Bogotá, 5997, Bogotá, Colombia
| | - Cristian Ochoa-Puentes
- Grupo de Investigación en Macromoléculas, Departamento de Química, Universidad Nacional de Colombia-Sede Bogotá, 5997, Bogotá, Colombia
| |
Collapse
|
15
|
Baiceanu E, Nguyen KA, Gonzalez-Lobato L, Nasr R, Baubichon-Cortay H, Loghin F, Le Borgne M, Chow L, Boumendjel A, Peuchmaur M, Falson P. 2-Indolylmethylenebenzofuranones as first effective inhibitors of ABCC2. Eur J Med Chem 2016; 122:408-418. [PMID: 27393949 DOI: 10.1016/j.ejmech.2016.06.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/18/2016] [Accepted: 06/20/2016] [Indexed: 12/18/2022]
Abstract
ABC-transporters play a vital role in drugs bioavailability. They prevent intracellular accumulation of toxic compounds, rendering them a major defense mechanism against harmful substances. In this large family, ABCC2 is an apical efflux pump representing about 10% of all membrane proteins in liver and small intestine, and up to 25% in colon. In these tissues, ABCC2 plays a major role in the pharmacokinetics and pharmacodynamics of endo- and xenobiotics. To gain insight in the function of this crucial protein, we have investigated and developed the first effective inhibitors of this pump. Firstly, we set up a cellular flow cytometry assay for monitoring the drug efflux carried out by ABCC2, and used it for the screening of chemical libraries derived from several chemical classes. We found that 2-indolylmethylenebenzofuranone derivatives as promising candidates. Optimization of the hits provided new compounds that inhibit ABCC2 in the micromolar range, making them the first potent ABCC2 inhibitors reported so far. Such compounds would constitute valuable tools to further investigate the role of ABCC2 in the pharmacokinetics and pharmacodynamics of drugs.
Collapse
Affiliation(s)
- Elisabeta Baiceanu
- Drug Resistance Mechanisms and Membrane Proteins Laboratory, BMSSI UMR 5086 CNRS/Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France; Toxicology Department, Faculty of Pharmacy, Univ. Medicine and Pharmacy ¨Iuliu Hatieganu¨, Cluj-Napoca, Romania
| | - Kim-Anh Nguyen
- Univ. Grenoble Alpes, Département de Pharmacochimie Moléculaire DPM UMR 5063, 38041 Grenoble, France; CNRS, DPM UMR 5063, 38041 Grenoble, France
| | - Lucia Gonzalez-Lobato
- Drug Resistance Mechanisms and Membrane Proteins Laboratory, BMSSI UMR 5086 CNRS/Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Rachad Nasr
- Drug Resistance Mechanisms and Membrane Proteins Laboratory, BMSSI UMR 5086 CNRS/Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Hélène Baubichon-Cortay
- Drug Resistance Mechanisms and Membrane Proteins Laboratory, BMSSI UMR 5086 CNRS/Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Felicia Loghin
- Toxicology Department, Faculty of Pharmacy, Univ. Medicine and Pharmacy ¨Iuliu Hatieganu¨, Cluj-Napoca, Romania
| | - Marc Le Borgne
- Université de Lyon, Université Lyon 1, Faculté de Pharmacie - ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, 8 Avenue Rockefeller, F-69373 Lyon Cedex 8, France
| | - Larry Chow
- Department of Applied Biology and Chemical Technology, and State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region
| | - Ahcène Boumendjel
- Univ. Grenoble Alpes, Département de Pharmacochimie Moléculaire DPM UMR 5063, 38041 Grenoble, France; CNRS, DPM UMR 5063, 38041 Grenoble, France
| | - Marine Peuchmaur
- Univ. Grenoble Alpes, Département de Pharmacochimie Moléculaire DPM UMR 5063, 38041 Grenoble, France; CNRS, DPM UMR 5063, 38041 Grenoble, France
| | - Pierre Falson
- Drug Resistance Mechanisms and Membrane Proteins Laboratory, BMSSI UMR 5086 CNRS/Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France.
| |
Collapse
|
16
|
Pan L, Zeng K, Wang X, Bi H, Hu H, Huang M, Lou Y, Zeng S. Neochamaejasmin B increases the bioavailability of chamaechromone coexisting in Stellera chamaejasme L. via inhibition of MRP2 and BCRP. Int J Pharm 2015; 496:440-7. [DOI: 10.1016/j.ijpharm.2015.10.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/06/2015] [Accepted: 10/11/2015] [Indexed: 01/04/2023]
|
17
|
Cardullo N, Spatafora C, Musso N, Barresi V, Condorelli D, Tringali C. Resveratrol-Related Polymethoxystilbene Glycosides: Synthesis, Antiproliferative Activity, and Glycosidase Inhibition. JOURNAL OF NATURAL PRODUCTS 2015; 78:2675-2683. [PMID: 26539626 DOI: 10.1021/acs.jnatprod.5b00619] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A small library of polymethoxystilbene glycosides (20-25) related to the natural polyphenol resveratrol have been synthesized and subjected, together with their aglycones 17-19, to an antiproliferative activity bioassay toward Caco-2 and SH-SY5Y cancer cells. Six of the compounds exhibit antiproliferative activity against at least one cell line. In particular, compounds 17 and 18 proved highly active on at least one of the two cell cultures. Compound 18 showed a GI50 value of 3 μM against Caco-2 cells, a value comparable to that of the anticancer drug 5-fluorouracil. The closely related compound 19 proved inactive, and its conjugates 22 and 25 showed weak cell growth inhibition. The results indicate that minimal differences in the structure of both polymethoxystilbenes and their glycosides can substantially affect the antiproliferative activity. The possible hydrolytic release of the aglycones 17-19 by β-glucosidase or β-galactosidase was also evaluated. Compounds 20-25 were also tested as potential β-glucosidase, β-galactosidase, and α-glucosidase inhibitors. A promising inhibitory activity toward α-glucosidase was observed for 21 (IC50 = 78 μM) and 25 (IC50 = 70 μM), which might be indicative of their potential as lead compounds for development of antidiabetic or antiobesity agents.
Collapse
Affiliation(s)
- Nunzio Cardullo
- Dipartimento di Scienze Chimiche and ‡Dipartimento di Scienze Bio-Mediche, Sezione di Biochimica, Università degli Studi di Catania , Viale A. Doria 6, I-95125 Catania, Italy
| | - Carmela Spatafora
- Dipartimento di Scienze Chimiche and ‡Dipartimento di Scienze Bio-Mediche, Sezione di Biochimica, Università degli Studi di Catania , Viale A. Doria 6, I-95125 Catania, Italy
| | - Nicolò Musso
- Dipartimento di Scienze Chimiche and ‡Dipartimento di Scienze Bio-Mediche, Sezione di Biochimica, Università degli Studi di Catania , Viale A. Doria 6, I-95125 Catania, Italy
| | - Vincenza Barresi
- Dipartimento di Scienze Chimiche and ‡Dipartimento di Scienze Bio-Mediche, Sezione di Biochimica, Università degli Studi di Catania , Viale A. Doria 6, I-95125 Catania, Italy
| | - Daniele Condorelli
- Dipartimento di Scienze Chimiche and ‡Dipartimento di Scienze Bio-Mediche, Sezione di Biochimica, Università degli Studi di Catania , Viale A. Doria 6, I-95125 Catania, Italy
| | - Corrado Tringali
- Dipartimento di Scienze Chimiche and ‡Dipartimento di Scienze Bio-Mediche, Sezione di Biochimica, Università degli Studi di Catania , Viale A. Doria 6, I-95125 Catania, Italy
| |
Collapse
|
18
|
MBL-II-141, a chromone derivative, enhances irinotecan (CPT-11) anticancer efficiency in ABCG2-positive xenografts. Oncotarget 2015; 5:11957-70. [PMID: 25474134 PMCID: PMC4323000 DOI: 10.18632/oncotarget.2566] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/02/2014] [Indexed: 11/25/2022] Open
Abstract
ABCG2 is responsible for the multidrug resistance (MDR) phenotype, and strongly modulates cancer outcomes. Its high expression at a number of physiological barriers, including blood-brain and intestinal barriers, impacts on drug pharmacokinetics parameters. We characterized MBL-II-141, a specific and potent ABCG2 inhibitor. Combination of 10 mg/kg MBL-II-141 with the anticancer agent CPT-11 completely blocked the growth of 90% freshly implanted ABCG2-positive tumors. Moreover, the same combination slowed the growth of already established tumors. As required for preclinical development, we defined the main pharmacokinetics parameters of MBL-II-141 and its influence on the kinetics of CPT-11 and its active metabolite SN-38 in mice. MBL-II-141 distribution into the brain occurred at a low, but detectable, level. Interestingly, preliminary data suggested that MBL-II-141 is well tolerated (at 50 mg/kg) and absorbed upon force-feeding. MBL-II-141 induced a potent sensitization of ABCG2-positive xenografts to CPT-11 through in vivo ABCG2 inhibition. MBL-II-141 strongly increased CPT-11 levels in the brain, and therefore would be a valuable agent to improve drug distribution into the brain to efficiently treat aggressive gliomas. Safety and other pharmacological data strongly support the reglementary preclinical development of MBL-II-141.
Collapse
|
19
|
Gozzi GJ, Bouaziz Z, Winter E, Daflon-Yunes N, Honorat M, Guragossian N, Marminon C, Valdameri G, Bollacke A, Guillon J, Pinaud N, Marchivie M, Cadena SM, Jose J, Le Borgne M, Di Pietro A. Phenolic indeno[1,2-b]indoles as ABCG2-selective potent and non-toxic inhibitors stimulating basal ATPase activity. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:3481-95. [PMID: 26170632 PMCID: PMC4498724 DOI: 10.2147/dddt.s84982] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ketonic indeno[1,2-b]indole-9,10-dione derivatives, initially designed as human casein kinase II (CK2) inhibitors, were recently shown to be converted into efficient inhibitors of drug efflux by the breast cancer resistance protein ABCG2 upon suited substitutions including a N5-phenethyl on C-ring and hydrophobic groups on D-ring. A series of ten phenolic and seven p-quinonic derivatives were synthesized and screened for inhibition of both CK2 and ABCG2 activities. The best phenolic inhibitors were about threefold more potent against ABCG2 than the corresponding ketonic derivatives, and showed low cytotoxicity. They were selective for ABCG2 over both P-glycoprotein and MRP1 (multidrug resistance protein 1), whereas the ketonic derivatives also interacted with MRP1, and they additionally displayed a lower interaction with CK2. Quite interestingly, they strongly stimulated ABCG2 ATPase activity, in contrast to ketonic derivatives, suggesting distinct binding sites. In contrast, the p-quinonic indenoindoles were cytotoxic and poor ABCG2 inhibitors, whereas a partial inhibition recovery could be reached upon hydrophobic substitutions on D-ring, similarly to the ketonic derivatives.
Collapse
Affiliation(s)
- Gustavo Jabor Gozzi
- Equipe Labellisée Ligue 2014, BMSSI UMR5086 CNRS/Lyon I University, IBCP, Lyon, France ; Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Zouhair Bouaziz
- Faculty of Pharmacy - ISPB, EA 4446 Biomolecules, Cancer and Chemoresistance, Health SFR of East Lyon CNRS UMS3453 - INSERM US7, University of Lyon, Lyon I University, Lyon Cedex 8, France
| | - Evelyn Winter
- Equipe Labellisée Ligue 2014, BMSSI UMR5086 CNRS/Lyon I University, IBCP, Lyon, France ; Department of Pharmaceutical Sciences, PGFAR, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Nathalia Daflon-Yunes
- Equipe Labellisée Ligue 2014, BMSSI UMR5086 CNRS/Lyon I University, IBCP, Lyon, France
| | - Mylène Honorat
- Equipe Labellisée Ligue 2014, BMSSI UMR5086 CNRS/Lyon I University, IBCP, Lyon, France
| | - Nathalie Guragossian
- Faculty of Pharmacy - ISPB, EA 4446 Biomolecules, Cancer and Chemoresistance, Health SFR of East Lyon CNRS UMS3453 - INSERM US7, University of Lyon, Lyon I University, Lyon Cedex 8, France
| | - Christelle Marminon
- Faculty of Pharmacy - ISPB, EA 4446 Biomolecules, Cancer and Chemoresistance, Health SFR of East Lyon CNRS UMS3453 - INSERM US7, University of Lyon, Lyon I University, Lyon Cedex 8, France
| | - Glaucio Valdameri
- Equipe Labellisée Ligue 2014, BMSSI UMR5086 CNRS/Lyon I University, IBCP, Lyon, France ; Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Andre Bollacke
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Jean Guillon
- ARNA Laboratory, Pharmaceutical Sciences UFR, INSERM U869, University of Bordeaux, Bordeaux Cedex, France
| | - Noël Pinaud
- ISM - CNRS UMR 5255, University of Bordeaux Cedex, France
| | | | - Silvia M Cadena
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Marc Le Borgne
- Faculty of Pharmacy - ISPB, EA 4446 Biomolecules, Cancer and Chemoresistance, Health SFR of East Lyon CNRS UMS3453 - INSERM US7, University of Lyon, Lyon I University, Lyon Cedex 8, France
| | - Attilio Di Pietro
- Equipe Labellisée Ligue 2014, BMSSI UMR5086 CNRS/Lyon I University, IBCP, Lyon, France
| |
Collapse
|
20
|
Tamura M, Koshibe Y, Kaji K, Ueda JY, Shirataki Y. Attempt to Synthesize 2,3,5,4′-Tetrahydroxystilbene Derived from 2,3,5,4′-Tetrahydroxystilbene-2- O-β-glucoside (THSG). Chem Pharm Bull (Tokyo) 2015; 63:122-5. [DOI: 10.1248/cpb.c14-00626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Yuhei Koshibe
- Faculty of Pharmaceutical Sciences, Josai University
| | - Kiho Kaji
- Faculty of Pharmaceutical Sciences, Josai University
| | - Jun-ya Ueda
- Frontier Research Core for Life Sciences, University of Toyama
| | | |
Collapse
|
21
|
Baiceanu E, Crisan G, Loghin F, Falson P. Modulators of the human ABCC2: hope from natural sources? Future Med Chem 2015; 7:2041-63. [PMID: 26496229 DOI: 10.4155/fmc.15.131] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human ABCC2 is an ATP-binding cassette transporter involved in the export of endobiotics and xenobiotics. It is involved in cisplatin resistance in cancer cells, particularly in ovarian cancer. The few known ABCC2 modulators are poorly efficient, so it is necessary to explore new ways to select and optimize efficient compounds ABCC2. Natural products offer an original scaffold for such a strategy and brings hope for this aim. This review covers basic knowledge about ABCC2, from distribution and topology aspects to physiological and pathological functions. It summarizes the effect of natural products as ABCC2 modulators. Certain plant metabolites act on different ABCC2 regulation levels and therefore are promising candidates to block the multidrug resistance mediated by ABCC2 in cancer cells.
Collapse
Affiliation(s)
- Elisabeta Baiceanu
- Drug Resistance Modulation & Membrane Proteins Laboratory, Molecular & Structural Basis of Infectious Systems, Mixed Research Unit between the National Centre for Scientific Research & Lyon I University n 5086, Institute of Biology & Chemistry of Proteins, 7 passage du Vercors 69367, Lyon, Cedex, France
- Pharmaceutical Botany Department, Faculty of Pharmacy, University of Medicine & Pharmacy 'Iuliu Haţieganu' Cluj-Napoca, 23 Marinescu Street, Cluj-Napoca, Romania
| | - Gianina Crisan
- Pharmaceutical Botany Department, Faculty of Pharmacy, University of Medicine & Pharmacy 'Iuliu Haţieganu' Cluj-Napoca, 23 Marinescu Street, Cluj-Napoca, Romania
| | - Felicia Loghin
- Toxicology Department, Faculty of Pharmacy, University of Medicine & Pharmacy 'Iuliu Haţieganu' Cluj-Napoca, 5-9 Louis Pasteur Street, Cluj-Napoca, Romania
| | - Pierre Falson
- Drug Resistance Modulation & Membrane Proteins Laboratory, Molecular & Structural Basis of Infectious Systems, Mixed Research Unit between the National Centre for Scientific Research & Lyon I University n 5086, Institute of Biology & Chemistry of Proteins, 7 passage du Vercors 69367, Lyon, Cedex, France
| |
Collapse
|
22
|
Natarajan K, Baer MR, Ross DD. Role of Breast Cancer Resistance Protein (BCRP, ABCG2) in Cancer Outcomes and Drug Resistance. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2015. [DOI: 10.1007/978-3-319-09801-2_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Rawal MK, Shokoohinia Y, Chianese G, Zolfaghari B, Appendino G, Taglialatela-Scafati O, Prasad R, Di Pietro A. Jatrophanes from Euphorbia squamosa as potent inhibitors of Candida albicans multidrug transporters. JOURNAL OF NATURAL PRODUCTS 2014; 77:2700-2706. [PMID: 25437914 DOI: 10.1021/np500756z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A series of structurally related jatrophane diterpenoids (1-6), including the new euphosquamosins A-C (4-6), was purified from the Iranian spurge Euphorbia squamosa and evaluated for its capacity to inhibit drug efflux by multidrug transporters of Candida albicans. Three of these compounds showed an interesting profile of activity. In particular, deacetylserrulatin B (2) and euphosquamosin C (6) strongly inhibited the drug-efflux activity of the primary ABC-transporter CaCdr1p, an effect that translated, in a yeast strain overexpressing this transporter, into an increased sensitivity to fluconazole. These compounds were transported by CaCdr1p, as shown by the observation of an 11-14-fold cross-resistance of yeast growth, and could also inhibit the secondary MFS-transporter CaMdr1p. In contrast, euphosquamosin A (4) was selective for CaCdr1p, possibly as a result of a different binding mode. Taken together, these observations suggest jatrophane diterpenes to be a new class of potent inhibitors of multidrug transporters critical for drug resistance in pathogenic yeasts.
Collapse
Affiliation(s)
- Manpreet Kaur Rawal
- School of Life Sciences, Jawaharlal Nehru University , 110067 New Delhi, India
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Spatafora C, Barresi V, Bhusainahalli VM, Di Micco S, Musso N, Riccio R, Bifulco G, Condorelli D, Tringali C. Bio-inspired benzo[k,l]xanthene lignans: synthesis, DNA-interaction and antiproliferative properties. Org Biomol Chem 2014; 12:2686-701. [PMID: 24647864 DOI: 10.1039/c3ob42521e] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work twelve benzo[k,l]xanthene lignans were synthesized by biomimetic, Mn-mediated oxidative coupling of caffeic esters and amides. These compounds, bearing different flexible pendants at position C1/C2 of the aromatic core, interact with DNA in a dual mode, as confirmed by DF-STD NMR analysis and molecular docking: the planar core acts as a base pair intercalant, whereas the flexible pendants act as minor groove binders. Their antiproliferative activity was evaluated on a panel of six tumor cell lines: HT-29, Caco-2, HCT-116 (human colon carcinoma), H226, A549 (human lung carcinoma), and SH-SY5Y (human neuroblastoma). All compounds under study, except 29, resulted in activity against one or more cell lines, and the markedly lipophilic esters 13 and 28 showed the highest activity. Compound 13 was more active than the anticancer drug 5-fluorouracil (5-FU) towards HCT-116 (colon, GI50 = 3.16 μM) and H226 (lung, GI50 = 4.33 μM) cell lines.
Collapse
Affiliation(s)
- Carmela Spatafora
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, I-95125 Catania, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Szafraniec MJ, Szczygieł M, Urbanska K, Fiedor L. Determinants of the activity and substrate recognition of breast cancer resistance protein (ABCG2). Drug Metab Rev 2014; 46:459-74. [DOI: 10.3109/03602532.2014.942037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
26
|
Ng SY, Cardullo N, Yeo SCM, Spatafora C, Tringali C, Ong PS, Lin HS. Quantification of the resveratrol analogs trans-2,3-dimethoxy-stilbene and trans-3,4-dimethoxystilbene in rat plasma: application to pre-clinical pharmacokinetic studies. Molecules 2014; 19:9577-90. [PMID: 25004068 PMCID: PMC6271088 DOI: 10.3390/molecules19079577] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 06/26/2014] [Accepted: 06/28/2014] [Indexed: 01/10/2023] Open
Abstract
trans-2,3-Dimethoxystilbene (2,3-DMS) and trans-3,4-dimethoxystilbene (3,4-DMS) are two synthetic resveratrol (trans-3,5,4'-trihydroxystilbene) analogs. In this study, a simple HPLC method was developed and validated to determine 2,3-DMS and 3,4-DMS in rat plasma. Chromatographic separation was obtained with a reversed-phase HPLC column through a 12.5-min gradient delivery of a mixture of acetonitrile and water at the flow rate of 1.5 mL/min at 50 °C. The lower limit of quantification was 10 ng/mL. After successful validation, the pharmacokinetic profiles of 2,3-DMS and 3,4-DMS were subsequently studied in Sprague-Dawley rats. Upon single intravenous administration (4 mg/kg), 2,3-DMS had a medium volume of distribution of the central compartment (Vc = 2.71 ± 0.51 L/kg), quite rapid clearance (Cl = 52.0 ± 7.0 mL/min/kg), moderate mean transit time (MTT0→last = 131.0 ± 4.5 min) but a fairly long terminal elimination half-life (t1/2λZ = 288.9 ± 92.9 min). Interestingly, 3,4-DMS displayed a pharmacokinetic profile apparently distinct from 2,3-DMS and it had more extensive distribution (Vc = 5.58 ± 1.73 L/kg), faster clearance (Cl = 143.4 ± 40.5 mL/min/kg) and shorter residence (MTT0→last = 61.4 ± 27.1 min). Following single oral administration (10 mg/kg), 2,3-DMS had low and erratic plasma exposure (Cmax = 37.5 ± 23.7 ng/mL) and poor oral bioavailability (2.22% ± 2.13%) while the oral bioavailability of 3,4-DMS was even poorer than 2,3-DMS. Clearly, the location of the methoxy groups had a significant impact on the pharmacokinetics of resveratrol analogs. This study provided useful information for the design of resveratrol derivatives in future study.
Collapse
Affiliation(s)
- Shermain Yali Ng
- Department of Pharmacy, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore.
| | - Nunzio Cardullo
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy.
| | - Samuel Chao Ming Yeo
- Department of Pharmacy, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore.
| | - Carmela Spatafora
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy.
| | - Corrado Tringali
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy.
| | - Pei-Shi Ong
- Department of Pharmacy, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore.
| | - Hai-Shu Lin
- Department of Pharmacy, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore.
| |
Collapse
|
27
|
Winter E, Gozzi GJ, Chiaradia-Delatorre LD, Daflon-Yunes N, Terreux R, Gauthier C, Mascarello A, Leal PC, Cadena SM, Yunes RA, Nunes RJ, Creczynski-Pasa TB, Di Pietro A. Quinoxaline-substituted chalcones as new inhibitors of breast cancer resistance protein ABCG2: polyspecificity at B-ring position. Drug Des Devel Ther 2014; 8:609-19. [PMID: 24920885 PMCID: PMC4043709 DOI: 10.2147/dddt.s56625] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A series of chalcones substituted by a quinoxaline unit at the B-ring were synthesized and tested as inhibitors of breast cancer resistance protein-mediated mitoxantrone efflux. These compounds appeared more efficient than analogs containing other B-ring substituents such as 2-naphthyl or 3,4-methylenedioxyphenyl while an intermediate inhibitory activity was obtained with a 1-naphthyl group. In all cases, two or three methoxy groups had to be present on the phenyl A-ring to produce a maximal inhibition. Molecular modeling indicated both electrostatic and steric positive contributions. A higher potency was observed when the 2-naphthyl or 3,4-methylenedioxyphenyl group was shifted to the A-ring and methoxy substituents were shifted to the phenyl B-ring, indicating preferences among polyspecificity of inhibition.
Collapse
Affiliation(s)
- Evelyn Winter
- Equipe Labellisée Ligue 2013, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Gustavo Jabor Gozzi
- Equipe Labellisée Ligue 2013, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Brazil
| | | | - Nathalia Daflon-Yunes
- Equipe Labellisée Ligue 2013, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Raphael Terreux
- Bioinformatique structures et interactions, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Charlotte Gauthier
- Equipe Labellisée Ligue 2013, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Alessandra Mascarello
- Department of Chemistry, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Paulo César Leal
- Department of Chemistry, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Silvia M Cadena
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Brazil
| | - Rosendo Augusto Yunes
- Department of Chemistry, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Ricardo José Nunes
- Department of Chemistry, Federal University of Santa Catarina, Florianopolis, Brazil
| | | | - Attilio Di Pietro
- Equipe Labellisée Ligue 2013, Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| |
Collapse
|
28
|
Winter E, Devantier Neuenfeldt P, Chiaradia-Delatorre LD, Gauthier C, Yunes RA, Nunes RJ, Creczynski-Pasa TB, Di Pietro A. Symmetric bis-chalcones as a new type of breast cancer resistance protein inhibitors with a mechanism different from that of chromones. J Med Chem 2014; 57:2930-41. [PMID: 24611893 DOI: 10.1021/jm401879z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Potent ABCG2 inhibitors were recently identified as asymmetric chromones with different types of substituents. We here synthesized symmetric bis-chalcones that were differently substituted and screened for their ability to inhibit mitoxantrone efflux from ABCG2-transfected HEK293 cells. Potent bis-chalcone inhibitors were identified, the efficiency depending on both position of the central ketone groups and the number and positions of lateral methoxy substituents. The best derivative, namely, 1p, was selective for ABCG2 over P-glycoprotein and MRP1, appeared not to be transported by ABCG2, and was at least as active on various drug-selected cancer cells overexpressing ABCG2. Compound 1p stimulated the ABCG2 basal ATPase activity by contrast to a chromone lead that inhibited it, suggesting different mechanisms of interaction. Combination of both types of inhibitors produced synergistic effects, leading to complete inhibition at very low concentrations.
Collapse
Affiliation(s)
- Evelyn Winter
- Equipe Labellisée Ligue 2014, BMSSI UMR5086 CNRS/Université Lyon 1, IBCP, 69367 Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Tan KW, Killeen DP, Li Y, Paxton JW, Birch NP, Scheepens A. Dietary polyacetylenes of the falcarinol type are inhibitors of breast cancer resistance protein (BCRP/ABCG2). Eur J Pharmacol 2014; 723:346-52. [DOI: 10.1016/j.ejphar.2013.11.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/07/2013] [Accepted: 11/02/2013] [Indexed: 12/17/2022]
|
30
|
Rangel LP, Winter E, Gauthier C, Terreux R, Chiaradia-Delatorre LD, Mascarello A, Nunes RJ, Yunes RA, Creczynski-Pasa TB, Macalou S, Lorendeau D, Baubichon-Cortay H, Ferreira-Pereira A, Di Pietro A. New structure-activity relationships of chalcone inhibitors of breast cancer resistance protein: polyspecificity toward inhibition and critical substitutions against cytotoxicity. DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:1043-52. [PMID: 24109177 PMCID: PMC3792851 DOI: 10.2147/dddt.s46983] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adenosine triphosphate-binding cassette subfamily G member 2 (ABCG2) plays a major role in cancer cell multidrug resistance, which contributes to low eifficacy of chemotherapy. Chalcones were recently found to be potent and specific inhibitors, but unfortunately display a significant cytotoxicity. A cellular screening against ABCG2-mediated mitoxantrone efflux was performed here by flow cytometry on 54 chalcone derivatives from three different series with a wide panel of substituents. The identified leads, with submicromolar IC50 (half maximal inhibitory concentration) values, showed that the previously identified 2′-OH-4′,6′-dimethoxyphenyl, as A-ring, could be efficiently replaced by a 2′-naphthyl group, or a 3′,4′-methylenedioxyphenyl with lower affinity. Such a structural variability indicates 3polyspecificity of the multidrug transporter for inhibitors. At least two methoxyl groups were necessary on B-ring for optimal inhibition, but substitution at positions 3, 4, and 5 induced cytotoxicity. The presence of a large O-benzyl substituent at position 4 and a 2′-naphthyl as A-ring markedly decreased the cytotoxicity, giving a high therapeutic ratio, which constitutes a critical requirement for future in-vivo assays in animal models.
Collapse
Affiliation(s)
- Luciana Pereira Rangel
- Equipe Labellisée Ligue 2013, BMSSI UMR 5086 CNRS/Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France ; Department of General Microbiology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Parihar S, Kumar A, Chaturvedi AK, Sachan NK, Luqman S, Changkija B, Manohar M, Prakash O, Chanda D, Khan F, Chanotiya CS, Shanker K, Dwivedi A, Konwar R, Negi AS. Synthesis of combretastatin A4 analogues on steroidal framework and their anti-breast cancer activity. J Steroid Biochem Mol Biol 2013; 137:332-44. [PMID: 23459143 DOI: 10.1016/j.jsbmb.2013.02.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/28/2013] [Accepted: 02/19/2013] [Indexed: 11/17/2022]
Abstract
Combretastatin A4 analogues were synthesized on steroidal framework from gallic acid with a possibility of anti-breast cancer agents. Twenty two analogues were synthesized and evaluated for cytotoxicity against human breast cancer cell lines (MCF-7 & MDA-MB 231). The best analogue 22 showed potent antitubulin effect. Docking experiments also supported strong binding affinity of 22 to microtubule polymerase. In cell cycle analysis, 22 induced apoptosis in MCF-7 cells significantly. It was found to be non-toxic up to 300 mg/kg dose in Swiss albino mice in acute oral toxicity. This article is part of a Special Issue entitled "Synthesis and biological testing of steroid derivatives as inhibitors".
Collapse
Affiliation(s)
- Swati Parihar
- Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, Lucknow 226015, U.P., India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sarpietro MG, Spatafora C, Accolla ML, Cascio O, Tringali C, Castelli F. Effect of resveratrol-related stilbenoids on biomembrane models. JOURNAL OF NATURAL PRODUCTS 2013; 76:1424-1431. [PMID: 23895642 DOI: 10.1021/np400188m] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The interactions of the two resveratrol analogues 2-hydroxy-3,5,3',5'-tetramethoxystilbene (4) and 2-hydroxy-3,5,3',4'-tetramethoxystilbene (5) with model biomembranes were studied. The aim of this investigation was to highlight possible differences in the interactions with such biomembranes related to the minimal structural differences between these isomeric stilbenoids. In particular, different experiments on stilbenoid/biomembrane model systems using both differential scanning calorimetry (DSC) and Langmuir-Blodgett techniques were carried out to evaluate stilbenoid/multilamellar vesicle and stilbenoid/phospholipid monolayer interactions, respectively. Dimyristoylphosphatidylcholine was used as constituent of the biomembrane models and permitted the experiments to be carried out at 37 °C, close to body temperature. Kinetic studies were also run by DSC to evaluate the uptake of the resveratrol derivatives by the biomembrane model in an aqueous medium and when transported by a lipophilic carrier. The results indicated that both of the resveratrol analogues influenced the behavior of multilamellar vesicles and monolayers, biomembrane models, with 4 producing a larger effect than 5. These results are useful for better understanding the mechanism of action of these compounds. Moreover, the kinetic results could be of importance for future design of lipophilic delivery systems for these stilbenoids.
Collapse
Affiliation(s)
- Maria Grazia Sarpietro
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | | | | | | | | | | |
Collapse
|
33
|
Synthesis and biological evaluation of flavones and benzoflavones as inhibitors of BCRP/ABCG2. Eur J Med Chem 2013; 67:115-26. [PMID: 23851114 DOI: 10.1016/j.ejmech.2013.06.035] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 06/12/2013] [Accepted: 06/13/2013] [Indexed: 01/16/2023]
Abstract
Multidrug resistance (MDR) often leads to a failure of cancer chemotherapy. Breast Cancer Resistance Protein (BCRP/ABCG2), a member of the superfamily of ATP binding cassette proteins has been found to confer MDR in cancer cells by transporting molecules with amphiphilic character out of the cells using energy from ATP hydrolysis. Inhibiting BCRP can be a solution to overcome MDR. We synthesized a series of flavones, 7,8-benzoflavones and 5,6-benzoflavones with varying substituents at positions 3, 3' and 4' of the (benzo)flavone structure. All synthesized compounds were tested for BCRP inhibition in Hoechst 33342 and pheophorbide A accumulation assays using MDCK cells expressing BCRP. All the compounds were further screened for their P-glycoprotein (P-gp) and Multidrug resistance-associated protein 1 (MRP1) inhibitory activity by calcein AM accumulation assay to check the selectivity towards BCRP. In addition most active compounds were investigated for their cytotoxicity. It was observed that in most cases 7,8-benzoflavones are more potent in comparison to the 5,6-benzoflavones. In general it was found that presence of a 3-OCH3 substituent leads to increase in activity in comparison to presence of OH or no substitution at position 3. Also, it was found that presence of 3',4'-OCH3 on phenyl ring lead to increase in activity as compared to other substituents. Compound 24, a 7,8-benzoflavone derivative was found to be most potent being 50 times selective for BCRP and showing very low cytotoxicity at higher concentrations.
Collapse
|
34
|
Abstract
ABCG2 impacts oral availability, tissue distribution and excretion of its substrates, including anticancer and anti-infectious drugs. Highly expressed at physiological barriers, its secretion level significantly controls drug distribution. Furthermore, its increased content into many types of cancer may lead to cell chemoresistance. Owing to the clinical relevance of ABCG2 in the multidrug resistance phenomenon, ABCG2 constitutes an appealing therapeutic target to increase drug distribution. Development of ABCG2 inhibitors can be used in combination with anticancer drugs to block the drug secretion from cancer cells. Very recently, an alternative use of ABCG2 inhibitors in enhancing the bioavailability of ABCG2 substrates has emerged. Hence, it is important to investigate ABCG2 inhibitors with high selectivity, high potency and safety. New inhibitors discovered during the last 5 years will be presented and discussed.
Collapse
|
35
|
|
36
|
Bhusainahalli VM, Spatafora C, Chalal M, Vervandier-Fasseur D, Meunier P, Latruffe N, Tringali C. Resveratrol-Related Dehydrodimers: Laccase-Mediated Biomimetic Synthesis and Antiproliferative Activity. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200664] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
37
|
Valdameri G, Gauthier C, Terreux R, Kachadourian R, Day BJ, Winnischofer SMB, Rocha MEM, Frachet V, Ronot X, Di Pietro A, Boumendjel A. Investigation of chalcones as selective inhibitors of the breast cancer resistance protein: critical role of methoxylation in both inhibition potency and cytotoxicity. J Med Chem 2012; 55:3193-200. [PMID: 22449016 PMCID: PMC3983950 DOI: 10.1021/jm2016528] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
ABCG2 plays a major role in anticancer-drug efflux and related tumor multidrug resistance. Potent and selective ABCG2 inhibitors with low cytotoxicity were investigated among a series of 44 chalcones and analogues (1,3-diarylpropenones), by evaluating their inhibitory effect on the transport of mitoxantrone, a known ABCG2 substrate. Six compounds producing complete inhibition with IC(50) values below 0.5 μM and high selectivity for ABCG2 were identified. The number and position of methoxy substituents appeared to be critical for both inhibition and cytotoxicity. The best compounds, with potent inhibition and low toxicity, contained an N-methyl-1-indolyl (compound 38) or a 6'-hydroxyl-2',4'-dimethoxy-1-phenyl (compound 27) moiety (A-ring) and two methoxy groups at positions 2 and 6 of the 3-phenyl moiety (B-ring). Methoxy substitution contributed to inhibition at positions 3 and 5, but had a negative effect at position 4. Finally, methoxy groups at positions 3, 4, and 5 of the B-ring markedly increased cytotoxicity and, therefore, should be avoided.
Collapse
Affiliation(s)
- Glaucio Valdameri
- Equipe Labellisée Ligue 2012, BMSSI UMR 5086 CNRS/Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Charlotte Gauthier
- Equipe Labellisée Ligue 2012, BMSSI UMR 5086 CNRS/Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Raphaël Terreux
- Equipe Bioinformatique: structures et interactions, BMSSI UMR 5086 CNRS/Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Rémy Kachadourian
- Department of Medicine, National Jewish Health, Denver Colorado 80206, United States
| | - Brian J. Day
- Department of Medicine, National Jewish Health, Denver Colorado 80206, United States
| | - Sheila M. B. Winnischofer
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Maria E. M. Rocha
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Véronique Frachet
- AGing Imaging Modeling, FRE 3405, Université Joseph Fourier, CNRS, EPHE, Faculté de Médecine, La Tronche, France
| | - Xavier Ronot
- AGing Imaging Modeling, FRE 3405, Université Joseph Fourier, CNRS, EPHE, Faculté de Médecine, La Tronche, France
| | - Attilio Di Pietro
- Equipe Labellisée Ligue 2012, BMSSI UMR 5086 CNRS/Université Lyon 1, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Ahcène Boumendjel
- Université Joseph Fourier—Grenoble/CNRS, UMR 5063, Département de Pharmacochimie Moléculaire, Grenoble, France
| |
Collapse
|
38
|
Valdameri G, Genoux-Bastide E, Peres B, Gauthier C, Guitton J, Terreux R, Winnischofer SMB, Rocha MEM, Boumendjel A, Di Pietro A. Substituted chromones as highly potent nontoxic inhibitors, specific for the breast cancer resistance protein. J Med Chem 2012; 55:966-70. [PMID: 22165858 DOI: 10.1021/jm201404w] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A series of 13 disubstituted chromones was synthesized. Two types of substituents, on each side of the scaffold, contributed to both the potency of ABCG2 inhibition and the cytotoxicity. The best compound, 5-(4-bromobenzyloxy)-2-(2-(5-methoxyindolyl)ethyl-1-carbonyl)-4H-chromen-4-one (6g), displayed high-affinity inhibition and low cytotoxicity, giving a markedly high therapeutic index. The chromone derivative specifically inhibited ABCG2 versus other multidrug ABC transporters and was not transported. It constitutes a highly promising candidate for in vivo chemosensitization of ABCG2-expressing tumors.
Collapse
Affiliation(s)
- Glaucio Valdameri
- Equipe Labellisée Ligue 2011, Institut de Biologie et Chimie des Protéines, BMSSI UMR 5086, CNRS/Université Lyon 1 , Lyon, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|