1
|
Nielipińska D, Rubiak D, Pietrzyk-Brzezińska AJ, Małolepsza J, Błażewska KM, Gendaszewska-Darmach E. Stapled peptides as potential therapeutics for diabetes and other metabolic diseases. Biomed Pharmacother 2024; 180:117496. [PMID: 39362065 DOI: 10.1016/j.biopha.2024.117496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
The field of peptide drug research has experienced notable progress, with stapled peptides featuring stabilized α-helical conformation, emerging as a promising field. These peptides offer enhanced stability, cellular permeability, and binding affinity and exhibit potential in the treatment of diabetes and metabolic disorders. Stapled peptides, through the disruption of protein-protein interactions, present varied functionalities encompassing agonism, antagonism, and dual-agonism. This comprehensive review offers insight into the technology of peptide stapling and targeting of crucial molecular pathways associated with glucose metabolism, insulin secretion, and food intake. Additionally, we address the challenges in developing stapled peptides, including concerns pertaining to structural stability, peptide helicity, isomer mixture, and potential side effects.
Collapse
Affiliation(s)
- Dominika Nielipińska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland.
| | - Dominika Rubiak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Poland
| | - Agnieszka J Pietrzyk-Brzezińska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland
| | - Joanna Małolepsza
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Poland
| | - Katarzyna M Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Poland.
| | - Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland.
| |
Collapse
|
2
|
Whittaker MK, Bendzunas GN, Shirani M, LeClair TJ, Shebl B, Dill TC, Coffino P, Simon SM, Kennedy EJ. Targeted Degradation of Protein Kinase A via a Stapled Peptide PROTAC. ACS Chem Biol 2024; 19:1888-1895. [PMID: 39137166 PMCID: PMC11420944 DOI: 10.1021/acschembio.4c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Proteolysis-targeting chimeras (PROTACs) are bifunctional molecules that bind and recruit an E3 ubiquitin ligase to a targeted protein of interest, often through the utilization of a small molecule inhibitor. To expand the possible range of kinase targets that can be degraded by PROTACs, we sought to develop a PROTAC utilizing a hydrocarbon-stapled peptide as the targeting agent to bind the surface of a target protein of interest. In this study, we describe the development of a proteolysis-targeting chimera, dubbed Stapled Inhibitor Peptide - PROTAC or StIP-TAC, linking a hydrocarbon-stapled peptide with an E3 ligase ligand for targeted degradation of Protein Kinase A (PKA). This StIP-TAC molecule stimulated E3-mediated protein degradation of PKA, and this effect could be reversed by the addition of the proteasomal inhibitor MG-132. Further, StIP-TAC treatment led to a significant reduction in PKA substrate phosphorylation. Since many protein targets of interest lack structural features that make them amenable to small molecule targeting, development of StIP-TACs may broaden the potential range of protein targets using a PROTAC-mediated proteasomal degradation approach.
Collapse
Affiliation(s)
- Matthew K Whittaker
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - George N Bendzunas
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Mahsa Shirani
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York 10065, United States
| | - Timothy J LeClair
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Bassem Shebl
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York 10065, United States
| | - Taylor C Dill
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Philip Coffino
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York 10065, United States
| | - Sanford M Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York 10065, United States
| | - Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
3
|
Li F, Liu J, Liu C, Liu Z, Peng X, Huang Y, Chen X, Sun X, Wang S, Chen W, Xiong D, Diao X, Wang S, Zhuang J, Wu C, Wu D. Cyclic peptides discriminate BCL-2 and its clinical mutants from BCL-X L by engaging a single-residue discrepancy. Nat Commun 2024; 15:1476. [PMID: 38368459 PMCID: PMC10874388 DOI: 10.1038/s41467-024-45848-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 02/06/2024] [Indexed: 02/19/2024] Open
Abstract
Overexpressed pro-survival B-cell lymphoma-2 (BCL-2) family proteins BCL-2 and BCL-XL can render tumor cells malignant. Leukemia drug venetoclax is currently the only approved selective BCL-2 inhibitor. However, its application has led to an emergence of resistant mutations, calling for drugs with an innovative mechanism of action. Herein we present cyclic peptides (CPs) with nanomolar-level binding affinities to BCL-2 or BCL-XL, and further reveal the structural and functional mechanisms of how these CPs target two proteins in a fashion that is remarkably different from traditional small-molecule inhibitors. In addition, these CPs can bind to the venetoclax-resistant clinical BCL-2 mutants with similar affinities as to the wild-type protein. Furthermore, we identify a single-residue discrepancy between BCL-2 D111 and BCL-XL A104 as a molecular "switch" that can differently engage CPs. Our study suggests that CPs may inhibit BCL-2 or BCL-XL by delicately modulating protein-protein interactions, potentially benefiting the development of next-generation therapeutics.
Collapse
Affiliation(s)
- Fengwei Li
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Junjie Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chao Liu
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Ziyan Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiangda Peng
- Shanghai Zelixir Biotech Company Ltd., Shanghai, 200030, China
| | - Yinyue Huang
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xiaoyu Chen
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xiangnan Sun
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Sen Wang
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Wei Chen
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, 200127, China
| | - Dan Xiong
- Xiamen Lifeint Technology Company Ltd., Xiamen, 361005, China
| | - Xiaotong Diao
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Sheng Wang
- Shanghai Zelixir Biotech Company Ltd., Shanghai, 200030, China
| | - Jingjing Zhuang
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
- Marine College, Shandong University, Weihai, 264209, China
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Dalei Wu
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
4
|
Komarov IV, Bugrov VA, Cherednychenko A, Grygorenko OO. Insights into Modeling Approaches in Chemistry: Assessing Ligand-Protein Binding Thermodynamics Based on Rigid-Flexible Model Molecules. CHEM REC 2024; 24:e202300276. [PMID: 37847887 DOI: 10.1002/tcr.202300276] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/29/2023] [Indexed: 10/19/2023]
Abstract
In the field of chemistry, model compounds find extensive use for investigating complex objects. One prime example of such object is the protein-ligand supramolecular interaction. Prediction the enthalpic and entropic contribution to the free energy associated with this process, as well as the structural and dynamic characteristics of protein-ligand complexes poses considerable challenges. This review exemplifies modeling approaches used to study protein-ligand binding (PLB) thermodynamics by employing pairs of conformationally constrained/flexible model molecules. Strategically designing the model molecules can reduce the number of variables that influence thermodynamic parameters. This enables scientists to gain deeper insights into the enthalpy and entropy of PLB, which is relevant for medicinal chemistry and drug design. The model studies reviewed here demonstrate that rigidifying ligands may induce compensating changes in the enthalpy and entropy of binding. Some "rules of thumb" have started to emerge on how to minimize entropy-enthalpy compensation and design efficient rigidified or flexible ligands.
Collapse
Affiliation(s)
- Igor V Komarov
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
- Enamine Ltd., Winston Churchill Street 78, Kyiv, 02094, Ukraine
| | - Volodymyr A Bugrov
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| | - Anton Cherednychenko
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
- Enamine Ltd., Winston Churchill Street 78, Kyiv, 02094, Ukraine
| | - Oleksandr O Grygorenko
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
- Enamine Ltd., Winston Churchill Street 78, Kyiv, 02094, Ukraine
| |
Collapse
|
5
|
Bathgate RAD, Praveen P, Sethi A, Furuya WI, Dhingra RR, Kocan M, Ou Q, Valkovic AL, Gil-Miravet I, Navarro-Sánchez M, Olucha-Bordonau FE, Gundlach AL, Rosengren KJ, Gooley PR, Dutschmann M, Hossain MA. Noncovalent Peptide Stapling Using Alpha-Methyl-l-Phenylalanine for α-Helical Peptidomimetics. J Am Chem Soc 2023; 145:20242-20247. [PMID: 37439676 DOI: 10.1021/jacs.3c02743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Peptides and peptidomimetics are attractive drug candidates because of their high target specificity and low-toxicity profiles. Developing peptidomimetics using hydrocarbon (HC)-stapling or other stapling strategies has gained momentum because of their high stability and resistance to proteases; however, they have limitations. Here, we take advantage of the α-methyl group and an aromatic phenyl ring in a unique unnatural amino acid, α-methyl-l-phenylalanine (αF), and propose a novel, noncovalent stapling strategy to stabilize peptides. We utilized this strategy to create an α-helical B-chain mimetic of a complex insulin-like peptide, human relaxin-3 (H3 relaxin). Our comprehensive data set (in vitro, ex vivo, and in vivo) confirmed that the new high-yielding B-chain mimetic, H3B10-27(13/17αF), is remarkably stable in serum and fully mimics the biological function of H3 relaxin. H3B10-27(13/17αF) is an excellent scaffold for further development as a drug lead and an important tool to decipher the physiological functions of the neuropeptide G protein-coupled receptor, RXFP3.
Collapse
Affiliation(s)
- Ross A D Bathgate
- The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Praveen Praveen
- The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Ashish Sethi
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3052, Australia
- Australian Nuclear Science Technology Organisation, The Australian Synchrotron, Clayton, VIC 3168, Australia
| | - Werner I Furuya
- The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Rishi R Dhingra
- The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Martina Kocan
- The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Qinghao Ou
- The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Adam L Valkovic
- The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Isis Gil-Miravet
- Predepartmental Unit of Medicine, Faculty of Health Sciences, Universitat Jaume I, Avenida de Vicent Sos Baynat, s/n, 12071 Castelló de La Plana, Spain
| | - Mónica Navarro-Sánchez
- Predepartmental Unit of Medicine, Faculty of Health Sciences, Universitat Jaume I, Avenida de Vicent Sos Baynat, s/n, 12071 Castelló de La Plana, Spain
| | - Francisco E Olucha-Bordonau
- Predepartmental Unit of Medicine, Faculty of Health Sciences, Universitat Jaume I, Avenida de Vicent Sos Baynat, s/n, 12071 Castelló de La Plana, Spain
| | - Andrew L Gundlach
- The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - K Johan Rosengren
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Paul R Gooley
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3052, Australia
- Bio21 Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Mathias Dutschmann
- The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Mohammed Akhter Hossain
- The Florey, The University of Melbourne, Parkville, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
- School of Chemistry, The University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
6
|
You Y, Liu H, Zhu Y, Zheng H. Rational design of stapled antimicrobial peptides. Amino Acids 2023; 55:421-442. [PMID: 36781451 DOI: 10.1007/s00726-023-03245-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023]
Abstract
The global increase in antimicrobial drug resistance has dramatically reduced the effectiveness of traditional antibiotics. Structurally diverse antibiotics are urgently needed to combat multiple-resistant bacterial infections. As part of innate immunity, antimicrobial peptides have been recognized as the most promising candidates because they comprise diverse sequences and mechanisms of action and have a relatively low induction rate of resistance. However, because of their low chemical stability, susceptibility to proteases, and high hemolytic effect, their usage is subject to many restrictions. Chemical modifications such as D-amino acid substitution, cyclization, and unnatural amino acid modification have been used to improve the stability of antimicrobial peptides for decades. Among them, a side-chain covalent bridge modification, the so-called stapled peptide, has attracted much attention. The stapled side-chain bridge stabilizes the secondary structure, induces protease resistance, and increases cell penetration and biological activity. Recent progress in computer-aided drug design and artificial intelligence methods has also been used in the design of stapled antimicrobial peptides and has led to the successful discovery of many prospective peptides. This article reviews the possible structure-activity relationships of stapled antimicrobial peptides, the physicochemical properties that influence their activity (such as net charge, hydrophobicity, helicity, and dipole moment), and computer-aided methods of stapled peptide design. Antimicrobial peptides under clinical trial: Pexiganan (NCT01594762, 2012-05-07). Omiganan (NCT02576847, 2015-10-13).
Collapse
Affiliation(s)
- YuHao You
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - HongYu Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - YouZhuo Zhu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
7
|
Pore-forming proteins as drivers of membrane permeabilization in cell death pathways. Nat Rev Mol Cell Biol 2022; 24:312-333. [PMID: 36543934 DOI: 10.1038/s41580-022-00564-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/24/2022]
Abstract
Regulated cell death (RCD) relies on activation and recruitment of pore-forming proteins (PFPs) that function as executioners of specific cell death pathways: apoptosis regulator BAX (BAX), BCL-2 homologous antagonist/killer (BAK) and BCL-2-related ovarian killer protein (BOK) for apoptosis, gasdermins (GSDMs) for pyroptosis and mixed lineage kinase domain-like protein (MLKL) for necroptosis. Inactive precursors of PFPs are converted into pore-forming entities through activation, membrane recruitment, membrane insertion and oligomerization. These mechanisms involve protein-protein and protein-lipid interactions, proteolytic processing and phosphorylation. In this Review, we discuss the structural rearrangements incurred by RCD-related PFPs and describe the mechanisms that manifest conversion from autoinhibited to membrane-embedded molecular states. We further discuss the formation and maturation of membrane pores formed by BAX/BAK/BOK, GSDMs and MLKL, leading to diverse pore architectures. Lastly, we highlight commonalities and differences of PFP mechanisms involving BAX/BAK/BOK, GSDMs and MLKL and conclude with a discussion on how, in a population of challenged cells, the coexistence of cell death modalities may have profound physiological and pathophysiological implications.
Collapse
|
8
|
Wolf P, Schoeniger A, Edlich F. Pro-apoptotic complexes of BAX and BAK on the outer mitochondrial membrane. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119317. [PMID: 35752202 DOI: 10.1016/j.bbamcr.2022.119317] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/02/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
In multicellular organisms the regulated cell death apoptosis is critically important for both ontogeny and homeostasis. Mitochondria are indispensable for stress-induced apoptosis. The BCL-2 protein family controls mitochondrial apoptosis and initiates cell death through the pro-apoptotic activities of BAX and BAK at the outer mitochondrial membrane (OMM). Cellular survival is ensured by the retrotranslocation of mitochondrial BAX and BAK into the cytosol by anti-apoptotic BCL-2 proteins. BAX/BAK-dependent OMM permeabilization releases the mitochondrial cytochrome c (cyt c), which initiates activation of caspase-9. The caspase cascade leads to cell shrinkage, plasma membrane blebbing, chromatin condensation, and apoptotic body formation. Although it is clear that ultimately complexes of active BAX and BAK commit the cell to apoptosis, the nature of these complexes is still enigmatic. Excessive research has described a range of complexes, varying from a few molecules to several 10,000, in different systems. BAX/BAK complexes potentially form ring-like structures that could expose the inner mitochondrial membrane. It has been suggested that these pores allow the efflux of small proteins and even mitochondrial DNA. Here we summarize the current state of knowledge for mitochondrial BAX/BAK complexes and the interactions between these proteins and the membrane.
Collapse
Affiliation(s)
- Philipp Wolf
- Institute of Biochemistry, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Axel Schoeniger
- Institute of Biochemistry, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Frank Edlich
- Institute of Biochemistry, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
9
|
Gaucher J, Reille‐Seroussi M, Broussy S. Structural and ITC Characterization of Peptide-Protein Binding: Thermodynamic Consequences of Cyclization Constraints, a Case Study on Vascular Endothelial Growth Factor Ligands. Chemistry 2022; 28:e202200465. [PMID: 35665969 PMCID: PMC9543606 DOI: 10.1002/chem.202200465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Indexed: 11/10/2022]
Abstract
Macrocyclization constraints are widely used in the design of protein ligands to stabilize their bioactive conformation and increase their affinities. However, the resulting changes in binding entropy can be puzzling and uncorrelated to affinity gains. Here, the thermodynamic (Isothermal Titration Calorimetry) and structural (X-ray, NMR and CD) analysis of a complete series of lactam-bridged peptide ligands of the vascular endothelial growth factor, and their unconstrained analogs are reported. It is shown that differences in thermodynamics arise mainly from the folding energy of the peptide upon binding. The systematic reduction in conformational entropy penalty due to helix pre-organization can be counterbalanced by an unfavorable vibrational entropy change if the constraints are too rigid. The gain in configurational entropy partially escapes the enthalpy/entropy compensation and leads to an improvement in affinity. The precision of the analytical ITC method makes this study a possible benchmark for constrained peptides optimization.
Collapse
Affiliation(s)
- Jean‐François Gaucher
- CiTCoMUMR CNRS 8038Université Paris Cité, Faculté de Santé, UFR de Pharmacie4 av. de l'Observatoire75006ParisFrance
| | - Marie Reille‐Seroussi
- CitCoMUMR CNRS 8038U1268 INSERMUniversité Paris Cité, Faculté de Santé, UFR de Pharmacie4 av. de l'Observatoire75006ParisFrance
| | - Sylvain Broussy
- CitCoMUMR CNRS 8038U1268 INSERMUniversité Paris Cité, Faculté de Santé, UFR de Pharmacie4 av. de l'Observatoire75006ParisFrance
| |
Collapse
|
10
|
Sora V, Papaleo E. Structural Details of BH3 Motifs and BH3-Mediated Interactions: an Updated Perspective. Front Mol Biosci 2022; 9:864874. [PMID: 35685242 PMCID: PMC9171138 DOI: 10.3389/fmolb.2022.864874] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/13/2022] [Indexed: 11/18/2022] Open
Abstract
Apoptosis is a mechanism of programmed cell death crucial in organism development, maintenance of tissue homeostasis, and several pathogenic processes. The B cell lymphoma 2 (BCL2) protein family lies at the core of the apoptotic process, and the delicate balance between its pro- and anti-apoptotic members ultimately decides the cell fate. BCL2 proteins can bind with each other and several other biological partners through the BCL2 homology domain 3 (BH3), which has been also classified as a possible Short Linear Motif and whose distinctive features remain elusive even after decades of studies. Here, we aim to provide an updated overview of the structural features characterizing BH3s and BH3-mediated interactions (with a focus on human proteins), elaborating on the plasticity of BCL2 proteins and the motif properties. We also discussed the implication of these findings for the discovery of interactors of the BH3-binding groove of BCL2 proteins and the design of mimetics for therapeutic purposes.
Collapse
Affiliation(s)
- Valentina Sora
- Cancer Structural Biology, Danish Cancer Society Research Center, Copenhagen, Denmark
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Elena Papaleo
- Cancer Structural Biology, Danish Cancer Society Research Center, Copenhagen, Denmark
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, Kongens Lyngby, Denmark
- *Correspondence: Elena Papaleo, ,
| |
Collapse
|
11
|
Schneider AFL, Kallen J, Ottl J, Reid PC, Ripoche S, Ruetz S, Stachyra TM, Hintermann S, Dumelin CE, Hackenberger CPR, Marzinzik AL. Discovery, X-ray structure and CPP-conjugation enabled uptake of p53/MDM2 macrocyclic peptide inhibitors. RSC Chem Biol 2021; 2:1661-1668. [PMID: 34977581 PMCID: PMC8637822 DOI: 10.1039/d1cb00056j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/21/2021] [Indexed: 12/16/2022] Open
Abstract
Mouse double minute 2 homolog (MDM2, Hdm2) is an important negative regulator of the tumor suppressor p53. Using a mRNA based display technique to screen a library of >1012 in vitro-translated cyclic peptides, we have identified a macrocyclic ligand that shows picomolar potency on MDM2. X-Ray crystallography reveals a novel binding mode utilizing a unique pharmacophore to occupy the Phe/Trp/Leu pockets on MDM2. Conjugation of a cyclic cell-penetrating peptide (cCPP) to the initially non cell-permeable ligand enables cellular uptake and a pharmacodynamic response in SJSA-1 cells. The demonstrated enhanced intracellular availability of cyclic peptides that are identified by a display technology exemplifies a process for the application of intracellular tools for drug discovery projects.
Collapse
Affiliation(s)
- Anselm F L Schneider
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10 Berlin 13125 Germany
| | - Joerg Kallen
- Novartis Institutes for BioMedical Research, Novartis Campus Basel CH-4056 Switzerland
| | - Johannes Ottl
- Novartis Institutes for BioMedical Research, Novartis Campus Basel CH-4056 Switzerland
| | - Patrick C Reid
- PeptiDream, 3-25-23 Tonomachi Kawasaki-Ku Kanagawa 210-0821 Japan
| | - Sebastien Ripoche
- Novartis Institutes for BioMedical Research, Novartis Campus Basel CH-4056 Switzerland
| | - Stephan Ruetz
- Novartis Institutes for BioMedical Research, Novartis Campus Basel CH-4056 Switzerland
| | | | - Samuel Hintermann
- Novartis Institutes for BioMedical Research, Novartis Campus Basel CH-4056 Switzerland
| | - Christoph E Dumelin
- Novartis Institutes for BioMedical Research, Novartis Campus Basel CH-4056 Switzerland
| | - Christian P R Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10 Berlin 13125 Germany .,Humboldt Universität zu Berlin, Institut für Chemie, Brook-Taylor-Str. 2 Berlin 12489 Germany
| | - Andreas L Marzinzik
- Novartis Institutes for BioMedical Research, Novartis Campus Basel CH-4056 Switzerland
| |
Collapse
|
12
|
Saleh MN, Patel MR, Bauer TM, Goel S, Falchook GS, Shapiro GI, Chung KY, Infante JR, Conry RM, Rabinowits G, Hong DS, Wang JS, Steidl U, Walensky LD, Naik G, Guerlavais V, Vukovic V, Annis DA, Aivado M, Meric-Bernstam F. Phase 1 Trial of ALRN-6924, a Dual Inhibitor of MDMX and MDM2, in Patients with Solid Tumors and Lymphomas Bearing Wild-type TP53. Clin Cancer Res 2021; 27:5236-5247. [PMID: 34301750 PMCID: PMC9401461 DOI: 10.1158/1078-0432.ccr-21-0715] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/16/2021] [Accepted: 07/21/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE We describe the first-in-human dose-escalation trial for ALRN-6924, a stabilized, cell-permeating peptide that disrupts p53 inhibition by mouse double minute 2 (MDM2) and MDMX to induce cell-cycle arrest or apoptosis in TP53-wild-type (WT) tumors. PATIENTS AND METHODS Two schedules were evaluated for safety, pharmacokinetics, pharmacodynamics, and antitumor effects in patients with solid tumors or lymphomas. In arm A, patients received ALRN-6924 by intravenous infusion once-weekly for 3 weeks every 28 days; arm B was twice-weekly for 2 weeks every 21 days. RESULTS Seventy-one patients were enrolled: 41 in arm A (0.16-4.4 mg/kg) and 30 in arm B (0.32-2.7 mg/kg). ALRN-6924 showed dose-dependent pharmacokinetics and increased serum levels of MIC-1, a biomarker of p53 activation. The most frequent treatment-related adverse events were gastrointestinal side effects, fatigue, anemia, and headache. In arm A, at 4.4 mg/kg, dose-limiting toxicities (DLT) were grade 3 (G3) hypotension, G3 alkaline phosphatase elevation, G3 anemia, and G4 neutropenia in one patient each. At the MTD in arm A of 3.1 mg/kg, G3 fatigue was observed in one patient. No DLTs were observed in arm B. No G3/G4 thrombocytopenia was observed in any patient. Seven patients had infusion-related reactions; 3 discontinued treatment. In 41 efficacy-evaluable patients with TP53-WT disease across both schedules the disease control rate was 59%. Two patients had confirmed complete responses, 2 had confirmed partial responses, and 20 had stable disease. Six patients were treated for >1 year. The recommended phase 2 dose was schedule A, 3.1 mg/kg. CONCLUSIONS ALRN-6924 was well tolerated and demonstrated antitumor activity.
Collapse
Affiliation(s)
- Mansoor N. Saleh
- O'Neal Comprehensive Cancer Center at the University of Alabama at Birmingham, Birmingham, Alabama.,Corresponding Authors: Funda Meric-Bernstam, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Houston, TX 77030. Phone: 713-794-1226; E-mail: ; and Mansoor N. Saleh, Aga Khan University Nairobi, 3rd Parklands/Limuru Rd., Nairobi, Kenya. Phone: 254-709-93-1500; E-mail:
| | - Manish R. Patel
- Florida Cancer Specialists/Sarah Cannon Research Institute, Sarasota, Florida
| | - Todd M. Bauer
- Sarah Cannon Research Institute and Tennessee Oncology, Nashville, Tennessee
| | - Sanjay Goel
- Albert Einstein College of Medicine—Montefiore Medical Center, The Bronx, New York
| | | | | | - Ki Y. Chung
- Prisma Health Cancer Institute, Greenville, South Carolina
| | - Jeffrey R. Infante
- Sarah Cannon Research Institute and Tennessee Oncology, Nashville, Tennessee
| | | | | | - David S. Hong
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Judy S. Wang
- Florida Cancer Specialists/Sarah Cannon Research Institute, Sarasota, Florida
| | - Ulrich Steidl
- Albert Einstein College of Medicine—Montefiore Medical Center, The Bronx, New York
| | | | - Gurudatta Naik
- O'Neal Comprehensive Cancer Center at the University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | | | - Manuel Aivado
- Aileron Therapeutics, Inc., Watertown, Massachusetts
| | - Funda Meric-Bernstam
- The University of Texas MD Anderson Cancer Center, Houston, Texas.,Corresponding Authors: Funda Meric-Bernstam, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Houston, TX 77030. Phone: 713-794-1226; E-mail: ; and Mansoor N. Saleh, Aga Khan University Nairobi, 3rd Parklands/Limuru Rd., Nairobi, Kenya. Phone: 254-709-93-1500; E-mail:
| |
Collapse
|
13
|
Strizhak AV, Babii O, Afonin S, Bakanovich I, Pantelejevs T, Xu W, Fowler E, Eapen R, Sharma K, Platonov MO, Hurmach VV, Itzhaki L, Hyvönen M, Ulrich AS, Spring DR, Komarov IV. Diarylethene moiety as an enthalpy-entropy switch: photoisomerizable stapled peptides for modulating p53/MDM2 interaction. Org Biomol Chem 2021; 18:5359-5369. [PMID: 32390036 DOI: 10.1039/d0ob00831a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Analogs of the known inhibitor (peptide pDI) of the p53/MDM2 protein-protein interaction are reported, which are stapled by linkers bearing a photoisomerizable diarylethene moiety. The corresponding photoisomers possess significantly different affinities to the p53-interacting domain of the human MDM2. Apparent dissociation constants are in the picomolar-to-low nanomolar range for those isomers with diarylethene in the "open" configuration, but up to eight times larger for the corresponding "closed" isomers. Spectroscopic, structural, and computational studies showed that the stapling linkers of the peptides contribute to their binding. Calorimetry revealed that the binding of the "closed" isomers is mostly enthalpy-driven, whereas the "open" photoforms bind to the protein stronger due to their increased binding entropy. The results suggest that conformational dynamics of the protein-peptide complexes may explain the differences in the thermodynamic profiles of the binding.
Collapse
Affiliation(s)
- Alexander V Strizhak
- University Chemical Laboratory, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK. and Enamine Ltd, Vul. Chervonotkatska 78, 02094 Kyiv, Ukraine
| | - Oleg Babii
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021 Karlsruhe, Germany.
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021 Karlsruhe, Germany.
| | - Iuliia Bakanovich
- University Chemical Laboratory, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK. and Enamine Ltd, Vul. Chervonotkatska 78, 02094 Kyiv, Ukraine
| | - Teodors Pantelejevs
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA Cambridge, UK
| | - Wenshu Xu
- University Chemical Laboratory, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK.
| | - Elaine Fowler
- University Chemical Laboratory, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK.
| | - Rohan Eapen
- Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1PD Cambridge, UK
| | - Krishna Sharma
- University Chemical Laboratory, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK.
| | | | - Vasyl V Hurmach
- Enamine Ltd, Vul. Chervonotkatska 78, 02094 Kyiv, Ukraine and Taras Shevchenko National University of Kyiv, Vul. Volodymyrska 60, 01601 Kyiv, Ukraine
| | - Laura Itzhaki
- Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1PD Cambridge, UK
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA Cambridge, UK
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021 Karlsruhe, Germany. and Institute of Organic Chemistry (IOC), KIT, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - David R Spring
- University Chemical Laboratory, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK.
| | - Igor V Komarov
- Taras Shevchenko National University of Kyiv, Vul. Volodymyrska 60, 01601 Kyiv, Ukraine and Lumobiotics GmbH, Auer Str. 2, 76227, Karlsruhe, Germany.
| |
Collapse
|
14
|
Pogmore JP, Uehling D, Andrews DW. Pharmacological Targeting of Executioner Proteins: Controlling Life and Death. J Med Chem 2021; 64:5276-5290. [PMID: 33939407 DOI: 10.1021/acs.jmedchem.0c02200] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Small-molecule mediated modulation of protein interactions of Bcl-2 (B-cell lymphoma-2) family proteins was clinically validated in 2015 when Venetoclax, a selective inhibitor of the antiapoptotic protein BCL-2, achieved breakthrough status designation by the FDA for treatment of lymphoid malignancies. Since then, substantial progress has been made in identifying inhibitors of other interactions of antiapoptosis proteins. However, targeting their pro-apoptotic counterparts, the "executioners" BAX, BAK, and BOK that both initiate and commit the cell to dying, has lagged behind. However, recent publications demonstrate that these proteins can be positively or negatively regulated using small molecule tool compounds. The results obtained with these molecules suggest that pharmaceutical regulation of apoptosis will have broad implications that extend beyond activating cell death in cancer. We review recent advances in identifying compounds and their utility in the exogenous control of life and death by regulating executioner proteins, with emphasis on the prototype BAX.
Collapse
Affiliation(s)
- Justin P Pogmore
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1J7, Canada.,Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| | - David Uehling
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario M5G 1M1, Canada
| | - David W Andrews
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1J7, Canada.,Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| |
Collapse
|
15
|
Wang H, Dawber RS, Zhang P, Walko M, Wilson AJ, Wang X. Peptide-based inhibitors of protein-protein interactions: biophysical, structural and cellular consequences of introducing a constraint. Chem Sci 2021; 12:5977-5993. [PMID: 33995995 PMCID: PMC8098664 DOI: 10.1039/d1sc00165e] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/07/2021] [Indexed: 12/19/2022] Open
Abstract
Protein-protein interactions (PPIs) are implicated in the majority of cellular processes by enabling and regulating the function of individual proteins. Thus, PPIs represent high-value, but challenging targets for therapeutic intervention. The development of constrained peptides represents an emerging strategy to generate peptide-based PPI inhibitors, typically mediated by α-helices. The approach can confer significant benefits including enhanced affinity, stability and cellular penetration and is ingrained in the premise that pre-organization simultaneously pays the entropic cost of binding, prevents a peptide from adopting a protease compliant β-strand conformation and shields the hydrophilic amides from the hydrophobic membrane. This conceptual blueprint for the empirical design of peptide-based PPI inhibitors is an exciting and potentially lucrative way to effect successful PPI inhibitor drug-discovery. However, a plethora of more subtle effects may arise from the introduction of a constraint that include changes to binding dynamics, the mode of recognition and molecular properties. In this review, we summarise the influence of inserting constraints on biophysical, conformational, structural and cellular behaviour across a range of constraining chemistries and targets, to highlight the tremendous success that has been achieved with constrained peptides alongside emerging design opportunities and challenges.
Collapse
Affiliation(s)
- Hongshuang Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 5625 Renmin St. Changchun 130022 Jilin China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University Nanjing 210023 Jiangsu China
| | - Robert S Dawber
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Peiyu Zhang
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Martin Walko
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Andrew J Wilson
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 5625 Renmin St. Changchun 130022 Jilin China
- Department of Applied Chemistry and Engineering, University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
16
|
Gray JP, Uddin MN, Chaudhari R, Sutton MN, Yang H, Rask P, Locke H, Engel BJ, Batistatou N, Wang J, Grindel BJ, Bhattacharya P, Gammon ST, Zhang S, Piwnica-Worms D, Kritzer JA, Lu Z, Bast RC, Millward SW. Directed evolution of cyclic peptides for inhibition of autophagy. Chem Sci 2021; 12:3526-3543. [PMID: 34163626 PMCID: PMC8179393 DOI: 10.1039/d0sc03603j] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
In recent decades it has become increasingly clear that induction of autophagy plays an important role in the development of treatment resistance and dormancy in many cancer types. Unfortunately, chloroquine (CQ) and hydroxychloroquine (HCQ), two autophagy inhibitors in clinical trials, suffer from poor pharmacokinetics and high toxicity at therapeutic dosages. This has prompted intense interest in the development of targeted autophagy inhibitors to re-sensitize disease to treatment with minimal impact on normal tissue. We utilized Scanning Unnatural Protease Resistant (SUPR) mRNA display to develop macrocyclic peptides targeting the autophagy protein LC3. The resulting peptides bound LC3A and LC3B-two essential components of the autophagosome maturation machinery-with mid-nanomolar affinities and disrupted protein-protein interactions (PPIs) between LC3 and its binding partners in vitro. The most promising LC3-binding SUPR peptide accessed the cytosol at low micromolar concentrations as measured by chloroalkane penetration assay (CAPA) and inhibited starvation-mediated GFP-LC3 puncta formation in a concentration-dependent manner. LC3-binding SUPR peptides re-sensitized platinum-resistant ovarian cancer cells to cisplatin treatment and triggered accumulation of the adapter protein p62 suggesting decreased autophagic flux through successful disruption of LC3 PPIs in cell culture. In mouse models of metastatic ovarian cancer, treatment with LC3-binding SUPR peptides and carboplatin resulted in almost complete inhibition of tumor growth after four weeks of treatment. These results indicate that SUPR peptide mRNA display can be used to develop cell-penetrating macrocyclic peptides that target and disrupt the autophagic machinery in vitro and in vivo.
Collapse
Affiliation(s)
- Joshua P Gray
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center USA
| | - Md Nasir Uddin
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center USA
| | - Rajan Chaudhari
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center USA
| | - Margie N Sutton
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center USA
| | - Hailing Yang
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center USA
| | - Philip Rask
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center USA
| | - Hannah Locke
- Department of Biology and Biochemistry, University of Houston USA
| | - Brian J Engel
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center USA
| | | | - Jing Wang
- Department of Chemistry, Tufts University USA
| | - Brian J Grindel
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center USA
| | - Pratip Bhattacharya
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center USA
| | - Seth T Gammon
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center USA
| | - Shuxing Zhang
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center USA
| | - David Piwnica-Worms
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center USA
| | | | - Zhen Lu
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center USA
| | - Robert C Bast
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center USA
| | - Steven W Millward
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center USA
| |
Collapse
|
17
|
Bluntzer MTJ, O'Connell J, Baker TS, Michel J, Hulme AN. Designing stapled peptides to inhibit
protein‐protein
interactions: An analysis of successes in a rapidly changing field. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | | | - Julien Michel
- EaStChem School of Chemistry The University of Edinburgh Edinburgh UK
| | - Alison N. Hulme
- EaStChem School of Chemistry The University of Edinburgh Edinburgh UK
| |
Collapse
|
18
|
Assafa TE, Nandi S, Śmiłowicz D, Galazzo L, Teucher M, Elsner C, Pütz S, Bleicken S, Robin AY, Westphal D, Uson I, Stoll R, Czabotar PE, Metzler-Nolte N, Bordignon E. Biophysical Characterization of Pro-apoptotic BimBH3 Peptides Reveals an Unexpected Capacity for Self-Association. Structure 2020; 29:114-124.e3. [PMID: 32966763 DOI: 10.1016/j.str.2020.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/13/2020] [Accepted: 08/29/2020] [Indexed: 01/11/2023]
Abstract
Bcl-2 proteins orchestrate the mitochondrial pathway of apoptosis, pivotal for cell death. Yet, the structural details of the conformational changes of pro- and antiapoptotic proteins and their interactions remain unclear. Pulse dipolar spectroscopy (double electron-electron resonance [DEER], also known as PELDOR) in combination with spin-labeled apoptotic Bcl-2 proteins unveils conformational changes and interactions of each protein player via detection of intra- and inter-protein distances. Here, we present the synthesis and characterization of pro-apoptotic BimBH3 peptides of different lengths carrying cysteines for labeling with nitroxide or gadolinium spin probes. We show by DEER that the length of the peptides modulates their homo-interactions in the absence of other Bcl-2 proteins and solve by X-ray crystallography the structure of a BimBH3 tetramer, revealing the molecular details of the inter-peptide interactions. Finally, we prove that using orthogonal labels and three-channel DEER we can disentangle the Bim-Bim, Bcl-xL-Bcl-xL, and Bim-Bcl-xL interactions in a simplified interactome.
Collapse
Affiliation(s)
- Tufa E Assafa
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Sukhendu Nandi
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Dariusz Śmiłowicz
- Chair of Inorganic Chemistry I - Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Laura Galazzo
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Markus Teucher
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Christina Elsner
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Stefanie Pütz
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Stephanie Bleicken
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Adeline Y Robin
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Dana Westphal
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia; Department of Dermatology, Medical Faculty and University Hospital Dresden, TU Dresden, Dresden, Germany
| | - Isabel Uson
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB-CSIC), Barcelona, Spain; ICREA, Baldiri Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Raphael Stoll
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Peter E Czabotar
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Nils Metzler-Nolte
- Chair of Inorganic Chemistry I - Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Enrica Bordignon
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
19
|
Li X, Chen S, Zhang WD, Hu HG. Stapled Helical Peptides Bearing Different Anchoring Residues. Chem Rev 2020; 120:10079-10144. [DOI: 10.1021/acs.chemrev.0c00532] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiang Li
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Insititute of Translational Medicine, Shanghai University, Shanghai, China
| | - Si Chen
- School of Medicine, Shanghai University, Shanghai, China
| | - Wei-Dong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Gang Hu
- Insititute of Translational Medicine, Shanghai University, Shanghai, China
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
20
|
Yoo DY, Barros SA, Brown GC, Rabot C, Bar-Sagi D, Arora PS. Macropinocytosis as a Key Determinant of Peptidomimetic Uptake in Cancer Cells. J Am Chem Soc 2020; 142:14461-14471. [PMID: 32786217 DOI: 10.1021/jacs.0c02109] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Peptides and peptidomimetics represent the middle space between small molecules and large proteins-they retain the relatively small size and synthetic accessibility of small molecules while providing high binding specificity for biomolecular partners typically observed with proteins. During the course of our efforts to target intracellular protein-protein interactions in cancer, we observed that the cellular uptake of peptides is critically determined by the cell line-specifically, we noted that peptides show better uptake in cancer cells with enhanced macropinocytic indices. Here, we describe the results of our analysis of cellular penetration by different classes of conformationally stabilized peptides. We tested the uptake of linear peptides, peptide macrocycles, stabilized helices, β-hairpin peptides, and cross-linked helix dimers in 11 different cell lines. Efficient uptake of these conformationally defined constructs directly correlated with the macropinocytic activity of each cell line: high uptake of compounds was observed in cells with mutations in certain signaling pathways. Significantly, the study shows that constrained peptides follow the same uptake mechanism as proteins in macropinocytic cells, but unlike proteins, peptide mimics can be readily designed to resist denaturation and proteolytic degradation. Our findings expand the current understanding of cellular uptake in cancer cells by designed peptidomimetics and suggest that cancer cells with certain mutations are suitable mediums for the study of biological pathways with peptide leads.
Collapse
Affiliation(s)
- Daniel Y Yoo
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Stephanie A Barros
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Gordon C Brown
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Christian Rabot
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Dafna Bar-Sagi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, United States
| | - Paramjit S Arora
- Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
21
|
Kannan S, Aronica PGA, Ng S, Gek Lian DT, Frosi Y, Chee S, Shimin J, Yuen TY, Sadruddin A, Kaan HYK, Chandramohan A, Wong JH, Tan YS, Chang ZW, Ferrer-Gago FJ, Arumugam P, Han Y, Chen S, Rénia L, Brown CJ, Johannes CW, Henry B, Lane DP, Sawyer TK, Verma CS, Partridge AW. Macrocyclization of an all-d linear α-helical peptide imparts cellular permeability. Chem Sci 2020; 11:5577-5591. [PMID: 32874502 PMCID: PMC7441689 DOI: 10.1039/c9sc06383h] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/08/2020] [Indexed: 12/13/2022] Open
Abstract
Peptide-based molecules hold great potential as targeted inhibitors of intracellular protein-protein interactions (PPIs). Indeed, the vast diversity of chemical space conferred through their primary, secondary and tertiary structures allows these molecules to be applied to targets that are typically deemed intractable via small molecules. However, the development of peptide therapeutics has been hindered by their limited conformational stability, proteolytic sensitivity and cell permeability. Several contemporary peptide design strategies are aimed at addressing these issues. Strategic macrocyclization through optimally placed chemical braces such as olefinic hydrocarbon crosslinks, commonly referred to as staples, may improve peptide properties by (i) restricting conformational freedom to improve target affinities, (ii) improving proteolytic resistance, and (iii) enhancing cell permeability. As a second strategy, molecules constructed entirely from d-amino acids are hyper-resistant to proteolytic cleavage, but generally lack conformational stability and membrane permeability. Since neither approach is a complete solution, we have combined these strategies to identify the first examples of all-d α-helical stapled and stitched peptides. As a template, we used a recently reported all d-linear peptide that is a potent inhibitor of the p53-Mdm2 interaction, but is devoid of cellular activity. To design both stapled and stitched all-d-peptide analogues, we used computational modelling to predict optimal staple placement. The resultant novel macrocyclic all d-peptide was determined to exhibit increased α-helicity, improved target binding, complete proteolytic stability and, most notably, cellular activity.
Collapse
Affiliation(s)
- Srinivasaraghavan Kannan
- Bioinformatics Institute , Agency for Science, Technology and Research (ASTAR) , 30 Biopolis Street, #07-01 Matrix , Singapore 138671 , Singapore . ; ; ; Tel: +65 6478 8353 ; Tel: +65 6478 8273
| | - Pietro G A Aronica
- Bioinformatics Institute , Agency for Science, Technology and Research (ASTAR) , 30 Biopolis Street, #07-01 Matrix , Singapore 138671 , Singapore . ; ; ; Tel: +65 6478 8353 ; Tel: +65 6478 8273
| | - Simon Ng
- p53 Laboratory , Agency for Science, Technology and Research (ASTAR) , 8A Biomedical Grove, #06-04/05, Neuros/Immunos , Singapore 138648
| | - Dawn Thean Gek Lian
- p53 Laboratory , Agency for Science, Technology and Research (ASTAR) , 8A Biomedical Grove, #06-04/05, Neuros/Immunos , Singapore 138648
| | - Yuri Frosi
- p53 Laboratory , Agency for Science, Technology and Research (ASTAR) , 8A Biomedical Grove, #06-04/05, Neuros/Immunos , Singapore 138648
| | - Sharon Chee
- p53 Laboratory , Agency for Science, Technology and Research (ASTAR) , 8A Biomedical Grove, #06-04/05, Neuros/Immunos , Singapore 138648
| | - Jiang Shimin
- p53 Laboratory , Agency for Science, Technology and Research (ASTAR) , 8A Biomedical Grove, #06-04/05, Neuros/Immunos , Singapore 138648
| | - Tsz Ying Yuen
- Institute of Chemical & Engineering Science , Agency for Science, Technology and Research (ASTAR) , 8 Biomedical Grove, #07, Neuros Building , Singapore 138665
| | - Ahmad Sadruddin
- MSD International , Translation Medicine Research Centre , 8 Biomedical Grove, #04-01/05 Neuros Building , Singapore , 138665 , Singapore .
| | - Hung Yi Kristal Kaan
- MSD International , Translation Medicine Research Centre , 8 Biomedical Grove, #04-01/05 Neuros Building , Singapore , 138665 , Singapore .
| | - Arun Chandramohan
- MSD International , Translation Medicine Research Centre , 8 Biomedical Grove, #04-01/05 Neuros Building , Singapore , 138665 , Singapore .
| | - Jin Huei Wong
- Bioinformatics Institute , Agency for Science, Technology and Research (ASTAR) , 30 Biopolis Street, #07-01 Matrix , Singapore 138671 , Singapore . ; ; ; Tel: +65 6478 8353 ; Tel: +65 6478 8273
| | - Yaw Sing Tan
- Bioinformatics Institute , Agency for Science, Technology and Research (ASTAR) , 30 Biopolis Street, #07-01 Matrix , Singapore 138671 , Singapore . ; ; ; Tel: +65 6478 8353 ; Tel: +65 6478 8273
| | - Zi Wei Chang
- Singapore Immunology Network (SIgN) , Agency for Science, Technology and Research (ASTAR) , 8A Biomedical Grove, #03-06, Immunos , Singapore 138648
| | - Fernando J Ferrer-Gago
- p53 Laboratory , Agency for Science, Technology and Research (ASTAR) , 8A Biomedical Grove, #06-04/05, Neuros/Immunos , Singapore 138648
| | - Prakash Arumugam
- Bioinformatics Institute , Agency for Science, Technology and Research (ASTAR) , 30 Biopolis Street, #07-01 Matrix , Singapore 138671 , Singapore . ; ; ; Tel: +65 6478 8353 ; Tel: +65 6478 8273
| | - Yi Han
- Merck & Co., Inc. , Kenilworth , New Jersey , USA
| | - Shiying Chen
- Merck & Co., Inc. , Kenilworth , New Jersey , USA
| | - Laurent Rénia
- Singapore Immunology Network (SIgN) , Agency for Science, Technology and Research (ASTAR) , 8A Biomedical Grove, #03-06, Immunos , Singapore 138648
| | - Christopher J Brown
- p53 Laboratory , Agency for Science, Technology and Research (ASTAR) , 8A Biomedical Grove, #06-04/05, Neuros/Immunos , Singapore 138648
| | - Charles W Johannes
- Institute of Chemical & Engineering Science , Agency for Science, Technology and Research (ASTAR) , 8 Biomedical Grove, #07, Neuros Building , Singapore 138665
| | - Brian Henry
- MSD International , Translation Medicine Research Centre , 8 Biomedical Grove, #04-01/05 Neuros Building , Singapore , 138665 , Singapore .
| | - David P Lane
- p53 Laboratory , Agency for Science, Technology and Research (ASTAR) , 8A Biomedical Grove, #06-04/05, Neuros/Immunos , Singapore 138648
| | | | - Chandra S Verma
- Bioinformatics Institute , Agency for Science, Technology and Research (ASTAR) , 30 Biopolis Street, #07-01 Matrix , Singapore 138671 , Singapore . ; ; ; Tel: +65 6478 8353 ; Tel: +65 6478 8273
- School of Biological Sciences , Nanyang Technological University , 60 Nanyang Drive , Singapore 637551
- Department of Biological Sciences , National University of Singapore , 14 Science Drive 4 , Singapore 117543
| | - Anthony W Partridge
- MSD International , Translation Medicine Research Centre , 8 Biomedical Grove, #04-01/05 Neuros Building , Singapore , 138665 , Singapore .
| |
Collapse
|
22
|
Moldoveanu T, Czabotar PE. BAX, BAK, and BOK: A Coming of Age for the BCL-2 Family Effector Proteins. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a036319. [PMID: 31570337 DOI: 10.1101/cshperspect.a036319] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The BCL-2 family of proteins control a key checkpoint in apoptosis, that of mitochondrial outer membrane permeabilization or, simply, mitochondrial poration. The family consists of three subgroups: BH3-only initiators that respond to apoptotic stimuli; antiapoptotic guardians that protect against cell death; and the membrane permeabilizing effectors BAX, BAK, and BOK. On activation, effector proteins are converted from inert monomers into membrane permeabilizing oligomers. For many years, this process has been poorly understood at the molecular level, but a number of recent advances have provided important insights. We review the regulation of these effectors, their activation, subsequent conformational changes, and the ensuing oligomerization events that enable mitochondrial poration, which initiates apoptosis through release of key signaling factors such as cytochrome c We highlight the mysteries that remain in understanding these important proteins in an endeavor to provide a comprehensive picture of where the field currently sits and where it is moving toward.
Collapse
Affiliation(s)
- Tudor Moldoveanu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.,Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis Tennessee 38105, USA
| | - Peter E Czabotar
- Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
23
|
Baggio C, Udompholkul P, Gambini L, Jossart J, Salem AF, Håkansson M, Perry JJP, Pellecchia M. N-locking stabilization of covalent helical peptides: Application to Bfl-1 antagonists. Chem Biol Drug Des 2020; 95:412-426. [PMID: 31898401 DOI: 10.1111/cbdd.13661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 12/15/2022]
Abstract
Recently, it was reported that tetrapeptides cyclized via lactam bond between the amino terminus and a glutamic residue in position 4 (termed here N-lock) can nucleate helix formation in longer peptides. We applied such strategy to derive N-locked covalent BH3 peptides that were designed to selectively target the anti-apoptotic protein Bfl-1. The resulting agents were soluble in aqueous buffer and displayed a remarkable (low nanomolar) affinity for Bfl-1 and cellular activity. The crystal structure of the complex between such N-locked covalent peptide and Bfl-1 provided insights on the geometry of the N-locking strategy and of the covalent bond between the agent and Bfl-1.
Collapse
Affiliation(s)
- Carlo Baggio
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - Parima Udompholkul
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - Luca Gambini
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - Jennifer Jossart
- Department of Biochemistry, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA, USA
| | - Ahmed F Salem
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| | | | - J Jefferson P Perry
- Department of Biochemistry, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA, USA
| | - Maurizio Pellecchia
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
24
|
Abstract
Approximately 75% of all disease-relevant human proteins, including those involved in intracellular protein-protein interactions (PPIs), are undruggable with the current drug modalities (i.e., small molecules and biologics). Macrocyclic peptides provide a potential solution to these undruggable targets because their larger sizes (relative to conventional small molecules) endow them the capability of binding to flat PPI interfaces with antibody-like affinity and specificity. Powerful combinatorial library technologies have been developed to routinely identify cyclic peptides as potent, specific inhibitors against proteins including PPI targets. However, with the exception of a very small set of sequences, the vast majority of cyclic peptides are impermeable to the cell membrane, preventing their application against intracellular targets. This Review examines common structural features that render most cyclic peptides membrane impermeable, as well as the unique features that allow the minority of sequences to enter the cell interior by passive diffusion, endocytosis/endosomal escape, or other mechanisms. We also present the current state of knowledge about the molecular mechanisms of cell penetration, the various strategies for designing cell-permeable, biologically active cyclic peptides against intracellular targets, and the assay methods available to quantify their cell-permeability.
Collapse
Affiliation(s)
- Patrick G. Dougherty
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210, United States
| | - Ashweta Sahni
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210, United States
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
25
|
Gallagher EE, Song JM, Menon A, Mishra LD, Chmiel AF, Garner AL. Consideration of Binding Kinetics in the Design of Stapled Peptide Mimics of the Disordered Proteins Eukaryotic Translation Initiation Factor 4E-Binding Protein 1 and Eukaryotic Translation Initiation Factor 4G. J Med Chem 2019; 62:4967-4978. [PMID: 31033289 PMCID: PMC6679956 DOI: 10.1021/acs.jmedchem.9b00068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein disorder plays a crucial role in signal transduction and is key for many cellular processes including transcription, translation, and cell cycle. Within the intrinsically disordered protein interactome, the α-helix is commonly used for binding, which is induced via a disorder-to-order transition. Because the targeting of protein-protein interactions (PPIs) remains an important challenge in medicinal chemistry, efforts have been made to mimic this secondary structure for rational inhibitor design through the use of stapled peptides. Cap-dependent mRNA translation is regulated by two disordered proteins, 4E-BP1 and eIF4G, that inhibit or stimulate the activity of the m7G cap-binding translation initiation factor, eIF4E, respectively. Both use an α-helical motif for eIF4E binding, warranting the investigation of stapled peptide mimics for manipulating eIF4E PPIs. Herein, we describe our efforts toward this goal, resulting in the synthesis of a cell-active stapled peptide for further development in manipulating aberrant cap-dependent translation in human diseases.
Collapse
Affiliation(s)
- Erin E Gallagher
- Department of Medicinal Chemistry, College of Pharmacy , University of Michigan , 1600 Huron Parkway, NCRC B520 , Ann Arbor , Michigan 48109 , United States
| | - James M Song
- Program in Chemical Biology , University of Michigan , 210 Washtenaw Avenue , Ann Arbor , Michigan 48109 , United States
| | - Arya Menon
- Department of Medicinal Chemistry, College of Pharmacy , University of Michigan , 1600 Huron Parkway, NCRC B520 , Ann Arbor , Michigan 48109 , United States
| | - Lauren D Mishra
- Department of Medicinal Chemistry, College of Pharmacy , University of Michigan , 1600 Huron Parkway, NCRC B520 , Ann Arbor , Michigan 48109 , United States
| | - Alyah F Chmiel
- Department of Medicinal Chemistry, College of Pharmacy , University of Michigan , 1600 Huron Parkway, NCRC B520 , Ann Arbor , Michigan 48109 , United States
| | - Amanda L Garner
- Department of Medicinal Chemistry, College of Pharmacy , University of Michigan , 1600 Huron Parkway, NCRC B520 , Ann Arbor , Michigan 48109 , United States
- Program in Chemical Biology , University of Michigan , 210 Washtenaw Avenue , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
26
|
The Structural Biology of Bcl-x L. Int J Mol Sci 2019; 20:ijms20092234. [PMID: 31067648 PMCID: PMC6540150 DOI: 10.3390/ijms20092234] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 01/12/2023] Open
Abstract
Interactions between the pro-survival and pro-apoptotic members of the Bcl-2 family of proteins dictate whether a cell lives or dies. Much of our knowledge of the molecular details of these interactions has come from biochemical and structural studies on the pro-survival protein Bcl-xL. The first high-resolution structure of any Bcl-2 family member was of Bcl-xL, which revealed the conserved topology amongst all family members. Subsequent structures of Bcl-xL complexes with pro-apoptotic ligands demonstrated the general features of all pro-survival:pro-apoptotic complexes. Structural studies involving Bcl-xL were also the basis for the discovery of the first small-molecule pro-survival protein inhibitors, leading ultimately to the development of a new class of drugs now successfully used for cancer treatment in the clinic. This article will review our current knowledge of the structural biology of Bcl-xL and how this has impacted our understanding of the molecular details of the intrinsic apoptotic pathway.
Collapse
|
27
|
Guarracino DA, Riordan JA, Barreto GM, Oldfield AL, Kouba CM, Agrinsoni D. Macrocyclic Control in Helix Mimetics. Chem Rev 2019; 119:9915-9949. [DOI: 10.1021/acs.chemrev.8b00623] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Danielle A. Guarracino
- Department of Chemistry, The College of New Jersey, Ewing, New Jersey 08628, United States
| | - Jacob A. Riordan
- Department of Chemistry, The College of New Jersey, Ewing, New Jersey 08628, United States
| | - Gianna M. Barreto
- Department of Chemistry, The College of New Jersey, Ewing, New Jersey 08628, United States
| | - Alexis L. Oldfield
- Department of Chemistry, The College of New Jersey, Ewing, New Jersey 08628, United States
| | - Christopher M. Kouba
- Department of Chemistry, The College of New Jersey, Ewing, New Jersey 08628, United States
| | - Desiree Agrinsoni
- Department of Chemistry, The College of New Jersey, Ewing, New Jersey 08628, United States
| |
Collapse
|
28
|
Chen Y, Liang J, Li T, Lin P, Zhao Y, Wu C. Interchain doubly-bridged α-helical peptides for the development of protein binders. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
Dengler MA, Robin AY, Gibson L, Li MX, Sandow JJ, Iyer S, Webb AI, Westphal D, Dewson G, Adams JM. BAX Activation: Mutations Near Its Proposed Non-canonical BH3 Binding Site Reveal Allosteric Changes Controlling Mitochondrial Association. Cell Rep 2019; 27:359-373.e6. [DOI: 10.1016/j.celrep.2019.03.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/13/2019] [Accepted: 03/12/2019] [Indexed: 12/26/2022] Open
|
30
|
Kamal AAM, Habib M, Haupenthal J, Hartmann RW, Empting M. Hit evaluation of an α-helical peptide: Ala-scan, truncation and sidechain-to-sidechain macrocyclization of an RNA polymerase Inhibitor. Biol Chem 2019; 400:333-342. [PMID: 30657738 DOI: 10.1515/hsz-2018-0333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/11/2019] [Indexed: 12/12/2022]
Abstract
RNA polymerase (RNAP) remains a relatively underexplored target with only rifampicin and fidaxomicin in clinical use. Hence, the concurrent rise in bacterial resistance rate urges the search for novel RNAP inhibitors with a novel mode of action. In this work, we investigated the impact of several systematic modifications including sidechain-to-sidechain macrocylization in the α-helical content and biological activity of a previously identified inhibitory sigma factor fragment. Ala-scan results, peptide truncation from both the N- and C-terminus and modifications inspired by other RNAP inhibitors revealed novel structure activity relationships but did not yield a superior sequence. Additionally, four insertion points for non-natural amino acids bearing side chains required for macrocylization were explored. Linear precursors showed improved stabilization of the α-helical content compared to the original sequence as demonstrated by circular dichroism (CD) spectroscopy. However, this increase in α-helicity did not translate into improved biological activity. Instead, complete abolishment of RNAP inhibitory activity occurred. We hypothesize three possible reasons for such a discrepancy and offer the basis for further optimization efforts for this peptidic RNAP inhibitor.
Collapse
Affiliation(s)
- Ahmed Ashraf Moustafa Kamal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization, Campus E8.1, D-66123 Saarbrücken, Germany
| | - Monica Habib
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt.,Institute of Molecular Virology, Ulm University Medical Center, D-89081 Ulm, Germany
| | - Joerg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization, Campus E8.1, D-66123 Saarbrücken, Germany
| | - Rolf Wolfgang Hartmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization, Campus E8.1, D-66123 Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Campus E8.1, D-66123 Saarbrücken, Germany
| | - Martin Empting
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization, Campus E8.1, D-66123 Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Campus E8.1, D-66123 Saarbrücken, Germany
| |
Collapse
|
31
|
Ali AM, Atmaj J, Van Oosterwijk N, Groves MR, Dömling A. Stapled Peptides Inhibitors: A New Window for Target Drug Discovery. Comput Struct Biotechnol J 2019; 17:263-281. [PMID: 30867891 PMCID: PMC6396041 DOI: 10.1016/j.csbj.2019.01.012] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/11/2022] Open
Abstract
Protein-protein interaction (PPI) is a hot topic in clinical research as protein networking has a major impact in human disease. Such PPIs are potential drugs targets, leading to the need to inhibit/block specific PPIs. While small molecule inhibitors have had some success and reached clinical trials, they have generally failed to address the flat and large nature of PPI surfaces. As a result, larger biologics were developed for PPI surfaces and they have successfully targeted PPIs located outside the cell. However, biologics have low bioavailability and cannot reach intracellular targets. A novel class -hydrocarbon-stapled α-helical peptides that are synthetic mini-proteins locked into their bioactive structure through site-specific introduction of a chemical linker- has shown promise. Stapled peptides show an ability to inhibit intracellular PPIs that previously have been intractable with traditional small molecule or biologics, suggesting that they offer a novel therapeutic modality. In this review, we highlight what stapling adds to natural-mimicking peptides, describe the revolution of synthetic chemistry techniques and how current drug discovery approaches have been adapted to stabilize active peptide conformations, including ring-closing metathesis (RCM), lactamisation, cycloadditions and reversible reactions. We provide an overview on the available stapled peptide high-resolution structures in the protein data bank, with four selected structures discussed in details due to remarkable interactions of their staple with the target surface. We believe that stapled peptides are promising drug candidates and open the doors for peptide therapeutics to reach currently "undruggable" space.
Collapse
Affiliation(s)
| | | | | | | | - Alexander Dömling
- Department of Drug Design, University of Groningen, Antonius Deusinglaan1, 9700AD Groningen, the Netherlands
| |
Collapse
|
32
|
Lee Y, Im H, Das S, Oh M, Lee JH, Ham S, Lim HS. Bridged α-helix mimetic small molecules. Chem Commun (Camb) 2019; 55:13311-13314. [DOI: 10.1039/c9cc03627j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Herein, we report a strategy for generating conformationally restricted α-helix mimetic small molecules by introducing covalent bridges that limit rotation about the central axis of α-helix mimetics.
Collapse
Affiliation(s)
- Yeongju Lee
- Department of Chemistry and Division of Advanced Material Science
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
- South Korea
| | - Haeri Im
- Department of Chemistry
- Sookmyung Women's University
- Seoul 04310
- South Korea
| | - Sanket Das
- Department of Chemistry and Division of Advanced Material Science
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
- South Korea
| | - Misook Oh
- Department of Chemistry and Division of Advanced Material Science
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
- South Korea
| | - Ji Hoon Lee
- New Drug Development Centre
- Daegu Gyeongbuk Medical Innovation Foundation
- Daegu 41061
- South Korea
| | - Sihyun Ham
- Department of Chemistry
- Sookmyung Women's University
- Seoul 04310
- South Korea
| | - Hyun-Suk Lim
- Department of Chemistry and Division of Advanced Material Science
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
- South Korea
| |
Collapse
|
33
|
Ensemble Properties of Bax Determine Its Function. Structure 2018; 26:1346-1359.e5. [PMID: 30122452 DOI: 10.1016/j.str.2018.07.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 05/31/2018] [Accepted: 07/21/2018] [Indexed: 11/20/2022]
Abstract
BAX and BAK are essential mediators of intrinsic apoptosis that permeabilize the mitochondrial outer membrane. BAX activation requires its translocation from cytosol to mitochondria where conformational changes cause its oligomerization. To better understand the critical step of translocation, we examined its blockade by mutation near the C terminus (P168G) or by antibody binding near the N terminus. Similarities in the crystal structures of wild-type and BAX P168G but significant other differences suggest that cytosolic BAX exists as an ensemble of conformers, and that the distribution of conformers within the ensemble determines the different functions of wild-type and mutant proteins. We also describe the structure of BAX in complex with an antibody, 3C10, that inhibits cytosolic BAX by limiting exposure of the membrane-associating helix α9, as does the P168G mutation. Our data for both means of BAX inhibition argue for an allosteric model of BAX regulation that derives from properties of the ensemble of conformers.
Collapse
|
34
|
Wegener KL, McGrath AE, Dixon NE, Oakley AJ, Scanlon DB, Abell AD, Bruning JB. Rational Design of a 3 10 -Helical PIP-Box Mimetic Targeting PCNA, the Human Sliding Clamp. Chemistry 2018; 24:11325-11331. [PMID: 29917264 DOI: 10.1002/chem.201801734] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/17/2018] [Indexed: 12/29/2022]
Abstract
The human sliding clamp (PCNA) controls access to DNA for many proteins involved in DNA replication and repair. Proteins are recruited to the PCNA surface by means of a short, conserved peptide motif known as the PCNA-interacting protein box (PIP-box). Inhibitors of these essential protein-protein interactions may be useful as cancer therapeutics by disrupting DNA replication and repair in these highly proliferative cells. PIP-box peptide mimetics have been identified as a potentially rapid route to potent PCNA inhibitors. Here we describe the rational design and synthesis of the first PCNA peptidomimetic ligands, based on the high affinity PIP-box sequence from the natural PCNA inhibitor p21. These mimetics incorporate covalent i,i+4 side-chain/side-chain lactam linkages of different lengths, designed to constrain the peptides into the 310 -helical structure required for PCNA binding. NMR studies confirmed that while the unmodified p21 peptide had little defined structure in solution, mimetic ACR2 pre-organized into 310 -helical structure prior to interaction with PCNA. ACR2 displayed higher affinity binding than most known PIP-box peptides, and retains the native PCNA binding mode, as observed in the co-crystal structure of ACR2 bound to PCNA. This study offers a promising new strategy for PCNA inhibitor design for use as anti-cancer therapeutics.
Collapse
Affiliation(s)
- Kate L Wegener
- Institute for Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, South Australia, 5005, Australia
| | - Amy E McGrath
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, NSW, 2522, Australia
| | - Nicholas E Dixon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, NSW, 2522, Australia
| | - Aaron J Oakley
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, NSW, 2522, Australia
| | - Denis B Scanlon
- Department of Chemistry, The University of Adelaide, South Australia, 5005, Australia
| | - Andrew D Abell
- Institute for Photonics and Advanced Sensing (IPAS), Department of Chemistry, and the Centre for Nanoscale BioPhotonics, The University of Adelaide, South Australia, 5005, Australia
| | - John B Bruning
- Institute for Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, South Australia, 5005, Australia
| |
Collapse
|
35
|
Edlich F. BCL-2 proteins and apoptosis: Recent insights and unknowns. Biochem Biophys Res Commun 2018; 500:26-34. [DOI: 10.1016/j.bbrc.2017.06.190] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/30/2017] [Indexed: 01/08/2023]
|
36
|
Iegre J, Ahmed NS, Gaynord JS, Wu Y, Herlihy KM, Tan YS, Lopes-Pires ME, Jha R, Lau YH, Sore HF, Verma C, O' Donovan DH, Pugh N, Spring DR. Stapled peptides as a new technology to investigate protein-protein interactions in human platelets. Chem Sci 2018; 9:4638-4643. [PMID: 29899957 PMCID: PMC5969508 DOI: 10.1039/c8sc00284c] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/23/2018] [Indexed: 12/14/2022] Open
Abstract
We describe the first application of stapled peptides in human platelets. Bim BH3 stapled peptides are used to overcome the limitations of traditional methods and uncover a new role for Bim in platelet activation.
Platelets are blood cells with numerous crucial pathophysiological roles in hemostasis, cardiovascular thrombotic events and cancer metastasis. Platelet activation requires the engagement of intracellular signalling pathways that involve protein–protein interactions (PPIs). A better understanding of these pathways is therefore crucial for the development of selective anti-platelet drugs. New strategies for studying PPIs in human platelets are required to overcome limitations associated with conventional platelet research methods. For example, small molecule inhibitors can lack selectivity and are often difficult to design and synthesise. Additionally, development of transgenic animal models is costly and time-consuming and conventional recombinant techniques are ineffective due to the lack of a nucleus in platelets. Herein, we describe the generation of a library of novel, functionalised stapled peptides and their first application in the investigation of platelet PPIs. Moreover, the use of platelet-permeable stapled Bim BH3 peptides confirms the part of Bim in phosphatidyl-serine (PS) exposure and reveals a role for the Bim protein in platelet activatory processes. Our work demonstrates that functionalised stapled peptides are a complementary alternative to conventional platelet research methods, and could make a significant contribution to the understanding of platelet signalling pathways and hence to the development of anti-platelet drugs.
Collapse
Affiliation(s)
- Jessica Iegre
- Department of Chemistry , University of Cambridge , CB2 1EW , UK .
| | - Niaz S Ahmed
- Department of Biomedical and Forensic Sciences , Anglia Ruskin University , CB1 1PT , UK .
| | | | - Yuteng Wu
- Department of Chemistry , University of Cambridge , CB2 1EW , UK .
| | - Kara M Herlihy
- Discovery Sciences , IMED Biotech Unit , AstraZeneca , Cambridge , UK
| | - Yaw Sing Tan
- Bioinformatics Institute , Agency for Science, Technology and Research (ASTAR) , 30 Biopolis Street, #07-01 Matrix , 13867 , Singapore
| | - Maria E Lopes-Pires
- Department of Biomedical and Forensic Sciences , Anglia Ruskin University , CB1 1PT , UK .
| | - Rupam Jha
- Discovery Sciences , IMED Biotech Unit , AstraZeneca , Cambridge , UK
| | - Yu Heng Lau
- Department of Chemistry , University of Cambridge , CB2 1EW , UK . .,School of Chemistry , The University of Sydney , NSW 2006 , Australia
| | - Hannah F Sore
- Department of Chemistry , University of Cambridge , CB2 1EW , UK .
| | - Chandra Verma
- Bioinformatics Institute , Agency for Science, Technology and Research (ASTAR) , 30 Biopolis Street, #07-01 Matrix , 13867 , Singapore.,Department of Biological Sciences , National University of Singapore , 14 Science Drive 4 , Singapore 117543.,School of Biological Sciences , Nanyang Technological University , 60 Nanyang Drive , Singapore 637551
| | | | - Nicholas Pugh
- Department of Biomedical and Forensic Sciences , Anglia Ruskin University , CB1 1PT , UK .
| | - David R Spring
- Department of Chemistry , University of Cambridge , CB2 1EW , UK .
| |
Collapse
|
37
|
Tian Y, Jiang Y, Li J, Wang D, Zhao H, Li Z. Effect of Stapling Architecture on Physiochemical Properties and Cell Permeability of Stapled α-Helical Peptides: A Comparative Study. Chembiochem 2017; 18:2087-2093. [DOI: 10.1002/cbic.201700352] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Yuan Tian
- Laboratory of Cytophysiology; Key Laboratory of Chemical Genomics; Peking University Shenzhen Graduate School; Shenzhen 518055 China
- School of Life Science and Engineering; Southwest Jiaotong University; Chengdu 611756 China
| | - Yanhong Jiang
- Laboratory of Cytophysiology; Key Laboratory of Chemical Genomics; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| | - Jingxu Li
- Laboratory of Cytophysiology; Key Laboratory of Chemical Genomics; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| | - Dongyuan Wang
- Laboratory of Cytophysiology; Key Laboratory of Chemical Genomics; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| | - Hui Zhao
- Laboratory of Cytophysiology; Key Laboratory of Chemical Genomics; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| | - Zigang Li
- Laboratory of Cytophysiology; Key Laboratory of Chemical Genomics; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| |
Collapse
|
38
|
Valeur E, Guéret SM, Adihou H, Gopalakrishnan R, Lemurell M, Waldmann H, Grossmann TN, Plowright AT. New Modalities for Challenging Targets in Drug Discovery. Angew Chem Int Ed Engl 2017; 56:10294-10323. [PMID: 28186380 DOI: 10.1002/anie.201611914] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/31/2017] [Indexed: 12/11/2022]
Abstract
Our ever-increasing understanding of biological systems is providing a range of exciting novel biological targets, whose modulation may enable novel therapeutic options for many diseases. These targets include protein-protein and protein-nucleic acid interactions, which are, however, often refractory to classical small-molecule approaches. Other types of molecules, or modalities, are therefore required to address these targets, which has led several academic research groups and pharmaceutical companies to increasingly use the concept of so-called "new modalities". This Review defines for the first time the scope of this term, which includes novel peptidic scaffolds, oligonucleotides, hybrids, molecular conjugates, as well as new uses of classical small molecules. We provide the most representative examples of these modalities to target large binding surface areas such as those found in protein-protein interactions and for biological processes at the center of cell regulation.
Collapse
Affiliation(s)
- Eric Valeur
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - Stéphanie M Guéret
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden.,AstraZeneca MPI Satellite Unit, Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany
| | - Hélène Adihou
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden.,AstraZeneca MPI Satellite Unit, Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany
| | - Ranganath Gopalakrishnan
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden.,AstraZeneca MPI Satellite Unit, Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany
| | - Malin Lemurell
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - Herbert Waldmann
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany.,Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Germany
| | - Tom N Grossmann
- Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany.,Department of Chemistry & Pharmaceutical Sciences, VU University Amsterdam, The Netherlands
| | - Alleyn T Plowright
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| |
Collapse
|
39
|
Valeur E, Guéret SM, Adihou H, Gopalakrishnan R, Lemurell M, Waldmann H, Grossmann TN, Plowright AT. Neue Modalitäten für schwierige Zielstrukturen in der Wirkstoffentwicklung. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611914] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Eric Valeur
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
| | - Stéphanie M. Guéret
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
- AstraZeneca MPI Satellite Unit; Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
| | - Hélène Adihou
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
- AstraZeneca MPI Satellite Unit; Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
| | - Ranganath Gopalakrishnan
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
- AstraZeneca MPI Satellite Unit; Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
| | - Malin Lemurell
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
| | - Herbert Waldmann
- Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
- Fakultät für Chemie and Chemische Biologie; Technische Universität Dortmund; Deutschland
| | - Tom N. Grossmann
- Chemical Genomics Centre der Max-Planck-Gesellschaft; Dortmund Deutschland
- Department of Chemistry & Pharmaceutical Sciences; VU University Amsterdam; Niederlande
| | - Alleyn T. Plowright
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
| |
Collapse
|
40
|
Zhang CL, Liu S, Liu XC, Gao JM, Wang SL. Discovery of novel inhibitors of anti-apoptotic Bcl-2 proteins derived from Bim BH3 domain. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
41
|
Grison CM, Burslem GM, Miles JA, Pilsl LKA, Yeo DJ, Imani Z, Warriner SL, Webb ME, Wilson AJ. Double quick, double click reversible peptide "stapling". Chem Sci 2017; 8:5166-5171. [PMID: 28970902 PMCID: PMC5618791 DOI: 10.1039/c7sc01342f] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/11/2017] [Indexed: 12/23/2022] Open
Abstract
A versatile, rapid and reversible approach to constrain peptides in a bioactive helical conformation and bearing a functional handle for inhibition of protein–protein interactions is described.
The development of constrained peptides for inhibition of protein–protein interactions is an emerging strategy in chemical biology and drug discovery. This manuscript introduces a versatile, rapid and reversible approach to constrain peptides in a bioactive helical conformation using BID and RNase S peptides as models. Dibromomaleimide is used to constrain BID and RNase S peptide sequence variants bearing cysteine (Cys) or homocysteine (hCys) amino acids spaced at i and i + 4 positions by double substitution. The constraint can be readily removed by displacement of the maleimide using excess thiol. This new constraining methodology results in enhanced α-helical conformation (BID and RNase S peptide) as demonstrated by circular dichroism and molecular dynamics simulations, resistance to proteolysis (BID) as demonstrated by trypsin proteolysis experiments and retained or enhanced potency of inhibition for Bcl-2 family protein–protein interactions (BID), or greater capability to restore the hydrolytic activity of the RNAse S protein (RNase S peptide). Finally, use of a dibromomaleimide functionalized with an alkyne permits further divergent functionalization through alkyne–azide cycloaddition chemistry on the constrained peptide with fluorescein, oligoethylene glycol or biotin groups to facilitate biophysical and cellular analyses. Hence this methodology may extend the scope and accessibility of peptide stapling.
Collapse
Affiliation(s)
- Claire M Grison
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre For Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - George M Burslem
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre For Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Jennifer A Miles
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre For Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Ludwig K A Pilsl
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre For Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - David J Yeo
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre For Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Zeynab Imani
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre For Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Stuart L Warriner
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre For Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Michael E Webb
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre For Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Andrew J Wilson
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre For Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| |
Collapse
|
42
|
Enhancing Specific Disruption of Intracellular Protein Complexes by Hydrocarbon Stapled Peptides Using Lipid Based Delivery. Sci Rep 2017; 7:1763. [PMID: 28496125 PMCID: PMC5431883 DOI: 10.1038/s41598-017-01712-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/31/2017] [Indexed: 11/08/2022] Open
Abstract
Linear peptides can mimic and disrupt protein-protein interactions involved in critical cell signaling pathways. Such peptides however are usually protease sensitive and unable to engage with intracellular targets due to lack of membrane permeability. Peptide stapling has been proposed to circumvent these limitations but recent data has suggested that this method does not universally solve the problem of cell entry and can lead to molecules with off target cell lytic properties. To address these issues a library of stapled peptides was synthesized and screened to identify compounds that bound Mdm2 and activated cellular p53. A lead peptide was identified that activated intracellular p53 with negligible nonspecific cytotoxicity, however it still bound serum avidly and only showed a marginal improvement in cellular potency. These hurdles were overcome by successfully identifying a pyridinium-based cationic lipid formulation, which significantly improved the activity of the stapled peptide in a p53 reporter cell line, principally through increased vesicular escape. These studies underscore that stapled peptides, which are cell permeable and target specific, can be identified with rigorous experimental design and that these properties can be improved through use with lipid based formulations. This work should facilitate the clinical translation of stapled peptides.
Collapse
|
43
|
Barile E, Marconi GD, De SK, Baggio C, Gambini L, Salem AF, Kashyap MK, Castro JE, Kipps TJ, Pellecchia M. hBfl-1/hNOXA Interaction Studies Provide New Insights on the Role of Bfl-1 in Cancer Cell Resistance and for the Design of Novel Anticancer Agents. ACS Chem Biol 2017; 12:444-455. [PMID: 28026162 PMCID: PMC5320539 DOI: 10.1021/acschembio.6b00962] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Upregulation of antiapoptotic Bcl-2 proteins in certain tumors confers cancer cell resistance to chemotherapy or radiations. Members of the antiapoptotic Bcl-2 proteins, including Bcl-2, Mcl-1, Bcl-xL, Bcl-w, and Bfl-1, inhibit apoptosis by selectively binding to conserved α-helical regions, named BH3 domains, of pro-apoptotic proteins such as Bim, tBid, Bad, or NOXA. Five antiapoptotic proteins have been identified that interact with various selectivity with BH3 containing pro-apoptotic counterparts. Cancer cells present various and variable levels of these proteins, making the design of effective apoptosis based therapeutics challenging. Recently, BH3 profiling was introduced as a method to classify cancer cells based on their ability to resist apoptosis following exposure to selected BH3 peptides. However, these studies were based on binding affinities measured with model BH3 peptides and Bcl-2-proteins taken from mouse sequences. While the majority of these interactions are conserved between mice and humans, we found surprisingly that human NOXA binds to human Bfl-1 potently and covalently via conserved Cys residues, with over 2 orders of magnitude increased affinity over hMcl-1. Our data suggest that some assumptions of the original BH3 profiling need to be revisited and that perhaps further targeting efforts should be redirected toward Bfl-1, for which no suitable specific inhibitors or pharmacological tools have been reported. In this regard, we also describe the initial design and characterizations of novel covalent BH3-based agents that potently target Bfl-1. These molecules could provide a novel platform on which to design effective Bfl-1 targeting therapeutics.
Collapse
Affiliation(s)
- Elisa Barile
- Division of Biomedical
Sciences, School of Medicine, University
of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Guya D. Marconi
- Division of Biomedical
Sciences, School of Medicine, University
of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Surya K. De
- Division of Biomedical
Sciences, School of Medicine, University
of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Carlo Baggio
- Division of Biomedical
Sciences, School of Medicine, University
of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Luca Gambini
- Division of Biomedical
Sciences, School of Medicine, University
of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Ahmed F. Salem
- Division of Biomedical
Sciences, School of Medicine, University
of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Manoj K. Kashyap
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- CLL Research
Consortium, and Department of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Januario E. Castro
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- CLL Research
Consortium, and Department of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Thomas J. Kipps
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- CLL Research
Consortium, and Department of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Maurizio Pellecchia
- Division of Biomedical
Sciences, School of Medicine, University
of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
- Phone: (951)-827-7829. E-mail:
| |
Collapse
|
44
|
Schenk RL, Strasser A, Dewson G. BCL-2: Long and winding path from discovery to therapeutic target. Biochem Biophys Res Commun 2017; 482:459-469. [PMID: 28212732 DOI: 10.1016/j.bbrc.2016.10.100] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/21/2016] [Accepted: 10/25/2016] [Indexed: 02/09/2023]
Abstract
In 1988, the BCL-2 protein was found to promote cancer by limiting cell death rather than enhancing proliferation. This discovery set the wheels in motion for an almost 30 year journey involving many international research teams that has recently culminated in the approval for a drug, ABT-199/venetoclax/Venclexta that targets this protein in the treatment of cancer. This review will describe the long and winding path from the discovery of this protein and understanding the fundamental process of apoptosis that BCL-2 and its numerous homologues control, through to its exploitation as a drug target that is set to have significant benefit for cancer patients.
Collapse
Affiliation(s)
- Robyn L Schenk
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Andreas Strasser
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Grant Dewson
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia.
| |
Collapse
|
45
|
|
46
|
Mechanistic validation of a clinical lead stapled peptide that reactivates p53 by dual HDM2 and HDMX targeting. Oncogene 2016; 36:2184-2190. [PMID: 27721413 PMCID: PMC5386833 DOI: 10.1038/onc.2016.361] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/03/2016] [Accepted: 08/10/2016] [Indexed: 01/02/2023]
Abstract
Hydrocarbon-stapled peptides that display key residues of the p53 transactivation domain have emerged as bona fide clinical candidates for reactivating the tumor suppression function of p53 in cancer by dual targeting of the negative regulators HDM2 and HDMX. A recent study questioned the mechanistic specificity of such stapled peptides based on interrogating their capacity to disrupt p53/HDM2 and p53/HDMX complexes in living cells using a new recombinase enhanced bimolecular luciferase complementation platform (ReBiL). Here, we directly evaluate the cellular uptake, intracellular targeting selectivity, and p53-dependent cytotoxicity of the clinical prototype ATSP-7041. We find that under standard serum-containing tissue culture conditions, ATSP-7041 achieves intracellular access without membrane disruption, dose-dependently dissociates both p53/HDM2 and p53/HDMX complexes but not an unrelated protein complex in long-term ReBiL experiments, and is selectively cytotoxic to cancer cells bearing wild-type p53 by inducing a surge in p53 protein level. These studies underscore the importance of a thorough step-wise approach, including consideration of the time-dependence of cellular uptake and intracellular distribution, in evaluating and advancing stapled peptides for clinical translation.
Collapse
|
47
|
Bird GH, Mazzola E, Opoku-Nsiah K, Lammert MA, Godes M, Neuberg DS, Walensky LD. Biophysical determinants for cellular uptake of hydrocarbon-stapled peptide helices. Nat Chem Biol 2016; 12:845-52. [PMID: 27547919 PMCID: PMC5055751 DOI: 10.1038/nchembio.2153] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 05/23/2016] [Indexed: 12/23/2022]
Abstract
Hydrocarbon-stapled peptides are a class of bioactive alpha-helical ligands developed to dissect and target protein interactions. While there is consensus that stapled peptides can be effective chemical tools for investigating protein regulation, their broader utility for therapeutic modulation of intracellular interactions remains an active area of study. In particular, the design principles for generating cell-permeable stapled peptides are empiric, yet consistent intracellular access is essential to in vivo application. Here, we used an unbiased statistical approach to determine which biophysical parameters dictate the uptake of stapled-peptide libraries. We found that staple placement at the amphipathic boundary combined with optimal hydrophobic and helical content are the key drivers of cellular uptake, whereas excess hydrophobicity and positive charge at isolated amino acid positions can trigger membrane lysis at elevated peptide dosing. Our results provide a design roadmap for maximizing the potential to generate cell-permeable stapled peptides with on-mechanism cellular activity.
Collapse
Affiliation(s)
- Gregory H. Bird
- Department of Pediatric Oncology, Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215
| | - Emanuele Mazzola
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215
| | - Kwadwo Opoku-Nsiah
- Department of Pediatric Oncology, Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215
| | - Margaret A. Lammert
- Department of Pediatric Oncology, Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215
| | - Marina Godes
- Department of Pediatric Oncology, Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215
| | - Donna S. Neuberg
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215
| | - Loren D. Walensky
- Department of Pediatric Oncology, Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215
| |
Collapse
|
48
|
Abstract
Peptide-based drug discovery has experienced a remarkable resurgence within the past decade due to the emerging class of inhibitors known as stapled peptides. Stapled peptides are therapeutic protein mimetics that have been locked within a specific conformational structure by hydrocarbon stapling. These peptides are highly important in selectively impairing disease-relevant protein–protein interactions and exhibit significant pharmacokinetic advantages over other forms of therapeutics in terms of affinity, specificity, size, synthetic accessibility and resistance to proteolytic degradation. A series of stapled peptides are currently in development, and the potential successes of these peptides, either as single-agent treatments or as combinational treatments with other therapeutic modalities, could potentially change the landscape of protein therapeutic development. Here, we provide examples of successful discovery efforts to illustrate the research strategies of stapled peptides in drug design and development.
Collapse
|
49
|
Stapled peptide design: principles and roles of computation. Drug Discov Today 2016; 21:1642-1653. [DOI: 10.1016/j.drudis.2016.06.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/11/2016] [Accepted: 06/13/2016] [Indexed: 12/23/2022]
|
50
|
Corbi-Verge C, Garton M, Nim S, Kim PM. Strategies to Develop Inhibitors of Motif-Mediated Protein-Protein Interactions as Drug Leads. Annu Rev Pharmacol Toxicol 2016; 57:39-60. [PMID: 27618737 DOI: 10.1146/annurev-pharmtox-010716-104805] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein-protein interactions are fundamental for virtually all functions of the cell. A large fraction of these interactions involve short peptide motifs, and there has been increased interest in targeting them using peptide-based therapeutics. Peptides benefit from being specific, relatively safe, and easy to produce. They are also easy to modify using chemical synthesis and molecular biology techniques. However, significant challenges remain regarding the use of peptides as therapeutic agents. Identification of peptide motifs is difficult, and peptides typically display low cell permeability and sensitivity to enzymatic degradation. In this review, we outline the principal high-throughput methodologies for motif discovery and describe current methods for overcoming pharmacokinetic and bioavailability limitations.
Collapse
Affiliation(s)
- Carles Corbi-Verge
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada; , , ,
| | - Michael Garton
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada; , , ,
| | - Satra Nim
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada; , , ,
| | - Philip M Kim
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada; , , , .,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| |
Collapse
|