1
|
Schmitt DL, Mehta S, Zhang J. Study of spatiotemporal regulation of kinase signaling using genetically encodable molecular tools. Curr Opin Chem Biol 2022; 71:102224. [PMID: 36347198 PMCID: PMC10031819 DOI: 10.1016/j.cbpa.2022.102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 01/27/2023]
Abstract
Precise spatiotemporal organization and regulation of signal transduction networks are essential for cellular response to internal and external cues. To understand how this biochemical activity architecture impacts cellular function, many genetically encodable tools which regulate kinase activity at a subcellular level have been developed. In this review, we highlight various types of genetically encodable molecular tools, including tools to regulate endogenous kinase activity and biorthogonal techniques to perturb kinase activity. Finally, we emphasize the use of these tools alongside biosensors for kinase activity to measure and perturb kinase activity in real time for a better understanding of the cellular biochemical activity architecture.
Collapse
Affiliation(s)
- Danielle L Schmitt
- Department of Pharmacology, University of California San Diego, USA; Department of Chemistry and Biochemistry, University of California Los Angeles, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California San Diego, USA
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, USA; Department of Bioengineering, University of California San Diego, USA; Department of Chemistry and Biochemistry, University of California San Diego, USA.
| |
Collapse
|
2
|
Zhou XX, Bracken CJ, Zhang K, Zhou J, Mou Y, Wang L, Cheng Y, Leung KK, Wells JA. Targeting Phosphotyrosine in Native Proteins with Conditional, Bispecific Antibody Traps. J Am Chem Soc 2020; 142:17703-17713. [PMID: 32924468 DOI: 10.1021/jacs.0c08458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Engineering sequence-specific antibodies (Abs) against phosphotyrosine (pY) motifs embedded in folded polypeptides remains highly challenging because of the stringent requirement for simultaneous recognition of the pY motif and the surrounding folded protein epitope. Here, we present a method named phosphotyrosine Targeting by Recombinant Ab Pair, or pY-TRAP, for in vitro engineering of binders for native pY proteins. Specifically, we create the pY protein by unnatural amino acid misincorporation, mutagenize a universal pY-binding Ab to create a first binder B1 for the pY motif on the pY protein, and then select against the B1-pY protein complex for a second binder B2 that recognizes the composite epitope of B1 and the pY-containing protein complex. We applied pY-TRAP to create highly specific binders to folded Ub-pY59, a rarely studied Ub phosphoform exclusively observed in cancerous tissues, and ZAP70-pY248, a kinase phosphoform regulated in feedback signaling pathways in T cells. The pY-TRAPs do not have detectable binding to wild-type proteins or to other pY peptides or proteins tested. This pY-TRAP approach serves as a generalizable method for engineering sequence-specific Ab binders to native pY proteins.
Collapse
Affiliation(s)
- Xin X Zhou
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Colton J Bracken
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Kaihua Zhang
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, United States
| | - Jie Zhou
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Yun Mou
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Lei Wang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, United States.,Howard Hughes Medical Institute, University of California, San Francisco, California 94158, United States
| | - Kevin K Leung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States.,Chan Zuckerberg Biohub, San Francisco, California 94158, United States.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158, United States
| |
Collapse
|
3
|
Keyes J, Ganesan A, Molinar-Inglis O, Hamidzadeh A, Zhang J, Ling M, Trejo J, Levchenko A, Zhang J. Signaling diversity enabled by Rap1-regulated plasma membrane ERK with distinct temporal dynamics. eLife 2020; 9:57410. [PMID: 32452765 PMCID: PMC7289600 DOI: 10.7554/elife.57410] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/22/2020] [Indexed: 12/23/2022] Open
Abstract
A variety of different signals induce specific responses through a common, extracellular-signal regulated kinase (ERK)-dependent cascade. It has been suggested that signaling specificity can be achieved through precise temporal regulation of ERK activity. Given the wide distrubtion of ERK susbtrates across different subcellular compartments, it is important to understand how ERK activity is temporally regulated at specific subcellular locations. To address this question, we have expanded the toolbox of Förster Resonance Energy Transfer (FRET)-based ERK biosensors by creating a series of improved biosensors targeted to various subcellular regions via sequence specific motifs to measure spatiotemporal changes in ERK activity. Using these sensors, we showed that EGF induces sustained ERK activity near the plasma membrane in sharp contrast to the transient activity observed in the cytoplasm and nucleus. Furthermore, EGF-induced plasma membrane ERK activity involves Rap1, a noncanonical activator, and controls cell morphology and EGF-induced membrane protrusion dynamics. Our work strongly supports that spatial and temporal regulation of ERK activity is integrated to control signaling specificity from a single extracellular signal to multiple cellular processes.
Collapse
Affiliation(s)
- Jeremiah Keyes
- Department of Pharmacology, University of California San Diego, La Jolla, United States
| | - Ambhighainath Ganesan
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Olivia Molinar-Inglis
- Department of Pharmacology, University of California San Diego, La Jolla, United States
| | - Archer Hamidzadeh
- Department of Biomedical Engineering and Yale Systems Biology Institute, Yale University, New Haven, United States
| | - Jinfan Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, United States
| | - Megan Ling
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, United States
| | - JoAnn Trejo
- Department of Pharmacology, University of California San Diego, La Jolla, United States
| | - Andre Levchenko
- Department of Biomedical Engineering and Yale Systems Biology Institute, Yale University, New Haven, United States
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, United States.,Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, United States.,Department of Bioengineering, University of California San Diego, La Jolla, United States
| |
Collapse
|
4
|
Röth S, Fulcher LJ, Sapkota GP. Advances in targeted degradation of endogenous proteins. Cell Mol Life Sci 2019; 76:2761-2777. [PMID: 31030225 PMCID: PMC6588652 DOI: 10.1007/s00018-019-03112-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/23/2019] [Accepted: 04/16/2019] [Indexed: 01/07/2023]
Abstract
Protein silencing is often employed as a means to aid investigations in protein function and is increasingly desired as a therapeutic approach. Several types of protein silencing methodologies have been developed, including targeting the encoding genes, transcripts, the process of translation or the protein directly. Despite these advances, most silencing systems suffer from limitations. Silencing protein expression through genetic ablation, for example by CRISPR/Cas9 genome editing, is irreversible, time consuming and not always feasible. Similarly, RNA interference approaches warrant prolonged treatments, can lead to incomplete protein depletion and are often associated with off-target effects. Targeted proteolysis has the potential to overcome some of these limitations. The field of targeted proteolysis has witnessed the emergence of many methodologies aimed at targeting specific proteins for degradation in a spatio-temporal manner. In this review, we provide an appraisal of the different targeted proteolytic systems and discuss their applications in understanding protein function, as well as their potential in therapeutics.
Collapse
Affiliation(s)
- Sascha Röth
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Luke J Fulcher
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Gopal P Sapkota
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| |
Collapse
|
5
|
Martin HL, Bedford R, Heseltine SJ, Tang AA, Haza KZ, Rao A, McPherson MJ, Tomlinson DC. Non-immunoglobulin scaffold proteins: Precision tools for studying protein-protein interactions in cancer. N Biotechnol 2018; 45:28-35. [DOI: 10.1016/j.nbt.2018.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/08/2018] [Accepted: 02/18/2018] [Indexed: 02/08/2023]
|
6
|
Hussain M, Angus SP, Kuhlman B. Engineering a Protein Binder Specific for p38α with Interface Expansion. Biochemistry 2018; 57:4526-4535. [PMID: 29975520 DOI: 10.1021/acs.biochem.8b00408] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein binding specificities can be manipulated by redesigning contacts that already exist at an interface or by expanding the interface to allow interactions with residues adjacent to the original binding site. Previously, we developed a strategy, called AnchorDesign, for expanding interfaces around linear binding epitopes. The epitope is embedded in a loop of a scaffold protein, in our case a monobody, and then surrounding residues on the monobody are optimized for binding using directed evolution or computational design. Using this strategy, we have increased binding affinities by >100-fold, but we have not tested whether it can be used to control protein binding specificities. Here, we test whether AnchorDesign can be used to engineer a monobody that binds specifically to the mitogen-activated protein kinase (MAPK) p38α but not to the related MAPKs ERK2 and JNK. To anchor the binding interaction, we used a small (D) docking motif from the mitogen-activated protein kinase kinase (MAP2K) MKK6 that interacts with similar affinity with p38α and ERK2. Our hypothesis was that by embedding the motif in a larger protein that we could expand the interface and create contacts with residues that are not conserved between p38α and ERK2. Molecular modeling was used to inform insertion of the D motif into the monobody, and a combination of phage and yeast display were used to optimize the interface. Binding experiments demonstrate that the engineered monobody binds to the target surface on p38α and does not exhibit detectable binding to ERK2 or JNK.
Collapse
|
7
|
Könning D, Kolmar H. Beyond antibody engineering: directed evolution of alternative binding scaffolds and enzymes using yeast surface display. Microb Cell Fact 2018; 17:32. [PMID: 29482656 PMCID: PMC6389260 DOI: 10.1186/s12934-018-0881-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/22/2018] [Indexed: 01/08/2023] Open
Abstract
Pioneered exactly 20 years ago, yeast surface display (YSD) continues to take a major role in protein engineering among the high-throughput display methodologies that have been developed to date. The classical yeast display technology relies on tethering an engineered protein to the cell wall by genetic fusion to one subunit of a dimeric yeast-mating agglutination receptor complex. This method enables an efficient genotype-phenotype linkage while exploiting the benefits of a eukaryotic expression machinery. Over the past two decades, a plethora of protein engineering efforts encompassing conventional antibody Fab and scFv fragments have been reported. In this review, we will focus on the versatility of YSD beyond conventional antibody engineering and, instead, place the focus on alternative scaffold proteins and enzymes which have successfully been tailored for purpose with regard to improving binding, activity or specificity.
Collapse
Affiliation(s)
- Doreen Könning
- Antibody-Drug Conjugates and Targeted NBE Therapeutics, Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287 Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287 Darmstadt, Germany
| |
Collapse
|
8
|
Yu X, Yang YP, Dikici E, Deo SK, Daunert S. Beyond Antibodies as Binding Partners: The Role of Antibody Mimetics in Bioanalysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:293-320. [PMID: 28375702 PMCID: PMC5895458 DOI: 10.1146/annurev-anchem-061516-045205] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The emergence of novel binding proteins or antibody mimetics capable of binding to ligand analytes in a manner analogous to that of the antigen-antibody interaction has spurred increased interest in the biotechnology and bioanalytical communities. The goal is to produce antibody mimetics designed to outperform antibodies with regard to binding affinities, cellular and tumor penetration, large-scale production, and temperature and pH stability. The generation of antibody mimetics with tailored characteristics involves the identification of a naturally occurring protein scaffold as a template that binds to a desired ligand. This scaffold is then engineered to create a superior binder by first creating a library that is then subjected to a series of selection steps. Antibody mimetics have been successfully used in the development of binding assays for the detection of analytes in biological samples, as well as in separation methods, cancer therapy, targeted drug delivery, and in vivo imaging. This review describes recent advances in the field of antibody mimetics and their applications in bioanalytical chemistry, specifically in diagnostics and other analytical methods.
Collapse
Affiliation(s)
- Xiaowen Yu
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136;
| | - Yu-Ping Yang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136;
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136;
| | - Sapna K Deo
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136;
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136;
| |
Collapse
|
9
|
Bieli D, Alborelli I, Harmansa S, Matsuda S, Caussinus E, Affolter M. Development and Application of Functionalized Protein Binders in Multicellular Organisms. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 325:181-213. [DOI: 10.1016/bs.ircmb.2016.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
10
|
Deyev SM, Lebedenko EN, Petrovskaya LE, Dolgikh DA, Gabibov AG, Kirpichnikov MP. Man-made antibodies and immunoconjugates with desired properties: function optimization using structural engineering. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4459] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Abstract
Yeast surface display is commonly used to engineer affinity and design novel molecular interaction. By alternating positive and negative selections, yeast display can be used to engineer binders that specifically interact with the target protein at a defined site. Epitope-specific binders can be useful as inhibitors if they bind the target molecule at functionally important sites. Therefore, an efficient method of engineering epitope specificity should help with the engineering of inhibitors. We describe the use of yeast surface display to design single domain monobodies that bind and inhibit the activity of the kinase Erk-2 by targeting a conserved surface patch involved in protein-protein interaction. The designed binders can be used to disrupt signaling in the cell and investigate Erk-2 function in vivo. The described protocol is general and can be used to design epitope-specific binders of an arbitrary protein.
Collapse
Affiliation(s)
- Jasdeep K Mann
- Department of Chemical and Biological Engineering, University at Buffalo, 905 Furnas Hall, Buffalo, NY, 14260, USA
| | | |
Collapse
|