1
|
Mupparapu N, Syed B, Nguyen DN, Vo TH, Trujillo A, Elshahawi SI. Selective Late-Stage Functionalization of Tryptophan-Containing Peptides To Facilitate Bioorthogonal Tetrazine Ligation. Org Lett 2024; 26:2489-2494. [PMID: 38498918 PMCID: PMC10987333 DOI: 10.1021/acs.orglett.4c00709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Site-selective modification of complex peptides and the functionalization of their C-H bonds hold great promise for expanding their use in therapeutics and biomedical research. Herein, we leverage the power of late-stage chemoenzymatic catalysis using an indole prenyltransferase (IPT) enzyme and alkyl diphosphates to specifically modify the indole ring of tryptophan in clinically relevant peptides. Furthermore, the installed handle enables bioorthogonal click chemistry through an inverse electron-demand Diels-Alder (IEDDA) reaction with a biotin-conjugated tetrazine probe.
Collapse
Affiliation(s)
- Nagaraju Mupparapu
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy (CUSP), Rinker Health Science Campus, Chapman University, Irvine, California 92618, United States
| | - Basir Syed
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy (CUSP), Rinker Health Science Campus, Chapman University, Irvine, California 92618, United States
| | - Diem N Nguyen
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy (CUSP), Rinker Health Science Campus, Chapman University, Irvine, California 92618, United States
| | - Thao H Vo
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy (CUSP), Rinker Health Science Campus, Chapman University, Irvine, California 92618, United States
| | - Angelica Trujillo
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy (CUSP), Rinker Health Science Campus, Chapman University, Irvine, California 92618, United States
| | - Sherif I Elshahawi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy (CUSP), Rinker Health Science Campus, Chapman University, Irvine, California 92618, United States
| |
Collapse
|
2
|
Alexander AK, Elshahawi SI. Promiscuous Enzymes for Residue-Specific Peptide and Protein Late-Stage Functionalization. Chembiochem 2023; 24:e202300372. [PMID: 37338668 PMCID: PMC10496146 DOI: 10.1002/cbic.202300372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/21/2023]
Abstract
The late-stage functionalization of peptides and proteins holds significant promise for drug discovery and facilitates bioorthogonal chemistry. This selective functionalization leads to innovative advances in in vitro and in vivo biological research. However, it is a challenging endeavor to selectively target a certain amino acid or position in the presence of other residues containing reactive groups. Biocatalysis has emerged as a powerful tool for selective, efficient, and economical modifications of molecules. Enzymes that have the ability to modify multiple complex substrates or selectively install nonnative handles have wide applications. Herein, we highlight enzymes with broad substrate tolerance that have been demonstrated to modify a specific amino acid residue in simple or complex peptides and/or proteins at late-stage. The different substrates accepted by these enzymes are mentioned together with the reported downstream bioorthogonal reactions that have benefited from the enzymatic selective modifications.
Collapse
Affiliation(s)
- Ashley K Alexander
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Sherif I Elshahawi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618, USA
| |
Collapse
|
3
|
Aoun AR, Mupparapu N, Nguyen DN, Kim TH, Nguyen CM, Pan Z, Elshahawi SI. Structure-guided Mutagenesis Reveals the Catalytic Residue that Controls the Regiospecificity of C6-Indole Prenyltransferases. ChemCatChem 2023; 15:e202300423. [PMID: 37366495 PMCID: PMC10292028 DOI: 10.1002/cctc.202300423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Indexed: 06/28/2023]
Abstract
Indole is a significant structural moiety and functionalization of the C-H bond in indole-containing molecules expands their chemical space, and modifies their properties and/or activities. Indole prenyltransferases (IPTs) catalyze the direct regiospecific installation of prenyl, C5 carbon units, on indole-derived compounds. IPTs have shown relaxed substrate flexibility enabling them to be used as tools for indole functionalization. However, the mechanism by which certain IPTs target a specific carbon position is not fully understood. Herein, we use structure-guided site-directed mutagenesis, in vitro enzymatic reactions, kinetics and structural-elucidation of analogs to verify the key catalytic residues that control the regiospecificity of all characterized regiospecific C6 IPTs. Our results also demonstrate that substitution of PriB_His312 to Tyr leads to the synthesis of analogs prenylated at different positions than C6. This work contributes to understanding of how certain IPTs can access a challenging position in indole-derived compounds.
Collapse
Affiliation(s)
- Ahmed R Aoun
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618
| | - Nagaraju Mupparapu
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618
| | - Diem N Nguyen
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618
| | - Tae Ho Kim
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618
| | - Christopher M Nguyen
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618
| | - Zhengfeiyue Pan
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618
| | - Sherif I Elshahawi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618
| |
Collapse
|
4
|
Eaton SA, Ronnebaum TA, Roose BW, Christianson DW. Structural Basis of Substrate Promiscuity and Catalysis by the Reverse Prenyltransferase N-Dimethylallyl-l-tryptophan Synthase from Fusarium fujikuroi. Biochemistry 2022; 61:2025-2035. [PMID: 36084241 PMCID: PMC9648991 DOI: 10.1021/acs.biochem.2c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The regiospecific prenylation of an aromatic amino acid catalyzed by a dimethylallyl-l-tryptophan synthase (DMATS) is a key step in the biosynthesis of many fungal and bacterial natural products. DMATS enzymes share a common "ABBA" fold with divergent active site contours that direct alternative C-C, C-N, and C-O bond-forming trajectories. DMATS1 from Fusarium fujikuroi catalyzes the reverse N-prenylation of l-Trp by generating an allylic carbocation from dimethylallyl diphosphate (DMAPP) that then alkylates the indole nitrogen of l-Trp. DMATS1 stands out among the greater DMATS family because it exhibits unusually broad substrate specificity: it can utilize geranyl diphosphate (GPP) or l-Tyr as an alternative prenyl donor or acceptor, respectively; it can catalyze both forward and reverse prenylation, i.e., at C1 or C3 of DMAPP; and it can catalyze C-N and C-O bond-forming reactions. Here, we report the crystal structures of DMATS1 and its complexes with l-Trp or l-Tyr and unreactive thiolodiphosphate analogues of the prenyl donors DMAPP and GPP. Structures of ternary complexes mimic Michaelis complexes with actual substrates and illuminate active site features that govern prenylation regiochemistry. Comparison with CymD, a bacterial enzyme that catalyzes the reverse N-prenylation of l-Trp with DMAPP, indicates that bacterial and fungal DMATS enzymes share a conserved reaction mechanism. However, the narrower active site contour of CymD enforces narrower substrate specificity. Structure-function relationships established for DMATS enzymes will ultimately inform protein engineering experiments that will broaden the utility of these enzymes as useful tools for synthetic biology.
Collapse
Affiliation(s)
- Samuel A. Eaton
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Trey A. Ronnebaum
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Benjamin W. Roose
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
5
|
l-Serine Biosensor-Controlled Fermentative Production of l-Tryptophan Derivatives by Corynebacterium glutamicum. BIOLOGY 2022; 11:biology11050744. [PMID: 35625472 PMCID: PMC9138238 DOI: 10.3390/biology11050744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary l-tryptophan is an amino acid found in proteins. Its derivatives, such as hydroxylated or halogenated l-tryptophans, find applications in the chemical and pharmaceutical industries, for example, in therapeutic peptides. Biotechnology provides a sustainable way for the production of l-tryptophan and its derivatives. In the final reaction of l-tryptophan biosynthesis in bacteria, such as Corynebacterium glutamicum, another amino acid, l-serine, is incorporated. Here, we show that C. glutamicum TrpB is able to convert indole derivatives, which were added to cells synthesizing l-serine, to the corresponding l-tryptophan derivatives. The gene trpB was expressed under the control of the l-serine-responsive transcriptional activator SerR in the C. glutamicum cells engineered for this fermentation process. Abstract l-Tryptophan derivatives, such as hydroxylated or halogenated l-tryptophans, are used in therapeutic peptides and agrochemicals and as precursors of bioactive compounds, such as serotonin. l-Tryptophan biosynthesis depends on another proteinogenic amino acid, l-serine, which is condensed with indole-3-glycerophosphate by tryptophan synthase. This enzyme is composed of the α-subunit TrpA, which catalyzes the retro-aldol cleavage of indole-3-glycerol phosphate, yielding glyceraldehyde-3-phosphate and indole, and the β-subunit TrpB that catalyzes the β-substitution reaction between indole and l-serine to water and l-tryptophan. TrpA is reported as an allosteric actuator, and its absence severely attenuates TrpB activity. In this study, however, we showed that Corynebacterium glutamicum TrpB is catalytically active in the absence of TrpA. Overexpression of C. glutamicumtrpB in a trpBA double deletion mutant supported growth in minimal medium only when exogenously added indole was taken up into the cell and condensed with intracellularly synthesized l-serine. The fluorescence reporter gene of an l-serine biosensor, which was based on the endogenous transcriptional activator SerR and its target promoter PserE, was replaced by trpB. This allowed for l-serine-dependent expression of trpB in an l-serine-producing strain lacking TrpA. Upon feeding of the respective indole derivatives, this strain produced the l-tryptophan derivatives 5-hydroxytryptophan, 7-bromotryptophan, and 5-fluorotryptophan.
Collapse
|
6
|
Mupparapu N, Brewster L, Ostrom KF, Elshahawi SI. Late-Stage Chemoenzymatic Installation of Hydroxy-Bearing Allyl Moiety on the Indole Ring of Tryptophan-Containing Peptides. Chemistry 2022; 28:e202104614. [PMID: 35178791 PMCID: PMC9314954 DOI: 10.1002/chem.202104614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Indexed: 01/08/2023]
Abstract
The late‐stage functionalization of indole‐ and tryptophan‐containing compounds with reactive moieties facilitates downstream diversification and leads to changes in their biological properties. Here, the synthesis of two hydroxy‐bearing allyl pyrophosphates is described. A chemoenzymatic method is demonstrated which uses a promiscuous indole prenyltransferase enzyme to install a dual reactive hydroxy‐bearing allyl moiety directly on the indole ring of tryptophan‐containing peptides. This is the first report of late‐stage indole modifications with this reactive group.
Collapse
Affiliation(s)
- Nagaraju Mupparapu
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Lauren Brewster
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Katrina F Ostrom
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Sherif I Elshahawi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy Rinker Health Science Campus, Irvine, CA 92618, USA
| |
Collapse
|
7
|
Fouotsa H, Mkounga P, Lannang AM, Vanheuverzwijn J, Zhou Z, Leblanc K, Rharrabti S, Nkengfack AE, Gallard JF, Fontaine V, Meyer F, Poupon E, Le Pogam P, Beniddir MA. Pyrrovobasine, hybrid alkylated pyrraline monoterpene indole alkaloid pseudodimer discovered using a combination of mass spectral and NMR-based machine learning annotations. Org Biomol Chem 2021; 20:98-105. [PMID: 34596204 DOI: 10.1039/d1ob01791h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A new vobasine-tryptamine-based monoterpene indole alkaloid pseudodimer was isolated from the stem bark of Voacanga africana. As a minor constituent occurring in a thoroughly investigated plant, this molecule was targeted based on a molecular networking strategy and a rational MS2-guided phytochemical investigation led to its isolation. Its structure was formally established based on HRMS, 1D/2D NMR data, and the application of the tool Small Molecule Accurate Recognition Technology (SMART 2.0). Its absolute configuration was assigned by the exciton chirality method and TD-DFT ECD calculations. Besides featuring an unprecedented intermonomeric linkage in the small group of vobasine/tryptamine hybrids, pyrrovobasine also represents the first pyrraline-containing representative in the whole monoterpene indole alkaloids group. Biosynthetic hypotheses possibly underpinning these structural oddities are proposed here.
Collapse
Affiliation(s)
- Hugues Fouotsa
- Équipe "Chimie des Substances Naturelles" Université Paris-Saclay, CNRS, BioCIS, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France. .,Faculty of Pharmacy, Microbiology, Bioorganic and Macromolecular Chemistry Unit, Université Libre de Bruxelles, Campus de la Plaine-CP 206/04, Boulevard du Triomphe, ACC.2, Po Box 1050, Belgium.,Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Pierre Mkounga
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Alain Meli Lannang
- Department of Chemistry, Higher Teachers Training College, University of Maroua, P.O. Box 55, Maroua, Cameroon
| | - Jérôme Vanheuverzwijn
- Faculty of Pharmacy, Microbiology, Bioorganic and Macromolecular Chemistry Unit, Université Libre de Bruxelles, Campus de la Plaine-CP 206/04, Boulevard du Triomphe, ACC.2, Po Box 1050, Belgium
| | - Zhiyu Zhou
- Faculty of Pharmacy, Microbiology, Bioorganic and Macromolecular Chemistry Unit, Université Libre de Bruxelles, Campus de la Plaine-CP 206/04, Boulevard du Triomphe, ACC.2, Po Box 1050, Belgium
| | - Karine Leblanc
- Équipe "Chimie des Substances Naturelles" Université Paris-Saclay, CNRS, BioCIS, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France.
| | - Somia Rharrabti
- Équipe "Chimie des Substances Naturelles" Université Paris-Saclay, CNRS, BioCIS, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France.
| | - Augustin Ephrem Nkengfack
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Jean-François Gallard
- Institut de Chimie des Substances Naturelles, CNRS, ICSN UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Véronique Fontaine
- Faculty of Pharmacy, Microbiology, Bioorganic and Macromolecular Chemistry Unit, Université Libre de Bruxelles, Campus de la Plaine-CP 206/04, Boulevard du Triomphe, ACC.2, Po Box 1050, Belgium
| | - Franck Meyer
- Faculty of Pharmacy, Microbiology, Bioorganic and Macromolecular Chemistry Unit, Université Libre de Bruxelles, Campus de la Plaine-CP 206/04, Boulevard du Triomphe, ACC.2, Po Box 1050, Belgium
| | - Erwan Poupon
- Équipe "Chimie des Substances Naturelles" Université Paris-Saclay, CNRS, BioCIS, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France.
| | - Pierre Le Pogam
- Équipe "Chimie des Substances Naturelles" Université Paris-Saclay, CNRS, BioCIS, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France.
| | - Mehdi A Beniddir
- Équipe "Chimie des Substances Naturelles" Université Paris-Saclay, CNRS, BioCIS, 5 rue J.-B. Clément, 92290 Châtenay-Malabry, France.
| |
Collapse
|
8
|
Jamieson CS, Misa J, Tang Y, Billingsley JM. Biosynthesis and synthetic biology of psychoactive natural products. Chem Soc Rev 2021; 50:6950-7008. [PMID: 33908526 PMCID: PMC8217322 DOI: 10.1039/d1cs00065a] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Psychoactive natural products play an integral role in the modern world. The tremendous structural complexity displayed by such molecules confers diverse biological activities of significant medicinal value and sociocultural impact. Accordingly, in the last two centuries, immense effort has been devoted towards establishing how plants, animals, and fungi synthesize complex natural products from simple metabolic precursors. The recent explosion of genomics data and molecular biology tools has enabled the identification of genes encoding proteins that catalyze individual biosynthetic steps. Once fully elucidated, the "biosynthetic pathways" are often comparable to organic syntheses in elegance and yield. Additionally, the discovery of biosynthetic enzymes provides powerful catalysts which may be repurposed for synthetic biology applications, or implemented with chemoenzymatic synthetic approaches. In this review, we discuss the progress that has been made toward biosynthetic pathway elucidation amongst four classes of psychoactive natural products: hallucinogens, stimulants, cannabinoids, and opioids. Compounds of diverse biosynthetic origin - terpene, amino acid, polyketide - are identified, and notable mechanisms of key scaffold transforming steps are highlighted. We also provide a description of subsequent applications of the biosynthetic machinery, with an emphasis placed on the synthetic biology and metabolic engineering strategies enabling heterologous production.
Collapse
Affiliation(s)
- Cooper S Jamieson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Joshua Misa
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Yi Tang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA. and Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - John M Billingsley
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA. and Invizyne Technologies, Inc., Monrovia, CA, USA
| |
Collapse
|
9
|
Awakawa T. Enzymatic reactions in teleocidin B biosynthesis. J Nat Med 2021; 75:467-474. [PMID: 33675456 PMCID: PMC8159823 DOI: 10.1007/s11418-021-01504-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/01/2021] [Indexed: 11/02/2022]
Abstract
The teleocidin B family members are terpene indole compounds isolated from Streptomyces bacteria, and they strongly activate protein kinase C (PKC). Their unique structures have attracted many researchers in the natural product chemistry and pharmacology fields, and numerous isolation and bioactivity studies have been conducted. The accumulated information has facilitated the identification of the enzymatic reactions in teleocidin biosynthesis, and new developments in structural biology have strongly aided efforts to clarify the finer points of these reactions. This review describes the recent biochemical and structural biological studies to reveal their reaction mechanisms, with a primary focus on the terpene cyclization triggered by the C-N bond formation by P450 oxygenase (TleB), the prenyltransferase (TleC), and the methyltransferase (TleD). This new knowledge will benefit future engineering studies to create unnatural PKC activators.
Collapse
Affiliation(s)
- Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
10
|
Abstract
Covering: up to mid-2020 Terpenoids, also called isoprenoids, are the largest and most structurally diverse family of natural products. Found in all domains of life, there are over 80 000 known compounds. The majority of characterized terpenoids, which include some of the most well known, pharmaceutically relevant, and commercially valuable natural products, are produced by plants and fungi. Comparatively, terpenoids of bacterial origin are rare. This is counter-intuitive to the fact that recent microbial genomics revealed that almost all bacteria have the biosynthetic potential to create the C5 building blocks necessary for terpenoid biosynthesis. In this review, we catalogue terpenoids produced by bacteria. We collected 1062 natural products, consisting of both primary and secondary metabolites, and classified them into two major families and 55 distinct subfamilies. To highlight the structural and chemical space of bacterial terpenoids, we discuss their structures, biosynthesis, and biological activities. Although the bacterial terpenome is relatively small, it presents a fascinating dichotomy for future research. Similarities between bacterial and non-bacterial terpenoids and their biosynthetic pathways provides alternative model systems for detailed characterization while the abundance of novel skeletons, biosynthetic pathways, and bioactivies presents new opportunities for drug discovery, genome mining, and enzymology.
Collapse
Affiliation(s)
- Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Tyler A Alsup
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Baofu Xu
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Zining Li
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| |
Collapse
|
11
|
Khopade T, Ajayan K, Joshi SS, Lane AL, Viswanathan R. Bioinspired Brønsted Acid-Promoted Regioselective Tryptophan Isoprenylations. ACS OMEGA 2021; 6:10840-10858. [PMID: 34056238 PMCID: PMC8153798 DOI: 10.1021/acsomega.1c00515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/16/2021] [Indexed: 05/16/2023]
Abstract
Tryptophan-containing isoprenoid indole alkaloid natural products are well known for their intricate structural architectures and significant biological activities. Nature employs dimethylallyl tryptophan synthases (DMATSs) or aromatic indole prenyltransferases (iPTs) to catalyze regio- and stereoselective prenylation of l-Trp. Regioselective synthetic routes that isoprenylate cyclo-Trp-Trp in a 2,5-diketopiperazine (DKP) core, in a desymmetrizing manner, are nonexistent and are highly desirable. Herein, we present an elaborate report on Brønsted acid-promoted regioselective tryptophan isoprenylation strategy, applicable to both the monomeric amino acid and its dimeric l-Trp DKP. This report outlines a method that regio- and stereoselectively increases sp3 centers of a privileged bioactive core. We report on conditions involving screening of Brønsted acids, their conjugate base as salt, solvent, temperature, and various substrates with diverse side chains. Furthermore, we extensively delineate effects on regio- and stereoselection of isoprenylation and their stereochemical confirmation via NMR experiments. Regioselectively, the C3-position undergoes normal-isoprenylation or benzylation and forms exo-ring-fused pyrroloindolines selectively. Through appropriate prenyl group migrations, we report access to the bioactive tryprostatin alkaloids, and by C3-normal-farnesylation, we access anticancer drimentines as direct targets of this method. The optimized strategy affords iso-tryprostatin B-type products and predrimentine C with 58 and 55% yields, respectively. The current work has several similarities to biosynthesis, such as-reactions can be performed on unprotected substrates, conditions that enable Brønsted acid promotion, and they are easy to perform under ambient conditions, without the need for stoichiometric levels of any transition metal or expensive ligands.
Collapse
Affiliation(s)
- Tushar
M. Khopade
- Departments
of Chemistry & Biology, Indian Institute
of Science Education and Research, Tirupati 517507, Andhra
Pradesh India
| | - Kalyani Ajayan
- Departments
of Chemistry & Biology, Indian Institute
of Science Education and Research, Tirupati 517507, Andhra
Pradesh India
| | - Swapnil S. Joshi
- Departments
of Chemistry & Biology, Indian Institute
of Science Education and Research, Tirupati 517507, Andhra
Pradesh India
| | - Amy L. Lane
- Department
of Chemistry, University of North Florida, Jacksonville 32224, Florida, United States
| | - Rajesh Viswanathan
- Departments
of Chemistry & Biology, Indian Institute
of Science Education and Research, Tirupati 517507, Andhra
Pradesh India
- Department
of Chemistry, University of North Florida, Jacksonville 32224, Florida, United States
| |
Collapse
|
12
|
Mupparapu N, Lin YHC, Kim TH, Elshahawi SI. Regiospecific Synthesis of Calcium-Independent Daptomycin Antibiotics using a Chemoenzymatic Method. Chemistry 2021; 27:4176-4182. [PMID: 33244806 DOI: 10.1002/chem.202005100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Indexed: 12/16/2022]
Abstract
Daptomycin (DAP) is a calcium (Ca2+ )-dependent FDA-approved antibiotic drug for the treatment of Gram-positive infections. It possesses a complex pharmacophore hampering derivatization and/or synthesis of analogues. To mimic the Ca2+ -binding effect, we used a chemoenzymatic approach to modify the tryptophan (Trp) residue of DAP and synthesize kinetically characterized and structurally elucidated regiospecific Trp-modified DAP analogues. We demonstrated that the modified DAPs are several times more active than the parent molecule against antibiotic-susceptible and antibiotic-resistant Gram-positive bacteria. Strikingly, and in contrast to the parent molecule, the DAP derivatives do not rely on calcium or any additional elements for activity.
Collapse
Affiliation(s)
- Nagaraju Mupparapu
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA, 92618, USA
| | - Yu-Hsin Cindy Lin
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA, 92618, USA
| | - Tae Ho Kim
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA, 92618, USA
| | - Sherif I Elshahawi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA, 92618, USA
| |
Collapse
|
13
|
Liao G, Fan J, Ludwig-Radtke L, Backhaus K, Li SM. Increasing Structural Diversity of Natural Products by Michael Addition with ortho-Quinone Methide as the Acceptor. J Org Chem 2020; 85:1298-1307. [PMID: 31860310 DOI: 10.1021/acs.joc.9b02971] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The active form of clavatol, ortho-quinone methide, can be generated from hydroxyclavatol in an aqueous system and used as a highly reactive intermediate for coupling with diverse natural products under very mild conditions. These include flavonoids, hydroxynaphthalenes, coumarins, xanthones, anthraquinones, phloroglucinols, phenolic acids, indole derivatives, tyrosine analogues, and quinolines. The clavatol moiety was mainly attached via C-C bonds to the ortho- or para-positions of phenolic hydroxyl/amino groups and the C2-position of the indole ring.
Collapse
Affiliation(s)
- Ge Liao
- Institut für Pharmazeutische Biologie und Biotechnologie , Philipps-Universität Marburg , Robert-Koch Straße 4 , Marburg 35037 , Germany
| | - Jie Fan
- Institut für Pharmazeutische Biologie und Biotechnologie , Philipps-Universität Marburg , Robert-Koch Straße 4 , Marburg 35037 , Germany
| | - Lena Ludwig-Radtke
- Institut für Pharmazeutische Biologie und Biotechnologie , Philipps-Universität Marburg , Robert-Koch Straße 4 , Marburg 35037 , Germany
| | - Katja Backhaus
- Institut für Pharmazeutische Biologie und Biotechnologie , Philipps-Universität Marburg , Robert-Koch Straße 4 , Marburg 35037 , Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie , Philipps-Universität Marburg , Robert-Koch Straße 4 , Marburg 35037 , Germany
| |
Collapse
|
14
|
Burkhardt I, Ye Z, Janevska S, Tudzynski B, Dickschat JS. Biochemical and Mechanistic Characterization of the Fungal Reverse N-1-Dimethylallyltryptophan Synthase DMATS1 Ff. ACS Chem Biol 2019; 14:2922-2931. [PMID: 31756078 DOI: 10.1021/acschembio.9b00828] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dimethylallyltryptophan synthases catalyze the regiospecific transfer of (oligo)prenylpyrophosphates to aromatic substrates like tryptophan derivatives. These reactions are key steps in many biosynthetic pathways of fungal and bacterial secondary metabolites. In vitro investigations on recombinant DMATS1Ff from Fusarium fujikuroi identified the enzyme as the first selective reverse tryptophan-N-1 prenyltransferase of fungal origin. The enzyme was also able to catalyze the reverse N-geranylation of tryptophan. DMATS1Ff was shown to be phylogenetically related to fungal tyrosine O-prenyltransferases and fungal 7-DMATS. Like these enzymes, DMATS1Ff was able to convert tyrosine into its regularly O-prenylated derivative. Investigation of the binding sites of DMATS1Ff by homology modeling and comparison to the crystal structure of 4-DMATS FgaPT2 showed an almost identical site for DMAPP binding but different residues for tryptophan coordination. Several putative active site residues were verified by site directed mutagenesis of DMATS1Ff. Homology models of the phylogenetically related enzymes showed similar tryptophan binding residues, pointing to a unified substrate binding orientation of tryptophan and DMAPP, which is distinct from that in FgaPT2. Isotopic labeling experiments showed the reaction catalyzed by DMATS1Ff to be nonstereospecific. Based on these data, a detailed mechanism for DMATS1Ff catalysis is proposed.
Collapse
Affiliation(s)
- Immo Burkhardt
- Kekulé Institut für Organische Chemie und Biochemie, Rheinische Friedrich Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | - Zhongfeng Ye
- Kekulé Institut für Organische Chemie und Biochemie, Rheinische Friedrich Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | - Slavica Janevska
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Bettina Tudzynski
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Jeroen S. Dickschat
- Kekulé Institut für Organische Chemie und Biochemie, Rheinische Friedrich Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| |
Collapse
|
15
|
He F, Mori T, Morita I, Nakamura H, Alblova M, Hoshino S, Awakawa T, Abe I. Molecular basis for the P450-catalyzed C–N bond formation in indolactam biosynthesis. Nat Chem Biol 2019; 15:1206-1213. [DOI: 10.1038/s41589-019-0380-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 09/05/2019] [Indexed: 12/24/2022]
|
16
|
Morrill LA, Susick RB, Chari JV, Garg NK. Total Synthesis as a Vehicle for Collaboration. J Am Chem Soc 2019; 141:12423-12443. [PMID: 31356068 DOI: 10.1021/jacs.9b05588] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
"Collaboration" is not the first word most would associate with the field of total synthesis. In fact, the spirit of total synthesis is all-too-often reputed as being more competitive, rather than collaborative, sometimes even within individual laboratories. However, recent studies in total synthesis have inspired a number of collaborative efforts that strategically blend synthetic methodology, biocatalysis, biosynthesis, computational chemistry, and drug discovery with complex molecule synthesis. This Perspective highlights select recent advances in these areas, including collaborative syntheses of chlorolissoclimide, nigelladine A, artemisinin, ingenol, hippolachnin A, communesin A, and citrinalin B. The legendary Woodward-Eschenmoser collaboration that led to the total synthesis of vitamin B12 is also discussed.
Collapse
Affiliation(s)
- Lucas A Morrill
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , United States
| | - Robert B Susick
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , United States
| | - Jason V Chari
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , United States
| | - Neil K Garg
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , United States
| |
Collapse
|
17
|
Roose BW, Christianson DW. Structural Basis of Tryptophan Reverse N-Prenylation Catalyzed by CymD. Biochemistry 2019; 58:3232-3242. [PMID: 31251043 DOI: 10.1021/acs.biochem.9b00399] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Indole prenyltransferases catalyze the prenylation of l-tryptophan (l-Trp) and other indoles to produce a diverse set of natural products in bacteria, fungi, and plants, many of which possess useful biological properties. Among this family of enzymes, CymD from Salinispora arenicola catalyzes the reverse N1 prenylation of l-Trp, an unusual reaction given the poor nucleophilicity of the indole nitrogen. CymD utilizes dimethylallyl diphosphate (DMAPP) as the prenyl donor, catalyzing the dissociation of the diphosphate leaving group followed by nucleophilic attack of the indole nitrogen at the tertiary carbon of the dimethylallyl cation. To better understand the structural basis of selective indole N-alkylation reactions in biology, we have determined the X-ray crystal structures of CymD, the CymD-l-Trp complex, and the CymD-l-Trp-DMSPP complex (DMSPP is dimethylallyl S-thiolodiphosphate, an unreactive analogue of DMAPP). The orientation of l-Trp with respect to DMSPP reveals how the active site contour of CymD serves as a template to direct the reverse prenylation of the indole nitrogen. Comparison to PriB, a C6 bacterial indole prenyltransferase, offers further insight regarding the structural basis of regioselective indole prenylation. Isothermal titration calorimetry measurements indicate a synergistic relationship between l-Trp and DMSPP binding. Finally, activity assays demonstrate the selectivity of CymD for l-Trp and indole as prenyl acceptors. Collectively, these data establish a foundation for understanding and engineering the regioselectivity of indole prenylation by members of the prenyltransferase protein family.
Collapse
Affiliation(s)
- Benjamin W Roose
- Roy and Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , United States
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , United States
| |
Collapse
|
18
|
Bandari C, Scull EM, Bavineni T, Nimmo SL, Gardner ED, Bensen RC, Burgett AW, Singh S. FgaPT2, a biocatalytic tool for alkyl-diversification of indole natural products. MEDCHEMCOMM 2019; 10:1465-1475. [PMID: 31534661 PMCID: PMC6748273 DOI: 10.1039/c9md00177h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/05/2019] [Indexed: 01/02/2023]
Abstract
Demonstration of FgaPT2 catalyzed alkyl-diversification of indole containing natural products.
Aromatic prenyltransferases from natural product biosynthetic pathways display relaxed specificity for their aromatic substrates. While a growing body of evidence suggests aromatic prenyltransferases to be more tolerant towards their alkyl-donor substrates, most studies aimed at probing their donor-substrate specificity are limited to only a small set of alkyl pyrophosphate donors, restricting their broader utility as biocatalysts for synthetic applications. Here, we assess the donor substrate specificity of an l-tryptophan C4-prenyltransferase, also known as C4-dimethylallyltryptophan synthase, FgaPT2 from Aspergillus fumigatus, using an array of 34 synthetic unnatural alkyl-pyrophosphate analogues, and demonstrate FgaPT2 can catalyze the transfer of 25 of the 34 non-native alkyl groups from their corresponding synthetic alkyl-pyrophosphate analogues at N1, C3, C4 and C5 position of tryptophan in a normal and reverse manner. The kinetic studies and regio-chemical analysis of the alkyl-l-tryptophan products suggest that the alkyl-donor transfer by FgaPT2 is a function of the stability of the carbocation and the steric factors in the active site of the enzyme. Further, to demonstrate the biocatalytic utility of FgaPT2, this study also highlights the FgaPT2-catalyzed synthesis of a small set of alkyl-diversified indolocarbazole analogues. These results reveal FgaPT2 to be more tolerant to diverse non-native alkyl-donor substrates beyond their known acceptor substrate promiscuity and set the stage for its development as a novel biocatalytic tool for the differential alkylation of natural products for drug discovery and other synthetic applications.
Collapse
Affiliation(s)
- Chandrasekhar Bandari
- Department of Chemistry and Biochemistry , University of Oklahoma , Stephenson Life Sciences Research Center , 101 Stephenson Parkway , Norman , Oklahoma 73019 , USA .
| | - Erin M Scull
- Department of Chemistry and Biochemistry , University of Oklahoma , Stephenson Life Sciences Research Center , 101 Stephenson Parkway , Norman , Oklahoma 73019 , USA .
| | - Tejaswi Bavineni
- Department of Chemistry and Biochemistry , University of Oklahoma , Stephenson Life Sciences Research Center , 101 Stephenson Parkway , Norman , Oklahoma 73019 , USA .
| | - Susan L Nimmo
- Department of Chemistry and Biochemistry , University of Oklahoma , Stephenson Life Sciences Research Center , 101 Stephenson Parkway , Norman , Oklahoma 73019 , USA .
| | - Eric D Gardner
- Department of Chemistry and Biochemistry , University of Oklahoma , Stephenson Life Sciences Research Center , 101 Stephenson Parkway , Norman , Oklahoma 73019 , USA .
| | - Ryan C Bensen
- Department of Chemistry and Biochemistry , University of Oklahoma , Stephenson Life Sciences Research Center , 101 Stephenson Parkway , Norman , Oklahoma 73019 , USA .
| | - Anthony W Burgett
- Department of Chemistry and Biochemistry , University of Oklahoma , Stephenson Life Sciences Research Center , 101 Stephenson Parkway , Norman , Oklahoma 73019 , USA .
| | - Shanteri Singh
- Department of Chemistry and Biochemistry , University of Oklahoma , Stephenson Life Sciences Research Center , 101 Stephenson Parkway , Norman , Oklahoma 73019 , USA .
| |
Collapse
|
19
|
Abstract
Enzymes in biosynthetic pathways, especially in plant and microbial metabolism, generate structural and functional group complexity in small molecules by conversion of acyclic frameworks to cyclic scaffolds via short, efficient routes. The distinct chemical logic used by several distinct classes of cyclases, oxidative and non-oxidative, has recently been elucidated by genome mining, heterologous expression, and genetic and mechanistic analyses. These include enzymes performing pericyclic transformations, pyran synthases, tandem acting epoxygenases, and epoxide "hydrolases", as well as oxygenases and radical S-adenosylmethionine enzymes that involve rearrangements of substrate radicals under aerobic or anaerobic conditions.
Collapse
Affiliation(s)
- Christopher T. Walsh
- Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA
| |
Collapse
|
20
|
Liu J, Yu H, Li SM. Expanding tryptophan-containing cyclodipeptide synthase spectrum by identification of nine members from Streptomyces strains. Appl Microbiol Biotechnol 2018; 102:4435-4444. [PMID: 29574613 DOI: 10.1007/s00253-018-8908-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/28/2018] [Indexed: 02/05/2023]
Abstract
Cyclodipeptide synthases (CDPSs) comprise normally 200-300 amino acid residues and are mainly found in bacteria. They hijack aminoacyl-tRNAs from the ribosomal machinery for cyclodipeptide formation. In this study, nine new CDPS genes from eight Streptomyces strains were cloned into pET28a vector and expressed in Escherichia coli. Structural elucidation of the isolated products led to the identification of one cyclo-L-Trp-L-Leu, two cyclo-L-Trp-L-Pro, and three cyclo-L-Trp-L-Trp synthases. Other three CDPSs produce cyclo-L-Trp-L-Ala or cyclo-L-Trp-L-Tyr as the major cyclodipeptide. Total product yields of 46 to 211 mg/L E. coli culture were obtained. Our findings represent rare examples of CDPS family derived from actinobacteria that form various tryptophan-containing cyclodipeptides. Furthermore, this study highlights the potential of the microbial machinery for tryptophan-containing cyclodipeptide biosynthesis and provides valid experimental basis for further combination of these CDPS genes with other modification genes in synthetic biology.
Collapse
Affiliation(s)
- Jing Liu
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037, Marburg, Germany
| | - Huili Yu
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037, Marburg, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037, Marburg, Germany.
| |
Collapse
|
21
|
Awakawa T, Abe I. Biosynthesis of the teleocidin-type terpenoid indole alkaloids. Org Biomol Chem 2018; 16:4746-4752. [DOI: 10.1039/c8ob00803e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Teleocidin B is a terpenoid indole alkaloid with unique structures including indolactam and cyclic terpenoid, and is a strong protein kinase C activator. In this review, we describe the isolation and biosynthetic studies of teleocidins.
Collapse
Affiliation(s)
- Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences
- The University of Tokyo
- Tokyo
- Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences
- The University of Tokyo
- Tokyo
- Japan
| |
Collapse
|
22
|
Blaszczyk AJ, Wang B, Silakov A, Ho JV, Booker SJ. Efficient methylation of C2 in l-tryptophan by the cobalamin-dependent radical S-adenosylmethionine methylase TsrM requires an unmodified N1 amine. J Biol Chem 2017; 292:15456-15467. [PMID: 28747433 PMCID: PMC5602403 DOI: 10.1074/jbc.m117.778548] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/20/2017] [Indexed: 11/06/2022] Open
Abstract
TsrM catalyzes the methylation of C2 in l-tryptophan (Trp). This reaction is the first step in the biosynthesis of the quinaldic acid moiety of the thiopeptide antibiotic thiostrepton, which exhibits potent activity against Gram-positive pathogens. TsrM is a member of the radical S-adenosylmethionine (SAM) superfamily of enzymes, but it does not catalyze the formation of 5'-deoxyadenosin-5'-yl or any other SAM-derived radical. In addition to a [4Fe-4S] cluster, TsrM contains a cobalamin cofactor that serves as an intermediate methyl carrier in its reaction. However, how this cofactor donates a methyl moiety to the Trp substrate is unknown. Here, we showed that the unmodified N1 position of Trp is important for turnover and that 1-thia-Trp and 1-oxa-Trp serve as competitive inhibitors. We also showed that β-cyclopropyl-Trp undergoes C2 methylation in the absence of cyclopropyl ring opening, disfavoring mechanisms that involve unpaired electron density at C3 of the indole ring. Moreover, we showed that all other indole-substituted analogs of Trp undergo methylation at varying but measurable rates and that the analog 7-aza-Trp, which is expected to temper the nucleophilicity of C2 in Trp, is a very poor substrate. Last, no formation of cob(II)alamin or substrate radicals was observed during the reaction with Trp or any molecule within a tested panel of Trp analogs. In summary, our results are most consistent with a mechanism that involves two polar nucleophilic displacements, the second of which requires deprotonation of the indole nitrogen in Trp during its attack on methylcobalamin.
Collapse
Affiliation(s)
| | - Bo Wang
- the Department of Chemistry, and
| | | | | | - Squire J Booker
- From the Department of Biochemistry and Molecular Biology,
- the Department of Chemistry, and
- the Howard Hughes Medical Institute, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
23
|
Okada M, Sugita T, Abe I. Posttranslational isoprenylation of tryptophan in bacteria. Beilstein J Org Chem 2017; 13:338-346. [PMID: 28326143 PMCID: PMC5331326 DOI: 10.3762/bjoc.13.37] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/10/2017] [Indexed: 11/26/2022] Open
Abstract
Posttranslational isoprenylation is generally recognized as a universal modification of the cysteine residues in peptides and the thiol groups of proteins in eukaryotes. In contrast, the Bacillus quorum sensing peptide pheromone, the ComX pheromone, possesses a posttranslationally modified tryptophan residue, and the tryptophan residue is isoprenylated with either a geranyl or farnesyl group at the gamma position to form a tricyclic skeleton that bears a newly formed pyrrolidine, similar to proline. The post-translational dimethylallylation of two tryptophan residues of a cyclic peptide, kawaguchipeptin A, from cyanobacteria has also been reported. Interestingly, the modified tryptophan residues of kawaguchipeptin A have the same scaffold as that of the ComX pheromones, but with the opposite stereochemistry. This review highlights the biosynthetic pathways and posttranslational isoprenylation of tryptophan. In particular, recent studies on peptide modifying enzymes are discussed.
Collapse
Affiliation(s)
- Masahiro Okada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomotoshi Sugita
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
24
|
|
25
|
Lin HC, McMahon TC, Patel A, Corsello M, Simon A, Xu W, Zhao M, Houk KN, Garg NK, Tang Y. P450-Mediated Coupling of Indole Fragments To Forge Communesin and Unnatural Isomers. J Am Chem Soc 2016; 138:4002-5. [PMID: 26963294 PMCID: PMC4988905 DOI: 10.1021/jacs.6b01413] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dimeric indole alkaloids are structurally diverse natural products that have attracted significant attention from the synthetic and biosynthetic communities. Here, we describe the characterization of a P450 monooxygenase CnsC from Penicillium that catalyzes the heterodimeric coupling between two different indole moieties, tryptamine and aurantioclavine, to construct vicinal quaternary stereocenters and yield the heptacyclic communesin scaffold. We show, via biochemical characterization, substrate analogues, and computational methods that CnsC catalyzes the C3-C3' carbon-carbon bond formation and controls the regioselectivities of the pair of subsequent aminal bond formations to yield the communesin core. Use of ω-N-methyltryptamine and tryptophol in place of tryptamine led to the enzymatic synthesis of isocommunesin compounds, which have not been isolated to date.
Collapse
Affiliation(s)
- Hsiao-Ching Lin
- Institute of Biological Chemistry, Academia Sinica , Taipei 115, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Okada M, Sugita T, Akita K, Nakashima Y, Tian T, Li C, Mori T, Abe I. Stereospecific prenylation of tryptophan by a cyanobacterial post-translational modification enzyme. Org Biomol Chem 2016; 14:9639-9644. [DOI: 10.1039/c6ob01759b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The stereospecific prenylation of tryptophan by KgpF was determined by in vitro prenylation and chemical synthesis.
Collapse
Affiliation(s)
- Masahiro Okada
- Graduate School of Pharmaceutical Sciences
- The University of Tokyo
- Tokyo
- Japan
| | - Tomotoshi Sugita
- Graduate School of Pharmaceutical Sciences
- The University of Tokyo
- Tokyo
- Japan
| | - Kohei Akita
- Graduate School of Pharmaceutical Sciences
- The University of Tokyo
- Tokyo
- Japan
| | - Yu Nakashima
- Graduate School of Pharmaceutical Sciences
- The University of Tokyo
- Tokyo
- Japan
| | - Tian Tian
- Graduate School of Pharmaceutical Sciences
- The University of Tokyo
- Tokyo
- Japan
| | - Chang Li
- Graduate School of Pharmaceutical Sciences
- The University of Tokyo
- Tokyo
- Japan
| | - Takahiro Mori
- Graduate School of Pharmaceutical Sciences
- The University of Tokyo
- Tokyo
- Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences
- The University of Tokyo
- Tokyo
- Japan
| |
Collapse
|
27
|
Chen JH, Chen ZC, Zhao H, Zhang T, Wang WJ, Zou Y, Zhang XJ, Yan M. Intramolecular addition of diarylmethanols to imines promoted by KOt-Bu/DMF: a new synthetic approach to indole derivatives. Org Biomol Chem 2016; 14:4071-6. [DOI: 10.1039/c6ob00423g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
KOt-Bu/DMF promoted intramolecular addition of diarylmethanols to imines was developed.
Collapse
Affiliation(s)
- Jia-hua Chen
- Institute of Drug Synthesis and Pharmaceutical Process
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Zi-cong Chen
- Institute of Drug Synthesis and Pharmaceutical Process
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Hong Zhao
- Institute of Drug Synthesis and Pharmaceutical Process
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Ting Zhang
- Institute of Drug Synthesis and Pharmaceutical Process
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Wei-juan Wang
- Institute of Drug Synthesis and Pharmaceutical Process
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Yong Zou
- Institute of Drug Synthesis and Pharmaceutical Process
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Xue-jing Zhang
- Institute of Drug Synthesis and Pharmaceutical Process
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Ming Yan
- Institute of Drug Synthesis and Pharmaceutical Process
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| |
Collapse
|
28
|
Shaaban S, Roller A, Maulide N. Visible-Light, Metal-Free α-Amino C(sp3)-H Activation through 1,5-Hydrogen Migration: A Concise Method for the Preparation of Bis(indolyl)alkanes. European J Org Chem 2015. [DOI: 10.1002/ejoc.201501149] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
|
30
|
Wu C, Du C, Gubbens J, Choi YH, van Wezel GP. Metabolomics-Driven Discovery of a Prenylated Isatin Antibiotic Produced by Streptomyces Species MBT28. JOURNAL OF NATURAL PRODUCTS 2015; 78:2355-2363. [PMID: 26438963 DOI: 10.1021/acs.jnatprod.5b00276] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Actinomycetes are a major source of antimicrobials, anticancer compounds, and other medically important products, and their genomes harbor extensive biosynthetic potential. Major challenges in the screening of these microorganisms are to activate the expression of cryptic biosynthetic gene clusters and the development of technologies for efficient dereplication of known molecules. Here we report the identification of a previously unidentified isatin-type antibiotic produced by Streptomyces sp. MBT28, following a strategy based on NMR-based metabolomics combined with the introduction of streptomycin resistance in the producer strain. NMR-guided isolation by tracking the target proton signal resulted in the characterization of 7-prenylisatin (1) with antimicrobial activity against Bacillus subtilis. The metabolite-guided genome mining of Streptomyces sp. MBT28 combined with proteomics identified a gene cluster with an indole prenyltransferase that catalyzes the conversion of tryptophan into 7-prenylisatin. This study underlines the applicability of NMR-based metabolomics in facilitating the discovery of novel antibiotics.
Collapse
Affiliation(s)
| | | | - Jacob Gubbens
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | | | | |
Collapse
|
31
|
|
32
|
Zou Y, Zhan Z, Li D, Tang M, Cacho RA, Watanabe K, Tang Y. Tandem prenyltransferases catalyze isoprenoid elongation and complexity generation in biosynthesis of quinolone alkaloids. J Am Chem Soc 2015; 137:4980-3. [PMID: 25859931 DOI: 10.1021/jacs.5b03022] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Modification of natural products with prenyl groups and the ensuing oxidative transformations are important for introducing structural complexity and biological activities. Penigequinolones (1) are potent insecticidal alkaloids that contain a highly modified 10-carbon prenyl group. Here we reveal an iterative prenylation mechanism for installing the 10-carbon unit using two aromatic prenyltransferases (PenI and PenG) present in the gene cluster of 1 from Penicillium thymicola. The initial Friedel-Crafts alkylation is catalyzed by PenI to yield dimethylallyl quinolone 6. The five-carbon side chain is then dehydrogenated by a flavin-dependent monooxygenase to give aryl diene 9, which serves as the electron-rich substrate for a second alkylation with dimethylallyl diphosphate to yield stryrenyl product 10. The completed, oxidized 10-carbon prenyl group then undergoes further structural morphing to yield yaequinolone C (12), the immediate precursor of 1. Our studies have therefore uncovered an unprecedented prenyl chain extension mechanism in natural product biosynthesis.
Collapse
Affiliation(s)
| | - Zhajun Zhan
- §College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Dehai Li
- ∥Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | | | | | - Kenji Watanabe
- ⊥Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | | |
Collapse
|