1
|
Yang S, Li K, Peng M, Wang H, Lu J, Cai G, Wu D. Glutathione metabolism contributes to citric acid tolerance and antioxidant capacity in Acetobacter tropicalis. Food Microbiol 2025; 125:104657. [PMID: 39448167 DOI: 10.1016/j.fm.2024.104657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Acetobacter is one of the main species producing fruit vinegar and its tolerance mechanism to citric acid has not been fully studied. This limits fruit vinegar production from high-citric-acid fruits, which are excellent materials for fruit vinegar production. This study analyzed the metabolic differences between two strains of A. tropicalis with different citric acid tolerances using non-targeted metabolomics. Differential metabolites and metabolic pathways analysis showed that the enhanced amino acid metabolism significantly improved the citric acid tolerance of A. tropicalis and the deamination of amino acids may also play a role. In addition, the up-regulated phosphatidylcholine (PC) and N-heptanoylhonoserine lactone indicated decreased membrane permeability and enhanced quorum sensing (QS), respectively. The analysis of the interaction between pathways and metabolites indicated that Gln, Cys, and Tyr contribute to improving citric acid tolerance, which was also confirmed by the exogenous addition. After adding the amino acids, the down-regulated qdh, up-regulated ggt, and improved glutathione reductase (GR) activity in J-2736 indicated that glutathione metabolism played an important role in resisting citric acid, and cellular antioxidant capacity was increased. This study provides a theoretical basis for efficient fruit vinegar production from citric-acid-type fruits.
Collapse
Affiliation(s)
- Shaojie Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Kang Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Mengdi Peng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Huacheng Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Jian Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| | - Guolin Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| | - Dianhui Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| |
Collapse
|
2
|
Zhang X, Zhang P, Wei X, Peng H, Hu L, Zhu X. Migration, transformation of arsenic, and pollution controlling strategies in paddy soil-rice system: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175500. [PMID: 39151637 DOI: 10.1016/j.scitotenv.2024.175500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Arsenic pollution in paddy fields has become a public concern by seriously threatening rice growth, food security and human health. In this review, we delve into the biogeochemical behaviors of arsenic in paddy soil-rice system, systemically revealing the complexity of its migration and transformation processes, including the release of arsenic from soil to porewater, uptake and translocation of arsenic by rice plants, as well as transformation of arsenic species mediated by microorganism. Especially, microbial processes like reduction, oxidation and methylation of arsenic, and the coupling of arsenic with carbon, iron, sulfur, nitrogen cycling through microbes and related mechanisms were highlighted. Environmental factors like pH, redox potential, organic matter, minerals, nutrient elements, microorganisms and periphyton significantly influence these processes through different pathways, which are discussed in this review. Furthermore, the current progress in remediation strategies, including agricultural interventions, passivation, phytoremediation and microbial remediation is explored, and their potential and limitations are analyzed to address the gaps. This review offers comprehensive perspectives on the complicated behaviors of arsenic and influence factors in paddy soil-rice system, and provides a scientific basis for developing effective arsenic pollution control strategies.
Collapse
Affiliation(s)
- Xing Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an 710127, China.
| | - Panli Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Xin Wei
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Hanyong Peng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaoli Zhu
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an 710127, China.
| |
Collapse
|
3
|
Teng ZJ, Li J, Wang P, Li CY, Peng M, Qin QL, Chen XL, Chen Y, Fu HH, Wang N, Zhang YZ. Meta-omics analysis reveals the marine arsenic cycle driven by bacteria. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135137. [PMID: 39024770 DOI: 10.1016/j.jhazmat.2024.135137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024]
Abstract
Arsenic is a toxic element widely distributed in the Earth's crust and ranked as a class I human carcinogen. Microbial metabolism makes significant contributions to arsenic detoxification, migration and transformation. Nowadays, research on arsenic is primarily in areas affected by arsenic pollution associated with human health activities. However, the biogeochemical traits of arsenic in the global marine ecosystem remain to be explicated. In this study, we revealed that seawater environments were primarily governed by the process of arsenate reduction to arsenite, while arsenite methylation was predominant in marine sediments which may serve as significant sources of arsenic emission into the atmosphere. Significant disparities existed in the distribution patterns of the arsenic cycle between surface and deep seawaters at middle and low latitudes, whereas these situations tend to be similar in the Arctic and Antarctic oceans. Significant variations were also observed in the taxonomic diversity and core microbial community of arsenic cycling across different marine environments. Specifically, γ-proteobacteria played a pivotal role in the arsenic cycle in the whole marine environment. Temperature, dissolved oxygen and phosphate were the crucial factors that related to these differentiations in seawater environments. Overall, our study contributes to a deeper understanding of the marine arsenic cycle.
Collapse
Affiliation(s)
- Zhao-Jie Teng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Jian Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Peng Wang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266373, China
| | - Chun-Yang Li
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266373, China
| | - Ming Peng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Qi-Long Qin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266373, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266373, China
| | - Yin Chen
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; School of Life Sciences, The University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Hui-Hui Fu
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266373, China
| | - Ning Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Yu-Zhong Zhang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266373, China; Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
4
|
Hu L, Cheng N, Wang Y, Zhang D, Xu K, Lv X, Long Y. Arsenate microbial reducing behavior regulated by the temperature fields in landfills. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 168:366-375. [PMID: 37343443 DOI: 10.1016/j.wasman.2023.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/03/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
Attention should be paid to the As(V) reducing behavior in landfills under different temperature fields. In this study, microcosm tests were conducted using enrichment culture from a landfill. The results revealed that the reduction rate of As(V) was significantly affected by the temperature field, with the highest reduction rate observed at 50 °C, followed by 35 °C, 25 °C, and 10 °C. Different As cycling pathways were observed under various temperature fields. At room and medium temperatures, As4S4 was detected, indicating that both biomineralization and methylation processes occurred after As(V) reduction. However, only biogenic methylation was observed under high or low temperatures, indicating that the viability and adaptability of microorganisms varied depending on the temperature field and As contents. Pseudomonas was found to be the primary genus and dominant As(V) reduction bacteria (ARB) in all reactors. The study revealed that Pseudomonas accounted for a significant proportion of arsC genes, ranging from 87.29% to 97.59%, while arsCs genes were predominantly found in Bacillales and Closestridiales, with a contribution ranging from 89.17% to 96.59%. Interestingly, Bacillus and Clostridium were found to possess arsA genes in their metagenome-ssembled genome, resulting in a higher As(V) reducing rate under medium and high temperatures. These findings underscore the importance of temperature in modulating As(V) reducing behavior and As cycling, and could have implications for managing As pollution in landfill sites.
Collapse
Affiliation(s)
- Lifang Hu
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China
| | - Na Cheng
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China
| | - Yuqian Wang
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China
| | - Dongchen Zhang
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China
| | - Ke Xu
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China
| | - Xiaofei Lv
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
5
|
Song X, Li Y, Stirling E, Zhao K, Wang B, Zhu Y, Luo Y, Xu J, Ma B. AsgeneDB: a curated orthology arsenic metabolism gene database and computational tool for metagenome annotation. NAR Genom Bioinform 2022; 4:lqac080. [PMID: 36330044 PMCID: PMC9623898 DOI: 10.1093/nargab/lqac080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/02/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022] Open
Abstract
Arsenic (As) is the most ubiquitous toxic metalloid in nature. Microbe-mediated As metabolism plays an important role in global As biogeochemical processes, greatly changing its toxicity and bioavailability. While metagenomic sequencing may advance our understanding of the As metabolism capacity of microbial communities in different environments, accurate metagenomic profiling of As metabolism remains challenging due to low coverage and inaccurate definitions of As metabolism gene families in public orthology databases. Here we developed a manually curated As metabolism gene database (AsgeneDB) comprising 400 242 representative sequences from 59 As metabolism gene families, which are affiliated with 1653 microbial genera from 46 phyla. AsgeneDB achieved 100% annotation sensitivity and 99.96% annotation accuracy for an artificial gene dataset. We then applied AsgeneDB for functional and taxonomic profiling of As metabolism in metagenomes from various habitats (freshwater, hot spring, marine sediment and soil). The results showed that AsgeneDB substantially improved the mapping ratio of short reads in metagenomes from various environments. Compared with other databases, AsgeneDB provides more accurate, more comprehensive and faster analysis of As metabolic genes. In addition, we developed an R package, Asgene, to facilitate the analysis of metagenome sequencing data. Therefore, AsgeneDB and the associated Asgene package will greatly promote the study of As metabolism in microbial communities in various environments.
Collapse
Affiliation(s)
- Xinwei Song
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310000, China,Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310000, China,Hangzhou Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Yiqun Li
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310000, China,Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310000, China,Hangzhou Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Erinne Stirling
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310000, China,Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310000, China,Hangzhou Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Kankan Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310000, China,Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310000, China,Hangzhou Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Binhao Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310000, China,Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310000, China,Hangzhou Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Yongguan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100000, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210000, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310000, China,Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310000, China
| | - Bin Ma
- To whom correspondence should be addressed. Tel: +86 13282198979;
| |
Collapse
|
6
|
Hu L, Qian Y, Ci M, Long Y, Zheng H, Xu K, Wang Y. Localized intensification of arsenic methylation within landfill leachate-saturated zone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156979. [PMID: 35764148 DOI: 10.1016/j.scitotenv.2022.156979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/05/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Leachate-saturated zone (LSZ) of landfills is a complicated biogeochemical hotspot due to the continuous input of electron donors and acceptors from the top refuse layer with leachate migration. In this study, the methylation behavior of the arsenic (As) was investigated. The results indicate that As-methylation processes are influenced by temperature fields in LSZ. The dimethylarsinic acid biotransformation capability can be enhanced with an increase in temperature. Microbial diversity, quantification of functional gene (arsM), and co-occurrence network analysis further characterized the drivers of As methylation in LSZ. As-biogeochemical cycle pathways, as well as As-functional gene distribution among different temperature fields, were modeled on the basis of KEGG annotation. Binning analysis was further employed to assemble As-methylated metagenomes, enabling the identification of novel species for As methylation in landfills. Then, 87 high-quality draft metagenome-assembled genomes (MAGs) were reconstructed from LSZ refuse samples; nearly 15 % (13 of 87) belonged to putative As-methylates functional MAGs. Combined with the model of the As-biogeochemical cycle, nine putative functional species could complete methylation processes alone. The findings of this study highlighted the temperature influence on the As-methylation behavior in LSZ and could facilitate the management of As contamination in landfills.
Collapse
Affiliation(s)
- Lifang Hu
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China
| | - Yating Qian
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China
| | - Manting Ci
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Instrumental Analysis Center, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Instrumental Analysis Center, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Haozhe Zheng
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China
| | - Ke Xu
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China
| | - Yuqian Wang
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
7
|
Bolan S, Seshadri B, Kunhikrishnan A, Grainge I, Talley NJ, Bolan N, Naidu R. Differential toxicity of potentially toxic elements to human gut microbes. CHEMOSPHERE 2022; 303:134958. [PMID: 35595114 DOI: 10.1016/j.chemosphere.2022.134958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/23/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Specific microorganisms in the human gut (i.e., gut microbes) provide mutually beneficial outcomes such as microbial balance by inhibiting the growth of pathogenic organisms, immune system modulation, fermentation of ingested products, and vitamin production. The intake of contaminants including potenially toxic elements (PTEs) can occur through food, air, water and some medicines. The gut microbes not only can be affected by environmental contaminants but they themselves can alter the speciation and bioavailability of these contaminants. This research work was designed to demonstrate the relationship between increasing level of selected PTEs including As, Cd, Pb and Hg on the growth of selected gut microbes. The toxicity of above mentioned PTEs to three gut bacteria (Lactobacillus rhamnosus, Lactobacillus acidophilus and Escherichia coli) was examined. While the toxicity of all the cationic PTEs including Cd, Pb and Hg towards gut bacteria decreased with increasing pH, the anionic As species exhibited an opposite effect. The order of toxicity was Hg > Cd > Pb > As(III)>As(V) for E. coli; and Hg > Cd > As(III)>Pb > As(V) for the two Lactobacillus sp. Arsenite (AsIII) showed higher toxicity than arsenate (AsV) to gut bacteria. While As is an anion, Cd, Pb and Hg are cations and hence their binding capacity to the bacterial cell wall varied based on the charge dependent functional groups. However, the toxic effects of PTEs for a bacteria are controlled by their speciation and bioavailability.
Collapse
Affiliation(s)
- Shiv Bolan
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan, Australia; School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia.
| | - Balaji Seshadri
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan, Australia
| | - Anitha Kunhikrishnan
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan, Australia
| | - Ian Grainge
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, Australia
| | - Nicholas J Talley
- Faculty of Health and Medicine, The University of Newcastle, Callaghan, Australia
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan, Australia
| |
Collapse
|
8
|
Glutathione is involved in the reduction of methylarsenate to generate antibiotic methylarsenite in Enterobacter sp. CZ-1. Appl Environ Microbiol 2022; 88:e0246721. [PMID: 35080903 DOI: 10.1128/aem.02467-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methylarsenate (MAs(V)) is a product of microbial arsenic (As) biomethylation and has also been widely used as an herbicide. Some microbes are able to reduce nontoxic MAs(V) to highly toxic methylarsenite (MAs(III)) possibly as an antibiotic. The mechanism of MAs(V) reduction in microbes has not been elucidated. Here, we found that the bacterium Enterobacter sp. CZ-1 isolated from an As-contaminated paddy soil has a strong ability to reduce MAs(V) to MAs(III). Using a MAs(III)-responsive biosensor to detect MAs(V) reduction in E. coli Trans5α transformants of a genomic library of Enterobacter sp. CZ-1, we identified gshA, encoding a glutamate-cysteine ligase, as a key gene involved in MAs(V) reduction. Heterologous expression of gshA increased the biosynthesis of glutathione (GSH) and MAs(V) reduction in E. coli Trans5α. Deletion of gshA in Enterobacter sp. CZ-1 abolished its ability to synthesize GSH and decreased its MAs(V) reduction ability markedly, which could be restored by supplementation of exogenous GSH. In the presence of MAs(V), Enterobacter sp. CZ-1 was able to inhibit the growth of Bacillus subtilis 168; this ability was lost in the gshA-deleted mutant. In addition, deletion of gshA greatly decreased the reduction of arsenate to arsenite. These results indicate that GSH plays an important role in MAs(V) reduction to generate MAs(III) as an antibiotic. IMPORTANCE Arsenic is a ubiquitous environmental toxin. Some microbes detoxify inorganic arsenic through biomethylation, generating relatively nontoxic pentavalent methylated arsenicals, such as methylarsenate. Methylarsenate has also been widely used as an herbicide. Surprisingly, some microbes reduce methylarsenate to highly toxic methylarsenite possibly to use the latter as an antibiotic. How microbes reduce methylarsenate to methylarsenite is unknown. Here, we show that gshA encoding a glutamate-cysteine ligase in the glutathione biosynthesis pathway is involved in methylarsenate reduction in Enterobacter sp. CZ-1. Our study provides new insights into the crucial role of glutathione in the transformation of a common arsenic compound to a natural antibiotic.
Collapse
|
9
|
Wu J, Liang J, Björn LO, Li J, Shu W, Wang Y. Phosphorus-arsenic interaction in the 'soil-plant-microbe' system and its influence on arsenic pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149796. [PMID: 34464787 DOI: 10.1016/j.scitotenv.2021.149796] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/08/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Elevated arsenic (As) in soil is of public concern due to the carcinogenicity. Phosphorus (P) strongly influences the adsorption, absorption, transport, and transformation of As in the soil and in organisms due to the similarity of the chemical properties of P and As. In soil, P, particularly inorganic P, can release soil-retained As (mostly arsenate) by competing for adsorption sites. In plant and microbial systems, P usually reduces As (mainly arsenate) uptake and affects As biotransformation by competing for As transporters. The intensity and pattern of PAs interaction are highly dependent on the forms of As and P, and strongly influenced by various biotic and abiotic factors. An understanding of the PAs interaction in 'soil-plant-microbe' systems is of great value to prevent soil As from entering the human food chain. Here, we review PAs interactions and the main influential factors in soil, plant, and microbial subsystems and their effects on the As release, absorption, transformation, and transport in the 'soil-plant-microbe' system. We also analyze the application potential of P fertilization as a control for As pollution and suggest the research directions that need to be followed in the future.
Collapse
Affiliation(s)
- Jingwen Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitor, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jieliang Liang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitor, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lars Olof Björn
- Department of Biology, Lund University, Lund SE-22362, Sweden
| | - Jintian Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitor, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Wensheng Shu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitor, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yutao Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitor, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
10
|
Wang WK, Yang HJ, Wang YL, Yang KL, Jiang LS, Li SL. Gossypol detoxification in the rumen and Helicoverpa armigera larvae: A review. ACTA ACUST UNITED AC 2021; 7:967-972. [PMID: 34703914 PMCID: PMC8521185 DOI: 10.1016/j.aninu.2021.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/06/2021] [Accepted: 02/06/2021] [Indexed: 11/18/2022]
Abstract
Gossypol, a phenolic compound found in the cotton plant, is widely distributed in cottonseed by-products. Although ruminant animals are believed to be more tolerant of gossypol toxicity than monogastric animals due to rumen microbial fermentation, the actual mechanisms of detoxification remain unclear. In contrast, the metabolic detoxification of gossypol by Helicoverpa armigera (Lepidoptera: Noctuidae) larvae has achieved great advances. The present review discusses the clinical signs of gossypol in ruminant animals, as well as summarizing advances in the study of gossypol detoxification in the rumen. It also examines the regulatory roles of several key enzymes in gossypol detoxification and transformation known in H. armigera. With the rapid development of modern molecular biotechnology and -omics technology strategies, evidence increasingly indicates that research into the biological degradation of gossypol in H. armigera larvae and some microbes, in terms of these key enzymes, could provide scientific insights that would underpin future work on microbial gossypol detoxification in the rumen, with the ultimate aim of further alleviating gossypol toxicity in ruminant animals.
Collapse
Affiliation(s)
- Wei-Kang Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hong-Jian Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Corresponding author.
| | - Yan-Lu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Kai-Lun Yang
- College of Animal Sciences, Xinjiang Agricultural University, Urumuqi, 830052, China
| | - Lin-Shu Jiang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Sheng-Li Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
11
|
Escobar-Niño A, Sánchez-Barrionuevo L, Torres-Torres JM, Clemente R, Gutiérrez G, Mellado E, Cánovas D. An arsRB resistance operon confers tolerance to arsenite in the environmental isolate Terribacillus sp. AE2B 122. FEMS Microbiol Ecol 2021; 97:6123713. [PMID: 33512483 PMCID: PMC8755942 DOI: 10.1093/femsec/fiab015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/27/2021] [Indexed: 11/14/2022] Open
Abstract
Terribacillus sp. AE2B 122 is an environmental strain isolated from olive-oil agroindustry wastes. This strain displays resistance to arsenic, one of the most ubiquitous carcinogens found in nature. Terribacillus sp. AE2B 122 possesses an unusual ars operon, consisting of the transcriptional regulator (arsR) and arsenite efflux pump (arsB) but no adjacent arsenate reductase (arsC) locus. Expression of arsR and arsB was induced when Terribacillus was exposed to sub-lethal concentrations of arsenate. Heterologous expression of the arsB homologue in Escherichia coli∆arsRBC demonstrated that it conferred resistance to arsenite and reduced the accumulation of arsenic inside the cells. Two members of the arsC-like family (Te3384 and Te2854) found in the Terribacillus genome were not induced by arsenic, but their heterologous expression in E. coli ∆arsC and ∆arsRBC increased the accumulation of arsenic in both strains. We found that both Te3384 and Te2854 slightly increased resistance to arsenate in E. coli ∆arsC and ∆arsRBC, possibly by chelation of arsenic or by increasing the resistance to oxidative stress. Finally, arsenic speciation assays suggest that Terribacillus is incapable of arsenate reduction, in agreement with the lack of an arsC homologue in the genome.
Collapse
Affiliation(s)
- Almudena Escobar-Niño
- Department of Genetics, Faculty of Biology, University of Seville, Seville, 41012, Spain.,Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, 41012, Spain
| | - Leyre Sánchez-Barrionuevo
- Department of Genetics, Faculty of Biology, University of Seville, Seville, 41012, Spain.,Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, 41012, Spain
| | | | - Rafael Clemente
- CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, 30100, Spain
| | - Gabriel Gutiérrez
- Department of Genetics, Faculty of Biology, University of Seville, Seville, 41012, Spain
| | - Encarnación Mellado
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, 41012, Spain
| | - David Cánovas
- Department of Genetics, Faculty of Biology, University of Seville, Seville, 41012, Spain
| |
Collapse
|
12
|
Suzuki H. γ-Glutamyltranspeptidase essential for the metabolism of γ-glutamyl compounds in bacteria and its application. Biosci Biotechnol Biochem 2021; 85:1295-1313. [DOI: 10.1093/bbb/zbab043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/27/2021] [Indexed: 01/09/2023]
Abstract
ABSTRACT
The enzymatic characteristics of γ-glutamyltranspeptidase were elucidated. The catalytic nucleophile of the enzymatic reaction of Escherichia coli γ-glutamyltranspeptidase was identified as the Oγ of the N-terminal Thr-residue of the small subunit. It was demonstrated that the inactive precursor of γ-glutamyltranspeptidase is processed autocatalytically and intramolecularly into the active heterodimeric mature enzyme via an ester intermediate. The catalytic nucleophile of this processing reaction was identified as the same Oγ atom of the N-terminal Thr-residue of the small subunit. These results were also supported by the three-dimensional structures of the γ-glutamyl enzyme intermediate and of the precursor-mimicked T391A nonprocessable mutant enzyme. Applications of transpeptidation and hydrolysis activities of bacterial γ-glutamyltranspeptidases were developed. Using transpeptidation activity, efficient enzymatic production of useful γ-glutamyl compounds, such as prodrug for Parkinson's disease, theanine and kokumi compound, was enabled. Hydrolysis activity was used as glutaminase and the mutant enzymes gaining glutaryl-7-aminocephalosporanic acid acylase activity were isolated.
Collapse
Affiliation(s)
- Hideyuki Suzuki
- Division of Applied Biology, Kyoto Institute of Technology, Goshokaido-cho Matsugasaki Sakyo-ku, Kyoto, Japan
| |
Collapse
|
13
|
Li L, Zeng X, Williams PN, Gao X, Zhang L, Zhang J, Shan H, Su S. Arsenic resistance in fungi conferred by extracellular bonding and vacuole-septa compartmentalization. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123370. [PMID: 32650107 DOI: 10.1016/j.jhazmat.2020.123370] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/24/2020] [Accepted: 06/30/2020] [Indexed: 05/27/2023]
Abstract
Microbes play a crucial role in arsenic (As) biogeochemical cycling and show great potential for environmental detoxification and bioremediation. Efflux, transformation, and compartmentalization are key processes in microbial As resistance. However, organelle specific As detoxification and fate during intracellular transfer and compartmentalization is not well understood. We conducted a time course experiment (2-5 days) of the organelle separation for fungal strains to explore subcellular As distributions. After exposure to 10 mg L-1 of arsenate (As(V)), the As accumulation among fungal organelles was generally in the order of extracellular (65 %) > cell wall (15 %) > vacuole (10 %) > other organelles (8 %). The vacuole As accounted for 55 % of the protoplast As. Extracellular bonding and vacuole compartmentalization were the main mechanisms of As resistance in the fungal strains tested. Glutathione (GSH) increases in fungal protoplast in response to As toxicity, acting as a reasonable indicator of As tolerance. Fourier transform infrared (FT-IR) spectroscopy indicated that carboxyl and amines groups within fungal cell walls potentially bind with As preventing As influx. Further analysis using scanning transmission X-ray microscopy (STXM) identified that fungal septa besides vacuole could also immobilize As.
Collapse
Affiliation(s)
- Lijuan Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, PR China
| | - Xibai Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, PR China
| | - Paul N Williams
- Institute for Global Food Security, Queen's University Belfast, Biological Sciences, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Xin Gao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, PR China
| | - Lijuan Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, PR China
| | - Junzheng Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin 150080, PR China
| | - Hong Shan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, PR China
| | - Shiming Su
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, PR China.
| |
Collapse
|
14
|
Hilario E, De Keyser S, Fan L. Structural and biochemical characterization of a glutathione transferase from the citrus canker pathogen Xanthomonas. Acta Crystallogr D Struct Biol 2020; 76:778-789. [PMID: 32744260 PMCID: PMC7397488 DOI: 10.1107/s2059798320009274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 07/07/2020] [Indexed: 11/10/2022] Open
Abstract
The genus Xanthomonas comprises several cosmopolitan plant-pathogenic bacteria that affect more than 400 plant species, most of which are of economic interest. Citrus canker is a bacterial disease that affects citrus species, reducing fruit yield and quality, and is caused by the bacterium Xanthomonas citri subsp. citri (Xac). The Xac3819 gene, which has previously been reported to be important for citrus canker infection, encodes an uncharacterized glutathione S-transferase (GST) of 207 amino-acid residues in length (XacGST). Bacterial GSTs are implicated in a variety of metabolic processes such as protection against chemical and oxidative stresses. XacGST shares high sequence identity (45%) with the GstB dehalogenase from Escherichia coli O6:H1 strain CFT073 (EcGstB). Here, XacGST is reported to be able to conjugate glutathione (GSH) with bromoacetate with a Km of 6.67 ± 0.77 mM, a kcat of 42.69 ± 0.32 s-1 and a kcat/Km of 6.40 ± 0.72 mM-1 s-1 under a saturated GSH concentration (3.6 mM). These values are comparable to those previously reported for EcGstB. In addition, crystal structures of XacGST were determined in the apo form (PDB entry 6nxv) and in a GSH-bound complex (PDB entry 6nv6). XacGST has a canonical GST-like fold with a conserved serine residue (Ser12) at the GSH-binding site near the N-terminus, indicating XacGST to be a serine-type GST that probably belongs to the theta-class GSTs. GSH binding stabilizes a loop of about 20 residues containing a helix that is disordered in the apo XacGST structure.
Collapse
Affiliation(s)
- Eduardo Hilario
- Department of Biochemistry, University of California-Riverside, Riverside, California, USA
| | - Sawyer De Keyser
- Department of Biochemistry, University of California-Riverside, Riverside, California, USA
| | - Li Fan
- Department of Biochemistry, University of California-Riverside, Riverside, California, USA
| |
Collapse
|
15
|
Zhao Y, Su JQ, Ye J, Rensing C, Tardif S, Zhu YG, Brandt KK. AsChip: A High-Throughput qPCR Chip for Comprehensive Profiling of Genes Linked to Microbial Cycling of Arsenic. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:798-807. [PMID: 30532956 DOI: 10.1021/acs.est.8b03798] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Arsenic (As) is a ubiquitous toxic element adversely affecting human health. Microbe-mediated cycling of As is largely mediated by detoxification and energy metabolism in microorganisms. We here report the development of a novel high-throughput qPCR (HT-qPCR) chip (AsChip) for comprehensive profiling of genes involved in microbial As cycling (here collectively termed "As genes"). AsChip contained 81 primer sets targeting 19 As genes and the 16S rRNA gene as a reference gene. Gene amplicon sequencing showed high identity (>96%) of newly designed primers corresponding to their targets. AsChip displayed high sensitivity (plasmid template serial dilution test; r = -0.99), with more than 96% of all PCR assays yielding true positive signals. R2 coefficients for standard curves and PCR amplification efficiencies averaged 0.98 and 0.99, respectively. A high correlation between CT values obtained by AsChip and conventional qPCR was obtained ( r = 0.962, P < 0.001). Finally, we successfully applied AsChip on soil samples from a chromium-copper-arsenic-contaminated field site and identified diverse As genes with total abundance average of 0.4 As gene copies per 16S rRNA. Our results indicate that AsChip constitutes a robust tool for comprehensive quantitative profiling of As genes in environmental samples.
Collapse
Affiliation(s)
- Yi Zhao
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences , University of Copenhagen , Thorvaldsenvej 40 , DK-1871 Frederiksberg C , Denmark
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health , Institute of Urban Environment , Chinese Academy of Science , 1799 Jimei Road , Xiamen 361021 , China
| | - Jun Ye
- Key Laboratory of Urban Environment and Health , Institute of Urban Environment , Chinese Academy of Science , 1799 Jimei Road , Xiamen 361021 , China
| | - Christopher Rensing
- Key Laboratory of Urban Environment and Health , Institute of Urban Environment , Chinese Academy of Science , 1799 Jimei Road , Xiamen 361021 , China
- Institute of Environmental Microbiology, College of Resources and Environment , Fujian Agriculture and Forestry University , Fuzhou 350002 , Fujian China
| | - Stacie Tardif
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences , University of Copenhagen , Thorvaldsenvej 40 , DK-1871 Frederiksberg C , Denmark
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health , Institute of Urban Environment , Chinese Academy of Science , 1799 Jimei Road , Xiamen 361021 , China
- State Key Laboratory of Urban and Regional Ecology , Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Kristian Koefoed Brandt
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences , University of Copenhagen , Thorvaldsenvej 40 , DK-1871 Frederiksberg C , Denmark
| |
Collapse
|
16
|
Pothier MP, Hinz AJ, Poulain AJ. Insights Into Arsenite and Arsenate Uptake Pathways Using a Whole Cell Biosensor. Front Microbiol 2018; 9:2310. [PMID: 30333804 PMCID: PMC6176005 DOI: 10.3389/fmicb.2018.02310] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/10/2018] [Indexed: 11/13/2022] Open
Abstract
Despite its high toxicity and widespread occurrence in many parts of the world, arsenic (As) concentrations in decentralized water supplies such as domestic wells remain often unquantified. One limitation to effective monitoring is the high cost and lack of portability of current arsenic speciation techniques. Here, we present an arsenic biosensor assay capable of quantifying and determining the bioavailable fraction of arsenic species at environmentally relevant concentrations. First, we found that inorganic phosphate, a buffering agent and nutrient commonly found in most bioassay exposure media, was in fact limiting As(V) uptake, possibly explaining the variability in As(V) detection reported so far. Second, we show that the nature of the carbon source used in the bioassay differentially affects the response of the biosensor to As(III). Finally, our data support the existence of non-specific reduction pathways (non-ars encoded) that are responsible for the reduction of As(V) to As(III), allowing its detection by the biosensor. To validate our laboratory approach using field samples, we performed As(III) and As(V) standard additions on natural water samples collected from 17 lakes surrounding Giant Mine in Yellowknife (NWT), Canada. We found that legacy arsenic contamination in these lake water samples was accurately quantified by the biosensor. Interestingly, bioavailability of freshly added standards showed signs of matrix interference, indicative of dynamic interactions between As(III), As(V) and environmental constituents that have yet to be identified. Our results point toward dissolved organic carbon as possibly controlling these interactions, thus altering As bioavailability.
Collapse
Affiliation(s)
| | - Aaron J Hinz
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
17
|
Shehu D, Alias Z. Functional Role of Tyr12 in the Catalytic Activity of Novel Zeta-like Glutathione S-transferase from Acidovorax sp. KKS102. Protein J 2018; 37:261-269. [PMID: 29779193 DOI: 10.1007/s10930-018-9774-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Glutathione S-transferases (GSTs) are a family of enzymes that function in the detoxification of variety of electrophilic substrates. In the present work, we report a novel zeta-like GST (designated as KKSG9) from the biphenyl/polychlorobiphenyl degrading organism Acidovorax sp. KKS102. KKSG9 possessed low sequence similarity but similar biochemical properties to zeta class GSTs. Functional analysis showed that the enzyme exhibits wider substrate specificity compared to most zeta class GSTs by reacting with 1-chloro-2,4-dinitrobenzene (CDNB), p-nitrobenzyl chloride (NBC), ethacrynic acid (EA), hydrogen peroxide, and cumene hydroperoxide. The enzyme also displayed dehalogenation function against dichloroacetate, permethrin, and dieldrin. The functional role of Tyr12 was also investigated by site-directed mutagenesis. The mutant (Y12C) displayed low catalytic activity and dehalogenation function against all the substrates when compared with the wild type. Kinetic analysis using NBC and GSH as substrates showed that the mutant (Y12C) displayed a higher affinity for NBC when compared with the wild type, however, no significant change in GSH affinity was observed. These findings suggest that the presence of tyrosine residue in the motif might represent an evolutionary trend toward improving the catalytic activity of the enzyme. The enzyme as well could be useful in the bioremediation of various types of organochlorine pollutants.
Collapse
Affiliation(s)
- Dayyabu Shehu
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Zazali Alias
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
18
|
Zhu YG, Xue XM, Kappler A, Rosen BP, Meharg AA. Linking Genes to Microbial Biogeochemical Cycling: Lessons from Arsenic. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:7326-7339. [PMID: 28602082 PMCID: PMC5871744 DOI: 10.1021/acs.est.7b00689] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The biotransformation of arsenic is highly relevant to the arsenic biogeochemical cycle. Identification of the molecular details of microbial pathways of arsenic biotransformation coupled with analyses of microbial communities by meta-omics can provide insights into detailed aspects of the complexities of this biocycle. Arsenic transformations couple to other biogeochemical cycles, and to the fate of both nutrients and other toxic environmental contaminants. Microbial redox metabolism of iron, carbon, sulfur, and nitrogen affects the redox and bioavailability of arsenic species. In this critical review we illustrate the biogeochemical processes and genes involved in arsenic biotransformations. We discuss how current and future metagenomic-, metatranscriptomic-, metaproteomic-, and metabolomic-based methods will help to decipher individual microbial arsenic transformation processes, and their connections to other biogeochemical cycle. These insights will allow future use of microbial metabolic capabilities for new biotechnological solutions to environmental problems. To understand the complex nature of inorganic and organic arsenic species and the fate of environmental arsenic will require integrating systematic approaches with biogeochemical modeling. Finally, from the lessons learned from these studies of arsenic biogeochemistry, we will be able to predict how the environment changes arsenic, and, in response, how arsenic biotransformations change the environment.
Collapse
Affiliation(s)
- Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xi-Mei Xue
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Tübingen 72076, Germany
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Andrew A Meharg
- Institute for Global Food Security, Queen’s University Belfast, Belfast BT9 5HN, United Kingdom
| |
Collapse
|
19
|
Genetic Adaptation of Achromobacter sp. during Persistence in the Lungs of Cystic Fibrosis Patients. PLoS One 2015; 10:e0136790. [PMID: 26313451 PMCID: PMC4552427 DOI: 10.1371/journal.pone.0136790] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/07/2015] [Indexed: 12/26/2022] Open
Abstract
Achromobacter species are increasingly isolated from the respiratory tract of cystic fibrosis patients and often a chronic infection is established. How Achromobacter sp. adapts to the human host remains uncharacterised. By comparing longitudinally collected isolates of Achromobacter sp. isolated from five CF patients, we have investigated the within-host evolution of clonal lineages. The majority of identified mutations were isolate-specific suggesting co-evolution of several subpopulations from the original infecting isolate. The largest proportion of mutated genes were involved in the general metabolism of the bacterium, but genes involved in virulence and antimicrobial resistance were also affected. A number of virulence genes required for initiation of acute infection were selected against, e.g. genes of the type I and type III secretion systems and genes related to pilus and flagellum formation or function. Six antimicrobial resistance genes or their regulatory genes were mutated, including large deletions affecting the repressor genes of an RND-family efflux pump and a beta-lactamase. Convergent evolution was observed for five genes that were all implicated in bacterial virulence. Characterisation of genes involved in adaptation of Achromobacter to the human host is required for understanding the pathogen-host interaction and facilitate design of future therapeutic interventions.
Collapse
|